
PROGRAMA DE DOCTORADO EN CIENCIA Y TECNOLOGÍA

AUTOR

TESIS DOCTORAL

ANÁLISIS DE PLANIFICABILIDAD Y OPTIMIZACIÓN DE

SISTEMAS DISTRIBUIDOS DE TIEMPO REAL CON

PARTICIONADO TEMPORAL

PhD THESIS

SCHEDULABILITY ANALYSIS AND OPTIMIZATION OF

TIME-PARTITIONED DISTRIBUTED REAL-TIME SYSTEMS

AUTOR

ANDONI AMURRIO GONZÁLEZ

DIRECTORES

J. JAVIER GUTIÉRREZ GARCÍA

MARIO ALDEA RIVAS

UNIVERSIDAD DE CANTABRIA

Escuela de Doctorado de la Universidad de Cantabria

Santander 2022

This PhD. Thesis has been funded by the program
"Doctorados Industriales 2018"

and it has been done in collaboration between:

Ikerlan
Member of the Basque Research and Technology Alliance

&

University of Cantabria
Software Engineering and Real-time group

Author: Andoni Amurrio González

Ikerlan Supervisor: Ekain Azketa Ferreras

UC Supervisors: J. Javier Gutiérrez García
Mario Aldea Rivas

Abstract

Nowadays, most of the computing systems found in industry, such as autonomous
driving platforms, smart grids or industrial control systems, are usually real-time
cyber-physical systems that have a strong coupling between the software components,
in charge of controlling the whole system by means of specific algorithms, and the
distributed hardware equipment, such as sensing and actuating devices. In addition
to their functional requirements, this kind of systems must meet complex non
functional requirements related to execution predictability or fault tolerance, in
order to comply with safety and application-specific standards.

In this context, designing real-time systems faces several challenges. Real-time
systems are characterized by their deterministic response to external events, execut-
ing a sequence of activities with precedence relationships called end-to-end flows,
which may be linear or multipath. Their correctness does not only depend on their
results being computed correctly, but also on the time at which these results are
provided, which is usually achieved by imposing deadlines that must be met even in
the worst-case scenario. The implementation of sophisticated software architectures,
such as time partitioning techniques that allow isolation among components, and
the hierarchical combination of cyclic scheduling and fixed priority (FP) scheduling
found for example in the avionics and space domains, requires the development of
new response time analysis, scheduling and allocation techniques. All this has led
to an increasing complexity in their design, forcing researchers from academia and
industry to combine their efforts to bridge theoretical developments and practical
use-cases. The work developed in this thesis targets a real railway signalling appli-
cation, which is a paradigmatic example that brings together all the features just
described.

With regard to the response time analysis for event-driven real-time systems, new
approaches or techniques have been proposed in the literature based on models with
different complexity, from single processor to multiprocessor or distributed systems,
and dealing with linear end-to-end flows or other complex multipath logics. The vast
majority of the underlying models for these techniques were based on the authors’
conception about a hypothetical target system. However, current applications in
industry show that state-of-the-art approaches need to be extended in order to
calculate their worst-case response times accurately. In this thesis, a new technique

v

that captures the complexity of current applications, that is, time partitioning plus
fixed priority scheduling and multipath flows, has been developed.

In addition, it is also essential to optimize the utilization of resources of the real-time
application while guaranteeing that its deadlines are met. In the last three decades,
a large number of proposals have been developed for the optimization of the schedul-
ing and deployment of distributed real-time systems under different algorithmic
approaches, which provide acceptable solutions for this problem categorized as
NP-hard in the strong sense. A survey of these works has been reported in this thesis,
and their solutions have been characterized.

Based on the proposed schedulability analysis technique, two crucial aspects of the
scheduling optimization are addressed. On the one hand, a collection of eight algo-
rithms for the priority assignment of multipath end-to-end flows has been proposed,
which can be applied both to hierarchically-scheduled systems like the motivating
industrial use-case, and also to general FP systems. Moreover, the scheduling opti-
mization of time partitions is also addressed by proposing an algorithm to perform
the assignment of partition windows for a fixed available utilization in each partition
and, on top of this, another algorithm is proposed to optimize partition utilization.

Finally, a first step has been taken to solve the problem of allocating real-time
applications to heterogeneous multiprocessor architectures. The allocation problem,
which has been widely addressed in the literature, is far from being optimally solved
due to the novel computing platforms that are being used nowadays in trendy
domains such as autonomous driving or robotics.

All techniques proposed in this thesis have been implemented in several prototype
tools, which has been used to process the experimental evaluation in the industrial
use-case as well as in synthetic use-cases that represent a more general set of
systems. These tools can be integrated within a Model-Driven Engineering (MDE)
methodology for the development of safety critical real-time systems.

vi

Resumen

Hoy en día, la mayoría de los sistemas de computación hallados en la industria,
tales como la automoción, las redes eléctricas inteligentes o los sistemas de control
industrial, son típicamente sistemas ciberfísicos de tiempo real, en los que hay una
gran interacción entre los componentes software, encargados del control del sistema
mediante algoritmos específicos, y el equipamiento hardware distribuido, como
son los dispositivos de sensorización y actuación. Además de sus propios requisi-
tos funcionales, estos sistemas deben cumplir complejos requisitos no funcionales
relacionados con la predictibilidad de su ejecución o la tolerancia a fallos, para así
cumplir con los estándares de seguridad genéricos y sectoriales.

En este contexto, el diseño de sistemas de tiempo real afronta varios desafíos. Los
sistemas de tiempo real se caracterizan por su respuesta determinista a eventos
externos, ejecutando una serie de actividades con relaciones de precedencia llamados
flujos de extremo a extremo, en inglés end-to-end (e2e) flows, que pueden ser lineales
o multitrayecto (en inglés multipath). Su rendimiento adecuado no sólo depende de
que el resultado del cómputo sea correcto, sino también de que este resultado haya
sido obtenido en un lapso de tiempo determinado, lo que generalmente se obtiene
imponiendo unos plazos que deben verificarse incluso en el peor de los casos. La
implementación de sofisticadas arquitecturas en el software, como por ejemplo el
particionado temporal que permite el aislamiento temporal entre componentes, y
la combinación jerárquica de los ejecutivos cíclicos y las prioridades fijas que se
encuentran por ejemplo en la industria aeronáutica, requieren del desarrollo de
nuevas técnicas de análisis, despliegue y planificación. Todo esto ha llevado a que su
diseño sea cada vez más complejo, obligando a la comunidad investigadora, desde
la academia a la industria, a unir sus esfuerzos para aplicar los avances teóricos
en casos de uso prácticos. El trabajo desarrollado en esta tesis se centra en una
aplicacion real del sector ferroviario, dado que se trata de un caso paradigmático
que reúne todas las características expuestas.

En cuanto al análisis de los tiempos de respuesta de sistemas gobernados por eventos,
nuevos enfoques y técnicas han sido propuestos en la literatura, basados en modelos
de mayor o menor complejidad, desde sistemas con un solo procesador hasta sistemas
distribuidos o multiprocesador, y y que tratan flujos de extremo a extremo (en inglés
end-to-end o simplemente e2e) lineales como por otras arquitecturas multitrayecto

vii

de mayor complejidad. La gran mayoría de los modelos y técnicas propuestos están
basados en sistemas hipotéticos, fruto de la concepción de quien los propone. Sin
embargo, las aplicaciones que se encuentran en la industria hoy en día evidencian
que los métodos existentes han de ser extendidos para que se puedan calcular sus
tiempos de respuesta de forma precisa. En esta tesis, se ha desarrollado una nueva
técnica de análisis que captura la complejidad de las aplicaciones industriales, es
decir, el uso de particionado temporal combinado con la planificación basada en
prioridades fijas y flujos e2e multitrayecto.

Asimismo, también es esencial la optimización del uso de los recursos de una
aplicación de tiempo real a la vez que se garantiza que sus plazos se cumplen. En
las tres últimas decadas, se ha llevado a cabo una gran cantidad de propuestas
para la optimización del despliegue y la planificación de los sistemas de tiempo real
distribuídos, mediante distintos enfoques algorítmicos, que producen soluciones
aceptables para este problema categorizado como NP-difícil. En esta tesis se presenta
una revisión de estos trabajos y sus soluciones se han caracterizado.

Teniendo como eje la técnica de análisis de planificabilidad desarrollada, se abordan
dos aspectos cruciales de la planificación de los sistemas de tiempo real. Por un lado,
se propone una colección de ocho algoritmos para la asignación de prioridades para
flujos e2e multitrayecto, que pueden ser aplicados tanto a sistemas con planificación
jerárquica como el del caso de uso industrial que ha motivado este trabajo, como a
sistemas distribuidos generales basados en prioridades fijas. Por otro lado, también
se aborda la planificación de particiones temporales mediante un algoritmo de
asignación de ventanas temporales para una utilización fija de cada partición, y sobre
éste se propone otro algoritmo para optimizar la utilización de las particiones.

Finalmente, se dan los primeros pasos para resolver el problema del despliegue
de aplicaciones de tiempo real en arquitecturas multiprocesador heterogéneas. El
problema del despliegue, que ha sido ampliamente abordado en la literatura, está
lejos de ser resuelto de manera óptima debido a la complejidad de las novedosas
plataformas de cómputo que se emplean hoy en día en ámbitos como la conducción
autónoma o la robótica.

Todas las técnicas propuestas en esta tesis han sido implementadas en herramientas
prototipo y han sido empleadas para llevar a cabo la experimentación, tanto sobre
el caso de uso industrial, como sobre experimentos sintéticos que representan
casuísticas más generales. Estas herramientas pueden integrarse como parte de la
metodología denominada ingeniería basada en modelos, en inglés Model-Driven
Engineering (MDE), para el desarrollo de sistemas críticos de tiempo real.

viii

Acknowledgements

In these lines I would like to show my gratitude towards those that have supported
me during this amazing journey.

One of the first days of work, I was told that the members of the ISTR group in
the University of Cantabria were both lovely people and brilliant researchers. I can
corroborate that at first hand, thank you so much for your kindness. I owe a huge
debt of gratitude to my supervisors, Dr. J. Javier Gutiérrez and Dr. Mario Aldea, who
have supported and guided me with wisdom, patience and perseverance.

To all members of the Dependable Embedded Systems group in Ikerlan, thank you
very much for your guide and advice. I am deeply grateful to my supervisor Dr.
Ekain Azketa, who is a reference for me and has worked really hard to carry out this
thesis from the very first day.

I would also like to express my gratitude to Dr. Marko Bertogna, for accepting me
at the University of Modena and Reggio Emilia. The incredible team at HiPeRT
Lab made me feel at home, even during the hardest pandemic times, and I hope
our paths will cross again. I must also thank Dr. Nacho Sañudo and Dr. Micaela
Verucchi for their kind attention and advise during the stay, both in the office and
beyond, and Carmelo Scribano for providing me with a safe and reliable means of
transportation during my stay in Modena.

Euren maitasuna, beharbada merezi izan ez badut ere, egunero adierazi didatenak
ekarri nahi ditut gogora, neurri handi batean lan hau haiena ere baita. Ehun mila
esker familia eta kuadrilari, desberdintasunik balego bi hitz horien artean. Azkenik,
bide luze honetan nire alboan uneoro sentitu zaituztedalako, aita, ama, Maddalen
eta Ane, bihotz-bihotzez, eskerrik asko.

Nekez uzten du bere sorterria
sustraiak han dituenak.

Nekez uzten du bere lurra zuhaitzak
ez bada abaildu eta oholetan.

ix

Contents

1 Introduction 1
1.1 Context and background . 1

1.1.1 Real-time cyber-physical systems 1
1.1.2 Real-time safety critical systems 2
1.1.3 Model-driven engineering . 3
1.1.4 Response-time analysis . 4

1.2 Industrial use-case . 7
1.3 Objectives . 9
1.4 Organization . 10

2 Scheduling and optimization in distributed real-time systems: a liter-
ature review 13
2.1 Introduction and methodology . 13
2.2 Genetic Algorithm (GA) . 15
2.3 Tabu Search (TS) . 18
2.4 Simulated Annealing (SA) . 19
2.5 Mathematical Programming . 21
2.6 Branch and Bound (BB) . 25
2.7 Heuristics (HEU) . 26
2.8 Classification of works and conclusions 31

3 Real-time system model 35
3.1 Logical architecture . 35
3.2 Physical architecture . 37
3.3 Hierarchical scheduling . 38
3.4 Sensitivity analysis . 39
3.5 Modeling the industrial use-case . 42

4 Response-time analysis 45
4.1 Response-time analysis of linear e2e flows 45
4.2 Response-time analysis of multipath e2e flows 46

4.2.1 Simple example . 47

xi

4.2.2 Implementation and tools . 48

4.3 Industrial use-case evaluation . 49

4.4 Response-time analysis performance 51

4.5 Conclusions . 54

5 Priority assignment 57

5.1 Scheduling-parameter assignment overview 57

5.2 Priority assignment in multipath e2e flows within time partitions . . 60

5.2.1 Virtual Deadline assignment 60

5.2.2 Virtual Deadline transformation into priorities 68

5.3 Evaluation of the priority assignment algorithms 70

5.3.1 Industrial use-case . 70

5.3.2 Performance evaluation . 73

5.4 Conclusions . 80

6 Partition window assignment 81

6.1 Study of the influence of partition windows on schedulability 81

6.1.1 Available Utilization . 82

6.1.2 Number of windows . 82

6.1.3 Context switch overheads . 83

6.1.4 Conclusions of the study . 85

6.2 Heuristic partition window assignment 86

6.2.1 Window Assignment (WinAs) Algorithm 86

6.2.2 Heuristic Optimized Partition Window Assignment (HOPWA) 89

6.3 Performance evaluation . 91

6.3.1 Design of the synthetic experiments 92

6.3.2 WinAs algorithm characterization 95

6.3.3 Evaluating HOPWA algorithm 99

6.3.4 Scheduling evaluation of the industrial use-case 106

6.4 Conclusion . 107

7 Step-to-processor allocation 109

7.1 Background . 109

7.1.1 Multicore achitectures . 110

7.1.2 Allocating real-time applications in heterogeneous systems . . 111

7.2 Slack-Based Allocation (SBA) algorithm 112

7.3 Preliminary evaluation . 114

7.4 Conclusions . 117

8 Conclusions 121

xii

8.1 Thesis contributions . 121
8.2 Future Work . 123
8.3 Publications . 124

Bibliography 127

xiii

Introduction 1
In this chapter the context of this thesis is described, explaining the most relevant
properties of real-time cyber-physical systems, real-time safety-critical systems, re-
sponse time analysis and model-driven engineering, which are fundamental concepts
in this work. Then, the motivational railway signalling application is presented as
a paradigmatic industrial use-case of the schedulability analysis and optimization
problems addressed here. Finally, the objectives of this thesis are listed, and the
organization of this document is described.

1.1 Context and background

1.1.1 Real-time cyber-physical systems

In real-time systems, correct function depends not only on results being right, but
also on them being produced in time, meeting the timing requirements imposed
on the software, usually deadlines. Nowadays, many of these systems correspond
to cyber-physical systems, which are information technology systems integrating
computation, storage and communication capabilities along with sensorization
and/or control of elements or devices in the physical world. This type of systems,
as well as the technology developed around them, is particularly relevant in the
conceptual framework of Industry 4.0 (or the fourth industrial revolution) on which
both research entities and businesses are currently focusing their attention.

From the viewpoint of their physical architecture, these cyber-physical systems
are in reality distributed real-time systems, with several processors that may be
homogeneous or heterogeneous in terms of their core architecture and computation
speed, connected by one or more communication networks. Such networks may
be based on different standards, such as the IEEE 802.1 working group’s Time
Sensitive Networks (TSN) [TSN] or partitioned such as ARINC-664 [Aer09] from the
avionics domain. Their logical architecture is composed of tasks and messages. Both
are characterized by deadlines, which are timing requirements that must be met
even in the worst scenario, and by worst-case execution/transmission times. Their

1

activation can be periodic or not. The task constitutes the minimal schedulable unit
in a computer, which can only be executed if the required hardware and software
resources are available. Their activation can undergo some variability, which is
known as jitter. The messages, whose minimal schedulable units are the packets,
enable the communication among tasks with precedence relationships, making up
the so-called end-to-end flows (henceforth e2e flows). All tasks and messages are
activated when certain stimuli are produced. Depending on the nature of the stimuli,
two criteria for classification of the real-time systems are recognized in [Kop11]:
those activated by time and called Time-Triggered (TT), and those activated by
events and called Event-Triggered (ET).

Scheduling the execution order of concurrent tasks is determined by an algorithm
implemented in a component called scheduler, which is in charge of determining
when tasks are executed in a processor (and also when messages are sent through
a network). Determining in which computers the tasks are executed and through
which networks the messages are sent, often known as allocation, increases the
problem’s complexity, thus making it an NP-hard problem [TBW92]. Algorithms
providing optimal solutions in polynomial time for this type of problems are not
known yet, so typically generic search and optimization algorithms are used.

1.1.2 Real-time safety critical systems

A critical system is one that has functions whose failure can bring about severe
consequences for humans, materials and/or the environment. One of the main
characteristics that a critical system must provide is dependability, bringing together
the concepts of availability, reliability, integrity, maintainability and safety. Safety is
quantified through the “Safety Integrity Level” (henceforth SIL), which is the relative
level of risk reduction provided by a safety function, or an objective level for risk
reduction [SS04]. The safety levels range from SIL1, the lowest, up to SIL4, the
highest.

Complex systems such as automobiles, trains and airplanes combine non-safety
functions with other different-level safety ones. In the past, these functions were de-
ployed in independent physical systems to avoid interference of the non-safety ones
with the safety ones. This paradigm usually requires a large amount of heterogeneous
equipment, leading to increased costs of installation, start-up and maintenance.

With the aim of reducing costs and using resources efficiently, cyber-physical systems
have evolved in recent years by incorporating multi-processor architectures and also

2 Chapter 1 Introduction

virtualization techniques, thus enabling the execution of distinct functionalities of
the system in spatially and temporally protected environments, called partitions,
on a single hardware platform. Each partition can have distinct non-functional
requirements to guarantee response times, safety, confidentiality, etc., which make
up the so-called mixed-criticality systems [Ves07]. In [BD17], a detailed review
of the work done in the last decade on this type of systems is carried out, ranging
from the most theoretical scheduling or design aspects, to the basic implementation
mechanisms. In mixed-criticallity systems it is necessary to have total indepen-
dence among partitions with the aim that the processes of specification, design,
implementation, certification (in those systems that require it) and execution are
totally independent throughout the distinct system components [SO12] [BLS10]
[Goo+13] [Cre+14]. In the European project MultiPARTES [Tru+14] for example,
a set of tools was proposed for the development of mixed criticality systems based
on partitioning, from hardware and software architectures to partition management
tools.

In safety-critical systems, real-time operating systems are typically used to guarantee
the deterministic execution of tasks, based on a specific scheduling policy or a
combination of them, including cyclic executives, fixed priorities or deadline-based
priorities [Liu00]. Cyclic executives were the most widely used until the advent
of priority-based scheduling, which has had an enormous repercussion in most
designs [PEP04a], and which is present in operating systems that follow the POSIX
[IEE03] or AUTOSAR [AUT03] standards, in communications networks such as
CAN [Bos91] and in programming languages such as the Ada standard [ISO12].
Nowadays, partitioned systems enable the combination of characteristics of cyclic
executives and fixed priorities in a hierarchical scheduling, with the partitions as the
basic scheduling level and the use of priorities within each partition. This is the case
of VxWorks [Win16] used in avionics, or Integrity [Gre] used in the railway domain,
which are SIL3 certified.

1.1.3 Model-driven engineering

The methodology consisting of creating abstractions, i.e. models, that allow develop-
ers to capture key information which is essential to the system-development process
is called Model-Driven Engineering (MDE) [Sch06]. The abstraction of a system into
a model allows developers to focus on relevant information independently from the
platform where it is implemented. There are several aspects to address during the
development of cyber-physical real-time systems, such as timing features, safety and
security issues, logical and physical architectural designs, etc. All the information

1.1 Context and background 3

contained in those aspects, represented by different models capturing different views
of the same system, is formalized and then it can be processed through a series of
model transformations, which greatly facilitates development.

The Object Management Group (OMG) defined several concepts for modeling real-
time systems, gathered in the MARTE [Obj11] standard. In this context, the Univer-
sity of Cantabria developed the MAST model [Gon+01] to capture the time-related
features of real-time systems, modeling the tasks and messages that compose the
e2e flows in order to analyze them via response-time analysis techniques. Its first
version, which allows both single-processor and distributed systems to be modeled,
is used in all the analysis and optimization tools within the MAST tool suite. Its
second version, MAST 2 [Har+13], changed a few element names in order to align
them with MARTE’s UML profile [Obj11] for real-time embedded systems, and also
includes hierarchically scheduled systems, support for network switches and other
novel scheduling approaches. MAST’s implementation is open source under GPL
license and it has been successfully integrated in other model-based development
tools, such as TEMPO [Hen+15], as part of the MDE methodology.

1.1.4 Response-time analysis

Guaranteeing the correct timing behavior of a system, even after building it, cannot
be done generally by testing, as it is not possible to assure that the worst-case
scenario has been considered by means of this methodology. Response-time analysis
techniques are used to calculate the worst and best-case response times of tasks in a
real-time system. This subsection contains a brief introduction to the most relevant
approaches that have provided the basis for the new technique developed in this
thesis.

Response time analysis for distributed real-time systems was first addressed in
[TC94], where the authors propose the so called Holistic analysis for fixed priority
systems. In this approach, each processor is analyzed independently, and it is as-
sumed that all tasks are activated at the same time, thus not considering precedence
relations that characterize e2e flows. That activation time is called the critical instant
and leads to the busy period, which is the time when the processor is executing
tasks with higher or equal priority to the task under analysis. This technique, rather
than being exact, which would be intractable for complex systems, obtains upper
bounds of worst-case response times. In that work, deadlines could be greater than
the activation rates, and the activation Jitter that workload events may suffer was
incorporated into the worst-case analysis.

4 Chapter 1 Introduction

With the aim of reducing the pessimism of Holistic analysis, offset-based analysis
techniques were proposed [Tin94]. Offsets express the minimum instant at which
a task is activated, which leads to a less pessimistic worst-case response time
calculation. Later, this technique was extended to distributed systems by [PG98]. In
[PG99] an improvement of the offset-based technique was introduced, which takes
into account the precedence relationships of tasks to provide a tighter estimation
of the response times. Another improvement of the offset-based technique was
proposed in [MN08], which provides better results than [PG98] but it does not
always improve the results of [PG99].

In [Pal+16] the authors propose an offset-based analysis technique for distributed
real-time systems based on time-partitioning, based on the compositional approach
of [Riv+11]. In order to analyze time-partitioned systems, each partition is analyzed
independently. The rest of the partitions are modeled as a high priority e2e flow,
called Unavailability flow, which is integrated in the offset-based analysis. This
unavailability flow is inspired by the concept of availability function introduced in
[AP04] to model the partition windows during which a given task may be scheduled;
the authors used the inverse of this function for the analysis.

Modern real-time applications usually exhibit complex activation patterns, where a
task may trigger more than one task, i.e. a fork pattern, and similarly, a task may
be activated after the execution of one or more tasks is completed, i.e. join/merge
patterns. This model is commonly known as a multipath model. In addition to
the aforementioned MAST model, based on the MARTE standard´s e2e flows, the
Directed Acyclic Graph (DAG hereafter) model is a system model that can also
describe multipath architectures, which is widely used in the real-time community.
It was first introduced by [LA10] to support the analysis of real-time tasks, and in
[LA11] it was extended to distributed real-time systems.

The schedulability analysis of multipath e2e flows was addressed in [GPH00], where
the authors described the procedure to calculate the worst-case response times of
tasks within multipath e2e flows. This technique is based on the holistic approach,
which is known to be pessimistic. In [HE05] a compositional approach is proposed
called Symta/S, where systems are modeled as networks of resources and workloads
as tasks with precedence constraints. However, only fork patterns, and not join ones,
are considered in this approach, which they name tree-shape dependecy model. In
[Fon+16] a schedulability analysis method for DAG tasks is proposed, although it
is not applicable in the context of this thesis due to some limitations that will be
discussed later.

1.1 Context and background 5

To this day, there is no response-time analysis technique that includes the two
fundamental features addressed in this thesis: time-partitioning and a multipath
model.

There are other approaches that have addressed response time analysis considering
similar system models. For instance, in [KHB16] a timing analysis approach for cyclic
real-time stream processing applications is presented. The targeted architectures
are multiprocessor systems. Another interesting contribution on the schedulability
analysis of time-partitioned systems was proposed in [Mar+12], where a response
time analysis method is proposed for mixed-criticallity applications. This technique
is not applicable to this work since it does not allow tasks of the same e2e flow to
be located in different partitions, which is a common feature in partitioned systems
that make use of an Input/Output (I/O) partition to handle communications with
other nodes of a distributed architecture.

A special mention should be made of Assertion Based Verification techniques, which
include formal verification methods where designs are verified against certain
assertions. In [Anw+20] a unified framework for executing static and dynamic
verification [Anw+19] for embedded system design is presented. One common
static verification method is Timed Automata Models [AD94] which enable the
determination of whether or not timing requirements are met. A popular tool that is
used in this context is UPPAAL [Hes+08], which can be used to assess whether a
system will meet its timing constraints. A recent research work [HZZ20] shows how
ARINC-compliant time-partitioned schedulers can be modeled following this method.
However, the response time analysis techniques explored in this thesis have several
advantages that may be important in some classes of systems. On the one hand,
the result of the analysis, i.e., worst-case response times, are very intuitive numbers
for engineers who want to assess how far or close the response times are to the
deadlines. On the other hand, response time analysis can be used easily to analyze
complex systems, which may have rather large timed automata models. Besides, for
complex models response time analysis is considerably faster than applying model
checking techniques. Readers are encouraged to read [Per+09], where the authors
perform a deep study on how different abstractions affect the performance analysis
of real-time systems, concluding that there is no abstraction that always outperforms
the others.

These reasons motivate the extension of response time analysis to be applied in
hierarchical time-partitioned systems to multipath flows.

6 Chapter 1 Introduction

1.2 Industrial use-case

The use-case addressed in this thesis challenges the state-of-the-art schedulability
analysis and scheduling optimization techniques developed so far, applied to safety-
critical distributed real-time systems. It is based on a railway signalling application,
part of the European Rail Traffic Management System (ERTMS) [ERT06]. ERTMS
is a standard resulting from an important European industrial project which aims
to create a common system for traffic signalling and management in railways. This
standard has two main components: GSM-R (Global System for Mobile Commu-
nications - Railway), which is in charge of wireless communications, and ETCS
(European Train Control System), which performs signalling and supervision duties
for traffic management. On-board ETCS is the distributed and safety-critical equip-
ment within the vehicles that performs computation tasks. It is connected to other
on-board subsystems, such as switches, sensors or other processing units performing
secondary functionalities, by point-to-point connections through interfaces specified
in the standard.

Trains receive driving indications and restrictions from the railway infrastructure,
such as balises and other interfaces, for instance radio connections with centralized
control centers. The main duty of the on-board ETCS subsystem is to provide drivers
with all the information needed for safe driving, as well as supervising that the train
is travelling respecting the received instructions at all times.

To do so, different safety functionalities must be carried out within a bounded time.
In this work, the signalling application performs three functionalities: (1) Applying
the Emergency-Brake (EB functionality), (2) Radio Block Center communication
session establishment (RBC-CS functionality) and (3) Parameter visualization in the
Driver-Machine Interface (PV-DMI functionality). Each of these functionalities, as
well as related software and hardware, need to be certified for a certain integrity
level. Safety standards force all safety functionalities to be SIL4, while other non-
critical functionalities might be lower, even though they share the execution platform
with high-criticality ones. On the other hand, execution platform suppliers only
guarantee SIL 2 hardware equipment, so another mechanism must be implemented
in order to obtain SIL4 functionalities, even when software has been certified for SIL4.
This mechanism is, in this case, a Dual Modular Redundancy (DMR) architecture,
where results are voted for following a 1oo2 scheme [IEC10]. Event synchronization
therefore becomes a major concern, since higher integrity levels can be reached with
replicated software architecture rather than using a single instance of the execution
platform.

1.2 Industrial use-case 7

CPU 1

Capture radio

message

Distribute data Receive vote

Instance 1: Data processing

(Supervision)

Instance 1:

Vote

Send Brake

signal (1)

Send vote

Network

Data distribu�on

message

Vote

message

Vote

message

CPU 2

Instance 2:

Vote

Receive data Receive vote

Send Brake

Signal (2)

Instance 2: Data processing

(Supervision)

Send vote

ein1

eout1 2

eout1 1

EB

RBC-CS

PV-DMI

Fig. 1.1: Architecture of EB functionality

Figure 1.1 describes in detail the multipath architecture of the EB functionality for a
SIL4 implementation. The other two functionalities (RBC-CS and PV-DMI) follow the
same architecture. A workload event, which is triggered when the train runs through
a balise or receives a radio message, activates a sequence of activities that are briefly
explained as follows: (1) the message coming from any interface, considering that
its integrity level is guaranteed by previous processing, is captured, (2) supervision
is then performed at the first instance in CPU-1 by processing the captured data,
and (3) concurrently, data is distributed to the second instance executing in CPU-2
for redundant processing, (4) results obtained from both supervision functions are
interchanged, so that they are independently voted for each processor, and (5) the
voting results are sent twice to the external subsystem in charge of commanding the
brakes. Deadlines are imposed on the brake activation events (eout1 1 and eout1 2)
referred to the signal reception (ein1). Missing these timing requirements would
lead to a system failure and a train crash might happen.

Train manufacturers have already implemented such an application. However, its
implementation is based on a simple cyclic executive where all functions composing
functionalities are called periodically, even if they do not have useful work to do.
This results in inefficient resource usage which has become a major concern for
train companies: 100% of processing capacity is dedicated to the execution of the
application. The current implementation does not support the addition of extra
functionalities easily or the possibility of integration it with other applications while
guaranteeing the system’s integrity. Worst-case response times are estimated now
by testing the sequential application code to ensure that deadlines are met, and

8 Chapter 1 Introduction

integrating this application with others would require more sophisticated response
time analysis techniques than just testing. For these reasons, manufacturers seek a
complete system re-design, making use of modern techniques such as those used
in avionics or the automotion industry mentioned in the previous section. Timing
behavior prediction of critical parts is essential. However, and to the best of our
knowledge, there is no response-time analysis technique that could be directly
applied to the redundant application based on partitioning addressed in the use-case,
in order to check whether timing constraints are met. Therefore, in parallel to the
system re-design, a new schedulability analysis technique will be developed, as well
as an implementation in an analysis tool that will enable the validation of timing
constraints of applications following the new architecture. Then, new optimization
algorithms based on this approach will be proposed, including priority assignment,
partition window assignment and allocation strategies.

1.3 Objectives

The general purpose of this thesis is, based on the requirements that have been
identified in the aforementioned use-case, to investigate optimized techniques for
the schedulability analysis and optimization of partition-based distributed real-time
systems with multipath flows. It is common that these systems are found in safety
critical domains, such as automotive or avionics, where cyber-physical systems must
adhere to strict safety requirements imposed by certification authorities. That is why
the developed techniques, devoted to guaranteeing that timing requirements are
met, are intended to be applicable to other systems with analogous requirements.

To do so, the following particular objectives will be addressed:

• Formalisation of the system model. It should be a realistic system model
capable of capturing all the time-related features that describe the timing
behavior of real-world cyber-physical systems used nowadays.

• Development of a schedulability analysis technique for partition-based dis-
tributed real-time systems with multipath flows, which enables the determi-
nation of whether the imposed deadlines are met under specific scheduling
schemes. This technique will be implemented complying the system model
previously mentioned, which will improve the precision of existing approaches.

• Development of algorithms that carry out the synthesis of the targeted systems,
based on the proposed response-time analysis:

1.3 Objectives 9

– Priority assignment algorithms: Based on the state-of-the-art algorithms,
several non-iterative priority assignment algorithms will be proposed and
adapted to the system model addressed in this work.

– Partition window assignment algorithm: An algorithm that produces a
partition window assignment for each partition will be developed.

– As a secondary objective, an allocation algorithm will be developed in
order to address the allocation problem in heterogeneous architectures.
Providing a complete solution to the industrial use-case is the priority of
this thesis, where the allocation problem is not fully related to it.

• Validation of the proposed solutions. The aforementioned railway signalling
application will be targeted, and general and representative systems will also
be evaluated, in order to characterize the behavior of the proposed algorithms.

As a result of this thesis, it is expected that a methodology for developing distributed
and partition-based real-time systems will be formalized. This methodology will
include modeling, analysis, deployment and scheduling phases, and it will be
composed of several tools that will be used in real-time safety-related industrial
applications.

1.4 Organization

This thesis is organized as follows. After this Introduction, where the most relevant
concepts of this work are presented, an extensive literature review regarding the
optimization of distributed real-time systems is detailed in Chapter 2.

Chapter 3 presents the system model that has been selected to describe the time-
related features of the applications addressed in this thesis.

In Chapter 4, the development of a new response time analysis technique is pre-
sented, together with its application and evaluation on the target industrial use-case
and also to general distributed real-time systems scheduled by FP.

Chapter 5 describes the priority assignment algorithms proposed in this thesis, which
can be applied to the railway use-case and also to general FP distributed systems.
Some conclusions referred to their applicability are drawn in this chapter.

Chapter 6 contains the partition window assignment algorithm, which is used to
derive the primary scheduler of the hierarchical schedulers addressed in this work.

10 Chapter 1 Introduction

In Chapter 7, the allocation problem is introduced and first steps are given, providing
some solutions and opening the path towards more sophisticated ones for this open
problem.

Finally, the most relevant conclusions of this thesis are drawn in Chapter 8, review-
ing the objectives set at the beginning of the work. In addition, future research
challenges to be addressed from now on are presented.

1.4 Organization 11

Scheduling and optimization
in distributed real-time
systems: a literature review

2

This chapter compiles the work carried out on the task allocation and scheduling of
distributed real-time systems. The works are classified according to their algorithmic
approach and a brief outline of each one is provided.

2.1 Introduction and methodology

The comprehensive literature review carried out in this chapter contributes to two
main aspects. On the one hand, to complement the work [BD17] in which a detailed
review was carried out of mixed criticality systems focused on the temporal analysis,
both of single-processor and multiprocessor systems, and in which different system
models and real industrial applications are also described. This work complements
that review in relation to the optimization of the allocation and scheduling of
distributed real-time systems, aspects that were dealt with in less depth and that
are of great interest in the development of current systems. On the other hand,
it also considers other works on allocation and scheduling optimization, which,
although not focused on mixed-criticality systems, do address distributed real-time
architectures that are of interest in the design of current industrial applications.

Thus, this chapter compiles works considering this problem, since it was approached
for the first time in [TBW92] up to the first half of 2021, mostly ordered chrono-
logically and classified according to the algorithmic focus employed. All the works
are included in a table showing their most remarkable aspects, with the aim of
providing a clear summary of the state-of-the-art and facilitating consultation for
future work on the optimization of the allocation and scheduling of distributed
real-time systems.

As mentioned in the previous chapter, due to the NP-hard nature of the problem of
allocating and scheduling of distributed real-time systems, optimization algorithms

13

are used. These provide valid solutions that may be optimal or sub-optimal. This
chapter focuses on works that use different algorithmic approaches, which will be
briefly described:

• Genetic algorithms (GAs)[Hol75] are generic probabilistic metaheuristics that
form part of the so-called evolutionary algorithms. These algorithms imitate
biological mechanisms (adaptation to the environment, mutation, crossover,
inheritance ...) that guide the evolution process in species, and which are used
to look for solutions to diverse problems in wide search spaces.

• Tabu Search (TS) [Glo86] is a general-purpose metaheuristic procedure for
search and optimization, which forms part of the local search techniques. Its
main characteristic is the possibility to avoid sub-optimal local solutions within
the solutions space of a specific problem.

• Simulated Annealing (SA) is a generic probabilistic metaheuristic technique to
approximate the global optimization in an extensive search area. As can be
seen in [Kir84], it is inspired by the annealing process in metallurgy.

• Mathematical programming [Min86] is a family of optimization techniques to
maximize or minimize a function, systematically choosing input values among
some permitted values and calculating the value of the function. This function
can be subject to certain restrictions expressed in terms of equalities and/or
inequalities. Depending on the type of functions and restrictions, as well as
on the values assigned to them, there are different variants of mathematical
programming.

The objectives of Linear Programming (LP) [Sch98], which forms part of
mathematical programming, is to maximize or minimize a linear function
subject to restrictions, which is formulated through simple linear equalities
or inequalities. If all the variables are integer numbers, it is denominated
Integer Linear Programming (ILP), while if only some are, it is denominated
Mixed Integer Linear Programming (MILP). If all equalities and inequalities
are non-linear, it is simply denominated Mixed Integer Programming (MIP).
Geometric Programming (GP) [Boy+07] is the type of mathematical program-
ming used to maximize or minimize polynomial functions with restrictions.
These are formulated through monomial equalities equal to 1 and posynomial
inequalities less than or equal to 1.

Constraint Satisfaction Programming (CSP) is a type of mathematical program-
ming based on determining the value of the variables guaranteeing fulfillment
of an objective function [Tsa14]. If the variables of the objective function and

14 Chapter 2 Scheduling and optimization in distributed real-time systems: a
literature review

the functions of restrictions are Boolean, it is called a Boolean Satisfaction
Problem or simply SAT. Lastly techniques based on Satisfiability Modulo Theo-
ries (SMT) are also considered, which consist of formulas in first-order logic in
which some function has additional interpretations, and it must be determined
whether a formula can be satisfied [BT18].

• Branch and Bound (BB) [LD60] is a generic algorithm used in combinatorial
and discrete optimization problems and mathematical optimization. The
candidate solutions are numbered forming a tree and discards are made based
on estimations above and below the factors that must be optimized.

• A heuristic (HEU) [Pea84] is a problem-solving method founded on rules built
according to criteria linked to the problems themselves, generally based on
previous experience. Although finding an optimal solution is not guaranteed,
reasonably good solutions can be found in an acceptable time if they are well
constructed.

The review of the works is done according to the following methodology. On the
one hand, the problems addressed in each one are reported, from the viewpoint of
allocation, type of scheduling and partitioning. These characteristics are fundamental
in those real-time systems that implement functionalities with different levels of
criticality. The review will also focus on the objectives of each work. They all
share the aim of system schedulability, and we will also consider those aiming to
minimize the following parameters: the number of computers, resource utilization
and response times. Lastly, the restrictions presented in each work in terms of the
use of memory and the relation between the deadlines and the periods (D/T) in the
system model described are identified, where possible. All these characteristics are
shown in tables as a summary, which constitutes a guide to finding in an easy way
the solutions available for a specific problem of interest.

2.2 Genetic Algorithm (GA)

In [MR93], [HAR94] and [MBD98] different variations of GAs are used to allocate
tasks in processing elements. All of them are used to create cyclic schedulings with
the aim of minimizing their response times. In [MR93] and [MBD98] e2e flows
defined through their deadlines and periods are considered, and in [HAR94] a
multiprocessor system is proposed.

2.2 Genetic Algorithm (GA) 15

In [DJ98] a multi-objective algorithm is developed to decide on the amount of
hardware resources in a System On Chip (SoC), as well as to allocate the tasks in
the processor nodes and to build cyclic executives. The combined use of GA and TS
aims to minimize energy consumption and the price of the resultant system, while
meeting all the temporal restrictions.

The work [FDB00] also proposes the allocation of periodic tasks and the creation
of cyclic scheduling. However, the system model considers identical processors,
connected through Time Division Multiple Access (TDMA hereafter) networks. To
do so, turns are explicitly assigned.

In the works [OW04] and [Yoo09], GAs are used to allocate tasks in identical
processors and to determine cyclic scheduling in distributed real-time systems. Both
consider e2e flows and predefined deadlines, and their principal objective is to
minimize the sum of all the differences between the worst-case response time and
the deadline of all the flows. They also aim to minimize the number of processing
elements. These works are differentiated by the convergence mechanisms of the GA
towards a suitable solution.

In [Ham+06], a multi-objective GA is proposed to assign priorities to tasks, as well
as to determine the timing slots for the messages transmitted through a TDMA
network. A specific timing analysis technique is used, which enables the adjustment
of the variables and objectives to be minimized.

In [SDJ07], a system model is considered, based on computers with memory re-
sources and e2e flows whose period and deadline are predefined. Its main objective
is to minimize price and energy consumption of the resultant system, in which
the number of processors, communication elements and FPGAs are determined.
Scheduling is carried out through a heuristic algorithm that uses Pareto optimization
criteria to evaluate the candidate solutions [GH88], [FF98].

In [Sam+09], genetic algorithms are used to assign priorities to tasks and fixed pri-
orities and frame identifiers to messages in a distributed real-time system connected
through a FlexRay network. The main aim is to optimize the average response time
of the system.

The work [Azk+11b] develops a permutational coding for a GA whose objective is
the assignment of priorities to tasks and messages making up a distributed real-time
system. The results obtained in this work show an improvement on those obtained
by [GG95] using a heuristic called HOPA. Later, in [Azk+12], this same coding is
used to schedule the tasks of that system, this time using HOPA to generate the first
population of solutions that the algorithm will optimize. Finally, in [Azk+11a], a GA

16 Chapter 2 Scheduling and optimization in distributed real-time systems: a
literature review

is used to allocate and schedule tasks and messages in distributed real-time systems,
minimizing parameters such as utilization of computers, memory resources and
communications, response times and the number of computers used, while meeting
all the real-time requirements.

In [Woz+13], a GA is used for the synthesis of distributed real-time systems, com-
posed of heterogeneous processing elements. The synthesis process is made up of the
following phases: allocation of software components (composed of sets of runnables)
in processing elements and signals from the communications buses, decomposing
the runnables into tasks and signals into messages, and assignment of fixed priorities.
As well as meeting all the deadlines, it has the aim of optimizing some parameters:
the response time of the e2e flows, the use of memory, the performance of the
communications buses and the response time of the runnables.

The work [BO14] proposes a GA to minimize the response time of a real-time system
with periodic and aperiodic tasks, while maintaining an equilibrated use of the
processor elements. It considers flows with pseudo-periods and also the use of fixed
and dynamic priorities. It uses a correcting technique in the solutions to guide
the initialization of the algorithm and to maintain the precedence relations of the
tasks. In [BO16], a stage based on quantum logic coding is added to the genetic
algorithm.

In [Aya+16a], a genetic algorithm is used to allocate independent tasks in heteroge-
neous distributed real-time systems, to which fixed priorities are assigned following
the Rate Monotonic scheme. The total execution time, the cost of communications
among tasks and memory consumption are expressed in suitable fitness functions
that must be minimized. In the next work [Aya+18], an advanced genetic algorithm
(ImGA) is proposed that implements a crossover operator based on schedulability of
tasks [Aya+16b], which improves the precision of the genetic algorithms previously
used.

In [WME20], the authors develop a genetic algorithm to generate feasible schedules
in hierarchically scheduled multicore systems, by means of novel chromosome coding
and fitness functions.

After reviewing the works using genetic algorithms, it can be highlighted that this
approach is used habitually as a multi-objective optimizer, given that they search for
solutions in which more than one parameter has to be minimized (costs, number of
computers, etc.). The reviewed works are collected in Table 2.1.

2.2 Genetic Algorithm (GA) 17

Tab. 2.1: Reviewed Works - Genetic Algorithm

Work
Addressed Problems Minimization Objective Restrictions

Allocation Scheduling Partitions Computers Utilization Timing D/T Memory
[MR93] Yes Cyclic Response
[HAR94] Yes Cyclic Response
[MBD98] Yes Cyclic Response D = T

[DJ98] Yes Cyclic Cost Energy D < T

[FDB00] Yes Cyclic D = T

[OW04] Yes Cyclic Number Response
[Yoo09] Yes Cyclic Number Response

[Ham+06] Priorities D < T

[SDJ07] Yes Cyclic Cost Energy Yes
[Sam+09] Priorities Response
[Azk+11a] Yes Priorities Number Response
[Woz+13] Yes Priorities Response Yes

[BO14] Yes Priorities Response
[Aya+16a] Yes Priorities Response Yes
[WME20] Yes Hierarchical Yes Response D=T

2.3 Tabu Search (TS)

In [PKR00], the use of TS is proposed to allocate tasks with precedence relations in
processors and create cyclic scheduling for real-time, heterogeneous multiprocessor
systems, composed of identical processor except for one with higher processing
power. The principal objective is to minimize the system’s response time.

In [CL00], a hybrid algorithm is developed based on TS to solve the problem of
allocating tasks with precedence relations in a multiprocessor architecture. The
objective is to meet the real-time requirements of the system while satisfying the
restrictions in maximal computation capacity of the computers, as well as to minimize
the network traffic and the number of computers utilized.

The work [LKY00] proposes the values of the operators and configuration parameters
of the TS and GA algorithms, with the objective of allocating real-time tasks and
creating cyclic scheduling in multiprocessor architectures, whose processors are
considered identical. The objective is to minimize the system’s global response
time.

In [TP11b], an optimization method is proposed for partitioned distributed real-
time systems. Through an algorithm based on TS, it attempts to allocate tasks in
processing elements and to define their temporal execution windows within the
MAF. The algorithm is also in charge of assigning tasks to these temporal partitions
and generating a cyclic executive. The objective is to meet the deadlines of all the
tasks at the same time as maximizing the downtime of the temporal partitions. Later,

18 Chapter 2 Scheduling and optimization in distributed real-time systems: a
literature review

Tab. 2.2: Reviewed Works - Tabu Search

Work
Addressed Problems Minimization Objective Restrictions

Allocation Scheduling Partitions Computers Utilization Timing D/T Memory
[PKR00] Yes Cyclic Response
[CL00] Yes Priorities Number Net. & CPU Response
[LKY00] Yes Cyclic Response
[JPJ17] Priorities Energy Response D < T

[TP11b] Yes Hierarchical Yes Response D < T

[TP15] Yes Hierarchical Yes Cert. cost Response D < T

the work is extended in [TP15], where a series of techniques is proposed to enable
the scheduling of the applications, for which the costs of certification are taken into
account to host mixed criticality applications, which are minimized using different
techniques.

In [JPJ17], a multiobjective algorithm based on TS is used to schedule tasks and
messages in embedded distributed real-time systems. The objective is to develop an
implementation that meets the system’s real-time requirements, as well as the safety
and dependability ones, while minimizing the energy consumption. Priorities are
assigned to the tasks in descending order, and it is assumed they have been allocated
in the processors previously.

Although there are not many works in which TS is used, it can be seen in Table
2.2 that varied problems and optimizations are tackled, including partition-based
systems.

2.4 Simulated Annealing (SA)

In [TBW92], SA is used to allocate tasks and to assign them fixed priorities in
distributed real-time systems, in which a TDMA communications network is used.
In this system model, memory resources of the computers are considered and the
tasks have a series of candidate computers in which they can be allocated. Moreover,
some tasks are replicas of others and cannot be allocated in the same processor. The
deadline of the tasks is equal to their period, and the priorities are assigned following
the Rate Monotonic criterion. The objective of this work is to minimize the network
load while all the tasks meet their deadlines. Another restriction to be considered is
the use of the memory of the computers, which must not be surpassed.

The work [Bur+93] proposes an algorithm based on SA to allocate tasks in pro-
cessing elements and to assign them fixed priorities. It is considered that each task
has a series of candidate computers in which it can be allocated. It also considers

2.4 Simulated Annealing (SA) 19

e2e flows with periods and deadlines. The objective is to minimize the worst-case
response time of all the flows as well as the number of auxiliary tasks that route
communications.

In [CP95], SA is used to generate cyclic schedules in distributed real-time systems.
The objective is to minimize the jitter of the tasks while meeting the deadlines of the
e2e flows.

In [DS95], SA is used to create a cyclic scheduling in distributed real-time systems
based on flows made up of periodic tasks. The objective is to minimize the jitter of
the tasks while the deadlines of the tasks and flows are met.

The work [VO05] presents a comparative study of Multi-start [Mar03], SA and TS
algorithms used for scheduling distributed real-time systems, connected through a
Foundation Fieldbus [VP08] communications network. The results show that SA is
the most difficult algorithm to configure and that TS obtains more numerous and
better results.

In [HGZ10], SA is used to allocate tasks in homogeneous computers, as well as to
assign priorities and periods to the tasks and to configure access to the communi-
cations network based on Time-Triggered Protocol (TTP hereafter) [KG93b]. The
deadlines of the tasks are equal to their periods, and the objective is to minimize the
worst-case execution time of all the e2e flows. The proposal is based on two phases.
The first uses SA for task allocation. Later, on top of this solution, GP is used to fix
the deadlines of the tasks and to manage access to the communications network.

In [EB10], the use of SA is proposed for the allocation of tasks and messages and
assignment of priorities with the aim of facilitating the extension or updating of
scenarios, minimizing the impact of these changes in terms of the requirements of
the original system.

In [TP11a], the use of SA is proposed to solve a problem of optimization of dis-
tributed real-time systems with partitions. The temporal partitioning is implemented
through time slices in which the execution of tasks is divided within a processing
element, and it is the algorithm that decides on the order and length of these por-
tions within the processor. It is assumed that the tasks are previously allocated in
the processors. The scheduling is cyclic for the critical tasks, while the non-critical
ones are scheduled using preemptive fixed priorities. The objective is to optimize the
sequence and length of the temporal windows and to obtain schedules that permit
all the safety-critical applications to meet their deadlines.

20 Chapter 2 Scheduling and optimization in distributed real-time systems: a
literature review

Tab. 2.3: Reviewed Works - Simulated Annealing

Work
Addressed Problems Minimization Objective Restrictions

Allocation Scheduling Partitions Computers Utilization Timing D/T Memory
[TBW92] Yes Cyclic Network Response T = D Yes
[Bur+93] Yes Cyclic Routing tasks Response

[CP95] Yes Cyclic Response
[DS95] Cyclic Jitter
[VO05] Yes Cyclic

[HGZ10] Yes Priorities Response D = T

[TP11a] Yes Hierarchical Yes Response D ≤ T
[PA15] Yes Priorities Response D = T

[McL+20] Yes Priorities Response D ≤ T

In [PA15] a comparative study is also made, this time between SA and GA. The
scheduling of tasks is evaluated in homogeneous multiprocessor architectures, with
the objective of minimizing the response time of the system respecting the prece-
dence relations of the tasks. The study demonstrates that after 9 case studies, SA
obtains 6 acceptable solutions while GA obtains 5. Most of the works that made use
of SA have approached the allocation problem as well as the scheduling one. The
minimization of the jitter of the tasks is addressed for the first time.

In [McL+20], the authors use SA to address the allocation and scheduling of au-
tonomous driving applications on multicore systems. They propose several strategies
such as deadline and offset adjustments and random task re-allocations, and their
results considerably improve previous works based on heuristics and GA.

Most of the works that use SA have addressed the task scheduling and allocation
problems combined. As shown in Table 2.3, the minimization of tasks’ jitter is
addressed for the first time.

2.5 Mathematical Programming

In [SK01], CSP is used to allocate tasks in processing elements and to create cyclic
scheduling in distributed real-time architectures. These architectures are composed
of heterogeneous networks that connect computers to memory resources and Appli-
cation Specific Integrated Circuits (ASIC). The tasks are selected sequentially and
allocated in the processor with the lowest cost. After the allocation, the BB technique
is used to assign an execution time to each task. The objective is to minimize the
time of all the scheduling without overusing the memory resources. In [SK03], a
method is presented to facilitate the allocation problem and the scheduling one
previously mentioned.

2.5 Mathematical Programming 21

In [EJ01], CSP is used to allocate tasks in computers and to create cyclic scheduling
in distributed real-time systems. The computers are heterogeneous and they are
connected through a communications bus. The principal contribution of this work
is the evaluation of several local search heuristics that decide which variables and
what values are assigned in each iteration. There are 3 objectives: minimize the
total time of the scheduling, minimize the communications through the bus and
maintain an equilibrated use of the processor elements.

In [MH06], SAT is used to allocate and schedule tasks in distributed real-time
systems composed of heterogeneous processor elements. For this, priorities are
assigned to the tasks of each computer following the Deadline Monotonic scheme.
Each task has a period, a deadline, memory requirements and a subset of candidate
computers in which to be allocated, and some of them that cannot be allocated in
the same computer are specified as another subset.

In [Dav+07], GP is used to optimize the periods of tasks and messages. In this case,
they are already allocated and the priorities have also been previously assigned, so
the objective is to minimize the sum of the worst-case execution times.

In [Zhe+07b], MILP is used to allocate tasks in computers, package signals into
messages and assign fixed priorities to the tasks and messages in the distributed real-
time systems based on CAN networks. This model considers e2e flows composed of
tasks that exchange messages and which have deadlines and periods. The objective is
to minimize the worst-case response time of the flows while their deadlines are met.
Given that on industrial scale the techniques based on MILP are computationally very
costly, the problem is divided into two sub-problems that can be solved separately.

Strictly periodic applications can have much longer response times than those
activated by events. Therefore, when a deadline of a task or message is not met, it is
possible to apply the ET paradigm so its response time decreases and the deadline
can be met. In [Zhe+07a], MILP is used to adjust the activation model with the
objective of meeting all the temporal restrictions.

In [Hla+08], CSP is used to allocate and schedule tasks in distributed real-time
systems composed of homogeneous computers connected through a CAN network.
It is assumed that the tasks and messages have deadlines equal to their periods, and
that the priorities are assigned in a phase previous to this process. All the tasks have
a subset of candidate computers in which they can be allocated, and they can be
required to be allocated in the same or a different computer than other tasks. The
objective is to obtain an allocation enabling all the deadlines to be met. To do so,
two methods are proposed. The first is based on backtracking and it simultaneously

22 Chapter 2 Scheduling and optimization in distributed real-time systems: a
literature review

tackles the problems of allocation and scheduling. The second method is to divide
these two sub-problems according to a Benders scheme [Sch98] to tackle them
separately.

In [Zhu+09], MILP is used to allocate tasks in processors and signals in messages,
as well as to assign fixed priorities to tasks and messages, in distributed real-time
systems that assume a model based on e2e flows with fixed deadlines and harmonic
periods. The objective is to maximize the extensibility: to prolong as much as
possible the worst-case execution time without affecting the fulfillment of the
temporal restrictions of the tasks while ensuring that all the deadlines are met.
The method proposed assumes an initial assignment of priorities for messages and
tasks.

In [ABH10], an algorithm based on MILP is proposed, used to allocate and schedule
strictly periodic temporal partitions in distributed architectures based on Integrated
Modular Avionics [Joh99]. A series of restrictions is defined mathematically (avoid-
ing temporal overlapping, shared access to resources, communication costs, etc.)
and solved through a commercial tool, obtaining nearly optimal results.

In [Zhu+12], MILP is used to allocate tasks on distributed architectures with hetero-
geneous processors interconnected through CAN networks, which are at the same
time segmented through gateways. Priorities are also assigned to the tasks and
messages, with the aim of meeting hard real-time requirements and minimizing the
latency of the e2e flows.

In [CO14], CSP is proposed to allocate and schedule tasks and messages in dis-
tributed real-time systems. After building the logic restrictions that define the
system, it uses two algorithms based on SMT. The first, called One-shot, tackles the
scheduling of all types of tasks defined in the system model. The second method
does not consider the scheduling of the independent tasks at a first approach, in
such a way that no difficulty is added to the formulation of the SMT algorithm.
After carrying out the scheduling based on the algorithm proposed in [COE14], the
independent tasks are added. This work considers the scheduling of the processor
elements and of the communications network, and in the following work [Cra+16],
the schedulability analysis is applied to TSN networks.

In [Zha+14], MIP is used to schedule distributed real-time systems, at both computer
and network level. It is assumed that the tasks are allocated in the computers with
a single processor. The objective, represented through the objective function, is to
minimize the response times of the applications that are executed while meeting
all the deadlines of the tasks. The temporal restrictions are represented through

2.5 Mathematical Programming 23

equalities and inequalities, for which the maximum tolerable response time can be
established.

In [Alt+12] and [Alt+14], an algorithm is presented based on ILP formulations
that are used for allocating and scheduling of periodic tasks in distributed real-time
systems. The architecture is based on multiple subsystems that are communicated
through a global bus. The tasks are scheduled following the Deadline Monotonic
scheme and they form e2e flows along with the messages they use to communicate.

In [Min+18], three approaches are proposed to schedule tasks and messages with
jitter and precedence relations in real-time systems. It is assumed that the allocation
of the tasks in the computers has already been done. First, an approach based
on SMT is formulated, in which the solutions space is defined through five sets of
restrictions. Later, an ILP model is described in a similar way, with the difference of
the linear restrictions this method needs. Although the solutions obtained in these
two approaches are optimal, a third heuristic based on three levels is proposed,
which although not optimal, does obtain acceptable solutions in a reasonable time
and with a much greater scalability of the problem.

In [Bli+18], an algorithm based on MILP is developed to schedule periodic tasks
in distributed real-time systems based on IMA architecture. Through mathematical
formulation of the real-time restrictions and requirements of the system, a cyclic
executive is constructed whose period is the minimum common multiple of the
periods of the tasks. It is assumed that the tasks have already been allocated. It
uses partitions in the following way: the nodes forming this architecture implement
different modules to provide the spatial partitioning, and through the cyclic executive
resulting from the scheduling, temporal isolation is obtained. Within each temporal
partition, the tasks are scheduled according to the RMS scheme.

Finally, [Gua+20] proposes an ILP formulation for scheduling real-time tasks in
uniprocessor systems. The authors state that this approach can be applied to
hierarchical schedulers, although they do not address distributed architectures.

As shown in Table 2.4, this method is one of the most widely used, but in general,
several problems are not tackled at the same time, maybe due to the complexity of
their mathematical formulation. When there is no specific minimization objective,
these mathematical formulations are used to obtain a schedulable solution.

24 Chapter 2 Scheduling and optimization in distributed real-time systems: a
literature review

Tab. 2.4: Reviewed Works - Mathematical Programming

Algorithm Work
Addressed Problems Minimization Objective Restrictions

Allocation Scheduling Partitions Computers Utilization Timing D/T Memory

CSP
[SK01] Yes Cyclic Memory Response Yes
[EJ01] Yes Cyclic Network / Processor Response D = T

SAT
[Hla+08] Yes Priorities D = T
[MH06] Yes Priorities

GP [Dav+07] Priorities Response

MILP

[Zhe+07b] Yes Priorities Response
[Zhe+07a] Priorities
[Zhu+09] Yes Priorities Harm. T
[ABH10] Cyclic

[Zhu+12] Yes Priorities Response
[Bli+18] Yes Hierarchical Yes

CSP [CO14] Yes Cyclic D ≤ T
MIP [Zha+14] Cyclic

ILP
[Alt+14] Yes Cyclic D ≤ T
[Gua+20] Yes Cyclic

SMT - ILP [Min+18] Cyclic

2.6 Branch and Bound (BB)

In [HS97], BB is used to allocate tasks in computers and generate cyclic schedules
in distributed real-time systems composed of identical computers. The objective is
to maximize the probability that all the tasks meet their deadlines.

In [PSA97], BB is used to allocate tasks in computers and create cyclic scheduling in
distributed real-time systems composed of heterogeneous computers. A model of e2e
flows is assumed with a period and a deadline, composed of tasks with precedence
relations and which can communicate with the tasks of other flows. Moreover, the
tasks can have different worst-case execution times in different computers. The
proposed algorithm allocates all the tasks of a flow in a computer and establishes
their execution order, and it has the aim of minimizing the ratio of worst-case
response time and the deadline of the flows.

In [RRC03], tasks are allocated in processor elements and they are assigned fixed
priorities using BB. The architecture is composed of different sets of computers
connected through a CAN communications network. Within each one of these sets,
all the computers are identical, although among different sets they can be different.
The tasks have specific deadlines and they can communicate among themselves. The
scheduling is done in each subset of computers. The tasks are allocated following
an increasing order of deadline, and they are assigned priorities following the DMS
scheme. The branches of the search tree are pruned depending on a lower limit of
worst-case response time.

BB is one of the least widely used methods, given that as can be seen in the few
available works collected in Table 2.5, they are from a long time ago in comparison

2.6 Branch and Bound (BB) 25

Tab. 2.5: Reviewed Works - Branch and Bound

Work
Addressed Problems Minimization Objective Restrictions

Allocation Scheduling Partitions Computers Utilization Timing D/T Memory
[HS97] Yes Cyclic
[PSA97] Yes Cyclic Response
[RRC03] Yes Priorities

with other works included here. With this method, both cyclic and priority-based
scheduling have been tackled.

2.7 Heuristics (HEU)

In [GG95], the heuristic denominated Heuristic Optimized Priority Assignment
(HOPA) is developed for the assignment of fixed priorities to tasks and messages
in distributed real-time systems. First, individual deadlines are assigned to the
tasks and messages making up the e2e flows, and then the DMS scheme is used to
assign the priorities. The worst-case response times are calculated through a holistic
analysis or through timing analysis based on priorities. If some deadline is not met
in any flow, some metrics are calculated to determine the deviations of that flow over
its deadline and the individual deadlines are calculated again, and the priorities are
assigned. This process is repeated until a valid solution is obtained or a maximum
number of iterations is reached.

In [Ram95], a heuristic is proposed to allocate tasks in homogeneous computers
and create a cyclic scheduling. It is based on a model composed of deadlines
and periods, and it considers the possibility of allocating some replicated tasks in
different computers. The first phase of the algorithm determines the suitability of
grouping and allocating pairs of tasks that communicate among themselves in the
same computer. The second allocates and schedules the tasks following the Latest
Start Time / Maximum Immediate Successors First (LST/MISF) criterion.

In [Bra+01], a comparative study is done on eleven heuristics used to allocate tasks
and create static scheduling. The model is composed of independent tasks with
different worst-case execution times depending on the processor element in which
they are allocated, and the objective is to minimize the response time of the total
scheduling. Among the eleven, the best results are obtained by a genetic algorithm
and a heuristic that first allocates the tasks with the shortest execution time in the
computer in which they have the shortest worst-case execution time.

26 Chapter 2 Scheduling and optimization in distributed real-time systems: a
literature review

The same research group presents in [Bra+08] another comparative study of three
methods to allocate tasks in computers and to generate cyclic scheduling in dis-
tributed real-time systems composed of heterogeneous computers. The tasks have
precedence relations, priorities, deadlines and more than one version of each one
of them. They also have different worst-case execution times depending on the
computer they are allocated in, and the longer the execution time, the greater the
priority they are assigned. The algorithms compared are a heuristic and two genetics.
The heuristic obtains good results, and the two genetics improve on these results by
2% and 5% respectively.

In [Ali+02], three heuristics are proposed for assignment of resources to e2e flows
in distributed real-time systems composed of computers based on Round Robin
(RR) scheduling. The e2e flows are considered with deadlines and periods. The
system load is modeled through the rate of generation of information from the input
sensors to the e2e flows. The objective is to allocate the tasks so as to maximize the
permitted growth of load.

In [Ele+00], heuristics are proposed to allocate tasks in computers and create
cyclic schedules of tasks and messages in distributed real-time systems composed
of different types of processors. A scheduler based on a list-scheduling heuristic is
responsible for assigning the resources to the tasks or messages that are activated
depending on their priorities. Likewise, a heuristic is also developed to optimize
the scheme of access to a TTP network. The same research group has tackled
the optimization of the TTP access scheme in [PEP00] and [PEP04b], where they
propose and analyze different messaging strategies and they present heuristics to
optimize each one of them.

The works [PEP03b] and [Pop+04] propose heuristics to allocate tasks in computers
and schedule tasks and messages in distributed real-time systems that combine
the TT and ET paradigms. The model is based on a group of TT type computers
connected through a TTP communications network, another group of ET type
computers connected through a CAN network and a gateway that links the two
networks, and through which messages are exchanged between the two groups. The
heuristics proposed allocating the tasks in one of the two groups, allocating the tasks
in one of the computers of the group and scheduling the tasks and messages in their
respective resources so that the deadlines of the flows are met.

Another approach by the same authors in [Pop+01a] [Pop+01b] is the allocation
and scheduling of applications in distributed real-time systems with the aim of
minimizing changes in the applications already allocated in the system, and the
maximization of the probability that future applications can be allocated in the

2.7 Heuristics (HEU) 27

same system. To do so, some metrics are proposed that model the probability of
future applications requiring a certain processing time in each particular period. In
[PEP03a], [Pop+05] and [Pop07], methods are proposed to generate and optimize
the scheduling of mixed TT/ET systems. One of the methods is based on ILP and
is optimal, while the other is a heuristic that obtains sub-optimal results in shorter
times. The heuristic is guided by some rules whose objective is to increase the
degree of scheduling of the system through modification of the scheduling policies
of the tasks, the allocation of tasks in the computers and the access scheme to the
communications network.

In [PA04], two heuristics are proposed for the assignment of local deadlines to
messages with global deadlines that cross through multiple TT networks from their
origin to their destination. The first heuristic is denominated Isometric Allocation
(ISO) and is based on dividing the global deadline into as many equal parts as the
message passes through and assigning in each one a local deadline equal to those
parts. The second heuristic is Maximum Schedulability Laxity (MSL) and it is based
on assigning local deadlines in a way proportional to the bandwidth available in
each one of the networks that are crossed.

In [QJ06], an algorithm is presented for the allocation and assignment of priorities
to tasks in distributed real-time systems. The processors are heterogeneous, so the
tasks will have different execution times depending on which one they are in. All
tasks have a copy that is executed in the case of a fault and which must be allocated
in a different computer. The objectives are to minimize the response time of the
system in such a way that the deadlines are met, as well as extending the reliability
of the system as far as possible.

In [Pop07], a series of heuristics is proposed to synthesize, analyze and optimize
the allocation of tasks in computers, the assignment of priorities to tasks, and the
assignment of communication slots to computers in distributed real-time systems.
The combination of the TT and ET paradigms is done both at computer level and at
communications network level. The TT tasks are activated in predefined instants in
scheduling tables, have maximum priority and cannot be discarded. As for the ET
tasks, they are activated through external events and messages, and are preempted
by the TT tasks and the ET tasks of higher priority. All the tasks of a flow are of
one of the two types described. Given that the combination of tasks and schedulers
based on different paradigms requires the extension of the existing schedulability
analysis techniques, a heuristic scheduling and an extension to the holistic analysis
[TC94] for systems combining TT and ET tasks are proposed.

28 Chapter 2 Scheduling and optimization in distributed real-time systems: a
literature review

Following the system model described in [ABH10], in [Al +11], a heuristic based
on game-theory is used to allocate and schedule temporal partitions in distributed
architectures based on IMA. This algorithm works with the concept of players who
adapt their strategies based on the most recently observed strategies of the other
players. Nearly optimal results are demonstrated in a much shorter computation
time than that achieved by [ABH10]. The objective, as well as to obtain a scheduling
that enables meeting the real-time requirements, is to maximize the idle time of
the processor within the MAF to be able to extend the system functionalities in the
future without affecting the scheduling.

In [Eis+10], a hybrid method based on heuristics and mathematical formulations is
proposed to solve the allocation and scheduling of periodic tasks in distributed real-
time systems. The architecture corresponds to that of an airplane, and it is divided
into two cabinets, formed by identical processor elements communicated through a
communications network. The objective is to minimize the number of processors
while all the deadlines of the tasks are met. These tasks can have requirements of
cohabitation or mutual exclusion. The scheduling of the communications network is
not considered.

The work [NSE11] develops a heuristic for the assignment of fixed priorities to
tasks and messages in distributed real-time systems based on a model of flows with
periods and deadlines. For each schedulable resource, a priority assignment module
is executed along with a commercial temporal analysis module. This heuristic
obtains poorer results than the genetic algorithm proposed in [Ham+06], although
it requires much shorter computation times.

In [Meh+13], the previously mentioned work [Woz+13] is extended, considering
the same system model. The objective is to minimize the latencies of the e2e flows
while meeting the hard real-time requirements. A heuristic is developed based on
two stages. First, the problem of distributing the runnables in tasks is tackled and
then the one of their allocation and scheduling is faced. The second stage is based
on an iterative two-level process which provides as a result an optimal solution,
although only for very small-scale systems.

In [Klo+13], a method is presented for the allocation and scheduling of tasks and
messages in distributed real-time systems based on AUTOSAR. The objective is to
obtain a reconfigurable ECU-network topology that is fault tolerant, while meeting
the real-time requirements. When faults are detected, redundant tasks in different
nodes are activated. The scheduling of each computer is done by priorities according
to DMS.

2.7 Heuristics (HEU) 29

In [Gar+14], an algorithm is shown that is used to schedule parallel and distributed
tasks with real-time requirements. The so-called fork/join tasks are scheduled using
fixed priorities according to the DMS scheme and they are executed in a distributed
platform composed of processor elements of one single identical core, interconnected
through a real-time network. In a later work [Gar+15], a heuristic called DOPA
(Distributed using Optimal Priority Assignment) is proposed, as an extension of the
classic OPA [Aud91] applied to distributed real-time systems. This algorithm enables
two interrelated problems to be tackled. First, the optimal assignment of priorities
is done for independent tasks, for which the tasks with precedence relations must
be transformed into independent ones through intermediate deadlines. The second
problem is related to the decomposition of executables in schedulable tasks. The
algorithm also attempts to accommodate the greatest number of tasks within the
same computer to minimize the message load sent through the network.

In [YR15], an algorithm is developed for scheduling tasks in distributed real-time
systems based on AUTOSAR architectures. It consists of decomposing the e2e flows
in tasks with local deadlines and assigning them priorities, in such a way that these
local deadlines are met. First, the algorithm solves the two problems separately,
and then another algorithm is developed that tackles them together. No type of
scheduling in the communications network is considered.

In [Hu+15], an algorithm is proposed to schedule tasks and messages in distributed
real-time systems, in which the allocation of tasks on computers is assumed to be
done previously. The e2e flows can be composed of tasks and periodic or aperiodic
messages, and the objective is that all the instances of all the applications meet
their deadlines. The algorithm first orders the flows assigning them priorities, and
then the tasks and messages that form them are scheduled according to the SHLF
algorithm (Synchronized Highest Level First). Finally, two procedures are detailed
to provide support to future re-scheduling.

In [CDH16], time/space partitions are modeled as strictly periodic, non-preemptive
tasks, which are allocated and scheduled on distributed architectures based on
IMA. First an algorithm based on MILP is applied to obtain a maximum scaling
factor to apply to each temporal partition, and then a heuristic based on game
theory enables the determination of the allocation and scheduling of each one of
them. Real-time requirements can be met adjusting the scaling factor to the specific
temporal requirements.

In [Xie+16], tasks are allocated and scheduled in a distributed real-time system,
composed of heterogeneous computers and several networks interconnected through
gateways that implement mixed criticality functions. The scheduling is done through

30 Chapter 2 Scheduling and optimization in distributed real-time systems: a
literature review

RR, and the objective of the algorithm is to minimize the ratio of unsurpassed
deadlines while maintaining satisfactory performance.

In [DSF16], an algorithm is developed for the allocation and scheduling of partitions
in the processors of distributed real-time systems. The temporal partitions are
previously defined through their periods and their deadlines. They are grouped
in flows that are communicated through messages that are also considered for
the computation of total worst-case response time. The algorithm itself decides
the number of processors to be used. In [DSF17], this work is extended using an
algorithm that limits the search space of the optimal solution, discarding possible
sub-optimal solutions in each stage of the algorithm.

In [BSR17], an algorithm is developed to allocate tasks in processing elements of
a distributed architecture, scheduled according to the RMS scheme. The objective
of the algorithm is to minimize the number of processors and the latencies of the
tasks allocated in them, while meeting all their deadlines. It is assumed that these
deadlines are equal to the period of each task.

In [Zho+19], the authors propose a method for scheduling partition-based real-time
systems. They propose a task-to-partition mapping strategy and generate TDMA-like
partition schedulers, taking into account context switch overheads.

The work [ZZ19] proposes an iterative algorithm for fixed priority assignment in
both preemptive and non-preemptive scheduling policies. However, it does not
consider time-partitioned architectures like the one addressed in this work.

This algorithmic approach is the most widely used in the optimization of the alloca-
tion and scheduling in distributed real-time systems. This is probably because they
are efficient algorithms, designed ad-hoc to solve the problem being tackled.

2.8 Classification of works and conclusions

Tables 2.1 to 2.6 compile all the works reviewed in this chapter. They show the most
characteristic aspects of each contribution according to the methodology explained
and the detailed review just made. It should be highlighted that in all the works
compiled the objective is the schedulability of the system, although this is not
explicitly shown in the table.

The allocation and scheduling of distributed real-time systems have been tackled
in a large number of works over time. There is great diversity in the approaches

2.8 Classification of works and conclusions 31

Tab. 2.6: Reviewed Works - Heuristics

Work
Addressed Problems Minimization Objective Restrictions

Allocation Scheduling Partitions Computers Utilization Timing D/T Memory
[GG95] Priorities Response

[Ram95] Yes Cyclic D = T

[Bra+01] Yes Cyclic Response
[Bra+08] Yes Cyclic Response
[Ali+02] Yes RR
[PA04] Yes Priorities / Cyclic D = T

[Ele+00] Yes Cyclic Response
[PEP00] Yes Cyclic Response

[Pop+01a] Priorities D ≤ T
[Pop+04] Yes Cyclic D ≤ T
[Pop07] Yes Priorities / Cyclic
[QJ06] Yes Priorities Response

[NSE11] Priorities Response
[Eis+10] Cyclic Number Harmonic T
[Al +11] Yes Cyclic Yes Response

[Meh+13] Yes Priorities Response
[Klo+13] Yes Priorities Response
[YR15] Yes Priorities Response

[Gar+15] Yes Priorities Network Use D ≤ T
[Hu+15] Priorities
[Xie+16] Yes RR
[CDH16] Yes Cyclic Yes
[DSF16] Yes Cyclic Yes
[BSR17] Yes Cyclic Number Response D = T

[Zho+19] Yes Hierarchical Yes Response D ≤ T
[ZZ19] No Priorities Response D ≤ T

used when proposing optimization algorithms for these systems; although all of
those included in this work have the common objective of meeting their real-time
requirements, there are some that simply propose the assignment of priorities to
tasks [GG95], while others propose the elaboration of cyclic executives [DS95].
Others such as [HGZ10] or [Pop07] tackle as well as the scheduling, the allocation
of the tasks and the messages in specific architectures. Moreover, while maintaining
the main objective of meeting all the deadlines, some works attempt to optimize
certain parameters such as the use of resources, either of computation or equipment
[Azk+11a].

This review does not have the objective of carrying out a comparative study among
the works included here. Clearly, to be able to carry out a comparison to determine
which of all the works obtains the best results, the system models of all of them
should be completely homogeneous, as should the case studies on which they have
been implemented and validated. This would be impossible, so the appreciations
that can be extracted from the results obtained in this study are qualitative comments
obtained through an overall interpretation of the table. This in itself constitutes a
result that can be used by future researchers to find the references that are most
suitable for the models or algorithms with which they wish to work.

32 Chapter 2 Scheduling and optimization in distributed real-time systems: a
literature review

It should be remarked, as can be seen in the tables, that there is a small number of
works tackling allocation and scheduling of distributed real-time systems based on
partitions. This confirms that there is an open path for research into techniques that
consider this characteristic, so necessary in the development of the most modern
mixed-criticality applications. The advances in the research on timing analysis
techniques for partitioned systems will undoubtedly help to increase the number of
solutions proposed for this relevant problem.

Another remarkable aspect is that the vast majority of the works search for configu-
rations in which the system’s response time is minimized. This is coherent; given
that in systems where not meeting deadlines can produce serious consequences,
minimizing the response time reduces the probability of this occurring. Lastly, it
could be said that after exhaustive analysis of the state-of-the-art, there are realistic
system models that have still not been studied. As an example, the combination of
multipath e2e flows with hierarchical schedulers has never been addressed. It has
also been found that specific algorithms and techniques for searching and optimizing
have not been applied on systems that follow the model and the scheduling schemes
used in this thesis. For instance, Simulated Annealing approaches have recently
provided promising results and future research might consider this approach.

2.8 Classification of works and conclusions 33

Real-time system model 3
In this chapter a complete description of the system model considered in this thesis
is presented. It is compliant with MAST [Gon+01] and also with the second version
of its metamodel, MAST2 [Har+13]. The terminology used throughout this model’s
description is aligned with OMG’s MARTE standard [Obj11]. After having presented
the system model, the railway signaling application described in chapter 1.2 is
modeled according to this description, which will be used in the rest of the thesis in
order to develop the analysis and optimization algorithms.

3.1 Logical architecture

The logical architecture is composed of distributed end-to-end flows. They contain
a kind of event handler called step, which represents an operation being executed
by a schedulable resource (a task or message) in a processing resource (a processor
or network) with certain scheduling parameters. Steps are activated from an input
event and generate an output event when they finish their execution. Formally, the
i-th e2e flow, Γi, is composed of m steps, and they are numbered in topological
order in the range [1..m]. Each instance of this e2e flow is activated by a workload
event ein (periodic or sporadic) arriving with a minimum interval of Ti. Each event
handler except the first is released when its predecessors have finished. The j-th
step within the e2e flow Γi is denoted as τij , and it has a worst-case execution time
Cij and a best-case execution time Cbij .

In the context of this thesis, three other event handlers are considered to represent
the multipath case, which do not have runtime effects: Fork, Join and Merge. The
Fork event handler generates an event in each output whenever an input event is
received. The Join event handler generates an output event when all the associated
input events have arrived, and similarly, the Merge event handler generates an
output when an input event arrives at any of its inputs. Therefore, a step may have
more than one immediate predecessor and/or successor steps, i.e. the steps may
receive more than one input event from different predecessor steps and, similarly,
the output event of an step may be the input event for more than one step. The

35

subset of steps immediately preceding the step τij is named Γpredij , and similarly,
Γsuccij are those steps that are immediate successors of step τij .

Within an e2e flow, each step may have a global deadline Dij , which may be
larger than the activation period, relative to the nominal activation time of the
workload event (tin, for the n-th instance). End-to-end deadlines are those timing
requirements set on the final steps of e2e flows, and due to their multipath nature,
there may be more than one timing requirement in the same flow. For each instance
of a step τij , the difference between its completion time and the nominal activation
time of the workload event that triggered that instance of its e2e flow is called
response time, and it can be obtained by schedulability analysis techniques. The
worst-case response time is denoted as Rij , and similarly the best-case response
time is denoted as Rbij . Steps represent a utilization of the processing resource of
Uij = Cij/Ti, which can also be expressed as a percentage if multiplied by 100.
Following this notation, the utilization of an e2e flow UΓi is the sum of the utilization
of the steps of Γi, calculated as follows:

UΓi =
∑
∀τij∈Γi

Uij (3.1)

In Figure 3.1, a workload event ein1, which is represented by a down-pointing arrow,
activates an step and then its output event forks, activating two steps, whose output
events combine to activate a final step. Horizontal blue arrows represent precedence
relations among event handlers.

τ
1 3

Prio1 3

C1 3

1

ein1

T1

R1 4 , D1 4

R1 3

1 2 J1 4

F
1 1

Prio1 1

C1 1

J
eout1 41 4

Prio1 4

C1 4

1 2
Prio1 2

C1 2

CPU 1

CPU 2

Fig. 3.1: Distributed multipath e2e flow

36 Chapter 3 Real-time system model

Workload events activating e2e flows and internal events activating handlers may
have release jitter. The activation of internal events depends on the response times
of the previous steps, which may vary for different instances. Therefore, any step τij
within an e2e flow may suffer release jitter up to a maximum of Jij . Steps may also
have an initial offset φij , which is the minimum release time of the step τij , relative
to the nominal activation instant tin. Hence, the release time for that step will be in
the range of [tin +φij , tin +max(φij , Jij)]. For periodic e2e flows, deadlines, jitters
and offsets can be larger than the periods of the e2e flow.

3.2 Physical architecture

This thesis considers a distributed architecture composed of processors, connected
through one or more communications networks. Processors can be heterogeneous
in terms of computation speed and memory resources. They provide hardware
and software resources for task execution: sensors, actuators, memory, programs,
libraries... They also host a real-time operating system that, among many other
features, provides the capability of time-partitioning, where a fixed priority policy is
used to schedule tasks within each partition. As they all refer to the same modeling
element of a processing resource, in this thesis the terms "processor", "CPU" and
"core" will be used indistinctly. The processor utilization UCPUy is the sum of the
utilization of all the steps allocated to CPUy:

UCPUy =
∑

∀τij∈CPUy

Uij (3.2)

Regarding communications, we assume real-time networks in which worst-case
message latencies can be measured or estimated. Normally, response times can be
obtained in networks by using the same techniques used for processors. For instance,
if the real-time communications network is an AFDX network [Aer09], the work in
[GPH14] shows how to integrate the analysis of the messages in the network into
the composite response time analysis technique described in Chapter 4. However, in
the context of this work and with no loss of generality, it is assumed that networks
are black boxes where each message is characterized by a minimum and a maximum
latency. With this, the applicability of this model and its associated analysis and
optimization tools to any distributed system whose network latencies are known, is
guaranteed. The compositional approach [Riv+11] enables the integration of the
network-level analysis with processor-level analysis.

3.2 Physical architecture 37

3.3 Hierarchical scheduling

Processors make use of a real-time hierarchical scheduler, where a table-driven
scheduling policy (time partitioning) is used for the primary scheduler. For the
secondary scheduler, a preemptive FP policy is used, where Prioij is the priority
of step τij , meaning the highest number, the highest priority. These priorities are
valid in the context of each partition. Within a processor CPUy, a temporal partition
Px is a set of nx partition windows Winxk within a Major Frame (MAFy) that is
cyclically repeated. Each partition window is defined by a start time Sxk, relative to
the MAF, and a duration Lxk. Hence, partition windows contained in a temporal
partition are defined as follows: Winxk = {Sxk, Lxk}, k being in the range 1..nx.
Figure 3.2 shows an example of a hierarchical scheduler where four tasks that belong
to different e2e flows are allocated to P1, and they are executed in P1’s windows
according to their priorities.

The Available Utilization of the partition Px, AUPx , is defined as the processing time
allocated to Px in its processor, which is in essence, following the terminology just
presented, the sum of the utilization of all the temporal windows within the MAF,
so:

AUPx =
∑

∀Winxk∈Px

Lxk/MAFy (3.3)

Following the description given for the utilization represented by each step, the
Partition Utilization of Px, UPx is defined as the sum of the utilization of all the steps
contained in Px:

UPx =
∑
∀τij∈Px

Uij (3.4)

The overheads provoked by context switches at the primary scheduler are taken
into account. This overhead is the time CSy that CPUy needs to load a partition
context at the beginning of a partition window and to save it after execution finishes.
In other words, it can be understood as a non-available CPU time whenever a
partition window executes. For response time analysis purpose, this effect can be
modeled by recording this unavailable time at the beginning of every partition
window and subtracting this amount from the available CPU-time for that window,
as shown in the example in Figure 3.3, where Px executes on CPUy within a MAF
MAF = 40 ms. In this example, a time partition is composed of two partition

38 Chapter 3 Real-time system model

P
1

P
2

P
1

P
3

P
3

P
4

MAF

τ
1 1

Prio
1 1

τ
1 2

Prio
1 2

τ
2 1

Prio
2 1

τ
3 1

Prio
3 1

Primary Scheduler

Secondary Scheduler

Fig. 3.2: Example of hierarchical scheduler

windows, and the effect of the context switch time of CSy=1 ms at each window
provokes that the total available time of the effective partition (P ′x) is 2 ms less
than the original Px. Therefore, the effective partition window is defined as follows:
Win′xk = { Sxk + CSy, Lxk − CSy}.

Wini1 Wini2

0 20 40 (ms)

Wini1 Wini2

0 20 40 (ms)

� P’x= {1, 9} + {21 , 9}Px = {0 , 10} + {20 , 10}

AUPx= 20/40 AUP’x = 18/40

Fig. 3.3: Partition and effective partition with CSy = 1ms

Table 3.1 contains a summary of the notation used for the real-time system model
that describes the temporal behavior of an application. Although in this table all
subscripts have been formalized, throughout this document some of them may be
deliberately omitted if they are not strictly necessary, in order to ease readability.

3.4 Sensitivity analysis

Some of the algorithms proposed in this thesis, as well as some experimental results
are based on parameters coming from performing a sensitivity analysis. Thus, similar
to the sensitivity analysis proposed in MAST1, a Slack Factor (SF) is defined as the
factor by which the worst-case execution times of a step or a set of steps may be

1https://mast.unican.es/

3.4 Sensitivity analysis 39

https://mast.unican.es/

increased while keeping the system schedulable (SF is then a positive value higher
than 1), or decreased, in order to make the system schedulable (SF is then a positive
value lower than 1). If SF is 1, the system is just schedulable. This definition of SF
can be applied to different sets of steps, thus obtaining the following parameters
that allow a comparison between different elements of the system or even the whole
system:

• System Slack Factor (SSF), if all the steps in the systems are considered.

• Partition Slack Factor (PSF), if the SF is calculated by modifying only the steps
of a particular partition.

• E2e Flow Slack Factor (FSF), if the SF is calculated by modifying only the steps
of a particular e2e flow.

• Processor Slack Factor (CPUSF), if the SF is calculated by modifying only the
steps of a particular processor.

These parameters enable the determination of how close a particular element is to
schedulability, and they are obtained by iteratively applying a schedulability test.
It is assumed that, when the SF calculation reaches a value below 0.001, it will be
considered as zero and the calculation will stop, meaning that the system cannot be
scheduled even if this element is removed.

40 Chapter 3 Real-time system model

Name Notation Description

e2e flow Γi End-to-end flow i, which represents the set of activ-
ities and actions executed in the system in response
to a workload event

Workload event ein Event that triggers the e2e flow number i
Period Ti Activation period or minimum interarrival time of

the event that triggers the e2e flow i

Step τij Step j in e2e flow i. It represents the execution of
an operation in a processing resource, with some
given scheduling parameters

Deadline Dij Deadline of step j in e2e flow i. It is a timing
requirement that must be satisfied, representing
the maximum response time allowed for the step

Priority Prioij Priority of step j in e2e flow i. It is a scheduling
parameter valid in the context of each partition.
Highest value means highest priority.

Offset Φij Offset of step j in e2e flow i. It is the minimum
activation time of a step, relative to the nominal
activation time of the workload event

Jitter Jij Maximum release jitter that may be experienced in
the activation of step j of e2e flow i. It is the maxi-
mum time that the activation of each step instance
may be delayed.

Worst-case
execution time

Cij Worst-case execution time of step j in e2e flow i

Best-case execution
time

Cb
ij Best-case execution time of step j in e2e flow i

Worst-case response
time

Rij Worst-case response time of step j in e2e flow i. It
is the maximum time elapsed from the nominal ac-
tivation of the workload event and the completion
of the step.

Best-case Response
time

Rb
ij Best-case response time of step j in e2e flow i. It is

the minimum time elapsed from the nominal acti-
vation of the workload event and the completion of
the step.

Processor CPUy Processor y, providing HW/SW resources for task
execution

Context switch
overheads

CSy Time needed by processor y to handle the context
switch of partitions

Major frame MAFy Period of the cycle in processor y used by the pri-
mary scheduler, containing the temporal windows
of all the partitions

Partition Px Partition x, composed of a set of partition windows
Effective partition P ′

x Effective Partition x, composed of a set of parti-
tion windows, after considering the context switch
overheads

Partition window Winxk Temporal window k in partition x
Effective partition

window
Win′

xk Temporal window k in partition x, after considering
the context switch overheads

Start time Sxk Start time of the window k in partition x, within
the MAF

Length Lxk Temporal length of the window k in partition x
Step utilization Uij Usage of the processing element represented by the

step τij .
e2e flow utilization UΓi The sum of the utilization of all the steps in an

end-to-end flow i.
Processor utilization UCP Uy The sum of the utilization of all the steps in CPU y.
Partition Utilization UPx The sum of the utilization of all the steps contained

in Px

Available Utilization AUPx Processing utilization time allocated to Px

Tab. 3.1: Summary of notation

3.4 Sensitivity analysis 41

3.5 Modeling the industrial use-case

Considering the real-time model just defined in the previous section, the industrial
use-case described in Chapter 1 can be modeled as shown in Figure 3.4. As can be
seen, the complete subsystem is modeled as a single multipath e2e flow triggered
by the workload event ein1 representing the reception of a signal from the balise,
which activates the signal-capturing task represented by step τ1 1 which, in turn,
activates the three functionalities. Similarly to Figure 1.1 and for simplicity, only
the real-time model of the EB functionality has been depicted in detail, even though
the three functionalities presented in previous sections will be considered. In each
processor two kinds of functions can be distinguished in response to the workload
event: (1) those in charge of processing the information, voting and commanding
the brakes for the EB functionality (τ1 2, τ1 12, τ1 13, τ1 6, τ1 10, τ1 11), and (2) the
ones dealing with the communications to send and receive the messages (τ1 3, τ1 5,
τ1 9, τ1 4, τ1 7, τ1 8). According to this classification, the steps will be allocated in two
separate partitions for each processor: P1 and P3 hosting the steps for application
processing and the I/O partition, P2 and P4, where the communication drivers are
located hosting the communication steps. For the EB functionality, three messages
are sent through the network, represented by steps τ1 38, τ1 39 and τ1 40. The other
two functionalities follow the same scheme as the EB one: steps τ1 14 to τ1 25 model
the RBC-CS functionality and steps τ1 26 to τ1 37 model the PV-DMI functionality.
Steps τ1 41 to τ1 43 and τ1 44 to τ1 46 represent the messages transmitted in both
functionalities.

The railway manufacturer provided average and worst-case execution times for
each function measured in the current application, although these values cannot be
shown for confidentiality reasons. For the experiemental evaluation of the techniques
proposed in this thesis and based on these measures, worst-case execution times for
each step which are of the same magnitude order as the real ones have been chosen.
Best-case execution times have been assumed to be 50% of the worst-case ones.
Furthermore, it is common that different functionalities have different workloads,
and to highlight this effect we assume that the execution times of steps in RBC-CS
and PV-DMI are five and ten times higher, respectively, than the ones in EB. All these
values are shown in Table 3.2.

42 Chapter 3 Real-time system model

CPU 1

�1 1

�1 3 �1 9

�1 2 �1 12 �1 13

�1 5

Network

�1 38
�1 39 �1 40

CPU 2

�1 10

�1 4 �1 7

�1 11�1 6

�1 8

ein1

eout1 2

eout1 1

F F J

F J

P1

P2

P4

P3

EB

RBC-CS

PV-DMI

Fig. 3.4: Industrial use-case modeling (RBC-CS & PV-DMI not depicted for the sake of
clarity)

Functionality Emergency-brake application - EB
τij τ1 1 τ1 2 τ1 3 τ1 4 τ1 5 τ1 6 τ1 7 τ1 8 τ1 9 τ1 10 τ1 11 τ1 12 τ1 13

Cij 5 3 6 6 6 3 6 6 6 8 2 8 2

Functionality RBC Communication-session establishment - RBC-CS
τij - τ1 14 τ1 15 τ1 16 τ1 17 τ1 18 τ1 19 τ1 20 τ1 21 τ1 22 τ1 23 τ1 24 τ1 25

Cij - 15 6 6 6 15 6 6 6 40 10 40 10

Functionality Parameter visualization - PV-DMI
τij - τ1 26 τ1 27 τ1 28 τ1 29 τ1 30 τ1 31 τ1 32 τ1 33 τ1 34 τ1 35 τ1 36 τ1 37

Cij - 30 6 6 6 30 6 6 6 80 20 80 20

Tab. 3.2: Train signalling application (times in µs)

3.5 Modeling the industrial use-case 43

Response-time analysis 4
With the aim of assessing the schedulability of the optimization algorithms proposed
in this thesis, a response-time analysis technique compliant with the proposed
system model is necessary. Thus, in this chapter a new method for computing
the worst-case response times of multipath e2e flows in hierarchically-scheduled
and time-partitioned distributed real-time systems is presented. This technique is
implemented in a prototype tool used for evaluating the industrial use-case and also
general FP distributed real-time systems.

4.1 Response-time analysis of linear e2e flows

The offset-based analysis for time-partitioned systems [Pal+16] is based on the
analysis for heterogeneous systems [Riv+11], where the response-time analysis is
iteratively applied to each step τij independently, using as input information an
inherited offset φ′ij and an inherited release jitter J ′ij . These inherited offsets and
jitters are calculated for each step according to Equations 4.1 and 4.2 below, and
they depend on the initial offset, φij , and jitter, Jij , and also on the worst- and
best-case response times of the predecessor step in the e2e flow (τij−1). As a result,
the worst-case response times (Rij) are obtained. A lower bound estimation of the
best-case response time Rbij can be calculated by adding the best-case execution
times of each step in the e2e flow up to τij .

φ′ij = max(Rbij−1, φij) (4.1)

J ′ij = Jij +max(Rij−1, φij)− φ′ij (4.2)

Notice that these expressions are not applicable in multipath e2e flows, since there
may be more than one task preceding the one under analysis.

45

4.2 Response-time analysis of multipath e2e flows

In the industrial use-case considered in this thesis, the model contains Join and/or
Fork event handlers. These flow control handlers have no runtime effects (i.e., their
execution time is zero) as they are just structural artifacts for handling events in
MAST [Gon+01]. Therefore, in order to adapt the current compositional analysis
to the multipath model, the inherited offsets and jitters obtained with Equations
4.1 and 4.2 at the input are directly propagated to all of its outputs in the case of
a Fork event handler. For this case, the analysis tools only need to be updated to
perform this propagation to multiple outputs. However, for the Join event handlers,
the previous equations are no longer valid as there is more than one predecessor
step. Now, the correct procedure for propagating the values of the inherited offsets
and jitters is shown.

Lemma1. For the analysis of a Join event handler in a multipath e2e flow, the
inherited offset for step τij that is the successor of the event handler is:

φ′ij = max(max∀τik∈Γpred
ij

Rbik, φij) (4.3)

where Γpredij is the set of predecessor steps of the Join event handler.

Proof. The inherited offset φ′ij is the minimum start time of τij . By definition of
the task model, this step cannot start before its initial offset φij has elapsed since
the arrival of the workload event. In addition, it cannot start before the Join event
handler has generated its output. For this output to be generated it is necessary that
all the Join input events have been generated. The minimum generation time for
each of them is the best-case response time of their predecessor step. Therefore, by
taking the maximum of all the Rbik for all k in the predecessors of the Join handler
the best-case generation time of its output event is obtained. Therefore, the lemma
follows. �

Lemma 2. For the analysis of a Join event handler in a multipath e2e flow, the
inherited jitter for step τij that is the successor of the event handler is:

J ′ij = Jij +max(max∀τik∈Γpred
ij

Rik, φij)− φ′ij (4.4)

Proof. The inherited jitter J ′ij , is the difference between the maximum and minimum
start time of τij . The minimum start time is given by the inherited offset φ′ij . By
definition of the task model, τij cannot start before its initial offset φij has elapsed

46 Chapter 4 Response-time analysis

since the arrival of the workload event. In addition, it cannot start before the
Join event handler has generated its output. For this output to be generated it
is necessary that all the Join input events have been generated. The maximum
generation time for each of them is the worst-case response time of their predecessor
steps. Therefore, by taking the maximum of all the Rik for all k in the predecessors
of the Join handler we obtain the worst-case generation time of its output event.
According to the task model, τij may suffer an additional jitter bounded by its initial
jitter Jij . In the worst-case, there will be a delay equal to Jij applied to the worst
generation time of the Join output event. Therefore, the lemma follows. �

Equations 4.3 and 4.4 are generalized expressions for the propagation of inherited
offsets and jitters, which are the basis for applying offset-based analysis. Thus,
existing analysis techniques can be directly applied to the model just by updating
the propagation of offsets and jitters according to these equations. Furthermore, this
solution can be applied not only to hierarchical time-partitioned systems but also
to systems scheduled only by FP policy, since this would be a particular case where
there is only one partition taking up the whole CPU.

4.2.1 Simple example

In order to explain how response-time analysis can be applied to the industrial
use-case, a simple example is proposed. This enables the analysis of the key features,
eg. fork-join multipath flows, considering a reduced number of steps and removing
the communications network, without loss of generality. A simple example that can
be solved manually provides the necessary intuition behind the theory.

Figure 4.1 shows a simple e2e flow consisting of four steps, two Fork and two Join
event handlers. This e2e flow is distributed in two processors and executed in a
single partition per processor. Both partitions have a 40 ms MAF and are composed
of two partition windows: Win11 = {0, 10} and Win12 = {20, 10}. The worst-case
execution times in milliseconds and the priorities of the steps are also given in Figure
4.1. For simplicity, it is assumed that best-case and worst-case execution times are
the same.

Table 4.1 shows the results of the analysis of the simple example using the time-
partitioned analysis technique with the propagation of offsets and jitters updated
according to Equations 4.3 and 4.4. The initial values for the analysis are shown,
using the best-case results as the initial values for the worst-case response times. In
addition, since the analysis technique is iterative, we show the results for the first

4.2 Response-time analysis of multipath e2e flows 47

CPU 1

CPU 2

1 1

C
14

= 4

Prio
14

= 3

e
1

T
1

= 40
F J

F J

F

1 2

C
12

= 3

Prio
12

= 4

1 3

C
13

= 5

Prio
13

= 3

1 1

C
11

= 2

Prio
11

= 4

Fig. 4.1: Simple example

iteration. A second iteration gives the same results and thus no more iterations are
required. Notice the effect of time-partitioning on the response times: due to those
10 ms windows in which the execution is interrupted in every cycle, the analysis
must consider the worst-case scenario where the activation of all steps must be
deferred until this unavailable window finishes and execution can be resumed. For
more details on the effects of time partitioning refer to [Pal+16].

Step
Initial Iteration 1

φ′ J ′ R Rb φ′ J ′ R Rb

τ11 0 0 2 2 0 0 12 2
τ12 0 0 3 3 0 0 13 3
τ13 3 0 8 8 3 10 28 8
τ14 3 0 7 7 3 10 27 7

Tab. 4.1: Analysis results of the simple example (times in ms)

4.2.2 Implementation and tools

The analysis technique for time-partitioned systems [Pal+16] has been implemented
in a prototype tool that includes the slanted offset-based technique [MN08]. The tool
has been extended according to the results of this section to integrate the analysis
of multipath e2e flows (with Fork and Join handlers), including the effects of the
network as a black box. In addition, the multipath analysis has been implemented
in the open-source tool MAST1.

1https://mast.unican.es/

48 Chapter 4 Response-time analysis

https://mast.unican.es/

MAST version 1.5.1.0 supports multipath e2e flows with Fork, Join and also Merge

control flow event handlers. The analysis of the Merge event handler is directly
supported by the proposed equations, since this event handler can be transformed
into a linear model by replicating the sequence of steps following it a number of
times equal to the number of predecessor steps [GPH00]. We have updated MAST
by integrating Equations 4.3 and 4.4 in its offset analysis tools, in order to allow
the application of these techniques to multipath e2e flows for FP scheduling. Until
now, the analysis of these multipath e2e flows for the FP scheduling policy was only
supported under the holistic technique, which is the most pessimistic for distributed
systems. The offset-based techniques included in MAST that can now be applied to
multipath flows are: the offset-based approximate analysis [PG98], the offset-based
slanted analysis [MN08] and the offset-based brute force analysis [Tin94].

4.3 Industrial use-case evaluation

In this section, the proposed extensions to the response-time analysis of multipath
end-to-end flows are evaluated. Since this work has been motivated by a real
industrial need, the use-case described in Chapter 1 and modeled in Chapter 3 will
be analyzed by applying the prototype tool.

As explained, the use-case functionalities have their deadlines imposed by the
standard: for the three functionalities under analysis in this work, deadlines are all
1 s [UNI15]. According to the use-case model presented in Chapter 3, steps τ1 11,
τ1 13, τ1 23, τ1 25, τ1 35 and τ1 37 in Figure 3.4 are the ones that must meet these
deadlines.

The priority assignment for multipath e2e flows will be addressed in the next chapter,
and for now, priorities are assigned to each step in the range [1..255] in order to
evaluate the schedulability analysis proposed in this chapter. For the processing
partitions (P1 and P3), the assignment is as follows: the EB functionality is consid-
ered to be the highest priority functionality, followed by the RBC-CS functionality
and finally the PV-DMI. Within each functionality, priorities of the steps related to
processing tasks are assigned following a decreasing order. In the I/O partitions
(P2 and P4), there are only two tasks for all the functionalities: the receiving task
with a higher priority than the sending task. This is a common way to implement
communication drivers, and from the modeling point of view, this means that all
the steps for sending are executed at the same priority (and similarly for receiving).

4.3 Industrial use-case evaluation 49

Functionality Emergency-brake application - EB
τij τ1 1 τ1 2 τ1 3 τ1 4 τ1 5 τ1 6 τ1 7

Prioij 220 219 100 200 100 215 200
Rij 2455 4908 6184 9070 7394 11523 9070

τij - τ1 8 τ1 9 τ1 10 τ1 11 τ1 12 τ1 13

Prioij - 100 200 211 210 209 208
Rij - 12766 14409 13981 16433 16867 19319

Functionality RBC Communication-session establishment - RBC-CS
τij - τ1 14 τ1 15 τ1 16 τ1 17 τ1 18 τ1 19

Prioij - 119 100 200 100 115 200
Rij - 4933 6184 9070 7413 11548 9070

τij - τ1 20 τ1 21 τ1 22 τ1 23 τ1 24 τ1 25

Prioij - 100 200 111 110 109 8
Rij - 12785 14422 14040 16500 16914 24374

Functionality Parameter visualization - PV-DMI
τij - τ1 26 τ1 27 τ1 28 τ1 29 τ1 30 τ1 31

Prioij - 19 100 200 100 15 200
Rij - 7453 6184 9070 8702 16528 10333
τij - τ1 32 τ1 33 τ1 34 τ1 35 τ1 36 τ1 37

Prioij - 100 200 11 10 9 8
Rij - 17759 19390 21508 23978 24370 26840

Tab. 4.2: Response-time analysis of a train signalling application (times in µs)

Values of priorities of each step are shown in Table 4.2 together with their worst-case
response times.

The application in use is based on a cyclic executive, and the intention is to explore
the possibility of using time-partitioning with a twofold objective: (1) to maintain
the application with the required SIL by guaranteeing that the time-requirements
are met, and (2) to enable the use of the remaining capacity for other application
components or even other applications. So, a tentative partition configuration that
makes use of a small processing capacity, enough for the execution requirements, has
been proposed. In Chapter 6 a partition scheduling algorithm, which will integrate
a priority assignment stage, will be proposed.

For the evaluation of the proposed schedulability analysis technique, the follow-
ing partition scheme is proposed. Partitions are allocated within a 10000 µs MAF.
P1 and P3 are composed of four 50 µs windows arranged every 2500 µs, that
is: Win1 1 = {0, 50}, Win1 2 = {2500, 50} , Win1 3 = {5000, 50} and Win1 4 =
{7500, 50}. P2 and P4 are defined by six windows of 25 µs executed every 1250
µs: Win2 1 = {1000, 25}, Win2 2 = {2250, 25}, Win2 3 = {3500, 25}, Win2 4 =
{4750, 25}, Win2 5 = {6000, 25}, Win2 6 = {7250, 25}, Win2 7 = {8500, 25} and
Win2 8 = {9750, 25}. For now, context switch times are not considered. As men-
tioned in Chapter 3, this work does not consider a specific network, so it is modeled

50 Chapter 4 Response-time analysis

as a black box producing a bounded latency that can be measured in different ways,
so this model is still realistic. In order to show the effects of the network on the
analysis it is assumed that the maximum and minimum latencies for all messages
are 400 µs and 40 µs, respectively, considering a low-loaded 100 Mb/s switched
Ethernet network and 500Mb average message sizes.

Finally, Table 4.2 also shows the worst-case response times obtained by the analysis.
As can be seen, deadlines are met comfortably, but the most promising fact is that
these worst-case response times have been guaranteed with a partition configuration
proposal that uses only 4% of the CPU. Other real-time applications allocated in
other partitions could be analyzed separately, and in case any of them did not
meet its deadlines, the results from the analysis could be used to reconfigure the
partitioning scheme.

4.4 Response-time analysis performance

With the aim of completing the assessment on this new technique focusing now on
general distributed systems scheduled by a FP policy, different logical sequences
of steps will be analyzed by generating a synthetic application using the tool Task
Graphs For Free (TGFF) [DRW98]. The DAG model employed in TGFF can be
directly implemented in MAST and also in this prototype tool as all the necessary
elements are available. Thanks to the contributions of this work, the results of
worst-case response times of multipath flows between the holistic analysis [GPH00]
and the offset-based slanted analysis [MN08] can be compared for the first time.
In order to ensure that all experiments in this section are fully replicable by the
real-time community, concrete instances of analysis problems are addressed, rather
than providing massive results based on generic values.

An architecture composed of three multipath e2e flows and four processors has been
designed. For the sake of simplicity, network connections, which can be modeled and
analyzed along with processors, have not been included in this experiment. Each
e2e flow has a different activation rate, and there may be more than one output
and hence several deadline requirements. Step-to-processor mapping is performed
randomly, the only restriction being that two consecutive steps are allocated to
different processors. Steps’ worst-case execution times are generated randomly in
the range of [25,45] ms, and best-case execution times are assumed to be half of
the worst-case ones. Priorities are assigned in a decreasing manner within each
flow, and flows are prioritized with regard to their periods: the lower their period,

4.4 Response-time analysis performance 51

τ
1 1

τ
1 2

τ
1 3

τ
1 4

τ
1 6

τ
1 8

τ
1 5

τ
1 9

τ
1 13

τ
1 7

τ
1 10

τ
1 11

τ
1 12

τ
1 16

τ
1 17

τ
1 14

τ
1 15

τ
1 18

τ
1 19

τ
1 20

τ
1 20

τ
1 22

τ
1 23

τ
2 1

τ
2 2

τ
23

τ
2 4

τ
2 5

τ
2 6

τ
2 7

τ
2 8

Г
1

τ
3 1

τ
3 2

τ
3 4

τ
3 3

τ
3 5

τ
3 6

τ
3 7

τ
3 11

τ
3 10

τ
3 8

τ
3 9

Г
2

Г
3

Fig. 4.2: Synthetic application generated with TGFF

the higher the priorities assigned to their steps. These decisions are taken in order
to avoid assigning the same priorities to different steps, and bearing in mind that
priority assignment and optimization is beyond the scope of this chapter. The
complete configuration of the experiment is shown in Table 4. Results for both
holistic and offset-based analysis are shown too: values corresponding to those steps
with deadline requirements are highlighted in bold. Listing 4.1 shows the input
parameters for the graph generation (readers are encouraged to visit the reference
on this tool for a deeper understanding on DAG generation [DRW98]), and the
generated flows have been depicted in Figure 4.2.

1 tg_cnt 3
2 task_cnt 15 2
3 task_degree 3 3
4 period_mul 0.5 ,0.7 ,1.5 ,1 ,0.3 ,5
5 tg_write
6 eps_write
7
8 table_cnt 1
9 type_attrib exec_time 35 10

10 trans_write

Listing 4.1: Input code for TGFF

52 Chapter 4 Response-time analysis

Γ1 Period=1157.14
Step τ1 1 τ1 2 τ1 3 τ1 4 τ1 5 τ1 6 τ1 7 τ1 8 τ1 9 τ1 10 τ1 11 τ1 12
CPU 1 2 3 4 1 2 3 4 1 2 2 4
Cij 34.61 36.88 42.06 27.006 44.10 35.78 30.43 42.06 34.61 34.13 25.38 37.43

Prioij 23 22 21 20 19 18 17 16 15 14 13 12
Rij (Hol) 246.41 496.03 733.67 888.8 1024.18 1019.07 1287.14 1259.99 1443.7 1703.59 1991.2 1691.96
Rij (Off) 208.98 418.57 626.44 781.57 882.23 834.93 1031.17 1005.12 1043.91 1350.71 1507.12 1196.72
Step τ1 13 τ1 14 τ1 15 τ1 16 τ1 17 τ1 18 τ1 19 τ1 20 τ1 21 τ1 22 τ1 23 -
CPU 1 3 3 4 1 2 3 4 1 2 3 -
Cij 44.10 38.77 42.06 35.784 27.54 27.54 27.54 29.31 25.38 40.03 35.78 -

Prioij 11 10 9 8 7 6 5 4 3 2 1 -
Rij (Hol) 1609.05 2464.51 2584.14 2087.08 2348.47 3184.57 2918.61 2974.18 3683.62 4379.16 4661.58 -
Rij (Off) 1138.24 1813.96 2005.45 1452.37 1653.41 2305.25 2045.7 2053.73 2657.43 3157.48 3286.54 -

Γ2 Period=385.714
Step τ2 1 τ2 2 τ2 3 τ2 4 τ2 5 τ2 6 τ2 7 τ2 8 - - - -
CPU 1 2 3 3 1 2 4 4 - - - -
Cij 30.39 27.54 37.43 37.43 43.72 29.3 29.32 27.54 - - - -

Prioij 42 41 40 39 38 37 36 35 - - - -
Rij (Hol) 30.39 57.94 95.37 132.8 169.49 152.23 124.69 209.09 - - - -
Rij (Off) 30.39 57.94 95.37 132.8 139.09 124.69 124.69 160.34 - - - -

Γ3 Period=540
Step τ3 1 τ3 2 τ3 3 τ3 4 τ3 5 τ3 6 τ3 7 τ3 8 τ3 9 τ3 10 τ3 11 -
CPU 1 2 4 3 1 2 3 4 1 2 3 -
Cij 37.43 35.78 27.54 25.38 25.38 40.03 35.78 43.72 37.43 40.03 29.76 -

Prioij 34 33 32 31 30 29 28 27 26 25 24 -
Rij (Hol) 111.55 204.19 288.59 211.8 425.53 421.26 424.62 552.74 598.99 597.32 591.33 -
Rij (Off) 111.54 204.19 288.59 211.8 388.10 385.49 399.24 499.82 510.79 496.13 492.73 -

Tab. 4.3: Synthetic application analysis, times in ms. (Hol) = Holistic Analysis,
(Off) = Offset-based analysis

It has been stated that the industrial use-case that has motivated this work represents
a very low-loaded system. That is why now the evaluation of an application that
makes use of a higher percentage of the available CPU time (an average of 51%)
has been chosen, so that the experimental evaluation of this new analysis technique
is complete.

As said before, the holistic analysis assumes that tasks are independent and the
offset-based analysis reduces the pessimism of this approach [PG98], and that is
exactly what can be observed in the results of this evaluation in Table 4.3: all the
worst-case response time values obtained by this new technique are equal to or lower
than those obtained by means of the holistic analysis. Moreover, it is common that in
distributed systems deadlines are larger than the e2e flows’ periods, so if in this case
deadlines were three or even four times the periods, the offset-based analysis obtains
schedulable solutions while the holistic analysis does not, as has been experimentally
proved. The pessimism of the holistic analysis in comparison with the offset-based
analysis has been represented in Figure 4.3, where the differences in percentage
between the worst-case response times obtained with both analysis techniques have
been plotted for each step (for the sake of clarity each flow has been plotted in a
different colour). While high priority tasks may not be affected by the pessimism of

4.4 Response-time analysis performance 53

0

10

20

30

40

50

�0 1 �0 5 �0 9 �0 13 �0 17 �0 21 �1 1 �1 5 �2 1 �2 5 �2 9

P
e

s
s
im

is
m

 (
%

)

Processor 1

0

10

20

30

40

�0 2 �0 6 �0 10 �0 11 �0 18 �0 22 �1 2 �1 6 �2 2 �2 6 �2 10

P
e

s
s
im

is
m

 (
%

)

Processor 2

0

10

20

30

40

50

�0 3 �0 7 �0 14 �0 15 �0 19 �0 23 �1 3 �1 4 �2 4 �2 7 �2 11

P
e

s
s
im

is
m

 (
%

)

Processor 3

0

10

20

30

40

50

�0 4 �0 8 �0 12 �0 16 �0 20 �1 7 �1 8 �2 3 �2 8
P

e
s
s
im

is
m

 (
%

)

Processor 4

Fig. 4.3: Differences between worst-case response times obtained with the holistic and the
offset-based analysis

the holistic analysis (a 0% of pessimism is obtained in the analysis of these tasks),
low priority ones do clearly exhibit this effect as their worst-case response times are
always higher than the ones obtained by this tool, showing up to 40% improvements
in their worst-case response times. Therefore, the initial notion that the offset-based
analysis applied to multipath flows would outperform the results from the holistic
analysis, which was the only analysis technique available until now, is confirmed.

4.5 Conclusions

In this chapter a new schedulability analysis method for hierarchically-scheduled
time-partitioned distributed real-time systems has been proposed, so that timing
behavior of multipath end-to-end flows can be evaluated. This is motivated by a
real industrial railway application and the need to accurately analyze its timing
behavior, in order to perform a complete reconfiguration of its architecture and
execution model. It is common practice that different manufacturers take part in
the system design, integrating different applications in separate partitions. With
this new analysis technique each of these complex applications can be analyzed
separately and then integrated to check the overall schedulability. Moreover, thanks
to this contribution on the extension of the offset-based analysis to support multipath

54 Chapter 4 Response-time analysis

flows, works such as [Ans+13] from the automotive domain are no longer obliged
to relax task dependencies and simplify their models in order to make them linear.

4.5 Conclusions 55

Priority assignment 5
As a step forward in re-factoring railway signalling applications, the aim of this
chapter is to find feasible priority assignment solutions for the kind of systems
represented by the industrial use-case. Rather than implementing complex priority
assignment algorithms that might entail long computation times, several state-of-
the-art non-iterative algorithms will be adapted to the multipath model addressed
in this work, motivated by the reasonably good behavior they exhibited in the
literature for different scenarios [RG+16]. Their performance will be analyzed and
compared by applying them (1) to the real industrial use-case, and (2) to a complex
synthetic system that enables the exploration of their performance in a wide range
of system configurations. The response-time analysis technique used to carry out
the experimental evaluation is the offset-based technique proposed in Chapter 4.

5.1 Scheduling-parameter assignment overview

Scheduling-parameter assignment (priorities in FP schedulers or scheduling-deadlines
in EDF schedulers) is vital in the design and development of real-time systems. Due
to the large number of possible assignment combinations in distributed systems, this
problem is considered NP-hard for non-trivial cases [TBW92], meaning that it may
not be possible to find optimal solutions in polynomial time. That is why researchers
have dedicated their efforts to developing algorithms that reach sub-optimal solu-
tions in an acceptable computational time, and which are typically based on iterative
optimization algorithms that improve their results at each iteration following some
optimization criteria, which implies long computation times anyway.

In order to achieve the objectives mentioned in Section 1.3, a collection of non-
iterative algorithms proposed in the literature for different application domains is
selected. The same methodology as in [Riv+14] is followed, where the authors
assign what they denominate Virtual Deadlines (VDs) to each step. These VDs are
not timing requirements but just a mechanism to distribute the e2e deadline across
all the steps of the e2e flow. The following algorithms have been selected:

• Ultimate Deadline (UD)

57

It is the simplest scheduling-parameter assignment algorithm, where the e2e
deadline is assigned to all steps composing the e2e flow [Liu00]. It was used
in [Riv+14] for VD assignment in linear e2e flows based on EDF schedulers.

V Dij = Di (5.1)

where Di refers to the e2e deadline of the linear e2e flow Γi.

• Effective Deadline (ED)

The VD of a step according to the ED algorithm is the e2e deadline minus
the sum of the worst-case execution times of its successor steps [Liu00] . In
[Riv+14] it was also used for VD assignment, considering linear e2e flows
scheduled by EDF policy.

V Dij = Di −
Ni∑

k=j+1
Cik (5.2)

where Ni is the index of the last step in a linear e2e flow.

• Proportional Deadline (PD)

The e2e deadline is distributed/dealt among all the steps in the flow propor-
tionally to their worst-case execution times and the sum of the worst-case
execution times of all the steps of the flow [Liu00].

In [Riv+14] the authors used this algorithm in non-synchronized linear dis-
tributed systems based on EDF, therefore when distributing the e2e deadline
they assigned local scheduling deadlines to steps. These deadlines are re-
ferred to the event that activates that step, and are interpreted as local in
the literature; it has been accepted that in linear e2e flows the sum of local
deadlines should be the e2e deadline [SLB10]. On the contrary, if there is a
global clock and all scheduling deadlines are referred to the workload event
that activates the e2e flow, they are global deadlines. The authors showed
that interpreting deadline distribution algorithms as local or global produces
significant differences in response times.

V Dij = Cij∑Ni
k=1Cik

∗Di (5.3)

58 Chapter 5 Priority assignment

• Normalized-Proportional Deadline (NPD)

This algorithm is similar to PD, but it also considers the utilization of the
processing element where it is hosted [Liu00]. It was also used in [Riv+14]
for scheduling-deadline assignment in EDF systems, based on linear e2e flows:

V Dij = Di ∗ Cij ∗ UPij∑Ni
k=1Cik ∗ UPik

(5.4)

where UPij refers to the the utilization of the processor where τij is hosted.

• Equal Slack (EQS)

This algorithm was proposed for on-line deadline assignment in soft real-time
distributed systems, based on EDF schedulers [KG93a]. Deadline assignment is
performed by equally dividing the slack, defined as the difference between the
deadline and the worst-case response time. An interpretation of this algorithm
was performed by [RG+16] for off-line scheduling parameter assignment of
distributed linear e2e flows. Since activation times are unknown for off-line
schedulers, the authors assumed that such activations happened at time zero,
and tasks’ response times were assumed to be their worst-case execution times.
Paradoxically, this algorithm, which is non-iterative, produced better results
than iterative algorithms when deadlines were larger than activation periods
[RG+16]. In that work, VDs are assigned as shown in Eq 5.5:

V Dij = Cij +
Di −

∑Ni
k=j Cik

Ni − j + 1 (5.5)

There are three main elements in Eq. 5.5: 1) the worst-case execution time
of the step under assignment, 2) the numerator term, where the sum of the
worst-case execution times of all the steps from the step under analysis till
the end of the e2e flow are subtracted from the e2e deadline, and 3) the
denominator term, which is the relative position of the step counted from the
end of the e2e flow.

• Equal Flexibility (EQF)

This algorithm was also originaly proposed for on-line EDF scheduling [KG93a],
and it is also based on dividing the slack, while the proportionality with respect
to the execution times of the steps is maintained. To do so, the concept
flexibility is defined as the ratio between the slack and the worst-case response
time. This algorithm was also adapted for off-line scheduling of linear e2e

5.1 Scheduling-parameter assignment overview 59

flows in [RG+16], and similarly to the previous algorithm, it outperformed
other iterative algorithms when deadlines are higher than activation periods
and in those scenarios where the e2e flows had to transit through the same
processor more than once.

V Dij = Cij +

Di −
Ni∑
k=j

Cik

 ∗
 Cij∑Ni

k=j Cik

 (5.6)

Equation 5.6 is composed of three main elements: 1) the worst-case execution
time of the step under assignment Cij , 2) a factor where the execution times
of all the successor steps from the step under assignment till the end of the
e2e flow are subtracted from the e2e deadline, and 3) a proportionality factor
between the worst-case execution time of the step under assignment and the
sum of all the successor steps from the step under assignment till the end of
the e2e flow.

Supported by these results from the background literature, the proposal is to adapt
these algorithms to the system model addressed in this work, which includes multi-
path e2e flows and time-partitions.

5.2 Priority assignment in multipath e2e flows within
time partitions

In order to find schedulable solutions to the problem addressed in this thesis, a
two-step strategy will be followed. First, based on the algorithms described in
Section 5.1, the proposed new algorithms will be formulated, in order to apply
the previously reported state-of-the-art algorithms to multipath e2e flows within
hierarchically scheduled time-partitioned architectures. These algorithms produce
Virtual Deadlines (VDs). Then, VDs will be transformed into priorities in the second
step of this proposal, following a Deadline Monotonic policy in the context of each
partition.

5.2.1 Virtual Deadline assignment

To illustrate the Virtual Deadline assignment process, a simple yet paradigmatic
example is depicted in Figure 5.1, where all of the challenging new features are

60 Chapter 5 Priority assignment

τ0

(5)

τ1

(3)

τ2

(2)

τ3

(1)

τ4

(4)

τ5

(5)

τ8

(2)

τ6

(3)

τ7

(2)

eout1 2

D
2

= 30

eout1 1

D
1

= 50
ein1

T
1

= 50

Fig. 5.1: Illustrative example

contained: a single workload event triggers the execution of a multipath e2e flow
with different timing constraints at its output events. The number within brackets
represents the worst-case execution time of each step. For the sake of clarity, a
single processor without time partitioning is assumed for this illustrative example,
although distributed architectures and time-partitions in them will be considered
later. In the following lines the algorithms proposed for Virtual Deadline assignment
are shown, and then Table 5.1 (located in section 5.2.2) details the results of their
application. Each algorithm is presented with its pseudocode, showing how it has
been implemented.

Ultimate Deadline (UD)

Due to the multipath nature of the industrial use-case, there may be more than one
timing requirement at different outputs. Therefore, an adequate propagation of such
deadlines must be done, guaranteeing that the effect of the most restrictive one is
propagated through all the paths where it has an influence. This propagation can be
seen in Algorithm 1.

Algorithm 1: Ultimate Deadline
Initialize all V Dij to inf.
for j← Ni to 1 in each Γi do

if @Γsuccij then
V Dij = Dij

else
for each τik ∈ Γsuccij do

if V Dik < VDij then
V Dij = V Dik

end if
end for

end if
end for

5.2 Priority assignment in multipath e2e flows within time partitions 61

Effective Deadline (ED)

In addition to the issue of the different end-to-end deadlines, which applies here
too, the execution time of the successor steps also influences the calculation of
each VD. Therefore, for each step, the VD will be the most restrictive value of the
difference between the successor´s VD and its worst-case execution time, as shown
in Algorithm 2.

Algorithm 2: Effective Deadline
Initialize all V Dij to inf.
for j← Ni to 1 in each Γi do

if @Γsuccij then
V Dij = Dij

else
for each τik ∈ Γsuccij do

if V Dik − Cij < VDij then
V Dij = V Dik − Cik

end if
end for

end if
end for

Proportional Deadline (PD)

As previous experience in applying this algorithm with local and global deadlines
corroborates that remarkable differences can be obtained in the schedulability of
linear e2e flows [Riv+14], two versions of this algorithm for this system model are
also proposed.

• Global version (PD_Global):

Based on the algorithm proposed in [Liu00] and described in Section 5.1, the
global version of the proportional deadline algorithm is proposed through Eq.
5.7, which retains the essence of the original algorithm:

V Dij = Loadij ∗ Fij (5.7)

where:

62 Chapter 5 Priority assignment

– Loadij

Is the accumulated load (sum of Cij) from the workload event at each
step. When there is more than one path, the highest possible value will
be considered. This propagation is shown in step 1 of Algorithm 3.

– Fij

Represents the proportionality factor between the e2e deadline and the
accumulated load at each step. To determine this value, the e2e deadline
Dij is divided by the term Loadij at all output steps with an e2e deadline.
Then, it is propagated backwards, and in those steps with more than
one predecessor step (where different e2e deadlines may have effect)
the highest value of Fij is propagated (so that the most restrictive VD is
produced). This is shown in step 2 of Algorithm 3.

• Local version (PD_Local)

This algorithm turns global deadlines obtained by Algorithm 3 into local
deadlines. To do so, we invert the notion of local deadlines explained before,
where the summation of local deadlines provided the e2e deadline in linear
e2e flows: from each of the output steps in the e2e flow, the local VD of each
step is obtained by subtracting the value of the global VD from the predecessor
step. If there is more than one, the most restrictive, i.e. lowest value, VD is
assigned. The algorithm that converts global VDs into local ones is described
in Algorithm 4.

Normalized Proportional Deadline (NPD)

This algorithm is similar to the PD algorithm, but in this case a normalization factor
is applied that considers the utilization of the resource where steps are hosted. Two
versions of the algorithm are proposed too, considering Global and Local VDs:

• Global Version (NPD_Global)

Following the same criterion applied to the PD algorithms, Eq.5.8, which is
based on the original formulation, is proposed, and then the calculation of
each factor that composes it is explained in Algorithm 5.

V Dij = Load
′
ij ∗ F

′
ij (5.8)

5.2 Priority assignment in multipath e2e flows within time partitions 63

Algorithm 3: Proportional Deadline (PD_Global)
Step 1:
Initialize all Loadij = 0
for j← 1 to Ni in each Γi do

if @Γpredij then
Loadij = Cij

else
for each τik ∈ Γpredij do

if Loadik + Cij > Loadij then
Loadij = Loadik + Cij

end if
end for

end if
end for

Step 2:
Initialize all Fij to inf.
for j← Ni to 1 in each Γi do

if @Γsuccij then
Fij = Dij/Loadij

else
for each τik ∈ Γsuccij do

if Fik < Fij then
Fij = Fik

end if
end for

end if
end for

Step3:
for each τij in each Γi do

Calculate VDs by Eq. 5.7
end for

Algorithm 4: Turn Global VD into Local VD
for j← Ni to 1 in each Γi do
V Dmin = V Dij

for each τik ∈ Γpredij do
if V Dij − V Dik < VDij then
V Dmin = V Dij − V Dik

end if
end for
V Dij = V Dmin

end for

64 Chapter 5 Priority assignment

where

– Load′ij

Is the accumulated load from the workload event at each step. Since we
are addressing partitioned systems, this factor will refer to the utilization
of the partition where the step is allocated (Px). Thus, the accumulated
value is Cij ∗ UPx . When there is more than one predecessor step, the
maximum value is propagated, as shown in the step 1 of Algorithm 5.

– F ′ij

Is the proportionality factor between the e2e deadline and the accu-
mulated load at each step. It is calculated in the same way as in the
PD_Global algorithm, as described in step 2 of Algorithm 5.

• Local Version (NPD_Local)

In order to develop the local version of the Normalized Proportional Deadline
algorithm, Algorithm 4 will be applied, which turns Global VDs into Local
ones.

Equal Slack (EQS)

When Eq. 5.5 was formulated in [RG+16], the authors considered linear systems
where there is only a single e2e deadline. However in the model considered in this
work, the relative position of the step within the e2e flow becomes non-trivial due
to the multipath structures. Therefore, an equivalent equation (Eq. 5.9), which is
similar in its structure, is proposed, and in Algorithm 6 the calculation of the terms
that compose the equation is detailed.

V Dij = Cij + H1ij
H2ij

(5.9)

where H1ij refers to the numerator term from Eq. 5.5 and H2ij reflects the denom-
inator term. When calculating these terms, if there is more than one predecessor
step we will consider the one that produces the highest H1ij/H2ij value, with the
aim of obtaining the most restrictive VD.

5.2 Priority assignment in multipath e2e flows within time partitions 65

Algorithm 5: Normalized Proportional Deadline (NPD_Global)
Step 1:
Initialize all Load′ij = 0
for j← 1 to Ni in each Γi do

for each Px do
if τij ∈ Px then

if @Γpredij then
Load′ij = Cij ∗ UPx

else
for each τik ∈ Γpredij do

if Load′ik + Cij ∗ UPx > Load′ij then
Load′ij = Load′ik + Cij ∗ UPx

end if
end for

end if
end if

end for
end for

Step 2:
Initialize all F ′ij to inf.
for j← Ni to 1 in each Γi do

if @Γsuccij then
F ′ij = Dij/Load

′
ij

else
for each τik ∈ Γsuccij do

if F ′ik < F ′ij then
F ′ij = F ′ik

end if
end for

end if
end for

Step3:
for each τij in each Γi do

Calculate VDs by Eq. 5.8
end for

66 Chapter 5 Priority assignment

Algorithm 6: Equal Slack
Initialize all H1 to inf. and H2 to 0.0
for j← Ni to 1 in each Γi do

if @Γsuccij then
H1ij = Dij − Cij
H2ij = 1
Calculate V Dij through Eq. 5.9

else

H1ij = H1ij − Cij
H2ij = H2ij + 1

Calculate V Dij through Eq. 5.9

end if
for each τik ∈ Γpredij do

if H1ik/H2ik > H1ij/H2ij then
H1ik = H1ij
H2ik = H2ij

end if
end for

end for

5.2 Priority assignment in multipath e2e flows within time partitions 67

Equal Flexibility (EQF)

The formulation in Eq. 5.6 also considered linear e2e flows, and the sum of worst-
case execution times from the step under assignment becomes non-trivial too, as
there is more than a single path to take into account. Therefore, Eq. 5.10 that
retains the structure of Eq. 5.6, is proposed, and in Algorithm 7, details about this
interpretation are given. The Q1ij ∗Q2ij that produces the lowest VD in those cases
where there is more than one predecessor step will also be chosen.

V Dij = Cij +Q1ij ∗Q2ij (5.10)

Algorithm 7: Equal Flexibility
Initialize all Q1 and Q2 to inf.
for j← Ni to 1 in each Γi do

if @Γsuccij then
Q1ij = Dij − Cij
Q2ij = 1

Calculate V Dij through Eq. 5.10

else
Q1ij = Q1ij − Cij
Q2ij = Cij

Q2ij
+ Cij

Calculate V Dij through Eq. 5.10

end if
for each τik ∈ Γpredij do

if Q1ik ∗Q2ik > Q1ij ∗Q2ij then
Q1ik = Q1ij
Q2ik = Q2ij

end if
end for

end for

5.2.2 Virtual Deadline transformation into priorities

As said before, the second stage of this priority assignment strategy is to transform
the Virtual Deadlines into priorities. To do so, priorities in the context of each

68 Chapter 5 Priority assignment

Simple Example τ1 1 τ1 2 τ1 3 τ1 4 τ1 5 τ1 6 τ1 7 τ1 8 τ1 9

UD
VDij 30 30 30 50 30 50 50 50 30
Prioij 9 8 7 4 6 3 2 1 5

Rij 5 8 10 17 14 22 25 27 16

ED
VDij 21 24 28 43 28 48 48 50 30
Prioij 9 8 7 4 6 3 2 1 5

Rij 5 8 10 17 14 22 25 27 16

PD_Global
VDij 10.71 17.14 15 26.47 25.71 41.17 44.11 50 30
Prioij 9 7 8 5 6 3 2 1 4

Rij 5 10 7 15 14 22 25 27 17

PD_Local
VDij 10.71 6.42 4.28 9.32 8.57 14.7 18.4 5.88 4.28
Prioij 3 6 9 4 5 2 1 7 8

Rij 19 28 21 37 36 45 48 50 38

NPD_Global
VDij 10.71 17.14 15 26.47 25.71 41.17 44.11 50 30
Prioij 9 7 8 5 6 3 2 1 4

Rij 5 10 7 15 14 22 25 27 17

NPD_Local
VDij 10.71 6.42 4.28 9.32 8.57 14.7 18.4 5.88 4.28
Prioij 3 6 9 4 5 2 1 7 8

Rij 19 28 21 37 36 45 48 50 38

EQS
VDij 11.6 12.5 15 15 17.66 26.5 25.5 50 30
Prioij 9 8 7 6 5 3 4 1 2

Rij 5 8 10 11 15 23 18 27 25

EQF
VDij 18.81 19.57 19.33 23.9 23.2 40.83 36.75 50 30
Prioij 9 7 8 5 6 2 3 1 4

Rij 5 10 7 15 14 25 20 27 17

Tab. 5.1: Virtual Deadlines, priorities and worst-case response times for each algorithm,
applied to the multipath e2e flow depicted in Figure 5.1

partition are assigned following a deadline monotonic order, which assigns the
highest priority to the step with the smallest Virtual Deadline.

Being a multipath architecture, it is likely that the same Virtual Deadline is assigned
to more than one step, mostly depending on the worst-case execution times of
steps and also the e2e deadlines. In fact, there are cases where this kind of tie
happens in a generalized manner, for instance: in the ED algorithm, the same VD
will be assigned to all the steps preceding a Join event handler. If these steps are
hosted in the same partition, assigning the same VD implies assigning the same
priority, which is undesirable in the response time analysis technique applied in this
work. In the absence of a clear criterion to solve such ties, the following method is
proposed: steps are processed following their index order, and they are sorted in a
non-decreasing order according to their VDs. Then, priorities are assigned following
this order decreasingly. Thus, the same priority is never assigned to more than
one step in the same partition. An optimized strategy for solving ties in priority
assignment is a subject for future work.

Considering the illustrative example in Figure 5.1, Table 5.1 shows the different
priority assignments obtained by applying the proposed algorithms. The response

5.2 Priority assignment in multipath e2e flows within time partitions 69

times obtained by applying the analysis technique are also shown for all steps. There
are several remarkable conclusions to be mentioned. First, due to the nature of the
UD algorithm, many VDs in the e2e flow are the same, which would lead to equal
priorities if we did not solve these ties in some way. ED, PD_Local, NPD_Local and
EQS also deal with ties, and they are solved as explained before. Second, according
to the worst-case response times of steps τ1 8 and τ1 9, the best priority assignment
algorithms are UD and ED, although PD_Global and EQF algorithms also obtain good
results. However, as will be shown later, this should not be taken as representative
for all situations, as there are other algorithms that exhibit better behavior in other
different system configurations. Finally, it should be noticed that the VDs and hence
the priority assignments given by PD_Global and PD_Local are the same as the ones
produced by NPD_Global and NPD_Local respectively. This is an expected result
for this simple example since all the steps are hosted in the same partition, and
therefore the normalization factor has no effect. Later experiments will show that
none of those algorithms produce the same VDs when e2e flows traverse more than
one partition.

5.3 Evaluation of the priority assignment algorithms

In this section the proposed algorithms are evaluated in different scenarios. First,
they are applied to the industrial use-case that motivates this thesis. Then, a more
general evaluation is performed by generating synthetic e2e flows with a wide range
of activation patterns and deadline requirements.

5.3.1 Industrial use-case

The resulting priority assignments are shown in Table 5.2. For all cases, the highest
number means the highest priority, and as explained before, priorities are valid
in the context of each partition. As in the previous example, here the different
assignments obtained by the algorithms can be seen. The schedulability analysis
introduced in Section 4 is applied for each priority assignment, and the worst-case
response times obtained for the steps with an e2e deadline are compiled in Table
5.3. These steps are τ1 11 and τ1 13 for the emergency brake functionality, τ1 23 and
τ1 25 for the RBC Communication-session establishment functionality and τ1 35 and
τ1 37 for the parameter visualization functionality.

70 Chapter 5 Priority assignment

Functionality Emergency Brake - EB
τij τ1 1 τ1 2 τ1 3 τ1 4 τ1 5 τ1 6 τ1 7 τ1 8 τ1 9 τ1 10 τ1 11 τ1 12 τ1 13

Cij 5 3 6 6 6 3 6 6 6 8 2 8 2
Priority Assignment

UD 10 9 9 9 8 9 8 7 7 8 7 8 7
ED 10 7 3 3 2 7 1 2 1 4 3 4 3

PD_Global 10 9 7 3 3 7 1 2 1 4 3 4 3
PD_Local 10 6 2 2 1 8 1 3 3 3 9 3 9

NPD_Global 10 9 9 9 6 9 6 5 5 8 3 7 3
NPD_Local 10 4 1 3 2 8 1 2 3 3 9 3 9

EQS 10 9 7 7 4 9 1 4 1 6 3 6 3
EQF 9 6 4 6 9 6 1 9 1 9 3 10 3

Functionality RBC Communication-session establishment - RBC-CS
τij τ1 14 τ1 15 τ1 16 τ1 17 τ1 18 τ1 19 τ1 20 τ1 21 τ1 22 τ1 23 τ1 24 τ1 25

Cij 15 6 6 6 15 6 6 6 40 10 40 10
Priority Assignment

UD 6 6 6 5 6 5 4 4 5 4 5 4
ED 8 6 6 5 8 4 5 4 5 2 5 2

PD_Global 8 8 8 5 8 5 4 2 5 2 5 2
PD_Local 5 5 5 4 5 4 6 6 2 7 2 8

NPD_Global 8 8 8 4 7 4 3 3 5 2 5 2
NPD_Local 5 4 5 5 5 4 6 6 2 7 2 8

EQS 8 8 8 5 8 2 5 2 5 2 5 2
EQF 5 3 7 8 5 2 5 5 8 2 8 2

Functionality Parameter visualization - PV-DMI
τij τ1 26 τ1 27 τ1 28 τ1 29 τ1 30 τ1 31 τ1 32 τ1 33 τ1 34 τ1 35 τ1 36 τ1 37

Cij 30 6 6 6 30 6 6 6 80 20 80 20
Priority Assignment

UD 3 3 3 2 3 2 1 1 2 1 2 1
ED 9 9 9 8 9 7 8 7 6 1 6 1

PD_Global 7 9 9 6 9 7 6 4 6 1 6 1
PD_Local 4 8 8 7 4 7 9 9 1 6 1 7

NPD_Global 6 7 7 2 6 2 1 1 4 1 4 1
NPD_Local 6 9 9 7 4 7 8 8 1 6 1 7

EQS 7 9 9 6 7 3 6 3 4 1 4 1
EQF 4 2 8 7 4 3 4 6 7 1 7 1

Tab. 5.2: Priority assignment for the train signalling application (Cij in µs)

5.3 Evaluation of the priority assignment algorithms 71

Railway Signalling App
EB RBC-CS PV-DMI

τ1 11 τ1 13 τ1 23 τ1 25 τ1 35 τ1 37

Worst-case Response Times (ms)
UD 12.28 14.74 12.37 14.83 19.85 22.31
ED 17.34 19.78 17.34 19.79 17.37 19.82

PD_Global 17.37 19.78 17.34 19.79 17.37 19.82
PD_Local 14.84 17.31 16.12 18.59 21.11 23.58

NPD_Global 14.89 17.33 14.9 17.34 17.37 19.81
NPD_Local 16.09 18.52 17.35 18.6 22.32 23.59

EQS 14.91 17.34 14.92 17.35 17.39 19.82
EQF 21.16 23.63 21.17 23.64 23.65 26.11

Tab. 5.3: Worst-case response times of the railway signalling application

SSF
UD 81.87
ED 88.7

PD_Global 88.33
PD_Local 66.25

NPD_Global 87.5
NPD_Local 68.75

EQS 86.25
EQF 51.14

Tab. 5.4: SSF for each algorithm applied in the industrial use-case

In Table 5.3, the lowest response time for the whole application is obtained by the
NPD_Global algorithm, as it completes its execution in 19.81 ms in the worst-case
scenario, and ED, PD_Global and EQS show a very similar performance (19.82 ms
in the worst-case scenario). Taking a look at each functionality independently, it is
remarkable that with UD, PD_Local and NPD_Local algorithms the EB functionality
finishes its execution several ms before the others. This, however, is achieved by
penalizing the execution of the other two functionalities, so in those cases where
applications must meet different deadline requirements, the collection of algorithms
proposed in this work can provide different alternatives for their design.

Focusing only on the response times may not provide an adequate view of the system
schedulability if there are several outputs in response to the same input event, which
is actually the case described in this application. It is convenient to perform a
sensitivity analysis through the calculation of the System Slack Factor (SSF) as has
been defined in Section 3.4.

In this use-case, this factor can give designers an insight into how much the system
could grow (in terms of utilization) when applying the different priority assignment

72 Chapter 5 Priority assignment

algorithms. The SSFs calculated for each algorithm are shown in Table 5.4: even if
NPD_Global seemed to be the best algorithm for the industrial use-case in terms of
response times, the priority assignment that lets the system load grow the most is
ED, closely followed by PD_Global and NPD_Global. The fact that the SSFs are so
high can be explained by highlighting that the system represents a very low load
and therefore execution times can be greatly increased.

5.3.2 Performance evaluation

After applying all the proposed algorithms to the industrial example, their behavior
has to be assessed when external conditions differ from the ones that characterize
this use-case, in order to get a deeper view of their behavior. Instead of generating a
huge number of synthetic task sets to perform the evaluation, all the experiments
should be reproducible by the research community and therefore a small-sized task
set will be generated, which includes most of the representative features relevant
for the system model this work is targeting. They will be generated with the tool
TGFF [DRW98], which can be directly transformed to the system model described in
this thesis and then processed by the developed tools. Ten different step-sequences
are generated and depicted in Figure 5.2. Random worst-case execution times will
be generated in a [0,20] ms range (note that a 1/3 scaling factor is later applied
in order to produce feasible utilizations). These e2e flows will allow the following
features to be tested:

• Activation periods: a wide range of activation periods will be tested, from 50
ms to 1 s. These values are within the ranges of the sampling frequency of
automotive subsystems [SD07] and the typical minimum inter-arrival times of
balises in the railway domain.

• Deadlines: Different deadline requirements (relative to the periods) will be
evaluated. The most restrictive requirements are normally found in certifica-
tion standards, although we will consider more relaxed deadlines as distributed
systems normally have deadlines larger than periods.

• Number of processors: the behavior of the algorithms will be analyzed first by
assigning 80% of available utilization to a single partition allocated to a single
processor, and then by distributing this available utilization into 2, 4, 8 and 10
processors (with one partition each) having the same total available utilization
(this means that when testing 2 processors, partitions within them will get
40% of available utilization, and so on). Step-to-core mapping is performed

5.3 Evaluation of the priority assignment algorithms 73

randomly, but two consecutive steps will not be allowed to be assigned to the
same processors, if possible. The utilization of all partitions shall be kept in a
fair balance so that the pessimism that unbalanced loads produce is minimized.

Listing 5.1 shows the input code for generating synthetic e2e flows with TGFF, and
finally step-to-processor mapping is shown for each number of processors in Table
5.5.

Number of

Processors
Step-to-Processor Mapping

1

τ1 1 τ1 2 τ1 3 τ1 4 τ1 5 τ1 6 τ1 7 τ2 1 τ2 2 τ2 3 τ2 4 τ2 5 τ3 1 τ3 2 τ3 3 τ3 4 τ3 5 τ3 6 τ3 7 τ3 8 τ4 1

τ4 2 τ4 3 τ4 4 τ4 5 τ5 1 τ5 2 τ5 3 τ5 4 τ5 5 τ5 6 τ5 7 τ5 8 τ5 9 τ5 10 τ6 1 τ6 2 τ6 3 τ6 4 τ6 5 τ7 1 τ7 2

τ7 3 τ7 4 τ7 5 τ7 6 τ7 7 τ7 8 τ8 1 τ8 2 τ8 3 τ8 4 τ8 5 τ8 6 τ8 7 τ9 1 τ9 2 τ9 3 τ9 4 τ9 5 τ9 6 τ9 7 τ9 8

τ10 1 τ10 2 τ10 3 τ10 4 τ10 5 τ10 6 τ10 7

2

τ1 1 τ1 3 τ1 5 τ1 7 τ2 2 τ2 4 τ3 1 τ3 3 τ3 5 τ3 7

τ4 2 τ4 4 τ5 1 τ5 3 τ5 5 τ5 7 τ5 9 τ6 2 τ6 4 τ7 1

τ7 3 τ7 5 τ7 7 τ8 2 τ8 4 τ8 6 τ9 1 τ9 3 τ9 5 τ9 7

τ10 2 τ10 4 τ10 6

τ1 2 τ1 4 τ1 6 τ2 1 τ2 3 τ2 5 τ3 2 τ3 4 τ3 6 τ3 8

τ4 1 τ4 3 τ4 5 τ5 2 τ5 4 τ5 6 τ5 8 τ5 10 τ6 1 τ6 3

τ6 5 τ7 2 τ7 4 τ7 6 τ7 8 τ8 1 τ8 3 τ8 5 τ8 7 τ9 2

τ9 4 τ9 6 τ9 8 τ10 1 τ10 3 τ10 5 τ10 7

4

τ1 1 τ1 5 τ2 2 τ3 3 τ4 1

τ5 1 τ5 5 τ6 4 τ7 3 τ7 8

τ8 2 τ8 5 τ9 1 τ10 4 τ10 5

τ1 2 τ1 6 τ2 1 τ2 5 τ3 2

τ3 4 τ3 8 τ4 2 τ4 3 τ5 2

τ5 6 τ5 10 τ6 1 τ6 5 τ7 4

τ7 7 τ8 3 τ8 6 τ9 2 τ9 6

τ10 1 τ10 6

τ1 3 τ1 7 τ2 4 τ3 1 τ3 5

τ3 7 τ4 4 τ5 3 τ5 7 τ5 9

τ6 2 τ7 1τ7 5 τ8 4 τ8 7

τ9 3 τ9 7 τ9 8 τ10 2

τ10 7

τ1 4 τ2 3 τ3 2 τ3 6 τ4 5

τ5 8 τ6 3 τ7 6 τ8 1 τ9 4

τ9 5 τ10 3

8

τ1 1 τ3 7

τ5 5 τ6 4

τ7 3 τ9 1

τ1 2 τ2 1

τ3 8 τ4 3

τ5 6 τ7 4

τ8 3 τ9 2

τ10 1 τ6 5

τ1 3 τ2 2

τ3 1 τ4 4

τ5 7 τ7 5

τ8 4 τ9 3

τ10 2

τ1 4 τ2 3

τ3 2 τ4 1

τ5 8 τ7 6

τ8 5 τ9 4

τ10 3

τ1 5 τ3 3

τ4 5 τ5 1

τ5 9 τ7 7

τ8 6 τ9 5

τ10 4

τ1 6 τ2 5

τ3 4 τ5 2

τ5 10 τ6 1

τ7 8 τ9 6

τ10 5

τ1 7 τ2 4

τ3 5 τ5 3

τ6 2 τ7 1

τ8 7 τ9 7

τ10 6

τ3 6 τ4 2

τ5 4 τ6 3

τ7 2 τ8 1

τ8 2 τ9 8

τ10 7

10

τ1 1 τ4 2

τ5 7 τ6 1

τ7 5 τ8 4

τ9 3

τ1 2 τ2 1

τ4 3

τ10 1

τ5 8 τ7 6

τ8 5 τ9 4

τ1 3 τ3 1

τ4 4

τ10 2

τ7 7 τ8 6

τ9 5

τ1 4 τ2 3

τ3 2 τ4 1

τ10 3

τ5 9 τ7 8

τ8 7 τ9 6

τ1 5 τ3 3

τ5 1

τ10 4

τ9 7

τ1 6 τ2 5

τ3 4 τ5 2

τ5 10

τ10 5

τ9 8

τ1 7 τ2 4

τ3 5 τ5 3

τ6 2 τ7 1

τ10 6

τ2 2

τ3 6 τ5 4

τ6 3 τ7 2

τ8 1 τ8 2

τ10 7

τ7 3 τ9 1

τ3 7 τ5 5

τ6 4

τ3 8 τ4 5

τ5 6 τ6 5

τ7 4 τ8 3

τ9 2

Tab. 5.5: Step-to-processor mapping of the synthetic e2e flows

11 tg_cnt 10
12 task_cnt 7 3
13 task_degree 3 3
14 period_mul 1 ,0.85 ,1.02
15 tg_write
16 eps_write
17
18 table_cnt 1
19 table_label Processor
20 type_attrib WCET 10 10
21 trans_write

Listing 5.1: TGFF input code

In order to determine which of the proposed algorithms shows the best performance,
the term Relative Breakdown Utilization (RBU) for time-partitioned systems is

74 Chapter 5 Priority assignment

t
1 1

0.694

t
1 2

0.763

t
1 4

3.213

t
1 5

3.808

t
1 6

0.813

t
1 7

0.694

t
1 3

3.993

T
1

= 610

t
2 1

3.143

t
2 2

3.993

t
2 4

3.285

t
2 5

5.577

t
2 3

6.198

T
2

= 230

t
3 1

0.813

t
3 2

3.213

t
3 4

0.234

t
3 5

0.813

t
3 6

0.694

t
3 7

0.813

t
3 3

5.478

T
3

= 470

t
3 8

3.993

t
4 1

0.234

t
4 2

5.478

t
4 4

3.213

t
4 5

3.213

t
4 3

0.694

T
4

= 230

t
5 1

3.993

t
5 2

3.098

t
5 4

2.412

t
5 5

1.375

t
5 3

0.813

T
5

= 230

t
5 7

0.234

t
5 6

3.993

t
5 8

1.375

t
5 10

5.590

t
5 9

2.905

t
6 1

0.234

t
6 2

0.193

t
6 4

3.285

t
6 5

0.234

t
6 3

0.813

T
6
= 50

t
7 1

0.813

t
7 2

3.213

t
7 4

0.234

t
7 5

0.813

t
7 6

0.694

t
7 7

0.813

t
7 3

5.478

T
7

= 350

t
7 8

3.993

t
8 1

0.218

t
8 2

4.65

t
8 4

0.813

t
8 5

3.808

t
8 7

6.198

t
8 6

1.375

t
8 3

0.193

T
8

= 580

t
9 1

5.478

t
9 2

1.375

t
9 4

3.143

t
9 5

5.478

t
9 7

3.285

t
9 6

0.763

t
9 3

2.905

T
9

= 790

t
9 8

6.198

t
10 1

5.478

t
10 2

3.808

t
10 4

0.813

t
10 5

6.198

t
10 7

3.143

t
10 6

0.193

t
10 3

3.808

T
10

= 580

Fig. 5.2: Synthetic e2e flows

5.3 Evaluation of the priority assignment algorithms 75

introduced. It is based on the Breakdown Utilization (BU) introduced in [LSD89],
extended for application to partitioned systems where CPU time is not fully available
for a partition. Thus, the RBU term (in percentage) for a partition is the value
calculated as UPx/AUPx ∗ 100, reached when all the execution times are scaled up
to a point at which a deadline is first missed. To do so, a scaling factor is applied
to all execution times in the context of each partition, until the system reaches the
boundary of schedulability. For those tests with more than one processor, we will
take the average RBU to show the experimental results, which is possible because
step-to-processor mapping is kept fairly balanced in all cases. As a reference, a
non-partitioned system where the CPU is fully available (general FP systems) will be
considered. Thus, all the experiments considering a single partition with AU = 100%
will be replicated, so the BU for each algorithm will be shown.

When deadlines are too restrictive or the system is barely schedulable, and hence for
calculating the RBU/BU the execution times of tasks have to be drastically reduced,
it is considered that when partitions reach a utilization lower than 1%, the system is
not schedulable (NS). This happens because the response time analysis computes
all the time-window gaps where the execution is not allowed and thus worst-case
response-times increase. Proposing an optimized partition window assignment is
beyond the scope of the work presented in this chapter, and it will be addressed in
Chapter 6.

D = T D = 2T D = 4T D = 6T D = 8T D = 10T

1 Processor
EQS EQS EQS EQS EQS EQS
(54) (75) (89) (93) (95) (97)

2 Processors
NS NS EQS EQS EQS EQS
- - (83) (88) (90) (93)

4 Processors

EQS EQS,PD_Global EQS,PD_Local
NS NS PD_Local PD_Local,NPD_Local EQS NPD_Local
- - NPD_Local PD_Global, NPD_Global

(66) (71) (76) (76)

8 Processors

NS NS EQS,PD_Local EQS,PD_Local
PD_Local NPD_Local NPD_Local NPD_Local

- NPD_Global
- (66) (76) (76) (76)

10 Processors
NS NS NPD_Local EQS,PD_Local, EQF, EQF, PD_Local NPD_Local

NPD_Local PD_Global, NPD_Local
NPD_Global NPD_Global

- - (62) (62) (62) (75)

Tab. 5.6: RBU results (in %) for each algorithm (with partitioning)

The most relevant results have been compiled in Tables 5.6 and 5.7. They show
the algorithm or algorithms that obtain the highest RBU/BU (expressed in % in
brackets) for each combination of number of processors and deadline/period rates.
Generally comparing Tables 5.6 and 5.7, we can directly see the penalisation that
occurs when 100% of CPU-time is not available, i.e. without time partitioning,

76 Chapter 5 Priority assignment

D = T D = 2T D = 4T D = 6T D = 8T D = 10T

1 Processor
NPD_Local EQS EQS EQS EQS EQS

(63) (78) (89) (93) (95) (96)

2 Processors
PD_Local, NPD_Local EQS EQS EQS EQS EQS

(61) (76) (89) (93) (94) (95)

4 Processors
PD_Local, NPD_Local PD_Local EQS EQS EQS EQS

(57) (72) (85) (91) (93) (94)

8 Processors

PD_Local, EQS, PD_Local, EQS, PD_Local EQS EQS EQS
PD_Global NPD_Local NPD_Local PD_Local
NPD_Local NPD_Global NPD_Local

(49) (64) (78) (84) (88) (96)

10 Processors
NPD_Local EQS NPD_Local EQS EQS EQS

(46) (63) (80) (86) (89) (91)

Tab. 5.7: BU results (in %) for each algorithm

those scenarios where D=T are schedulable, whereas with time partitioning only the
scenario with a single processor is schedulable. Even if the RBU term is relative to
the CPU availability, the CPU time not available for the partition and the effect it has
on the analysis technique for time-partitioned systems, provokes that utilizations in
all scenarios are always lower than their counterparts in non-partitioned ones.

Regarding Table 5.6, which corresponds to time-partitioned systems, when the com-
puting is performed in a single processor, the algorithm that obtains the highest RBU
is always EQS. When the number of processors is increased some other algorithms
seem to behave better, such as NPD_Local that produces the highest RBU when
deadlines are 6, 8 and 10 times the period. Moreover, PD_Local also exhibits a
high performance in distributed systems where deadlines are 4, 6 or 8 times the
period. In systems without time-partitioning (Table 5.7) NPD_Local always obtains
the highest BU when deadlines are within the periods, and in this scenario PD_Local
also exhibits good performance when steps are mapped in more than one processor.
When deadlines tend to relax, EQS is the most suitable in most of the experiment-
configurations. Note that the UD and ED algorithms, which obtain fairly good results
in the simple example from Section 5.2, never appear in any of these tables as the
best ones.

In order to complete the qualitative analysis of these tests, Figures 5.3 to 5.7 show,
for each processor, the evolution of the RBU obtained by the proposed algorithms as
a function of the D/T ratio. This allows readers to track the performance of those
algorithms that are not present in the tables, as in those tables only the outstanding
algorithms in each experiment configuration are presented.

As a general conclusion, it can be stated that there is no single algorithm that
behaves the best in all cases. This reinforces the idea of proposing a set of simple
and non-iterative algorithms so that all of them can be applied, and then the most

5.3 Evaluation of the priority assignment algorithms 77

0

20

40

60

80

100

D=T D=2T D=4T D=6T D=8T D=10T

R
B

U
 (

%
)

1 Processor

UD ED EQF EQS PD_Local PD_Global NPD_Local NPD_Global

Fig. 5.3: RBU evolution in 1 processor

0

20

40

60

80

100

D=T D=2T D=4T D=6T D=8T D=10T

R
B

U
 (

%
)

2 Processors

UD ED EQF EQS PD_Local PD_Global NPD_Local NPD_Global

Fig. 5.4: RBU evolution in 2 processors

0

10

20

30

40

50

60

70

80

D=T D=2T D=4T D=6T D=8T D=10T

R
B

U
 (

%
)

4 Processors

UD ED EQF EQS PD_Local PD_Global NPD_Local NPD_Global

Fig. 5.5: RBU evolution in 4 processors

78 Chapter 5 Priority assignment

0

10

20

30

40

50

60

70

80

D=T D=2T D=4T D=6T D=8T D=10T

R
B

U
 (

%
)

8 Processors

UD ED EQF EQS PD_Local PD_Global NPD_Local NPD_Global

Fig. 5.6: RBU evolution in 8 processors

0

10

20

30

40

50

60

70

80

D=T D=2T D=4T D=6T D=8T D=10T

R
B

U
 (

%
)

10 Processors

UD ED EQF EQS PD_Local PD_Global NPD_Local NPD_Global

Fig. 5.7: RBU evolution in 10 processors

5.3 Evaluation of the priority assignment algorithms 79

Experiment Execution time (s)
Simple example 26

Railway signalling use-case 28
1 Processor - D=T 36

1 Processor - D=10T 27
10 Processors - D=10T 31

Tab. 5.8: Execution time of some of the experiments

suitable result can be selected. Table 5.8 shows the execution times of some of
the experiments conducted in this work: the simple example from Section 5.2.1,
the railway signalling use-case from Section 5.3.1 and a subset of the synthetic
scenarios from Section 5.3.2. In each experiment, the execution time shown includes
the execution of the eight priority assignment algorithms plus their worst-case
response-time analysis.

5.4 Conclusions

In this chapter, a collection of algorithms for priority assignment of multipath e2e
flows in hierarchically scheduled and time-partitioned distributed real-time systems
has been presented. All of them are non-iterative algorithms that can provide feasible
solutions in a short time, in contrast to iterative algorithms that might require long
computation times, so designers and developers have the possibility of applying
all of them in order to check which one best suits the target system. Results show
that there is no single algorithm that stands out clearly from the others. Therefore,
the algorithm that best suits a certain configuration should be chosen from this
collection, although an insight into the behavior can be obtained by comparing the
targeted scenario with the ones evaluated in this work. The proposed algorithms
have been applied to the target industrial use-case, then they have been evaluated
and their performance has been ranked by means of a synthetic representative
application.

80 Chapter 5 Priority assignment

Partition window assignment 6
Partitioning techniques are implemented in the development of safety-critical applica-
tions to ensure isolation among components, as explained in the industrial use-case
description in Chapter 1. As identified in the literature review (Chapter 2), there
are few research works addressing the scheduling optimization of time-partitioned
real-time systems and they are fairly recent.

An adequate arrangement of the execution of such partitions is a key challenge so
that applications meet the imposed hard deadlines. In this chapter, the effect of
window sizes and context switch overheads in the partition window configuration is
studied, with the aim of analyzing their impact when the response time analysis and
priority assignment techniques are applied. Then, a heuristic algorithm is proposed,
in order to obtain a partition window configuration that enables the schedulability
of partition-based safety critical systems. This algorithm is evaluated in synthetic
test scenarios and it is also applied to the industrial use-case.

6.1 Study of the influence of partition windows on
schedulability

To perform the proposed study, different partition scheduling schemes will be evalu-
ated. Thus, a simple application example is constructed, which includes the most
relevant features that characterize the motivating railway use-case. This example is
composed of a single multipath e2e flow activated periodically every 50 ms which
is composed of six steps (τ1 1 to τ1 6), as shown in Figure 6.1. The e2e flow is
mapped within a single partition (Px) composed of a single partition window, and
it is assumed, for the sake of simplicity, that the worst-case execution time of each
step is fixed and equal to 2 ms. The priority of each step is shown in brackets, and
the MAF considered for the whole experiment set is 50 ms. When referring to the
schedulability of the application, it relates to the worst-case response time of τ1 6

(R1 6) in comparison with its deadline.

81

Fig. 6.1: Guiding application example

6.1.1 Available Utilization

A very common early-design decision regards to the CPU time allocated for the
execution of each partition, i.e. AUPx in the example described here. Depending
on this time, response times may vary significantly as shown in Figure 6.2. Even
if this effect seems obvious, it gives us an idea about the effect that not having
all the processor time dedicated for the execution of applications produces on the
worst-case response times calculated by the analysis technique. For a fixed MAF
and considering a fixed number of windows, a lower available utilization generates
longer gaps between partition windows, thus the longer these gaps are (where
Px is not allowed to be executed), the higher is the worst-case response time. In
this example the partition utilization UPx represents 24% of the CPU time, and
worst-case response times vary from 580 ms to 12 ms when the available CPU goes
from the initial value of 24% to 100% respectively.

0

200

400

600

24 29 34 39 44 49 54 59 64 69 74 79 84 89 94 99

AUPx (%)

R1 6 (ms)

Fig. 6.2: Worst-case response time of τ1 6 as a function of AUP x

6.1.2 Number of windows

Once the available time has been fixed for a partition, the next design decision
to take is to distribute this given time in the MAF. At a first approach, a uniform

82 Chapter 6 Partition window assignment

distribution of partition windows will be considered, although this might be subject
to optimization when more partitions make up the MAF. Figure 6.3 shows the worst-
case response times obtained for this example when the number of partition windows
varies from 1 to 100, for three different values of AUPx . As can be seen, increasing
the number of windows produces a reduction in the length of the unavailable gaps
in the MAF, leading to a remarkable reduction of the obtained response times. Again,
we can observe here how having higher gaps between windows leads to higher
response times.

1 11 21 31 41 51 61 71 81 91

0

20

40

60

80

100

120

140

160

180

200

Number of windows

40% 50% 60%

R1 6 (ms)

Fig. 6.3: Evolution of worst-case response time of τ1 6 with the number of partition windows
for different values of AUPx (in %)

6.1.3 Context switch overheads

Experiments conducted until now have not considered the effects of the context
switch overheads that are present when a partition is activated, and which have
been modeled in Section 3.3. In general, context switch overheads depend on
the operating system/hypervisor where applications are executed. For instance,
in [Ham+] the measured context switch overhead in a hypervisor is 17µs, and in
[Mas+], it is 27µs. Therefore, in the experiments performed in this thesis, a value
of CS = 20µs is considered, along with a higher order of magnitude representing a
slower processor, i.e. CS = 200µs. Formally, the maximum CPU time that can be
spent in context switch overheads in processor CPUy, is bounded by the difference
between the available partition utilization (AUPx) and the partition utilization (UPx).
Considering this, the limit of the number of partition windows that can be set for
partition Px without overloading the partition is defined as follows:

6.1 Study of the influence of partition windows on schedulability 83

NWPx = b(AUPx − UPx) ∗ MAFy
CSy

c (6.1)

In other words, with the number obtained by this expression or a lower value of
windows, enough time for the execution of partition Px is guaranteed.

0

50

100

150

200

1 6 11 16 21 26 31 36

Number of windows

R1 6 (ms)

(a) CS = 200µs

0

50

100

150

200

1 61 121 181 241 301 361

Number of windows

R1 6 (ms)

(b) CS = 20µs

Fig. 6.4: Worst-case response time as a function of the number of partition windows -
AUPx

= 40%

Figures 6.4 to 6.6 show the worst-case response times obtained for different numbers
of partition windows, available utilizations and context switch overhead values
for this guiding example. For different AUPx values we calculate the response
times when increasing the number of partition windows in the range 1 to NWPx .
Qualitatively, worst-case response times vary in the same way regardless of the CPU
availability, i.e. the maximum response times are obtained when Px is scheduled in
a single window, and as the number of windows increases response times reduce
fast, up to a point. After that point, notice that in the ideal scenario, CSy = 0 (blue
plot), the response-time curve remains constant, while if CSy > 0 (orange plot) the
curve increases again.

84 Chapter 6 Partition window assignment

0

50

100

150

200

1 11 21 31 41 51 61

Number of windows

R1 6 (ms)

(a) CS = 200µs

0

50

100

150

200

1 61 121 181 241 301 361 421 481 541 601

Number of windows

R1 6 (ms)

(b) CS = 20µs

Fig. 6.5: Worst-case response time as a function of the number of partition windows -
AUPx = 50%

6.1.4 Conclusions of the study

It has been observed that increasing the number of partition windows has a positive
effect on the reduction of response times, which is outweighed by the negative effect
of context switch overheads. Finding the window configuration that produces the
turning point in response times is essential for a partition window optimization
algorithm.

When the partition utilization is very low in comparison to the available utilization,
and also when context switch overheads are very low, the range of windows to
explore (1..NWx for Px) is very large. It has been found that analyzing a very big
window number (NWx > 500) has a negative impact on the execution time of
the analysis tool. Therefore, the strategy to follow will be to start to explore from
minimum number of windows and then increase the number until the turning point
is found.

6.1 Study of the influence of partition windows on schedulability 85

0

50

100

1 11 21 31 41 51 61 71 81 91

Number of windows

R1 6 (ms)

(a) CS = 200µs

0

50

100

1 91 181 271 361 451 541 631 721 811

Number of windows

R1 6 (ms)

(b) CS = 20µs

Fig. 6.6: Worst-case response time as a function of the number of partition windows -
AUPx = 60%

6.2 Heuristic partition window assignment

In the previous study, the effect of the configuration parameters (referred to the
available utilization and the number of windows within the MAF) on the worst-case
response times has been analyzed. Now, an algorithm called Window Assignment
(WinAs) is proposed in section 6.3.1 in order to leverage this knowledge, by search-
ing for the number of windows that produces a schedulable solution for a fixed
available utilization in each partition. WinAs is then integrated within an outer
algorithm, which starts from a given available utilization for each partition. This
outer algorithm, called Heuristic Optimized Partition Window Assignment (HOPWA)
executes WinAs iteratively, as will be shown later in section 6.3.2, with the aim of
providing schedulable solutions while the available utilization of each partition is
optimized.

6.2.1 Window Assignment (WinAs) Algorithm

The WinAs algorithm tries to find a schedulable system configuration by increasing
the number of windows for a fixed available utilization assigned to each partition. It

86 Chapter 6 Partition window assignment

produces, in each processor, an adjusted MAF where there is one partition window
for each partition, as well as a priority assignment. This algorithm exploits the
results of the study in Section 6.2, where the influence of the number of partition
windows within the MAF and the gap between these windows on the response is
shown.

The design of the algorithm is described in Algorithm 8. The rationale for this design
is to vary the number of partition windows, by always having a single window per
partition within a diminishing MAF. Reducing the MAF is equivalent to increasing the
number of windows, assuming a uniform window distribution, within a fixed MAF.
For example: considering a 100 ms MAF, the window for a certain partition P1 whose
AUP1 is 40% will first be defined as follows: Win11 = {0, 40}. In order to increase
the number of windows (assuming that the solution was not schedulable), WinAs
sets the new MAF in that processor to 50 ms. Therefore, the new partition window
will be defined as: Win11 = {0, 20}, which is equivalent to dividing the previous
40 ms window into two uniformly distributed 20 ms windows within the prior 100
ms MAF. Performing a non-uniform window assignment remains as future research
work, bearing in mind that, as noticed in the study from Section 6.2, worst-case
response times are highly influenced by the longest gap between windows within
the MAF.

Algorithm 8: Window Assignment (WinAs) algorithm
1: for each CPUy do
2: MAFy = min(Dij ∈ CPUy)
3: end for
4: while Stopping criterion not met do
5: for each CPUy do
6: Offset = 0
7: for each Px in CPUy do
8: Winx1 = {Offset, Lx1}
9: Offset = Offset+ Lx1

10: end for
11: end for
12: Perform Priority assignment
13: if Schedulable then
14: Return SUCCESS
15: else
16: for each CPUy do
17: MAFy = MAFy/Q
18: end for
19: end if
20: end while
21: Return FAIL

6.2 Heuristic partition window assignment 87

The first step of the algorithm consists of calculating the initial MAF values (line 2).
It is calculated, in the context of each processor, as follows: the value of the MAF
will be the most restrictive deadline (the lowest value) of all the steps present in
that processor. In each iteration, a single window is defined for each partition within
the MAF (line 8), its length being proportional to the available utilization of that
partition, which for partition Px is calculated as follows:

Lx1 = MAF ∗AUPx (6.2)

Since the schedulability analysis of each partition is performed independently (see
Chapter 4), the worst-case response times do not depend on a specific partition
ordering within the MAF. Therefore, the newly defined partition windows (one
per partition) are placed one after another in an arbitrary ordering, based on the
partition’s index.

As shown in Chapter 5, priorities assigned to the steps within time partitions have a
big impact on the system’s schedulability. In this step (line 12), all the algorithms
described in Chapter 5 are evaluated, and the best solution is selected at this
stage. To determine the best priority assignment, a figure of merit is proposed for
schedulable solutions: for each e2e flow the maximum value Rij/Dij among all
output steps is calculated, so that the worst result per e2e flow is captured; then,
the average Rij/Dij ratio of all e2e flows is calculated, so the algorithm’s result that
obtains the lowest average ratio is considered the best solution.

If the system is schedulable, the algorithm succeeds (line 14), whereas if it is not,
the MAF is reduced by an adjustable factor (Q in line 17), which should be greater
than 1, and Eq.6.2 is applied to the single window of each partition in order to
maintain the appropriate available utilization. In the previous example, where the
rationale of this algorithm has been explained, the reduction factor applied to the
MAF was Q = 2, as the MAF was reduced from 100 ms to 50 ms. This value will
also be used for the performance evaluation in the next section. The adjustment of
factor Q constitutes an optimization problem in itself, and it may be addressed in
future work.

The stopping condition evaluated in line 4 of Algortithm 8 will be met when all
partitions reach the maximum number of windows, which can be calculated directly
by Eq. 6.1. If during this search a schedulable solution is not found, WinAs fails
(line 21), and returns the MAF value that produces the highest SSF value among all
the explored values, where a single partition window is assigned to each partition
according to its available utilization.

88 Chapter 6 Partition window assignment

6.2.2 Heuristic Optimized Partition Window Assignment (HOPWA)

The development of WinAs, which searches for a schedulable solution having a fixed
available utilization in each partition, enables the design of a new algorithm based
on this, which can explore different available utilizations of partitions in order to
optimize these values in the context of the whole system. This algorithm, called
Heuristic Optimized Partition Window Assignment (HOPWA) receives an initial
available utilization for each partition, and it tries to optimize it when a schedulable
solution is found. In the study in Section 6.2, it was concluded that increasing
the available utilization of partitions reduces the worst-case response times, so if
a schedulable solution is not found from the initial available utilization values, a
method to distribute the processors’ spare utilization (SU) is used to try to reach
schedulability by increasing the partitions’ available utilization.

Thus, HOPWA’s inputs are: a step-to-partition allocation, a partition-to-processor
allocation and a given initial available utilization for each partition. This initial
available utilization, AU initPx , should be at least equal to the partition utilization
(UPx), and the total available utilization of all the partitions allocated to a processor
must not be higher than 1. Then, the spare utilization in each processor (SUCPUy),
is directly calculated by subtracting from 1, i.e. from the whole processing time,
the sum of all the AUPx of the hosted partitions. This produces an optimized
available utilization for each partition, which hosts a single partition window within
an adjusted MAF. As it executes WinAS iteratively, a priority assignment is also
produced.

HOPWA is described by its pseudo-code in Algorithm 9. As will be shown later, a
binary search strategy will be used to tune the available utilization of each partition.
This binary search will be conducted between a minimum and a maximum available
utilization, AUminPx and AUmaxPx respectively, where AUmidPx will be the mid point
between them.

In the initialization phase of the algorithm each partition’s available utilization is
set to the initial value AU initPx , as can be seen in line 2. For each partition, AUminPi

is set to 0 in order to enable the optimization of the available utilization later on,
and AUmaxPi is set to 1. Then, WinAs is executed for the first time, with the current
available utilization of each partition as an input. Two situations may take place,
but in both of them the following step consists of tuning the available utilization of
all partitions, be it to reach schedulability or to optimize the available utilization
assigned to each partition:

6.2 Heuristic partition window assignment 89

Algorithm 9: Heuristic Optimized Partition Window Assignment (HOPWA)
1: Initialization:
2: ∀Px ← AUPx = AU initPx , AUmaxPx = 1, AUminPx = 0
3:

4: Execute WinAs(∀AUPx)
5:

6: if WinAs returns FAIL then
7: Distribute SUCPUy according to Eq.6.3
8: Execute WinAs (∀AUPx)
9: if WinAs returns FAIL then

10: Return FAIL
11: else
12: for each Px do
13: AUminPx = AU initPx

14: AUmaxPx = AUPx
15: AUmidPx = mid(AUminPx , AUmaxPx)
16: AUPx = AUmidPx

17: end for
18: end if
19: else
20: for each Px do
21: AUmaxPx = AUPx
22: AUmidPx = mid(AUminPx , AUmaxPx)
23: AUPx = AUmidPx

24: end for
25: end if
26:

27: while Stopping criterion not met do
28: Execute WinAs(∀AUPx)
29: if WinAs returns SUCCESS then
30: for each Px do
31: AUmaxPx = AUPx
32: AUmidPx = mid(AUminPx , AUmaxPx)
33: AUPx = AUmidPx

34: end for
35: else
36: for each Px do
37: AUminPx = AUPx
38: AUmidPx = mid(AUminPx , AUmaxPx)
39: AUPx = AUmidPx

40: end for
41: end if
42: end while
43: Return SUCCESS

90 Chapter 6 Partition window assignment

1. If WinAs does not find a schedulable solution (line 6), the spare utilization of
each processor is distributed among all the partitions uniformly, and added to
each partition’s available utilization (Line 7), as expressed by the following
equation:

AUPx = AUPx + SUCPUy/NPCPUy (6.3)

where NPCPUy is the number of partitions in CPUy.

Then, WinAs is executed again (line 8). If there is a schedulable solution (line
11), the search should be conducted, for each partition, in the range of the
available utilization (AUminPx = AU initPx) initially assigned and the current avail-
able utilization assigned after distributing the processors’ available utilization
(AUmaxPx = AUPx). This is performed following a binary search strategy for
the available utilization of each partition, as shown in lines 27-42. WinAs is
executed at each iteration in order to find a schedulable solution. The stopping
condition of the algorithm will be, for all cases henceforth, a precision value
in the variations of AUPx, which may be adjustable.

On the contrary, if WinAs fails in finding a schedulable solution right after
distributing the processors’ spare utilization (line 9), HOPWA fails. With
the aim of providing a solution, although not schedulable, the MAF values
explored during the execution of WinAs in this stage are stored in memory and
the System Slack Factor (SSF), defined in Section 3.4, is calculated for each
solution. The MAF value that produces the highest SSF is kept as the solution
returned by the algorithm.

2. If WinAs finds a schedulable solution (Line 19), the upper bound for the
binary search conducted in lines 27-42 is set to the initial available utilization
(Line 21). After the previously stated stopping condition is met, the algorithm
succeeds.

6.3 Performance evaluation

In this section the algorithms proposed in Section 6.3 are evaluated. First, the WinAs
algorithm is characterized through a set of synthetic experiments. Then, HOPWA
is applied to the same synthetic scenarios, as well as to the motivational railway
use-case.

6.3 Performance evaluation 91

6.3.1 Design of the synthetic experiments

As seen in the study in Section 6.2, varying the number of windows within the
MAF may be beneficial for some e2e flow’s response times and detrimental for
others, since the algorithm tries to schedule the most restrictive e2e flows first by
selecting an appropriate MAF for them. Therefore, the least restrictive ones suffer
an increase in their response times, due to the large context switch overheads. As
the study has been performed for a single e2e flow allocated to a single partition,
it is necessary to analyze the behavior of WinAs, in order to assess its capacity to
search for schedulable solutions when different e2e flows, in terms of deadline
requirements and/or load, are part of the same target system. Moreover, the effect
of considering some e2e flows that are allocated only to a subset of the processors
needs to be evaluated, since, as shown in the description of the algorithm, the
solution space may be different in the context of each processor.

With all these features in mind, a set of synthetic scenarios will be evaluated. To do so,
a baseline synthetic scenario, referenced as Scn1 from now on and depicted in Figure
6.7, has been designed. It is composed of four e2e flows with different extensive
deadline requirements, and they are allocated to four processors. Then, some
modifications upon this base scenario will be performed, which include modifying
the step-to-processor allocation in Scn2 and Scn3 (Figures 6.8 and 6.9 respectively)
and also modifying their workloads (Scn4 and Scn5). Although the target systems
of this thesis contain multipath e2e flows, only linear e2e flows are considered
in these experiments, so that the results are not affected by other effects related
to multipath e2e flows. This will provide a deep insight into the behavior of the
algorithm.

In Scn1, four e2e flows (Γ1-Γ4) are allocated to four processors. The periods of their
activation events, which represent a wide range of values, are as follows: T1 = 40
ms, T2 = 250 ms, T3 = 750 ms and T4 = 1000 ms. It is assumed that all their
deadlines are equal to their periods, although the response time analysis technique
would support arbitrary ones too. Therefore, Γ1 is the most restrictive e2e flow
and Γ4 the least restrictive one. Table 6.1 shows, for each step of each e2e flow, its
worst-case execution time. Best-case execution times are assumed to be the same as
the worst-case ones.

In Scn2 steps from Γ1 are removed from CPU1 and in Scn3 steps from Γ2 are
also relocated, thus obtaining an unbalanced partition allocation. Due to the MAF
selection strategy described in Section 6.3.2, the solution space becomes independent
in the context of each processor, depending on which is the most deadline-restrictive

92 Chapter 6 Partition window assignment

τ
1 1

τ
1 3

τ
1 2

τ
1 4

τ
1 5

τ
1 6

τ
1 7

τ
1 8

τ
2 4

τ
2 2

τ
2 1

τ
2 8

τ
2 7

τ
2 6

τ
2 5

τ
2 3

τ
3 6

τ
3 4

τ
3 3

τ
3 2

τ
3 1

τ
3 8

τ
3 7

τ
3 5

τ
4 3

τ
4 5

τ
4 6 τ

4 7

τ
4 8

τ
4 1

τ
4 2

τ
4 4

CPU
1

CPU
2

CPU
4

CPU
3

P
1

P
2

P
3

P
4

P
8

P
7

P
6

P
5

Γ1

Γ2

Γ3Γ4

Fig. 6.7: Baseline synthetic scenario Scn1: 2 partitions hosted in each of the 4 processors

τ
1 1

τ
1 3

τ
1 2

τ
1 4

τ
1 5

τ
1 6

τ
1 7

τ
1 8

τ
2 4

τ
2 2

τ
2 1

τ
2 8

τ
2 7

τ
2 6

τ
2 5

τ
2 3

τ
3 6

τ
3 4

τ
3 3

τ
3 2

τ
3 1

τ
3 8

τ
3 7

τ
3 5

τ
4 3

τ
4 5

τ
4 6 τ

4 7

τ
4 8

τ
4 1

τ
4 2

τ
4 4

CPU
1

CPU
2

CPU
4

CPU
3

P
1

P
2

P
3

P
4

P
8

P
7

P
6

P
5

Γ1

Γ2

Γ3Γ4

Fig. 6.8: Scn2: Γ1 has been removed from CPU1 and its steps relocated to partitions in the
other processors

6.3 Performance evaluation 93

τ
1 1

τ
1 3

τ
1 2

τ
1 4

τ
1 5

τ
1 6

τ
1 7

τ
1 8

τ
2 4

τ
2 2

τ
2 1

τ
2 8

τ
2 7

τ
2 6

τ
2 5

τ
2 3

τ
3 6

τ
3 4

τ
3 3

τ
3 2

τ
3 1

τ
3 8

τ
3 7

τ
3 5

τ
4 3

τ
4 5

τ
4 6 τ

4 7

τ
4 8

τ
4 1

τ
4 2

τ
4 4

CPU
1

CPU
2

CPU
4

CPU
3

P
1

P
2

P
3

P
4

P
8

P
7

P
6

P
5

Γ1

Γ2

Γ3Γ4

Fig. 6.9: Scn3: Γ2 has also been removed from CPU1 and its steps relocated to partitions
in the other processors

Scn1
e2e Step Cij e2e Step Cij

Γ1

τ11 1

Γ2

τ21 1
τ12 0.5 τ22 2
τ13 0.5 τ23 3
τ14 1 τ24 2
τ15 1 τ25 1
τ16 2 τ26 4
τ17 2 τ27 2
τ18 1 τ28 1

Γ3

τ31 15

Γ4

τ41 20
τ32 12 τ42 40
τ33 20 τ43 6
τ34 40 τ44 7.5
τ35 30 τ45 30
τ36 16 τ46 37.5
τ37 18 τ47 6.5
τ38 22 τ48 11

Tab. 6.1: Worst-case execution times for Scn1

94 Chapter 6 Partition window assignment

e2e flow they host. In Scn4 and Scn5 a scaling factor of 2 is applied to the worst-case
execution times of the steps of the most restrictive and least restrictive e2e flows, Γ1

and Γ4 respectively, both considering the architecture of the baseline scenario. Since
the algorithm considers the most restrictive flow’s deadline to calculate the MAF
in each processor, the effect of increasing the workload of Γ1 has to be analyzed.
Similarly, the effect of increasing the load in the least restrictive e2e flow is also
important, as it has the least influence in the MAF calculation.

As the utilization of the partitions is in the range of 6% and 17%, the following
available utilization for the partitions will be evaluated: 20%, 30%, 40% and 50%
(note that 50% is the maximum available utilization possible as there are two
partitions per processor). In these experiments, context switch overhead is assumed
to be 1 µs.

6.3.2 WinAs algorithm characterization

After designing the experiments that will be carried out in this section, the WinAs
algorithm will be applied on them in order to assess its performance in the different
scenarios previously described.

The worst-case response times of each e2e flow, as a function of the number of
iterations that WinAs takes, have been plotted in figures 6.10 to 6.14. In each figure,
the e2e flows have been separated into different boxes, and each coloured plot
represents a different available utilization assigned to each partition. The horizontal
red line shows the deadline requirement of each e2e flow, and vertical axes have
been represented in logarithmic scale for the sake of clarity. For each scenario, the
first schedulable results, i.e. the MAF value for each processor, found by WinAs has
been compiled in Table 6.2, along with the worst-case response times of the last step
of each e2e flow.

Qualitative results are consistent with the ones obtained in the previous experiments,
as for all e2e flows, increasing the number of windows is beneficial at the beginning
of the search. However, and as was expected, it becomes detrimental (response
times increase) earlier for the least restrictive e2e flows. Therefore, the number of
window trade-offs must be carefully chosen in order to obtain a schedulable solution.
In fact, notice that in Scn1, for 20% and 30% available utilizations, the algorithm
fails to obtain a schedulable solution, as response-time curves of Γ4 are always above
the deadline plot. In contrast, when the available utilizations are 40% and 50%, the
algorithm does find schedulable solutions.

6.3 Performance evaluation 95

1 2 3 4 5 6 7 8 9 10 11

10

100

1000

Number of windows

�1

50% 40% 30% 20%

1 2 3 4 5 6 7 8 9 10 11

10

100

1000

Number of windows

�2

50% 40% 30% 20%

1 2 3 4 5 6 7 8 9 10 11

100

1000

Number of windows

�3

50% 40% 30% 20%

1 2 3 4 5 6 7 8 9 10 11

100

1000

Number of windows

�4

50% 40% 30% 20%

R1 8 (ms)

R3 8 (ms)

R2 8 (ms)

R4 8 (ms)

Fig. 6.10: e2e flows’ worst-case response times for different numbers of windows (Scn1)

Regarding Scn2 and Scn3, the proposed algorithm takes more iterations to finish
the search. During the first 10 iterations, the number of windows is increased in all
processors, while after that, they are increased only in a subset of processors. This is
because, in processors where the most restrictive e2e flows are hosted, the limit of
the number of windows is reached before it is reached in those where they are not
present. However, as shown in figures 6.11 and 6.12, response times always increase
after the 10th iteration, when the number of windows is only increased in a subset
of processors. Finally, as shown in Figures 6.13 and 6.14, which correspond to Scn4
and Scn5 respectively, although there are not significant qualitative differences in
the behavior of the algorithm when the load of a certain e2e flow is increased, it
fails in obtaining schedulable solutions for any available utilization at Scn5, and
only when the available utilization is 50% there is a schedulable solution in Scn4.
Generally, it can be stated that WinAs’s behavior remains qualitatively consistent in
all the scenarios described in this section.

96 Chapter 6 Partition window assignment

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10

100

1000

Number of windows

�1

50% 40% 30% 20%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10

100

1000

10000

Number of windows

�2

50% 40% 30% 20%

R2 8 (ms)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

100

1000

10000

Number of windows

�3

50% 40% 30% 20%
R3 8 (ms)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

100

1000

10000

Number of windows

�4

50% 40% 30% 20%

R4 8 (ms)

R1 8 (ms)

Fig. 6.11: e2e flows’ worst-case response times for different numbers of windows (Scn2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10

100

1000

Number of windows

�1

50% 40% 30% 20%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10

100

1000

10000

Number of windows

�2

50% 40% 30% 20%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

100

1000

10000

Number of windows

�3

50% 40% 30% 20%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

100

1000

10000

Number of windows

�4

50% 40% 30% 20%

R1 8 (ms)

R3 8 (ms)

R2 8 (ms)

R4 8 (ms)

Fig. 6.12: e2e flows’ worst-case response times for different numbers of windows (Scn3)

6.3 Performance evaluation 97

1 2 3 4 5 6 7 8 9 10 11 12

10

100

1000

Number of windows

�1

50% 40% 30% 20%

1 2 3 4 5 6 7 8 9 10 11 12

10

100

1000

Number of windows

�2

50% 40% 30% 20%

1 2 3 4 5 6 7 8 9 10 11 12

100

1000

10000

Number of windows

�4

50% 40% 30% 20%

1 2 3 4 5 6 7 8 9 10 11 12

100

1000

10000

Number of windows

�3

50% 40% 30% 20%

R1 8 (ms)

R3 8 (ms)

R2 8 (ms)

R4 8 (ms)

Fig. 6.13: e2e flows’ worst-case response times for different numbers of windows (Scn4)

1 2 3 4 5 6 7 8 9 10 11 12

10

100

1000

Number of windows

�1

50% 40% 30% 20%

1 2 3 4 5 6 7 8 9 10 11 12

10

100

1000

Number of windows

�2

50% 40% 30% 20%

1 2 3 4 5 6 7 8 9 10 11 12

100

1000

10000

Number of windows

�3

50% 40% 30% 20%

1 2 3 4 5 6 7 8 9 10 11 12

100

1000

10000

Number of windows

�4

50% 40% 30% 20%

R1 8 (ms)

R3 8 (ms) R4 8 (ms)

R2 8 (ms)

Fig. 6.14: e2e flows’ worst-case response times for different numbers of windows (Scn5)

98 Chapter 6 Partition window assignment

AUP x
MAF (ms) Rij(ms)

CPU1 CPU2 CPU3 CPU4 R1 8 R2 8 R3 8 R4 8

Scn1
40% 5 5 5 5 39.1 82.2 545.1 969.4
50% 5 5 5 5 29.08 60.1 423.8 757.03

Scn2
40% 31.25 5 5 31.25 39.6 134.1 583.2 995.5
50% 31.25 5 5 31.25 29.58 110.1 467.1 773.4

Scn3
40% 23.43 1.25 1.25 7.81 28.76 78.73 551.9 987.35
50% 93.75 5 5 31.25 29.58 102.01 485.29 795.07

Scn4
50% 1.25 1.25 1.25 1.25 39.6 70.83 469.4 835.58

Tab. 6.2: Schedulable solutions found by WinAs: MAF and worst-case response times

6.3.3 Evaluating HOPWA algorithm

Once WinAs’s performance has been fully characterized, HOPWA will be evaluated.
To do so, the previously described test scenarios (Scn1 to Scn5) will be used. Since
there are two partitions per processor, the main goal of this experiment is to assess
the effect of the processing time initially allocated to each partition, i.e. the effect of
assigning different AU initP i values for each partition in each of the scenarios.

Configuration AU init
P1 AU init

P2 AU init
P3 AU init

P4 AU init
P5 AU init

P6 AU init
P7 AU init

P8
PC1 80 20 80 20 80 20 80 20
PC2 50 50 50 50 50 50 50 50
PC3 20 20 20 20 20 20 20 20
PC4 30 10 30 10 30 10 30 10

Tab. 6.3: Initial available utilization (in %) for each partition in each partition configuration

The AU initPx values proposed for the evaluation are shown in Table 6.3. Four dif-
ferent partition configurations (PC1 to PC4) are considered, each of them being
a paradigmatic partitioning scheme: PC1 represents an unbalanced distribution
of processing time between the two partitions per processor, while in PC2 a fair
distribution is performed; in PC3, a balanced distribution is also done, although
some spare utilization is kept, and similarly in PC4 an unbalanced distribution is
done while keeping some spare utilization as well.

As said before, HOPWA sets the available utilization for each partition as well as the
MAF for each processor. These values, obtained after applying the algorithm to each
scenario, are shown in Tables 6.4 to 6.8.

6.3 Performance evaluation 99

Scn1 P1 P2 P3 P4 P5 P6 P7 P8 Sched?

PC1 MAF (ms) 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25
×

AU (%) 80 20 80 20 80 20 80 20

PC2 MAF (ms) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
X

AU (%) 33.5 33.9 35.1 34.7 33.1 34.5 35.5 34.7

PC3 MAF (ms) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
X

AU (%) 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1

PC4 MAF (ms) 5 5 5 5 5 5 5 5
X

AU (%) 48.7 28.7 48.7 28.7 48.7 28.7 48.7 28.7
Tab. 6.4: MAF and AU values obtained by HOPWA, for each partition configuration in Scn1

Scn2 P1 P2 P3 P4 P5 P6 P7 P8 Sched?

PC1 MAF (ms) 31.25 31.25 5 5 5 5 31.25 31.25
×

AU (%) 80 20 80 20 80 20 80 20

PC2 MAF (ms) 15.6 15.6 2.5 2.5 2.5 2.5 15.6 15.6
X

AU (%) 32.5 33.4 36.08 35.2 35.0 35.5 33.7 33.8

PC3 MAF (ms) 15.6 15.6 2.5 2.5 2.5 2.5 15.6 15.6
X

AU (%) 34.06 34.06 34.06 34.06 34.06 34.06 34.06 34.06

PC4 MAF (ms) 31.25 31.25 5 5 5 5 31.25 31.25
X

AU (%) 50.6 30.6 50.6 30.6 50.6 30.6 50.6 30.6
Tab. 6.5: MAF and AU values obtained by HOPWA, for each partition configuration in Scn2

Since all e2e flows cross all processors and partitions in Scn1, the calculated MAFs
are the same for all configurations, as can be seen in Table 6.4. HOPWA cannot
find any schedulable solution for PC1 due to the unbalanced available utilizations
provided as input, while in PC2 the 50% of available utilization provided to each
partition is enough to schedule the system, and the algorithm optimizes the solution
by reducing the available utilization of each partition to the range of 33.1% and
35.5%. For PC3, where all partitions had an initial available utilization of 20%,
HOPWA distributes the processors’ spare utilization uniformly in all partitions,

Scn3 P1 P2 P3 P4 P5 P6 P7 P8 Sched?

PC1 MAF (ms) 23.4 23.4 1.25 1.25 1.25 1.25 7.81 7.81
×

AU (%) 80 20 80 20 80 20 80 20

PC2 MAF (ms) 11.7 11.7 0.62 0.62 0.62 0.62 3.9 3.9
X

AU (%) 37.8 38.3 40.7 39.8 39.7 40.1 38.8 39

PC3 MAF (ms) 93.75 93.75 5 5 5 5 31.25 31.25
X

AU (%) 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6

PC4 MAF (ms) 23.4 23.4 1.25 1.25 1.25 1.25 7.81 7.81
X

AU (%) 50.6 30.6 50.6 30.6 50.6 30.6 50.6 30.6
Tab. 6.6: MAF and AU values obtained by HOPWA, for each partition configuration in Scn3

100 Chapter 6 Partition window assignment

Scn4 P1 P2 P3 P4 P5 P6 P7 P8 Sched?

PC1 MAF (ms) 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25
×

AU (%) 80 20 80 20 80 20 80 20

PC2 MAF (ms) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
X

AU (%) 47.3 47.3 47.5 47.5 47.2 47.6 47.8 47.5

PC3 MAF (ms) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
X

AU (%) 47.6 47.6 47.6 47.6 47.6 47.6 47.6 47.6

PC4 MAF (ms) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
×

AU (%) 60 40 60 40 60 4 60 40
Tab. 6.7: MAF and AU values obtained by HOPWA, for each partition configuration in Scn4

Scn5 P1 P2 P3 P4 P5 P6 P7 P8 Sched?

PC1 MAF (ms) 5 5 5 5 5 5 5 5
×

AU (%) 80 20 80 20 80 20 80 20

PC2 MAF (ms) 5 5 5 5 5 5 5 5
X

AU (%) 48.9 49.0 49.1 49.1 48.9 49.0 49.1 49.1

PC3 MAF (ms) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
X

AU (%) 48.9 48.9 48.9 48.9 48.9 48.9 48.9 48.9

PC4 MAF (ms) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
×

AU (%) 60 40 60 40 60 40 60 40
Tab. 6.8: MAF and AU values obtained by HOPWA, for each partition configuration in Scn5

according to the methodology described in Section 6.3. After finding a schedulable
solution, it is optimized by minimizing the available utilizations up to 33.1%. Finally,
HOPWA finds a schedulable solution for PC4 despite the initial available utilizations
being unbalanced, since there was some spare utilization to be distributed among
all partitions that eventually allowed schedulability to be achieved. The differences
between the solutions obtained for PC3 and PC4 are worth mentioning. In the former,
the MAF obtained is 2.5 ms while in the latter it is 5 ms, which translates in half of
context switch overheads. However, the schedulable solution for PC4 requires 48.7%
available utilization for each partition while in PC3 the system can be scheduled
with 15.6% less. The trade-off between the available utilization assigned to each
partition and the context switch overheads should be carefully analyzed during the
design of the system.

Tables 6.5 and 6.6, which are related to Scn2 and Scn3 respectively, correspond
to those scenarios where some e2e flows do not traverse certain processors. For
example, in Scn1 the MAFs obtained were 2.5 ms for PC2 and PC3, and 5 ms for
PC4. However, in Scn2, where the most restrictive e2e flow is not present in a
subset of processors, it is possible to keep the MAF at 15.6 ms in PC2 and PC3, and
in 31.25 ms in PC4, minimizing context switch overheads significantly. The same

6.3 Performance evaluation 101

effect can be observed in Scn3, where for instance in PC3 the MAF obtained is 93.75
ms in the processor where the two most restrictive e2e flows have been removed.
This confirms that the proposed algorithm finds solutions that optimize the context
switch overheads in those processors where it is possible to do so. Regarding the
available utilizations, there are no significant variations in the solutions from Scn1
and Scn2-Scn3, and the reason why the values of MAF and AU from Scn2 and Scn3
are slighlty higher is due to the partitions’ utilizations, which are slightly higher in
the latter scenarios due to the relocation of some tasks.

In Scn4 and Scn5, whose corresponding results have been collected in Tables 6.7
and 6.8 respectively, partition configuration PC1 remains unschedulable as it was in
the previous scenarios, and PC4 is also unschedulable in these scenarios. In Scn4,
where the execution times of the most restrictive e2e flows were increased, the MAF
values obtained for PC2 and PC3 are 0.6 ms in all processors, which are notably
lower than the ones obtained in Scn1 (2.5 ms), thus implying higher context switch
overheads. However, in Scn5, where the execution times of the least restrictive e2e
flow were increased, the calculated MAFs are 5 ms for PC2 and 2.5 ms for PC3. It
can be concluded that the most restrictive e2e flow influences the schedulability of
the system to a greater extent than the least restrictive one.

Together with the results of applying the proposed algorithm under several scenarios
and configurations, a sensitivity analysis is also performed as part of this assessment,
in order to compare and characterize the solutions obtained. The following parame-
ters defined in Section 3.4 will be used: System Slack Factor (SSF), Partition Slack
Factor (PSF) and e2e Flow Slack Factor (FSF). These sensitivity analysis results are
shown in a table for each scenario: 6.9 to 6.13 for Scn1 to Scn5 respectively.

Regarding Scn1, all SF values corresponding to configuration PC1 are lower than
1 as the system is not schedulable. As shown in Table 6.9, when the system is
schedulable (PC2, PC3 and PC4), partition slack factors are all very small, since most
of the values are near 1, which is illustrative of the tightness of the solutions that
the algorithm provides. This is also confirmed by the very low system slack factors
obtained. In general, the e2e flow slack factors are higher for the most restrictive
e2e flows. This is coherent, as the algorithm tries to schedule the most restrictive
e2e flows first by selecting an appropriate MAF, and therefore the least restrictive
ones suffer an increase in their response times, as shown in the study of Section 6.2.
Comparing the results for PC3 and PC4, it can be stated that the solution obtained
by HOPWA for PC4, i.e. higher MAF and higher available utilization, is better than
the one obtained for PC3, because all SF values are higher in PC4. Although it was
stated that the most restrictive flow determines the schedulability of the system to a

102 Chapter 6 Partition window assignment

greater extent, the sensitivity analysis shows that the schedulable solutions found
by HOPWA scale better for Scn4 than for Scn5, since the calculated SF values are
always slightly higher. The trade-offs between the context switch overheads and
the partitions’ spare utilization on the one hand, and the scalability of the solutions
obtained by HOPWA on the other, are aspects that need to be considered during the
system design.

Regarding Scn4 and Scn5, only two partition configurations, PC2 and PC3, enable
schedulable solutions to be reached as shown in Tables 6.12 and 6.13. In Scn4, the
MAF obtained for scheduling the system is notably smaller (0.6 ms in all processors)
than the ones in Scn1 (6.9 ms in PC1 and 2.5 ms in PC2). However, there is a
positive effect in the slack factors of those e2e flows which have not been moved,
so it can be stated that decoupling the restrictive flow from one processor may be
beneficial as the effect context switch overhead is reduced.

SF PC1 PC2 PC3 PC4
SSF 0.88 1.052 1.007 1.06

PSF

P1 0 1.68 1.27 2.42
P2 0 1.48 1.13 1.54
P3 0 1.23 1.02 1.36
P4 0.28 1.28 1.02 1.2
P5 0 1.81 1.14 2.4
P6 0.2 1.44 1.01 1.39
P7 0 1.3 1.03 1.2
P8 0.55 1.28 1.03 1.2

FSF

Γ1 0.004 1.04 1.07 1.2
Γ2 0 1.06 1.1 2.2
Γ3 0.58 1.06 1.07 1.17
Γ4 0.72 1.005 1.09 1.11

Tab. 6.9: Slack factors (system, partitions and e2e flows) for Scn1

6.3 Performance evaluation 103

SF PC1 PC2 PC3 PC4
SSF 0.84 1.028 1.005 1.014

PSF

P1 0 1.2 1.32 3.29
P2 0 1.03 1.01 1.75
P3 0 1.03 1.01 1.46
P4 0 1.04 1.02 1.29
P5 0 1.02 1.12 1.26
P6 0.34 1.03 1.03 1.01
P7 0 1.04 1.04 1.79
P8 0 1.01 1.06 1.43

FSF

Γ1 0.007 1.17 1.04 1.01
Γ2 0 1.7 1.04 3.01
Γ3 0 1.07 1.01 1.2
Γ4 0 1.06 1.01 1.1

Tab. 6.10: Slack factors (system, partitions and e2e flows) for Scn2

SF PC1 PC2 PC3 PC4
SSF 0.75 1.004 1.015 1.014

PSF

P1 0 1.04 1.73 2.15
P2 0 1.07 1.01 1.53
P3 0 1.03 1.1 1.13
P4 0 1.04 1.13 1.08
P5 0 1.05 1.2 1.26
P6 0 1.07 1.16 1.01
P7 0 1.07 1.11 1.18
P8 0 1.05 1.08 1.08

FSF

Γ1 0 1.11 1.13 1.13
Γ2 0 1.2 1.74 1.75
Γ3 0.37 1.06 1.02 1.08
Γ4 0.42 1.01 1.05 1.06

Tab. 6.11: Slack factors (system, partitions and e2e flows) for Scn3

104 Chapter 6 Partition window assignment

SF PC1 PC2 PC3 PC4
SSF 0.64 1.002 1.007 0.99

PSF

P1 0 1.001 1.04 0.99
P2 0 1.04 1.1 0.96
P3 0 1.004 1.1 0.84
P4 0 1.005 1.04 0.96
P5 0 1.02 1.04 0.96
P6 0 1.007 1.02 0.96
P7 0 1.01 1.02 0.96
P8 0 1.004 1.04 0.96

FSF

Γ1 0 1.002 1.007 0.99
Γ2 0 5.1 5.1 0
Γ3 0 1.45 1.43 0
Γ4 0 1.63 1.62 0

Tab. 6.12: Slack factors (system, partitions and e2e flows) for Scn4

SF PC1 PC2 PC3 PC4
SSF 0.53 1.002 1.002 0.95

PSF

P1 0 1.013 1.05 0.99
P2 0 1.05 1.02 0
P3 0 1.01 1.005 0.66
P4 0 1.01 1.008 0.78
P5 0 1.06 1.05 0
P6 0 1.03 1.02 0.54
P7 0 1.03 1.006 0.55
P8 0 1.01 1.005 0.8

FSF

Γ1 0 1.03 1.02 0.37
Γ2 0 1.11 1.05 0
Γ3 0 1.01 1.007 0.8
Γ4 0 1.003 1.002 0.93

Tab. 6.13: Slack factors (system, partitions and e2e flows) for Scn5

6.3 Performance evaluation 105

6.3.4 Scheduling evaluation of the industrial use-case

The partition scheduling problem addressed in this work is motivated by a safety-
critical railway application, whose architecture has been described in Chapter 1
and whose most relevant time-related features have been modeled in Chapter 3
and depicted in Figure 3.4. Now, the proposed HOPWA algorithm is applied to this
scenario.

Although the safety standards oblige completion of the execution of functionalities
within 1 s, in this section a wider range of deadlines will be evaluated, in order to
determine the behavior of the algorithm under more constrained timing require-
ments. Therefore, four different values of the e2e deadlines (5, 50, 500 and 1000
ms) will be explored. Similarly to Section 6.2.4, the objective of this evaluation
is to characterize the behavior of HOPWA under different AU initPx ranges, which
are its input parameters. As the application represents a very low load, the initial
available utilizations to be tested will be 2% for the processing partitions and 1%
for the communications partitions. In addition, a higher order of magnitude (20%
and 10%) of available utilizations will also be evaluated. Table 6.14 shows the two
configurations just described, and the results of applying HOPWA to the industrial
use-case are shown in Tables 6.15 and 6.16.

XXXXXXXXXXXXConfig.
Partition

AU init
P1 AU init

P2 AU init
P3 AU init

P4

Config.1 20 10 20 10
Config.2 2 1 2 1

Tab. 6.14: Initial available utilization (in %) for each partition in each Configuration
(Config.)

Table 6.15 shows the outcome of HOPWA for each deadline value (in ms) and
partition configuration (Config.1 and Config. 2). Thus, as in previous experiments,
the MAF calculated at each processor and the AU for each partition are shown.
Furthermore, as the whole application is modeled as a single e2e flow, the MAFs in
all processors are the same. As the deadline becomes tighter, HOPWA provides more
available utilization to partitions and decreases the period of the MAF in order to
achieve schedulability.

It can be seen that the algorithm is able to optimize the solution obtained by
minimizing the available utilizations provided as inputs. In Table 6.16, the worst-
case response times of the tasks that represent the output of the three functionalities
have been compiled: τ1 11 and τ1 13 for the EB functionality, τ1 23 and τ1 25 for the
RBC-CS functionality and τ1 35 and τ1 37 for the PV-DMI functionality. The algorithm

106 Chapter 6 Partition window assignment

Deadline (ms) Configuration Params. P1 P2 P3 P4

1000
Config.1

MAF (ms) 125 125 125 125
AU (%) 5 2.5 5 2.5

Config.2
MAF (ms) 125 125 125 125
AU (%) 0.5 0.25 0.5 0.25

500
Config.1

MAF (ms) 62.5 62.5 62.5 62.5
AU (%) 5 2.5 5 2.5

Config.2
MAF (ms) 62.5 62.5 62.5 62.5
AU (%) 0.5 0.25 0.5 0.25

50
Config.1

MAF (ms) 62.5 62.5 62.5 62.5
AU (%) 5 2.5 5 2.5

Config.2
MAF (ms) 3.12 3.12 3.12 3.12
AU (%) 0.76 0.37 0.76 0.37

5
Config.1

MAF (ms) 0.3 0.3 0.3 0.3
AU (%) 7.5 3.7 7.5 3.7

Config.2
MAF (ms) 0.3 0.3 0.3 0.3
AU (%) 14 13 14 13

Tab. 6.15: MAF and AU values obtained by HOPWA for the railway use-case

Dij Config. τ1 11 τ1 13 τ1 23 τ1 23 τ1 35 τ1 37

1000 Config.1 718.842 962.59 718.846 962.592 718.86 962.595
Config.2 746 996.3 746.9 996.34 746.95 996.35

500 Config.1 359.4 481.3 359.5 481.4 359.51 481.42
Config.2 373 498.2 373.5 498.3 373.6 498.4

50 Config.1 36.12 48.3 36.127 48.31 36.123 48.32
Config.2 40.5 46.8 40.54 46.81 40.56 46.82

5 Config.1 4.284 4.283 4.002 4.285 4.314 4.317
Config.2 2.348 2.886 2.358 2.896 2.378 2.916

Tab. 6.16: Worst-case response times (in ms) of the railway application under the different
configurations and deadlines tested

always finds a partition scheduling that enables the fulfillment of the application’s
deadline.

6.4 Conclusion

In this chapter, the scheduling of time partitions has been addressed. First, a study
of the effect of the size and number of partition windows has been performed. The
knowledge coming from this study has been leveraged to develop an algorithm,
called WinAs, to search for schedulable solutions by adjusting the MAF with one
window per partition for a fixed available utilization, and then it has been integrated

6.4 Conclusion 107

within the Heuristic Optimized Partition Window Assignment (HOPWA) algorithm.
HOPWA receives an initial available utilization for each partition, executes WinAs
internally for every attempt over a fixed available utilization, and also tunes the
available utilization of each partition. The proposed algorithm has been applied
to a representative set of synthetic experiments and also to the industrial use-case
that motivates this thesis. It is shown to be capable of finding schedulable solutions
in many different scenarios, including applications composed of a wide range of
deadline requirements.

As highlighted in the chapter, there are quite a few research paths to consider.
Exploring a non-uniform window assignment would be one of the first tasks to
address, together with different strategies of MAF reduction inside WinAs, depending
on specific application features. All the knowledge gathered during the study, in
combination with the results from the heuristic approach, also provide a solid basis
for developing more complex search and optimization algorithms, such as simulated
annealing or genetic algorithms.

108 Chapter 6 Partition window assignment

Step-to-processor allocation 7
Allocating steps to processors is, as shown in the literature review of Chapter
2, a complex problem that has been widely addressed. Although the allocation
problem initially was beyond the scope of this thesis, the opportunity to explore
some preliminary solutions in the field of general distributed/multicore real-time
systems arose, motivated by the novel architectures and design paradigms found in,
for example, the automotive or robotics domains.

The use of heterogeneous multicore processors is a clear example of the new trends
in the design and implementation of safety-critical applications, as many theoretical
developments in the context of real-time analysis and scheduling needed to be re-
invented in order to face the new challenges that arose [FGB10][BBB15][Cap+20].
Moreover, the advent of these heterogeneous architectures, where differently fea-
tured processors are integrated within the same computing platforms, has demon-
strated that traditional approaches are no longer efficient to achieve valid solutions
in this context. In this chapter, it is shown that the step-to-processor allocation
in real-time systems is a paradigmatic case of this problem, and a new method to
address it is presented. Although this is only the first step, the preliminary exper-
iments show promising results and highlight the good direction of the proposed
approach.

7.1 Background

The allocation of steps to processors in distributed real-time systems has been
extensively addressed, making use of algorithmic approaches of different complexity.
Allocating real-time applications into computing platforms composed of more than
one processor can be understood as a bin packing problem [Har82]. This is an
NP-hard optimization problem in which different sized items, in this case real-time
tasks, are placed into a finite and known number of bins, in this case processors. Bins
have a known capacity that must not be exceeded, in other words, their utilization
must not exceed 100%.

In general, bin packing algorithms operate by sorting the steps, and in each stage
of the algorithm, one of the steps in the sort is placed in a processor according to

109

different criteria. The following three well-known bin packing algorithms, which
consider the processor utilization as a reference parameter, will be explored in this
chapter:

• Worst-Fit: In each stage, steps are allocated to the processor with the lowest
utilization among all the processors that could host them.

• Best-Fit: Steps are allocated to the processor with the highest utilization that
can host them.

• First-Fit: Steps are allocated to the first processor found that can host them.

The way of sorting steps has a strong impact on the result, as will be shown later,
and it can be performed in different ways, such as sorting them according to their
utilization or their relative positions in memory.

The core of many state-of-the-art allocation approaches mentioned in the literature
review in Chapter 2 is based on these bin-packing algorithms, such as [Gar+15] or
[Cas+18].

7.1.1 Multicore achitectures

Two kinds of scheduling policies are traditionally considered in multiprocessor/mul-
ticore systems [BBB15] [DB11]: in global scheduling, steps can be executed in any
core, thus allowing migration from one to another core during runtime, while in
partitioned scheduling, the step-to-core allocation is fixed and migrations are not al-
lowed. In [Ber+20] a hybrid approach is considered, where processors are grouped
into clusters and step migrations are only allowed in the context of such clusters.
In this chapter, due to the target applications addressed, a partitioned scheduling
policy is considered. Safety critical applications can take advantage of multicore
devices in order to isolate a certain number of cores for real-time processing, as
well as for isolating different criticality components. In any case, statically defined
step-to-processor mapping is necessary for these applications. Initially, multicore
architectures were composed of a set of cores with identical features, in terms
of processing speed. These are known as homogeneous architectures. However,
nowadays real-time systems need to make use of more sophisticated devices in order
to perform computing-intensive duties [OCC18], such as the execution of computer
vision inference algorithms, combined with different non-functional requirements,
for instance power management control. Because of that, multiprocessor systems

110 Chapter 7 Step-to-processor allocation

are nowadays integrating cores of different processing speeds and capacities, giving
rise to heterogeneous architectures.

In this work, heterogeneous multiprocessor systems where each core may have
a different processing speed are considered. With the advent of the artificial in-
telligence deployed in the automotive industry as a key enabler of autonomous
driving, it is mandatory to make use of more sophisticated devices to support the
high computational necessities. For instance, the NVIDIA Jetson TX2 board, which is
at the base of the NVIDIA board series for autonomous driving and ADAS (Advanced
Driving Assistance Systems), was presented in [Wur+19][Reh+21], where the
authors proposed an initial modeling of its performance, as a paradigmatic example
of the heterogeneous architectures described here. This device is composed of three
clusters or islands, where differently featured processors are placed: a four-core
island runs at 1.9 GHz, a two-core island runs at 2 GHz and the third island hosts a
GPU for high computational necessities.

The response time analysis technique, as well as the scheduling techniques developed
in the context of this thesis, can be directly applied to multiprocessor systems based
on partitioned scheduling.

7.1.2 Allocating real-time applications in heterogeneous systems

The heterogeneity in processing speeds just described makes most of the allocation
algorithms in literature unsuitable, since each step may have a different worst-
case execution time depending on the processor it is allocated to. For example,
the traditional Best-Fit algorithm is commonly used to minimize the number of
processors used, while Worst-Fit aims to produce balanced allocations. However,
since they are not aware of anything other than the processors’ utilization, they may
take decisions that severely undermine the worst-case response times, by placing
the steps in processors where their execution times explode.

To tackle this, most approaches that address heterogeneous systems’ allocation rely
on complex algorithms that try to find optimized solutions, if any. In [Höt+19] the
authors developed a genetic algorithm and different fitness functions, depending
on the feature to be optimized: response times, end-to-end latencies or processor
load balancing. In [Cas+19] a MILP formulation is proposed to solve the allocation
problem in a heterogeneous architecture like the one just presented. More recently,
several LP and ILP methods to allocate tasks to processors are presented in [Ber+21],
where target platforms are categorized as unrelated multicore architectures. These
methods, however, scale very poorly when the complexity of the systems increases.

7.1 Background 111

7.2 Slack-Based Allocation (SBA) algorithm

The design of the Slack-Based Allocation (SBA) algorithm, proposed in Algorithm
10 for step-to-processor allocation in distributed real-time systems, is inspired by
the previously discussed bin-packing algorithms. Its input is a distributed system
based on preemptive FP scheduling and composed of steps that are not allocated to
any processor. Its output is the step-to-processor allocation together with a priority
assignment for each step.

As mentioned before, traditional bin-packing allocation algorithms have the utiliza-
tion of processors as a reference to decide where to place the steps in each stage.
Instead of that, with the aim of capturing the effect on the worst-case response times
of the decisions that the allocation algorithm takes in each stage, the following slack
factor parameters defined in Section 3.4 will be considered: System Slack Factor
(SSF) and Processor Slack Factor. These parameters give an idea of the goodness (in
terms of schedulability) of the decision of allocating a step to a certain processor,
and they will be computed to determine where to place the steps in each stage of
the algorithm.

In each stage of the algorithm, a Candidate_List is created, which gathers the set
of processors where the step under assignment can be allocated. First, steps are
sorted in a certain manner, and in each allocation stage one of them (the first one in
the sorting) is allocated into a processor. As will be explained later, the proposed
algorithm has to calculate the slacks at each allocation stage, which implicitly means
that response-time analysis should be carried out. This kind of analysis has to be
executed over different subsets of steps which must be compliant with the e2e flow
model. Therefore, step-to-processor allocation must be performed in such a way
that steps’ precedence relations are preserved. To achieve this, steps will be sorted
according to their priorities, which must be assigned in a non-decreasing order from
the first step until the end. This particular priority assignment can be achieved by a
subset of the algorithms developed in this thesis. As discussed in Chapter 5, some of
the algorithms developed for priority assignment produce so-called global deadlines,
which in combination with the proposed method to transform VDs into priorities, can
guarantee that the resulting priority assignment is topological and non-decreasing.
From all the algorithms developed in Chapter 5, PD_Local cannot be applied in
this context since it produces local VDs and therefore non-decreasing priorities
cannot be assured. NPD_Global and NPD_Local depend on the utilization of the
partition/processor where the step is hosted, and so they are not applicable in this
context where the allocation is being defined. Finally, it is not guaranteed that the

112 Chapter 7 Step-to-processor allocation

priorities resulting from applying EQF will be non-decreasing, since the expression to
calculate the VDs includes a proportionality factor, so it is discarded too. Therefore
UD, ED, PD_Global and EQS are the four priority assignment algorithms that can be
applied to sort the steps in the proposed allocation method.

Algorithm 10: Slack-based Allocation Algorithm
1: Input: Set of steps τij , set of Processors CPUy
2: Priority Assignment
3: Sort all τij according to Prioij
4: for each τij do
5: MaxSSF = 0 , Clear Candidate_List
6: for each CPUy do
7: CPUy ← τij
8: Calculate System Slack
9: if MaxSSF < System_Slack then

10: MaxSSF = System_Slack
11: Clear Candidate_List & Candidate_List← CPUy
12: else if System_Slack = MaxSSF then
13: Candidate_List← CPUy
14: end if
15: end for
16: if CPUy ∈ Candidate_List > 1 then
17: MaxCPUSF = 0
18: for each CPUy ∈ Candidate_List do
19: CPUy ← τij
20: Calculate Processor_Slack at CPUy
21: if Processor_Slack > MaxCPUSF then
22: CPUy ← τij
23: end if
24: end for
25: else
26: CPUy ∈ Candidate_List← τij
27: end if
28: end for

At each stage (Line 4), the algorithm allocates the step in all processors and calculates
the resulting system slacks (Line 8). If there is a single processor where the maximum
SSF (MaxSSF) is achieved, the step is allocated to that processor (Line 26), whereas
if there is more than one, all of them are added to the Candidate_List and their
CPUSFs are calculated (Line 20). The step will be allocated to the processor where
the maximum CPUSF (MaxCPUSF) is achieved, and if there is still a tie at processor
SF, the allocation is decided arbitrarily, subject to future optimization strategies to
be evaluated.

7.2 Slack-Based Allocation (SBA) algorithm 113

Although the design of the algorithm seems rather simple, it is computationally
intensive, as the slack calculation is based on iteratively applying the response
time analysis, which may explode with the size of the target real-time application
(the number of steps and the number of processors). However, the calculations of
slack parameters are independent among themselves, and they can be performed in
parallel. The authors in [RGH17] proposed a supercomputing framework that can
be leveraged for launching system and processor slack calculations in parallel and
gathering the results to speed-up the algorithm’s performance. This will be proposed
as future work.

7.3 Preliminary evaluation

As said before, the work contained in this chapter is only a first step in the application
of the techniques developed in this thesis to the allocation problem. Even if it is not
fully related to the industrial use-case addressed in this thesis, many of the techniques
developed and information contained in this thesis have been successfully applied
to this topical problem. In this section, a preliminary evaluation of the proposed
allocation algorithm is carried out on three different test cases. In this first approach,
homogeneous processors in terms of processing speed are considered.

The preliminary experiments are based on randomly generated synthetic e2e flows,
generated following the principles in [Mel+15]. A special purpose generation tool
has been developed and it has also been made publicly available1. It is based on
the well-known DAG model [LA10][Ver+20], which can be directly transformed to
the multipath flow model described in this thesis. The utilization of the generated
e2e flows can be provided as input parameters to the tool, as well as the number of
flows and the steps within them. Test cases consist of different sized e2e flows, in
terms of the number of steps, which are allocated individually to a varying number
of processors. A test case will be developed through the execution of the proposed
algorithm to allocate a single e2e flow into a set of processors. A hundred different
e2e flows are tested for incremental utilizations in a specific range with a fixed step.
In all experiments, the SBA algorithm is compared against the Worst-Fit algorithm
considering two variations, one where steps are sorted in decreasing utilization
order (WF_D) and the other where steps are sorted in a topological arbitrary order
(WF_Topo). If the opposite is not stated, the priority assignment algorithm used to
sort the steps at the beginning of the algorithm will be PD_Global.

1https://github.com/mive93/DAG-scheduling

114 Chapter 7 Step-to-processor allocation

https://github.com/mive93/DAG-scheduling

The first test case consists of small sized e2e flows, where the number of steps in
each e2e flow is in the range [7,10]. The utilization of the e2e flows has been set
from 0.25 to 2.5, with an increasing step of 0.25, and they will be allocated to 3 and
4 processors. Notice that the generated e2e flows’ utilization may be higher than
1, as their load is will be distributed in several processors. The optimal solution,
i.e the lowest worst-case response time among all the possible allocation solutions,
will also be evaluated, in order to see how close the solutions obtained are to the
optimal one. The optimal solution is obtained by checking all the possible solutions
through a recursive backtrack method, where the unfeasible solutions, i.e. those
whose processor utilization is over 1, are discarded before computing the worst-case
response-time.

In the second test case, corresponding to medium-sized e2e flows, the input value
in the generation tool is set so that the generated flows are composed of a number
of steps in the range [10,25]. For this experiment, the e2e flows will be allocated
to 3, 4 and 5 processors. The e2e flows’ utilizations are from 0.33 to 3.33 with
an increasing step of 0.33. Due to the larger size of this experiment, it was not
possible to obtain the optimal solution through the previously described method, so
the optimal solution’s reference is no longer available for these results.

Finally, a large-sized e2e flow experiment is performed by generating flows with a
number of steps in the range [50-100], with utilization values from 0.75 to 5 with an
increasing step of 0.25. They will be allocated to 4, 5 and 6 processors. In this test
case, another feature of interest will be evaluated. As stated before, steps are initially
sorted according to their priorities, which are assigned following different methods.
In order to assess the impact of the priority assignment on the initial sorting, and
therefore on the allocation algorithm, in this experiment the schedulability results
will be presented for different step orderings. The evaluated priority assignment
algorithms will be ED (SBA_ED), PD_Global (SBA_PD) and UD (SBA_UD).

As said before, the SBA algorithm will be compared with two bin-packing algorithms,
WF_D and WF_Topo, and also with the optimal solution in small-sized experiments.
The results have been plotted in Figures 7.1, 7.2 and 7.3. They show, for each
utilization value, the percentage of e2e flows that meet their deadlines after being
allocated through the different methods. In all figures, each graph represents a
different number of processors where the e2e flows have been allocated.

In Figure 7.1, the SBA algorithm (yellow plot) outperforms the bin packing algo-
rithms and obtains near-optimal solutions for the small-sized test case. As shown
in 7.2, the proposed algorithm still produces more schedulable results than the WF
algorithms evaluated for all numbers of processors. Figure 7.3 shows that the SBA

7.3 Preliminary evaluation 115

0

20

40

60

80

100

0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25

%
 S

c
h

e
d

u
le

d
 e

2
e

 �
o

w
s

WF_D WF_Topo SBA OPT

(a) 3 CPU

0

20

40

60

80

100

0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25

%
 S

c
h

e
d

u
le

d
 e

2
e

 �

o
w

s

WF_D WF_Topo SBA OPT

(b) 4 CPU

Fig. 7.1: Small-sized test

algorithm remains better than the bin packing algorithms for all the utilization values
and number of processors evaluated. Moreover, it can be seen that the initial sorting
of steps, performed via different priority assignment algorithms, has a paramount
importance in the schedulability of the synthetic applications generated. For any
number of processors, the initial step sorting produced by using the ED algorithm
shows the best performance, so future research works should consider this as a
reference.

116 Chapter 7 Step-to-processor allocation

7.4 Conclusions

Motivated by new hardware architectures, such as heterogeneous multicore systems
that enable the execution of sophisticated applications, this work aims to take the first
step towards new allocation algorithms. Preliminary results are promising, so the
slack can be considered as an important reference parameter to tackle the allocation
of real-time applications in such complex computing platforms. As pointed out in the
chapter, future works will address the optimization of slack calculations by means
of a supercomputer, as well as comprehensive experiments to fully characterize the
proposed algorithm.

7.4 Conclusions 117

0

20

40

60

80

100

0,33 0,66 1 1,33 1,66 2 2,33

%
 S

ch
ed

ul
ed

 e
2e

 �

ow
s

WF_D WF_Topo SBA

(a) 3 CPU

0

20

40

60

80

100

0,33 0,66 1 1,33 1,66 2 2,33 2,66 3 3,33

%
 S

ch
ed

ul
ed

 e
2e

 �

ow
s

WF_D WF_Topo SBA

(b) 4 CPU

0

20

40

60

80

100

0,33 0,66 1 1,33 1,66 2 2,33 2,66 3 3,33

%
 S

ch
ed

ul
ed

 e
2e

 �

ow
s

WF_D WF_Topo SBA

(c) 5 CPU

Fig. 7.2: Medium-sized test

118 Chapter 7 Step-to-processor allocation

0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25

0

20

40

60

80

100

%
 S

c
h

e
d

u
le

d
 e

2
e

 �

o
w

s

SBA_ED SBA_PD SBA_UD WF_Topo WFD

(a) 4 CPU

0,5 1 1,5 2 2,5 3 3,5 4 4,5

0

20

40

60

80

100

%
 S

c
h

e
d

u
le

d
 e

2
e

 �

o
w

s

SBA_ED SBA_PD SBA_UD WF_Topo WFD

(b) 5 CPU

0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

0

10

20

30

40

50

60

70

80

90

100

%
 S

ch
e

d
u

le
d

 e
2

e
 �

o
w

s

SBA_ED SBA_PD SBA_UD WF_Topo WFD

(c) 6 CPU

Fig. 7.3: Large-sized test

7.4 Conclusions 119

Conclusions 8
In this chapter the most relevant contributions are presented, together with their
relation to the objectives of the thesis. Then, the research lines that arise from
this work are envisaged, and finally, the publications that support most of the
contributions of this thesis are listed.

8.1 Thesis contributions

The main objective of this PhD thesis has been to investigate and propose optimized
techniques for the deployment and scheduling of time-partitioned distributed real-
time systems. In order to achieve this objective, several secondary objectives have
been proposed, which are fully aligned with the following individual contributions:

• State-of-the-art analysis:

The deployment and scheduling of distributed real-time systems has been
widely addressed in the literature, implementing a wide and diverse range of
algorithmic approaches in order to provide schedulable solutions to this NP-
hard problem. A considerable number of relevant works have been compiled
in several tables in Chapter 2, one for each algorithmic approach, where their
most important features have been highlighted. Scheduling and allocation
algorithms for partition-based distributed real-time systems are scarce and
fairly recent, which is coherent with the current trends in the design of safety
critical systems.

• System model formalization:

A system model that captures the time-related features of a safety critical indus-
trial application has been described and formalized in Chapter 3. It is aligned
with OMG’s MARTE profile, and it includes all the necessary elements to carry
out the response time analysis and scheduling optimization of multipath e2e
flows in hierarchically-scheduled systems, as well as in general distributed
real-time systems based on fixed priorities.

121

• Development of a schedulability analysis technique:

Regarding the schedulability analysis of multipath e2e flows, in Chapter 4 a
new method to compute their worst-case response times has been developed.
This new technique can be applied not only to time-partitioned systems, but
also to general systems scheduled by fixed priorities. It has been shown that
the holistic approach, which was the only analysis technique available for
multipath e2e flows so far, is a pessimistic approach in comparison to the
offset-based approach proposed in this thesis. This technique has been used
throughout the thesis to conduct the schedulability analysis in all the proposed
optimization algorithms.

• Priority assignment algorithms:

In Chapter 5 a collection of non-iterative algorithms for priority assignment
to multipath e2e flows in hierarchically scheduled and time-partitioned dis-
tributed real-time systems has been presented. The method used to adapt
state-of-the-art algorithms to multipath e2e flows hosted in hierarchically
scheduled architectures is detailed, and they are all applied to the industrial
use-case and also to general fixed priority distributed systems. Results show
that there is not an algorithm that stands out from the rest, so it makes sense
to apply all of them and evaluate which one suits best to the target application,
as their execution times are fairly low.

• Partition window assignment algorithm:

In Chapter 6 the optimization of partition windows is addressed, first by
studying the influence of their number and size on the schedulability of the
system, and then by proposing an algorithm that leverages this knowledge.
The proposed algorithm is based on an algorithm that assigns a number
of windows for a fixed utilization in each partition in order to meet the
applications’ deadlines, and on top of it, another algorithm is in charge of
optimizing the utilization of each partition. Results show that this algorithm is
capable of finding schedulable solutions for partitioned systems, such as the
industrial use-case that motivates this thesis.

• Step-to-processor allocation algorithm:

Finally, a step-to-processor allocation algorithm is presented in Chapter 7.
Although it is not specifically related to time-partitioned systems, which are
the main objective of this work, the opportunity of proposing an algorithm that
targets heterogeneous multi-processor systems arose during the research stay

122 Chapter 8 Conclusions

performed during this thesis. This allocation algorithm is based on the slack,
which is a parameter that provides better solutions than the sate-of-the-art
allocation algorithms that are based on the processors’ utilization.

These contributions constitute a full methodology that comprises modeling, analysis
and scheduling optimization phases for developing time-partitioned and distributed
real-time systems. Therefore, it can be stated that all the objectives The method
used to adapt for this thesis have been successfully fulfilled.

8.2 Future Work

This thesis could form the starting point of many research works. In this section,
some of the possible research lines that may be addressed in the near future are
listed:

• The proposed response time analysis technique can be optimized by taking
the precedence relationships among steps into consideration to reduce the
pessimism in the worst-case response time calculations, as it has been done in
other offset-based analyses for linear flows.

• As it was stated in Chapter 5, solving the ties produced by some virtual deadline
assignment algorithms can be an optimization problem in itself, which should
be addressed in order to further tighten applications’ worst-case response
times.

• Regarding the partition window assignment algorithm proposed in Chapter
6, there are open aspects that it would be appropriate to refine. The first one
is related to the assumption of partition window distribution being uniform
throughout the MAF, which is a restriction that may be removed in the future
in order to optimize the response time of specific partitions. A search and
optimization algorithm, such as a genetic algorithm or a simulated annealing
algorithm, in combination with the heuristic algorithm developed in Chapter
6, could obtain even more schedulable results.

• Only a small subset of step orderings has been studied in Chapter 7 in order
to propose a step-to-processor allocation algorithm. An optimized way of
sorting steps in order to minimize the worst-case response times of the target
applications may be developed.

8.2 Future Work 123

• As stated in Chapter 7, slack calculations are independent and therefore they
can be parallelized. The proposed allocation algorithm’s performance can
be greatly improved by making use of a supercomputer that performs such
independent calculations in parallel.

• Finally, the methodology developed, which includes modeling, analysis and
scheduling optimization phases, can be applied and leveraged in an emergent
domain such as the autonomous driving systems based on ROS2, where the
real-time performance has been gaining more and more relevance in recent
years.

8.3 Publications

Most of the contributions of this thesis have been published in peer-reviewed journals
and conferences. Here is a list of these publications:

• Title: A review on optimization techniques for the deployment and scheduling
of distributed real-time systems
Authors: A. Amurrio, E. Azketa, J.J. Gutiérrez, M. Aldea, J. Parra
Journal: Revista Iberoamericana de Automática e Informática Industrial
Year: 2019
DOI: 10.4995/riai.2019.10997

• Title: Response-Time Analysis of Multipath Flows in Hierarchically-Scheduled
Time-Partitioned Distributed Real-Time Systems
Authors: A. Amurrio, E. Azketa, J.J. Gutiérrez, M. Aldea, M.G. Harbour
Journal: IEEE Access
Year: 2020
DOI: 10.1109/ACCESS.2020.3033461

• Title: Priority assignment in hierarchically scheduled time-partitioned dis-
tributed real-time systems with multipath flows
Authors: A. Amurrio, J.J. Gutiérrez, M. Aldea, E. Azketa
Conference: International Conference on Embedded Software and Systems
(ICESS) 2021

124 Chapter 8 Conclusions

Journal: Journal of Systems Architecture
Year: 2021
DOI: 10.1016/j.sysarc.2021.102339

• Title: How windows size and number can influence the schedulability of
hierarchically-scheduled time-partitioned distributed real-time systems
Authors: A. Amurrio, J.J. Gutiérrez, M. Aldea, E. Azketa
Conference: Work-in-progress session at 25th Ada-Europe International Con-
ference on Reliable Software Technologies (AEiC) 2021
Journal: Ada User Journal
Year: 2021
DOI: N/A

The contributions corresponding to Chapters 6 and 7 are also in the ongoing pub-
lishing process.

8.3 Publications 125

Bibliography

[Aer09] Aeronautical Radio INC. “ARINC Specification 664P7: Aircraft Data Net-
work, Part 7 - Avionics Full Duplex Switched Ethernet (AFDX) Network”. In:
AERONAUTICAL RADIO, INC 2551 (2009), pp. 21401–7435 (cit. on pp. 1,
37).

[ABH10] Ahmad Al Sheikh, Olivier Brun, and Pierre-Emmanuel Hladik. “Partition
scheduling on an IMA platform with strict periodicity and communication
delays”. In: 18th international conference on real-time and network systems.
2010, pp. 179–188 (cit. on pp. 23, 25, 29).

[Al +11] Ahmad Al Sheikh, Olivier Brun, Pierre-Emmanuel Hladik, and Balakrishna J
Prabhu. “A best-response algorithm for multiprocessor periodic scheduling”.
In: Real-Time Systems (ECRTS), 2011 23rd Euromicro Conference on. IEEE.
2011, pp. 228–237 (cit. on pp. 29, 32).

[Ali+02] Shoukat Ali, Jong-Kook Kim, Howard Jay Siegel, et al. “Greedy Heuristics
for Resource Allocation in Dynamic Distributed Real-Time Heterogeneous
Computing Systems.” In: PDPTA. 2002, pp. 519–530 (cit. on pp. 27, 32).

[AP04] Luis Almeida and Paulo Pedreiras. “Scheduling within temporal partitions:
response-time analysis and server design”. In: Proceedings of the 4th ACM
international conference on Embedded software. ACM. 2004, pp. 95–103 (cit.
on p. 5).

[Alt+12] Ernst Althaus, Sebastian Hoffmann, Joschka Kupilas, and Eike Thaden. “A
column generation approach to scheduling of real-time networks”. In: Pro-
ceedings of the World Congress on Engineering and Computer Science. Vol. 1.
2012 (cit. on p. 24).

[Alt+14] Ernst Althaus, Sebastian Hoffmann, Joschka Kupilas, and Eike Thaden. “Schedul-
ing of real-time networks with a column generation approach”. In: IAENG
Transactions on Engineering Technologies. Springer, 2014, pp. 397–412 (cit. on
pp. 24, 25).

[AD94] Rajeev Alur and David L Dill. “A theory of timed automata”. In: Theoretical
computer science 126.2 (1994), pp. 183–235 (cit. on p. 6).

[Ans+13] Saoussen Anssi, Stefan Kuntz, Sébastien Gérard, and François Terrier. “On the
gap between schedulability tests and an automotive task model”. In: Journal
of Systems Architecture 59.6 (2013), pp. 341–350 (cit. on p. 55).

127

[Anw+19] Muhammad Waseem Anwar, Muhammad Rashid, Farooque Azam, Muham-
mad Kashif, and Wasi Haider Butt. “A model-driven framework for design
and verification of embedded systems through SystemVerilog”. In: Design
Automation for Embedded Systems 23.3-4 (2019), pp. 179–223 (cit. on p. 6).

[Anw+20] Muhammad Waseem Anwar, Muhammad Rashid, Farooque Azam, et al. “A
Unified Model-Based Framework for the Simplified Execution of Static and
Dynamic Assertion-Based Verification”. In: IEEE Access 8 (2020), pp. 104407–
104431 (cit. on p. 6).

[Aud91] Neil C Audsley. Optimal priority assignment and feasibility of static priority
tasks with arbitrary start times. Technical Report. Ed. by University of York.
1991 (cit. on p. 30).

[AUT03] AUTOSAR. AUTomotive Open System ARchitecture. 2003 (cit. on p. 3).

[Aya+16a] Rabeh Ayari, Imane Hafnaoui, Alexandra Aguiar, et al. “Multi-objective map-
ping of full-mission simulators on heterogeneous distributed multi-processor
systems”. In: The Journal of Defense Modeling and Simulation (2016) (cit. on
pp. 17, 18).

[Aya+18] Rabeh Ayari, Imane Hafnaoui, Giovanni Beltrame, and Gabriela Nicolescu.
“ImGA: an improved genetic algorithm for partitioned scheduling on hetero-
geneous multi-core systems”. In: Design Automation for Embedded Systems
(2018), pp. 1–15 (cit. on p. 17).

[Aya+16b] Rabeh Ayari, Imane Hafnaoui, Giovanni Beltrame, and Gabriela Nicolescu.
“Schedulability-guided exploration of multi-core systems”. In: Proceedings of
the 27th International Symposium on Rapid System Prototyping: Shortening the
Path from Specification to Prototype. ACM. 2016, pp. 121–127 (cit. on p. 17).

[Azk+11a] Ekain Azketa, J Uribe, Marga Marcos, Luıs Almeida, and J Javier Gutiérrez.
“Permutational genetic algorithm for fixed priority scheduling of distributed
real-time systems aided by network segmentation”. In: Proceedings of the
1st Workshop on Synthesis and Optimization Methods for Real-time Embedded
Systems. 2011 (cit. on pp. 16, 18, 32).

[Azk+12] Ekain Azketa, Juan P Uribe, J Javier Gutiérrez, Marga Marcos, and Luıs
Almeida. “Permutational genetic algorithm for the optimized mapping and
scheduling of tasks and messages in distributed real-time systems”. In: XV
Jornadas de Tiempo Real. 2012 (cit. on p. 16).

[Azk+11b] Ekain Azketa, Juan P Uribe, Marga Marcos, Luis Almeida, and J Javier Gutier-
rez. “Permutational genetic algorithm for the optimized assignment of priori-
ties to tasks and messages in distributed real-time systems”. In: Proceedings
of the 8th IEEE International Conference on Embedded Software and Systems,
pages 958-965. IEEE. 2011, pp. 958–965 (cit. on p. 16).

[BT18] Clark Barrett and Cesare Tinelli. “Satisfiability modulo theories”. In: Hand-
book of Model Checking. Springer, 2018, pp. 305–343 (cit. on p. 15).

[BBB15] Sanjoy Baruah, Marko Bertogna, and Giorgio Buttazzo. Multiprocessor schedul-
ing for real-time systems. Springer, 2015 (cit. on pp. 109, 110).

128 Bibliography

[BLS10] Sanjoy Baruah, Haohan Li, and Leen Stougie. “Towards the design of cer-
tifiable mixed-criticality systems”. In: Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2010 16th IEEE. IEEE. 2010, pp. 13–22
(cit. on p. 3).

[Ber+21] Antoine Bertout, Joël Goossens, Emmanuel Grolleau, Roy Jamil, and Xavier
Poczekajlo. “Workload assignment for global real-time scheduling on unre-
lated clustered platforms”. In: Real-Time Systems (2021), pp. 1–32 (cit. on
p. 111).

[Ber+20] Antoine Bertout, Joël Goossens, Emmanuel Grolleau, and Xavier Poczekajlo.
“Workload assignment for global real-time scheduling on unrelated multicore
platforms”. In: Proceedings of the 28th International Conference on Real-Time
Networks and Systems. 2020, pp. 139–148 (cit. on p. 110).

[BSR17] Anand Bhat, Soheil Samii, and Ragunathan Rajkumar. “Practical task al-
location for software fault-tolerance and its implementation in embedded
automotive systems”. In: Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2017 IEEE. IEEE. 2017, pp. 87–98 (cit. on pp. 31, 32).

[Bli+18] Mathias Blikstad, Emil Karlsson, Tomas Lööw, and Elina Rönnberg. “An opti-
misation approach for pre-runtime scheduling of tasks and communication
in an integrated modular avionic system”. In: Optimization and Engineering
(2018), pp. 1–28 (cit. on pp. 24, 25).

[Bos91] Robert Bosch Gmbh. “CAN Specification - Version 2.0”. In: (1991) (cit. on
p. 3).

[BO14] Fateh Boutekkouk and Soumia Oubadi. “Periodic/Aperiodic tasks scheduling
optimization for real time embedded systems with hard/soft constraints”. In:
IT4OD (2014), p. 135 (cit. on pp. 17, 18).

[BO16] Fateh Boutekkouk and Soumia Oubadi. “Real Time Tasks Scheduling Opti-
mization Using Quantum Inspired Genetic Algorithms”. In: Artificial Intelli-
gence Perspectives in Intelligent Systems. Springer, 2016, pp. 69–80 (cit. on
p. 17).

[Boy+07] Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Hassibi. “A
tutorial on geometric programming”. In: Optimization and engineering 8.1
(2007), p. 67 (cit. on p. 14).

[Bra+01] Tracy D Braun, Howard Jay Siegel, Noah Beck, et al. “A comparison of eleven
static heuristics for mapping a class of independent tasks onto heteroge-
neous distributed computing systems”. In: Journal of Parallel and Distributed
computing 61.6 (2001), pp. 810–837 (cit. on pp. 26, 32).

[Bra+08] Tracy D Braun, Howard Jay Siegel, Anthony A Maciejewski, and Ye Hong.
“Static resource allocation for heterogeneous computing environments with
tasks having dependencies, priorities, deadlines, and multiple versions”. In:
Journal of Parallel and Distributed Computing 68.11 (2008), pp. 1504–1516
(cit. on pp. 27, 32).

Bibliography 129

[BD17] Alan Burns and Robert I Davis. “A survey of research into mixed criticality
systems”. In: ACM Computing Surveys (CSUR) 50.6 (2017), p. 82 (cit. on
pp. 3, 13).

[Bur+93] Alan Burns, Mark Nicholson, K Tindell, and N Zhang. “Allocating and schedul-
ing hard real-time tasks on a point-to-point distributed system”. In: Proceed-
ings of the Workshop on Parallel and Distributed Real-Time Systems. Citeseer.
1993, pp. 11–20 (cit. on pp. 19, 21).

[Cap+20] Nicola Capodieci, Paolo Burgio, Roberto Cavicchioli, et al. “Real-Time Re-
quirements for ADAS Platforms Featuring Shared Memory Hierarchies”. In:
IEEE Design Test (2020), pp. 1–1 (cit. on p. 109).

[Cas+18] Daniel Casini, Alessandro Biondi, Geoffrey Nelissen, and Giorgio Buttazzo.
“Partitioned fixed-priority scheduling of parallel tasks without preemptions”.
In: 2018 IEEE Real-Time Systems Symposium (RTSS). IEEE. 2018, pp. 421–433
(cit. on p. 110).

[Cas+19] Daniel Casini, Paolo Pazzaglia, Alessandro Biondi, Giorgio Buttazzo, and
Marco Di Natale. “Addressing analysis and partitioning issues for the wa-
ters 2019 challenge”. In: 10th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS 2019). 2019
(cit. on p. 111).

[CDH16] Jinchao Chen, Chenglie Du, and Pengcheng Han. “Scheduling independent
partitions in integrated modular avionics systems”. In: PloS one 11.12 (2016)
(cit. on pp. 30, 32).

[CL00] Wun-Hwa Chen and Chin-Shien Lin. “A hybrid heuristic to solve a task alloca-
tion problem”. In: Computers & Operations Research 27.3 (2000), pp. 287–303
(cit. on pp. 18, 19).

[CP95] Moreno Coli and Paolo Palazzari. “A new method for optimization of alloca-
tion and scheduling in real time applications”. In: Real-Time Systems, 1995.
Proceedings., Seventh Euromicro Workshop on. IEEE. 1995, pp. 262–269 (cit.
on pp. 20, 21).

[CO14] Silviu S Craciunas and Ramon Serna Oliver. “SMT-based task-and network-
level static schedule generation for time-triggered networked systems”. In:
Proceedings of the 22nd International Conference on Real-Time Networks and
Systems. ACM. 2014, p. 45 (cit. on pp. 23, 25).

[Cra+16] Silviu S Craciunas, Ramon Serna Oliver, Martin Chmelık, and Wilfried Steiner.
“Scheduling real-time communication in IEEE 802.1 Qbv time sensitive net-
works”. In: Proceedings of the 24th International Conference on Real-Time
Networks and Systems. ACM. 2016, pp. 183–192 (cit. on p. 23).

[COE14] Silviu S Craciunas, Ramon Serna Oliver, and Valentin Ecker. “Optimal static
scheduling of real-time tasks on distributed time-triggered networked sys-
tems”. In: Emerging Technology and Factory Automation (ETFA), 2014 IEEE.
IEEE. 2014, pp. 1–8 (cit. on p. 23).

130 Bibliography

[Cre+14] Alfons Crespo, Alejandro Alonso, Marga Marcos, A Juan, and Patricia Balbas-
tre. “Mixed criticality in control systems”. In: IFAC Proceedings Volumes 47.3
(2014), pp. 12261–12271 (cit. on p. 3).

[Dav+07] Abhijit Davare, Qi Zhu, Marco Di Natale, et al. “Period optimization for hard
real-time distributed automotive systems”. In: Proceedings of the 44th annual
Design Automation Conference. ACM. 2007, pp. 278–283 (cit. on pp. 22, 25).

[DB11] Robert I Davis and Alan Burns. “A survey of hard real-time scheduling for
multiprocessor systems”. In: ACM computing surveys (CSUR) 43.4 (2011),
pp. 1–44 (cit. on p. 110).

[DSF17] Emilie Deroche, Jean-Luc Scharbarg, and Christian Fraboul. “A greedy heuris-
tic for distributing hard real-time applications on an IMA architecture”. In:
Industrial Embedded Systems (SIES), 2017 12th IEEE International Symposium
on. IEEE. 2017, pp. 1–8 (cit. on p. 31).

[DSF16] Emilie Deroche, Jean-Luc Scharbarg, and Christian Fraboul. “Mapping real-
time communicating tasks on a distributed ima architecture”. In: Emerging
Technologies and Factory Automation (ETFA), 2016 IEEE 21st International
Conference on. IEEE. 2016, pp. 1–8 (cit. on pp. 31, 32).

[DS95] Marco Di Natale and John A Stankovic. “Applicability of simulated annealing
methods to real-time scheduling and jitter control”. In: Real-Time Systems
Symposium, 1995. Proceedings., 16th IEEE. IEEE. 1995, pp. 190–199 (cit. on
pp. 20, 21, 32).

[DJ98] Robert P Dick and Niraj K Jha. “MOGAC: a multiobjective genetic algorithm
for hardware-software cosynthesis of distributed embedded systems”. In: IEEE
transactions on computer-aided design of integrated circuits and systems 17.10
(1998), pp. 920–935 (cit. on pp. 16, 18).

[DRW98] Robert P Dick, David L Rhodes, and Wayne Wolf. “TGFF: task graphs for free”.
In: Proceedings of the Sixth International Workshop on Hardware/Software
Codesign.(CODES/CASHE’98). IEEE. 1998, pp. 97–101 (cit. on pp. 51, 52,
73).

[Eis+10] Friedrich Eisenbrand, Karthikeyan Kesavan, Raju S Mattikalli, et al. “Solving
an avionics real-time scheduling problem by advanced IP-methods”. In: Eu-
ropean Symposium on Algorithms. Springer. 2010, pp. 11–22 (cit. on pp. 29,
32).

[EJ01] Cecilia Ekelin and Jan Jonsson. “Evaluation of search heuristics for embedded
system scheduling problems”. In: International Conference on Principles and
Practice of Constraint Programming. Springer. 2001, pp. 640–654 (cit. on
pp. 22, 25).

[Ele+00] Petru Eles, Alex Doboli, Paul Pop, and Zebo Peng. “Scheduling with bus access
optimization for distributed embedded systems”. In: IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 8.5 (2000), pp. 472–491 (cit. on
pp. 27, 32).

Bibliography 131

[EB10] Paul Emberson and Iain Bate. “Stressing search with scenarios for flexible
solutions to real-time task allocation problems”. In: IEEE Transactions on
Software Engineering 36.5 (2010), pp. 704–718 (cit. on p. 20).

[ERT06] ERTMS/ETCS. “European Rail Traffic Management System/European Train
Control System release notes to system requirements specification”. In: Subset
026 version 2.3.0 (2006) (cit. on p. 7).

[FDB00] Sebastien Faucou, A-M Deplanche, and J-P Beauvais. “Heuristic techniques
for allocating and scheduling communicating periodic tasks in distributed
real-time systems”. In: Factory Communication Systems, 2000. Proceedings.
2000 IEEE International Workshop on. IEEE. 2000, pp. 257–265 (cit. on pp. 16,
18).

[FGB10] Nathan Fisher, Joël Goossens, and Sanjoy Baruah. “Optimal online multipro-
cessor scheduling of sporadic real-time tasks is impossible”. In: Real-Time
Systems 45.1 (2010), pp. 26–71 (cit. on p. 109).

[FF98] Carlos M Fonseca and Peter J Fleming. “Multiobjective optimization and
multiple constraint handling with evolutionary algorithms. I. A unified for-
mulation”. In: IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans 28.1 (1998), pp. 26–37 (cit. on p. 16).

[Fon+16] José Fonseca, Geoffrey Nelissen, Vincent Nelis, and Luıs Miguel Pinho. “Re-
sponse time analysis of sporadic dag tasks under partitioned scheduling”.
In: 2016 11th IEEE Symposium on Industrial Embedded Systems (SIES). IEEE.
2016, pp. 1–10 (cit. on p. 5).

[Gar+14] Ricardo Garibay Martínez, Geoffrey Nelissen, Luis Lino Ferreira, and Luis
Miguel Pinho. “On the scheduling of fork-join parallel/distributed real-time
tasks”. In: Industrial Embedded Systems (SIES), 2014 9th IEEE International
Symposium on. IEEE. 2014, pp. 31–40 (cit. on p. 30).

[Gar+15] Ricardo Garibay-Martınez, Geoffrey Nelissen, Luis Lino Ferreira, and Luis
Miguel Pinho. “Task partitioning and priority assignment for distributed hard
real-time systems”. In: Journal of Computer and System Sciences 81.8 (2015),
pp. 1542–1555 (cit. on pp. 30, 32, 110).

[Gre] Green Hills Software. Integrity RTOS (cit. on p. 3).

[Glo86] Fred Glover. “Future paths for integer programming and links to artificial
intelligence”. In: Computers & operations research 13.5 (1986), pp. 533–549
(cit. on p. 14).

[GH88] David E Goldberg and John H Holland. “Genetic algorithms and machine
learning”. In: Machine learning 3.2 (1988), pp. 95–99 (cit. on p. 16).

[Gon+01] Michael González Harbour, J Javier Gutiérrez, J Carlos Palencia, and J Maria
Drake. “Mast: Modeling and analysis suite for real time applications”. In:
in Proceedings of the 13th Euromicro Conference on Real-Time Systems. IEEE.
2001, pp. 125–134 (cit. on pp. 4, 35, 46).

132 Bibliography

[Goo+13] Kees Goossens, Arnaldo Azevedo, Karthik Chandrasekar, et al. “Virtual execu-
tion platforms for mixed-time-criticality systems: the CompSOC architecture
and design flow”. In: ACM SIGBED Review 10.3 (2013), pp. 23–34 (cit. on
p. 3).

[Gua+20] Ana Guasque, Hossein Tohidi, Patricia Balbastre, et al. “Integer Programming
Techniques for Static Scheduling of Hard Real-Time Systems”. In: IEEE Access
8 (2020), pp. 170389–170403 (cit. on pp. 24, 25).

[GG95] J Javier Gutiérrez and M González Harbour. “Optimized priority assignment
for tasks and messages in distributed hard real-time systems”. In: Proceedings
of Third Workshop on Parallel and Distributed Real-Time Systems. IEEE. 1995,
pp. 124–132 (cit. on pp. 16, 26, 32).

[GPH14] J Javier Gutiérrez, J Carlos Palencia, and Michael González Harbour. “Holistic
schedulability analysis for multipacket messages in AFDX networks”. In:
Real-Time Systems 50.2 (2014), pp. 230–269 (cit. on p. 37).

[GPH00] J. Javier Gutiérrez, J. Carlos Palencia, and Michael González Harbour. “Schedu-
lability analysis of distributed hard real-time systems with multiple-event
synchronization”. In: Proceedings 12th Euromicro Conference on Real-Time
Systems. Euromicro RTS 2000. IEEE. 2000, pp. 15–24 (cit. on pp. 5, 49, 51).

[Ham+06] Arne Hamann, Marek Jersak, Kai Richter, and Rolf Ernst. “A framework for
modular analysis and exploration of heterogeneous embedded systems”. In:
Real-Time Systems 33.1-3 (2006), pp. 101–137 (cit. on pp. 16, 18, 29).

[Ham+] Etienne Hamelin, Moha Ait Hmid, Amine Naji, and Yves Mouafo-Tchinda.
“Selection and evaluation of an embedded hypervisor: application to an
automotive platform”. In: (). Proceedings of the 10th Embedded Real-Time
Systems International Congress (ERTS 2020) (cit. on p. 83).

[HZZ20] Pujie Han, Zhengjun Zhai, and Lei Zhang. “A Model-Based Approach to
Optimizing Partition Scheduling of Integrated Modular Avionics Systems”. In:
Electronics 9.8 (2020), p. 1281 (cit. on p. 6).

[Har+13] Michael González Harbour, J Javier Gutiérrez, José M Drake, Patricia López,
and J Carlos Palencia. “Modeling distributed real-time systems with MAST 2”.
In: Journal of Systems Architecture 59.6 (2013), pp. 331–340 (cit. on pp. 4,
35).

[Har82] Juris Hartmanis. “Computers and intractability: a guide to the theory of
NP-completeness (michael r. garey and david s. johnson)”. In: Siam Review
24.1 (1982), p. 90 (cit. on p. 109).

[HGZ10] Xiuqiang He, Zonghua Gu, and Yongxin Zhu. “Task allocation and optimiza-
tion of distributed embedded systems with simulated annealing and geometric
programming”. In: The Computer Journal 53.7 (2010), pp. 1071–1091 (cit. on
pp. 20, 21, 32).

[HE05] Rafik Henia and Rolf Ernst. “Context-aware scheduling analysis of distributed
systems with tree-shaped task-dependencies”. In: Design, Automation and Test
in Europe. IEEE. 2005, pp. 480–485 (cit. on p. 5).

Bibliography 133

[Hen+15] Rafik Henia, Laurent Rioux, Nicolas Sordon, Gérald-Emmanuel Garcia, and
Marco Panunzio. “Integrating Formal Timing Analysis in the Real-Time Soft-
ware Development Process”. In: Proceedings of the 2015 Workshop on Chal-
lenges in Performance Methods for Software Development. 2015, pp. 35–40
(cit. on p. 4).

[Hes+08] Anders Hessel, Kim G Larsen, Marius Mikucionis, et al. “Testing real-time
systems using UPPAAL”. In: Formal methods and testing. Springer, 2008,
pp. 77–117 (cit. on p. 6).

[Hla+08] Pierre-Emmanuel Hladik, Hadrien Cambazard, Anne-Marie Déplanche, and
Narendra Jussien. “Solving a real-time allocation problem with constraint
programming”. In: Journal of Systems and Software 81.1 (2008), pp. 132–149
(cit. on pp. 22, 25).

[Hol75] John Holland. “Adaptation in artificial and natural systems”. In: Ann Arbor:
The University of Michigan Press (1975) (cit. on p. 14).

[Höt+19] Robert Höttger, Junhyung Ki, Burkhard Igel, Olaf Spinczyk, et al. “Cpu-
gpu response time and mapping analysis for highperformance automotive
systems”. In: 10th International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS 2019). 2019 (cit. on p. 111).

[HS97] Chao-Ju Hou and Kang G. Shin. “Allocation of periodic task modules with
precedence and deadline constraints in distributed real-time systems”. In:
IEEE transactions on computers 46.12 (1997), pp. 1338–1356 (cit. on pp. 25,
26).

[HAR94] Edwin SH Hou, Nirwan Ansari, and Hong Ren. “A genetic algorithm for
multiprocessor scheduling”. In: IEEE Transactions on Parallel and Distributed
systems 5.2 (1994), pp. 113–120 (cit. on pp. 15, 18).

[Hu+15] Menglan Hu, Jun Luo, Yang Wang, and Bharadwaj Veeravalli. “Scheduling
periodic task graphs for safety-critical time-triggered avionic systems.” In:
IEEE Trans. Aerospace and Electronic Systems 51.3 (2015), pp. 2294–2304
(cit. on pp. 30, 32).

[IEC10] IEC. “IEC 61508: Functional safety of electrical/electronic/programmable
electronic safety-related systems Part 1: General requirements”. In: (2010)
(cit. on p. 7).

[IEE03] Pasc IEEE Portable Application Standards Committee. Standard for Informa-
tion Technology-Portable Operating System Interface (POSIX) Realtime and
Embedded Application Support. Std. 1003.13. 2003 (cit. on p. 3).

[ISO12] ISO/IEC. Ada 2012 Reference Manual. Language and Standard Libraries -
Interna-tional Standard ISO/IEC 8652:2012(E). 2012 (cit. on p. 3).

[JPJ17] Wei Jiang, Paul Pop, and Ke Jiang. “Design optimization for security-and
safety-critical distributed real-time applications”. In: Microprocessors and
Microsystems 52 (2017), pp. 401–415 (cit. on p. 19).

134 Bibliography

[Joh99] Rushby John. “Partitioning in avionics architectures: requirements, mecha-
nisms, and assurance”. In: (1999) (cit. on p. 23).

[KG93a] H Kao and Hector Garcia-Molina. “Deadline assignment in a distributed soft
real-time system”. In: [1993] Proceedings. The 13th International Conference
on Distributed Computing Systems. IEEE. 1993, pp. 428–437 (cit. on p. 59).

[Kir84] Scott Kirkpatrick. “Optimization by simulated annealing: Quantitative stud-
ies”. In: Journal of statistical physics 34.5-6 (1984), pp. 975–986 (cit. on
p. 14).

[Klo+13] Kay Klobedanz, Jan Jatzkowski, Achim Rettberg, and Wolfgang Mueller.
“Fault-tolerant deployment of real-time software in AUTOSAR ECU networks”.
In: International Embedded Systems Symposium. Springer. 2013, pp. 238–249
(cit. on pp. 29, 32).

[Kop11] Hermann Kopetz. Real-time systems: design principles for distributed embedded
applications. Springer Science & Business Media, 2011 (cit. on p. 2).

[KG93b] Hermann Kopetz and Günter Grunsteidl. “TTP-A time-triggered protocol for
fault-tolerant real-time systems”. In: FTCS-23 The Twenty-Third International
Symposium on Fault-Tolerant Computing. IEEE. 1993, pp. 524–533 (cit. on
p. 20).

[KHB16] Philip S Kurtin, Joost PHM Hausmans, and Marco JG Bekooij. “Combining
offsets with precedence constraints to improve temporal analysis of cyclic
real-time streaming applications”. In: 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE. 2016, pp. 1–12 (cit. on
p. 6).

[LD60] Ailsa H Land and Alison G Doig. “An automatic method of solving discrete
programming problems”. In: Econometrica: Journal of the Econometric Society
(1960), pp. 497–520 (cit. on p. 15).

[LSD89] John Lehoczky, Lui Sha, and Yuqin Ding. “The rate monotonic scheduling
algorithm: Exact characterization and average case behavior”. In: RTSS.
Vol. 89. 1989, pp. 166–171 (cit. on p. 76).

[LKY00] Man Lin, Lars Karlsson, and Laurence Tianruo Yang. “Heuristic techniques:
Scheduling partially ordered tasks in a multi-processor environment with
tabu search and genetic algorithms”. In: Parallel and Distributed Systems:
Workshops, Seventh International Conference on, 2000. IEEE. 2000, pp. 515–
523 (cit. on pp. 18, 19).

[LA11] Cong Liu and James H Anderson. “Supporting graph-based real-time applica-
tions in distributed systems”. In: 2011 IEEE 17th International Conference on
Embedded and Real-Time Computing Systems and Applications. Vol. 1. IEEE.
2011, pp. 143–152 (cit. on p. 5).

[LA10] Cong Liu and James H Anderson. “Supporting soft real-time DAG-based
systems on multiprocessors with no utilization loss”. In: 2010 31st IEEE
Real-Time Systems Symposium. IEEE. 2010, pp. 3–13 (cit. on pp. 5, 114).

Bibliography 135

[Liu00] JWS Liu. “Real-Time Systems”. In: Prentice Hall 48 (2000), p. 42 (cit. on
pp. 3, 58, 59, 62).

[MN08] Jukka Mäki-Turja and Mikael Nolin. “Efficient implementation of tight response-
times for tasks with offsets”. In: Real-Time Systems 40.1 (2008), pp. 77–116
(cit. on pp. 5, 48, 49, 51).

[Mar+12] Sorin Ovidiu Marinescu, Domi̧tian Tămaş-Selicean, Vlad Acretoaie, and Paul
Pop. “Timing analysis of mixed-criticality hard real-time applications imple-
mented on distributed partitioned architectures”. In: Proceedings of 2012 IEEE
17th International Conference on Emerging Technologies & Factory Automation
(ETFA 2012). IEEE. 2012, pp. 1–4 (cit. on p. 6).

[Mar03] Rafael Martı. “Multi-start methods”. In: Handbook of metaheuristics. Springer,
2003, pp. 355–368 (cit. on p. 20).

[Mas+] Miguel Masmano, Ismael Ripoll, Alfons Crespo, and J Metge. “Xtratum: a
hypervisor for safety critical embedded systems”. In: Proceedings of the 11th
Real-Time Linux Workshop 2009, pages 263-272 (cit. on p. 83).

[McL+20] Shane D McLean, Silviu S Craciunas, Emil Alexander Juul Hansen, and Paul
Pop. “Mapping and scheduling automotive applications on ADAS platforms us-
ing metaheuristics”. In: 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). Vol. 1. IEEE. 2020, pp. 329–336
(cit. on p. 21).

[Meh+13] Asma Mehiaoui, Ernest Wozniak, Sara Tucci-Piergiovanni, et al. “A two-step
optimization technique for functions placement, partitioning, and priority
assignment in distributed systems”. In: ACM SIGPLAN Notices 48.5 (2013),
pp. 121–132 (cit. on pp. 29, 32).

[Mel+15] Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-
Spaccamela, and Giorgio C Buttazzo. “Response-time analysis of conditional
dag tasks in multiprocessor systems”. In: 2015 27th Euromicro Conference on
Real-Time Systems. IEEE. 2015, pp. 211–221 (cit. on p. 114).

[MH06] Alexander Metzner and Christian Herde. “Rtsat–an optimal and efficient
approach to the task allocation problem in distributed architectures”. In:
Real-Time Systems Symposium, 2006. RTSS’06. 27th IEEE International. IEEE.
2006, pp. 147–158 (cit. on pp. 22, 25).

[Min+18] Anna Minaeva, Benny Akesson, Zdeněk Hanzálek, and Dakshina Dasari.
“Time-triggered co-scheduling of computation and communication with jitter
requirements”. In: IEEE Transactions on Computers 67.1 (2018), pp. 115–129
(cit. on pp. 24, 25).

[Min86] Michel Minoux. Mathematical programming: theory and algorithms. John
Wiley & Sons, 1986 (cit. on p. 14).

[MR93] Hirak Mitra and Parameswaran Ramanathan. “A genetic approach for schedul-
ing non-preemptive tasks with precedence and deadline constraints”. In:
System Sciences, 1993, Proceeding of the Twenty-Sixth Hawaii International
Conference on. Vol. 2. IEEE. 1993, pp. 556–564 (cit. on pp. 15, 18).

136 Bibliography

[MBD98] Yannick Monnier, J-P Beauvais, and A-M Deplanche. “A genetic algorithm for
scheduling tasks in a real-time distributed system”. In: Euromicro Conference,
1998. Proceedings. 24th. Vol. 2. IEEE. 1998, pp. 708–714 (cit. on pp. 15, 18).

[NSE11] Moritz Neukirchner, Steffen Stein, and Rolf Ernst. “A lazy algorithm for dis-
tributed priority assignment in real-time systems”. In: Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops (ISORCW), 2011 14th
IEEE International Symposium on. IEEE. 2011, pp. 126–132 (cit. on pp. 29,
32).

[Obj11] Object Management Group. “UML profile for MARTE: Modeling and Analysis
of Real Time Embedded Systems, version 1.1.” In: OMG Document Formal
(2011) (cit. on pp. 4, 35).

[OW04] Jaewon Oh and Chisu Wu. “Genetic-algorithm-based real-time task scheduling
with multiple goals”. In: Journal of systems and software 71.3 (2004), pp. 245–
258 (cit. on pp. 16, 18).

[OCC18] Ignacio Sañudo Olmedo, Nicola Capodieci, and Roberto Cavicchioli. “A Per-
spective on Safety and Real-Time Issues for GPU Accelerated ADAS”. In:
IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society.
2018, pp. 4071–4077 (cit. on p. 110).

[Pal+16] J Carlos Palencia, Michael González Harbour, J Javier Gutiérrez, and Juan M
Rivas. “Response-time analysis in hierarchically-scheduled time-partitioned
distributed systems”. In: IEEE Transactions on Parallel and Distributed Systems
28.7 (2016), pp. 2017–2030 (cit. on pp. 5, 45, 48).

[PG98] Jose Carlos Palencia and Michael González Harbour. “Schedulability analysis
for tasks with static and dynamic offsets”. In: Proceedings 19th IEEE Real-Time
Systems Symposium (Cat. No. 98CB36279). IEEE. 1998, pp. 26–37 (cit. on
pp. 5, 49, 53).

[PG99] José Carlos Palencia and Michael González Harbour. “Exploiting precedence
relations in the schedulability analysis of distributed real-time systems”. In:
Proceedings 20th IEEE Real-Time Systems Symposium (Cat. No. 99CB37054).
IEEE. 1999, pp. 328–339 (cit. on p. 5).

[Pea84] Judea Pearl. “Heuristics: intelligent search strategies for computer problem
solving”. In: Addison-Wesley Pub. Co., Inc., Reading, MA (1984) (cit. on p. 15).

[PA04] Paulo Pedreiras and Luis Almeida. “Message routing in multi-segment FTT
networks: The Isochronous Approach”. In: Parallel and Distributed Processing
Symposium, 2004. Proceedings. 18th International. IEEE. 2004, p. 122 (cit. on
pp. 28, 32).

[PSA97] Dar-Tzen Peng, Kang G. Shin, and Tarek F. Abdelzaher. “Assignment and
scheduling communicating periodic tasks in distributed real-time systems”.
In: IEEE Transactions on Software Engineering 23.12 (1997), pp. 745–758
(cit. on pp. 25, 26).

Bibliography 137

[Per+09] Simon Perathoner, Ernesto Wandeler, Lothar Thiele, et al. “Influence of
different abstractions on the performance analysis of distributed hard real-
time systems”. In: Design Automation for Embedded Systems 13.1-2 (2009),
pp. 27–49 (cit. on p. 6).

[PA15] Mohammad Amin Pishdar and Abbas Akkasi. “Task Scheduling and Idle-Time
Balancing in Homogeneous Multi Processors: A Comparison between GA and
SA”. In: International Journal of Computer Applications 123.13 (2015) (cit. on
p. 21).

[PEP04a] Paul Pop, Petru Eles, and Zebo Peng. Analysis and synthesis of distributed
real-time embedded systems. Springer Science & Business Media, 2004 (cit. on
p. 3).

[PEP00] Paul Pop, Petru Eles, and Zebo Peng. “Bus access optimization for distributed
embedded systems based on schedulability analysis”. In: Proceedings of the
conference on Design, automation and test in Europe. ACM. 2000, pp. 567–575
(cit. on pp. 27, 32).

[PEP04b] Paul Pop, Petru Eles, and Zebo Peng. “Schedulability-driven communication
synthesis for time triggered embedded systems”. In: Real-Time Systems 26.3
(2004), pp. 297–325 (cit. on p. 27).

[Pop+04] Paul Pop, Petru Eles, Zebo Peng, and Viacheslav Izosimov. “Schedulability-
driven partitioning and mapping for multi-cluster real-time systems”. In: Real-
Time Systems, 2004. ECRTS 2004. Proceedings. 16th Euromicro Conference on.
IEEE. 2004, pp. 91–100 (cit. on pp. 27, 32).

[Pop+01a] Paul Pop, Petru Eles, Traian Pop, and Zebo Peng. “An approach to incremental
design of distributed embedded systems”. In: Proceedings of the 38th annual
Design Automation Conference. ACM. 2001, pp. 450–455 (cit. on pp. 27, 32).

[Pop+01b] Paul Pop, Petru Eles, Traian Pop, and Zebo Peng. “Minimizing system modifi-
cation in an incremental design approach”. In: Proceedings of the ninth inter-
national symposium on Hardware/software codesign. ACM. 2001, pp. 183–188
(cit. on p. 27).

[Pop07] Traian Pop. “Analysis and optimisation of distributed embedded systems with
heterogeneous scheduling policies”. PhD thesis. Institutionen för dataveten-
skap, 2007 (cit. on pp. 28, 32).

[PEP03a] Traian Pop, Petru Eles, and Zebo Peng. “Design optimization of mixed time/event-
triggered distributed embedded systems”. In: Proceedings of the 1st IEEE/ACM/I-
FIP international conference on Hardware/software codesign and system synthe-
sis. ACM. 2003, pp. 83–89 (cit. on p. 28).

[PEP03b] Traian Pop, Petru Eles, and Zebo Peng. “Schedulability analysis for distributed
heterogeneous time/event triggered real-time systems”. In: Real-Time Systems,
2003. Proceedings. 15th Euromicro Conference on. IEEE. 2003, pp. 257–266
(cit. on p. 27).

138 Bibliography

[Pop+05] Traian Pop, Paul Pop, Petru Eles, and Zebo Peng. “Optimization of hierar-
chically scheduled heterogeneous embedded systems”. In: Embedded and
Real-Time Computing Systems and Applications, 2005. Proceedings. 11th IEEE
International Conference on. IEEE. 2005, pp. 67–71 (cit. on p. 28).

[PKR00] Stella CS Porto, João Paulo FW Kitajima, and Celso C Ribeiro. “Performance
evaluation of a parallel tabu search task scheduling algorithm”. In: Parallel
Computing 26.1 (2000), pp. 73–90 (cit. on pp. 18, 19).

[QJ06] Xiao Qin and Hong Jiang. “A novel fault-tolerant scheduling algorithm for
precedence constrained tasks in real-time heterogeneous systems”. In: Parallel
Computing 32.5-6 (2006), pp. 331–356 (cit. on pp. 28, 32).

[Ram95] Krithi Ramamritham. “Allocation and scheduling of precedence-related pe-
riodic tasks”. In: IEEE Transactions on Parallel and Distributed Systems 6.4
(1995), pp. 412–420 (cit. on pp. 26, 32).

[Reh+21] Falk Rehm, Dakshina Dasari, Arne Hamann, et al. “Performance modeling
of heterogeneous HW platforms”. In: Microprocessors and Microsystems 87
(2021), p. 104336 (cit. on p. 111).

[RRC03] Michael Richard, Pascal Richard, and Francis Cottet. “Allocating and schedul-
ing tasks in multiple fieldbus real-time systems”. In: Emerging Technologies
and Factory Automation, 2003. Proceedings. ETFA’03. IEEE Conference. Vol. 1.
IEEE. 2003, pp. 137–144 (cit. on pp. 25, 26).

[Riv+14] Juan M Rivas, J Javier Gutierrez, J Carlos Palencia, and Michael Gonzalez
Harbour. “Deadline assignment in EDF schedulers for real-time distributed
systems”. In: IEEE Transactions on Parallel and Distributed Systems 26.10
(2014), pp. 2671–2684 (cit. on pp. 57–59, 62).

[RGH17] Juan M Rivas, J Javier Gutiérrez, and Michael González Harbour. “A supercom-
puting framework for the evaluation of real-time analysis and optimization
techniques”. In: Journal of Systems and Software 124 (2017), pp. 120–136
(cit. on p. 114).

[Riv+11] Juan M Rivas, J Javier Gutiérrez, J Carlos Palencia, Michael González Harbour,
et al. “Schedulability analysis and optimization of heterogeneous edf and
fp distributed real-time systems”. In: 2011 23rd Euromicro Conference on
Real-Time Systems. IEEE. 2011, pp. 195–204 (cit. on pp. 5, 37, 45).

[RG+16] Juan Marıa Rivas Concepción, José Javier Gutiérrez Garcıa, et al. “Inter-
pretación de dos algoritmos EDF on-line para la optimización de sistemas
distribuidos de tiempo real”. In: (In Spanish) (2016) (cit. on pp. 57, 59, 60,
65).

[Sam+09] Soheil Samii, Yanfei Yin, Zebo Peng, Petru Eles, and Yuanping Zhang. “Im-
mune genetic algorithms for optimization of task priorities and FlexRay frame
identifiers”. In: Embedded and Real-Time Computing Systems and Applications,
2009. RTCSA’09. 15th IEEE International Conference on. IEEE. 2009, pp. 486–
493 (cit. on pp. 16, 18).

Bibliography 139

[SD07] Alberto Sangiovanni-Vincentelli and Marco Di Natale. “Embedded system
design for automotive applications”. In: Computer 40.10 (2007), pp. 42–51
(cit. on p. 73).

[Sch06] Douglas C Schmidt. “Model-driven engineering”. In: Computer-IEEE Computer
Society- 39.2 (2006), p. 25 (cit. on p. 3).

[Sch98] Alexander Schrijver. “Theory of linear and integer programming”. In: Wiley
(1998) (cit. on pp. 14, 23).

[SLB10] Nicola Serreli, Giuseppe Lipari, and Enrico Bini. “The distributed deadline
synchronization protocol for real-time systems scheduled by EDF”. In: 2010
IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA
2010). IEEE. 2010, pp. 1–8 (cit. on p. 58).

[SDJ07] Li Shang, Robert P Dick, and Niraj K Jha. “Slopes: hardware–software cosyn-
thesis of low-power real-time distributed embedded systems with dynamically
reconfigurable fpgas”. In: IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 26.3 (2007), pp. 508–526 (cit. on pp. 16, 18).

[SS04] David John Smith and Kenneth GL Simpson. Functional Safety: A straight-
forward guide to applying IEC 61508 and related standards. Routledge, 2004
(cit. on p. 2).

[SO12] European Commission. Information Society and Media Directorate-General
Unit G3/Computing Systems Research Objective. “Mixed Criticality Systems”.
In: Report from the Workshop on Mixed Criticality Systems (2012) (cit. on
p. 3).

[SK03] Radoslaw Szymanek and Krzysztof Krzysztof. “Partial task assignment of
task graphs under heterogeneous resource constraints”. In: Proceedings of the
40th annual Design Automation Conference. ACM. 2003, pp. 244–249 (cit. on
p. 21).

[SK01] Radoslaw Szymanek and Krzysztof Kuchcinski. “A constructive algorithm
for memory-aware task assignment and scheduling”. In: Proceedings of the
ninth international symposium on Hardware/software codesign. ACM. 2001,
pp. 147–152 (cit. on pp. 21, 25).

[TP15] Domi̧tian Tămaş-Selicean and Paul Pop. “Design optimization of mixed-
criticality real-time embedded systems”. In: ACM Transactions on Embedded
Computing Systems (TECS) 14.3 (2015), p. 50 (cit. on p. 19).

[TP11a] Domi̧tian Tămaş-Selicean and Paul Pop. “Optimization of time-partitions for
mixed-criticality real-time distributed embedded systems”. In: Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops (ISORCW), 2011 14th
IEEE International Symposium on. IEEE. 2011, pp. 1–10 (cit. on pp. 20, 21).

[TP11b] Domi̧tian Tămaş-Selicean and Paul Pop. “Task mapping and partition allo-
cation for mixed-criticality real-time systems”. In: Dependable Computing
(PRDC), 2011 IEEE 17th Pacific Rim International Symposium on. IEEE. 2011,
pp. 282–283 (cit. on pp. 18, 19).

140 Bibliography

[Tin94] Ken Tindell. Adding time-offsets to schedulability analysis. Technical Report,
1994 (cit. on pp. 5, 49).

[TC94] Ken Tindell and John Clark. “Holistic schedulability analysis for distributed
hard real-time systems”. In: Microprocessing and microprogramming 40.2-3
(1994), pp. 117–134 (cit. on pp. 4, 28).

[TBW92] Ken W Tindell, Alan Burns, and Andy J. Wellings. “Allocating hard real-time
tasks: an NP-hard problem made easy”. In: Real-Time Systems 4.2 (1992),
pp. 145–165 (cit. on pp. 2, 13, 19, 21, 57).

[Tru+14] Salvador Trujillo, Alfons Crespo, Alejandro Alonso, and Jon Pérez. “Multi-
PARTES: Multi-core partitioning and virtualization for easing the certifica-
tion of mixed-criticality systems”. In: Microprocessors and Microsystems 38.8
(2014), pp. 921–932 (cit. on p. 3).

[Tsa14] Edward Tsang. Foundations of constraint satisfaction: the classic text. BoD–
Books on Demand, 2014 (cit. on p. 14).

[TSN] Time Sensitive Networking Task Group TSN. “IEEE-802.1 Standard”. In: ()
(cit. on p. 1).

[UNI15] UNISIG. “ ERTMS/ETCS -SUBSET-041- Performance Requirements for Inter-
operability”. In: (2015) (cit. on p. 49).

[VO05] Lucy Marıa Franco Vargas and Romulo Silva de Oliveira. “Empirical study of
tabu search, simulated annealing and multi-start in fieldbus scheduling”. In:
Emerging Technologies and Factory Automation, 2005. ETFA 2005. 10th IEEE
Conference on. Vol. 2. IEEE. 2005, 8–pp (cit. on pp. 20, 21).

[VP08] Ian Verhappen and Augusto Pereira. Foundation Fieldbus. ISA, 2008 (cit. on
p. 20).

[Ver+20] Micaela Verucchi, Mirco Theile, Marco Caccamo, and Marko Bertogna. “Latency-
Aware Generation of Single-Rate DAGs from Multi-Rate Task Sets”. In: 2020
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS).
2020, pp. 226–238 (cit. on p. 114).

[Ves07] Steve Vestal. “Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance”. In: Real-Time Systems Symposium, 2007.
RTSS 2007. 28th IEEE International. IEEE. 2007, pp. 239–243 (cit. on p. 3).

[Win16] WindRiver. Wind River VxWorks 653 Platform. 2016 (cit. on p. 3).

[WME20] Brandon Woolley, Susan Mengel, and Atila Ertas. “An Evolutionary Approach
for the Hierarchical Scheduling of Safety-and Security-Critical Multicore
Architectures”. In: Computers 9.3 (2020), p. 71 (cit. on pp. 17, 18).

[Woz+13] Ernest Wozniak, Asma Mehiaoui, Chokri Mraidha, Sara Tucci-Piergiovanni,
and Sébastien Gerard. “An optimization approach for the synthesis of AU-
TOSAR architectures”. In: Emerging Technologies & Factory Automation (ETFA),
2013 IEEE 18th Conference on. IEEE. 2013, pp. 1–10 (cit. on pp. 17, 18, 29).

Bibliography 141

[Wur+19] Falk Wurst, Dakshina Dasari, Arne Hamann, et al. “System performance
modelling of heterogeneous HW platforms: An automated driving case study”.
In: 2019 22nd Euromicro Conference on Digital System Design (DSD). IEEE.
2019, pp. 365–372 (cit. on p. 111).

[Xie+16] Guoqi Xie, Gang Zeng, Liangjiao Liu, Renfa Li, and Keqin Li. “High perfor-
mance real-time scheduling of multiple mixed-criticality functions in hetero-
geneous distributed embedded systems”. In: Journal of Systems Architecture
70 (2016), pp. 3–14 (cit. on pp. 30, 32).

[Yoo09] Myungryun Yoo. “Real-time task scheduling by multiobjective genetic algo-
rithm”. In: Journal of Systems and Software 82.4 (2009), pp. 619–628 (cit. on
pp. 16, 18).

[YR15] H Yoon and M Ryu. “Guaranteeing end-to-end deadlines for AUTOSAR-based
automotive software”. In: International Journal of Automotive Technology 16.4
(2015), pp. 635–644 (cit. on pp. 30, 32).

[Zha+14] Licong Zhang, Dip Goswami, Reinhard Schneider, and Samarjit Chakraborty.
“Task-and network-level schedule co-synthesis of Ethernet-based time-triggered
systems”. In: Design Automation Conference (ASP-DAC), 2014 19th Asia and
South Pacific. IEEE. 2014, pp. 119–124 (cit. on pp. 23, 25).

[ZZ19] Yecheng Zhao and Haibo Zeng. “The concept of Maximal Unschedulable
Deadline Assignment for optimization in fixed-priority scheduled real-time
systems”. In: Real-Time Systems 55.3 (2019), pp. 667–707 (cit. on pp. 31,
32).

[Zhe+07a] Wei Zheng, Marco Di Natale, Claudio Pinello, Paolo Giusto, and Alberto
Sangiovanni Vincentelli. “Synthesis of task and message activation models in
real-time distributed automotive systems”. In: Design, Automation & Test in
Europe Conference & Exhibition, 2007. DATE’07. IEEE. 2007, pp. 1–6 (cit. on
pp. 22, 25).

[Zhe+07b] Wei Zheng, Qi Zhu, Marco Di Natale, and Alberto Sangiovanni Vincentelli.
“Definition of task allocation and priority assignment in hard real-time dis-
tributed systems”. In: Real-Time Systems Symposium, 2007. RTSS 2007. 28th
IEEE International. IEEE. 2007, pp. 161–170 (cit. on pp. 22, 25).

[Zho+19] Yuanbin Zhou, Soheil Samii, Petru Eles, and Zebo Peng. “Partitioned and
overhead-aware scheduling of mixed-criticality real-time systems”. In: Pro-
ceedings of the 24th Asia and South Pacific Design Automation Conference.
2019, pp. 39–44 (cit. on pp. 31, 32).

[Zhu+09] Qi Zhu, Yang Yang, Eelco Scholte, Marco Di Natale, and Alberto Sangiovanni-
Vincentelli. “Optimizing extensibility in hard real-time distributed systems”.
In: Real-Time and Embedded Technology and Applications Symposium, 2009.
RTAS 2009. 15th IEEE. IEEE. 2009, pp. 275–284 (cit. on pp. 23, 25).

142 Bibliography

[Zhu+12] Qi Zhu, Haibo Zeng, Wei Zheng, Marco DI Natale, and Alberto Sangiovanni-
Vincentelli. “Optimization of task allocation and priority assignment in hard
real-time distributed systems”. In: ACM Transactions on Embedded Computing
Systems (TECS) 11.4 (2012), p. 85 (cit. on pp. 23, 25).

Bibliography 143

List of Figures

1.1 Architecture of EB functionality . 8

3.1 Distributed multipath e2e flow . 36

3.2 Example of hierarchical scheduler . 39

3.3 Partition and effective partition with CSy = 1ms 39

3.4 Industrial use-case modeling (RBC-CS & PV-DMI not depicted for the
sake of clarity) . 43

4.1 Simple example . 48

4.2 Synthetic application generated with TGFF 52

4.3 Differences between worst-case response times obtained with the holis-
tic and the offset-based analysis . 54

5.1 Illustrative example . 61

5.2 Synthetic e2e flows . 75

5.3 RBU evolution in 1 processor . 78

5.4 RBU evolution in 2 processors . 78

5.5 RBU evolution in 4 processors . 78

5.6 RBU evolution in 8 processors . 79

5.7 RBU evolution in 10 processors . 79

6.1 Guiding application example . 82

6.2 Worst-case response time of τ1 6 as a function of AUPx 82

6.3 Evolution of worst-case response time of τ1 6 with the number of parti-
tion windows for different values of AUPx (in %) 83

6.4 Worst-case response time as a function of the number of partition
windows - AUPx = 40% . 84

6.5 Worst-case response time as a function of the number of partition
windows - AUPx = 50% . 85

6.6 Worst-case response time as a function of the number of partition
windows - AUPx = 60% . 86

6.7 Baseline synthetic scenario Scn1: 2 partitions hosted in each of the 4
processors . 93

145

6.8 Scn2: Γ1 has been removed from CPU1 and its steps relocated to
partitions in the other processors . 93

6.9 Scn3: Γ2 has also been removed from CPU1 and its steps relocated to
partitions in the other processors . 94

6.10 e2e flows’ worst-case response times for different numbers of windows
(Scn1) . 96

6.11 e2e flows’ worst-case response times for different numbers of windows
(Scn2) . 97

6.12 e2e flows’ worst-case response times for different numbers of windows
(Scn3) . 97

6.13 e2e flows’ worst-case response times for different numbers of windows
(Scn4) . 98

6.14 e2e flows’ worst-case response times for different numbers of windows
(Scn5) . 98

7.1 Small-sized test . 116
7.2 Medium-sized test . 118
7.3 Large-sized test . 119

146 List of Figures

List of Tables

2.1 Reviewed Works - Genetic Algorithm 18

2.2 Reviewed Works - Tabu Search . 19

2.3 Reviewed Works - Simulated Annealing 21

2.4 Reviewed Works - Mathematical Programming 25

2.5 Reviewed Works - Branch and Bound 26

2.6 Reviewed Works - Heuristics . 32

3.1 Summary of notation . 41

3.2 Train signalling application (times in µs) 43

4.1 Analysis results of the simple example (times in ms) 48

4.2 Response-time analysis of a train signalling application (times in µs) . 50

4.3 Synthetic application analysis, times in ms. (Hol) = Holistic Analysis,
(Off) = Offset-based analysis . 53

5.1 Virtual Deadlines, priorities and worst-case response times for each
algorithm, applied to the multipath e2e flow depicted in Figure 5.1 . . 69

5.2 Priority assignment for the train signalling application (Cij in µs) . . . 71

5.3 Worst-case response times of the railway signalling application 72

5.4 SSF for each algorithm applied in the industrial use-case 72

5.5 Step-to-processor mapping of the synthetic e2e flows 74

5.6 RBU results (in %) for each algorithm (with partitioning) 76

5.7 BU results (in %) for each algorithm 77

5.8 Execution time of some of the experiments 80

6.1 Worst-case execution times for Scn1 94

6.2 Schedulable solutions found by WinAs: MAF and worst-case response
times . 99

6.3 Initial available utilization (in %) for each partition in each partition
configuration . 99

6.4 MAF and AU values obtained by HOPWA, for each partition configura-
tion in Scn1 . 100

147

6.5 MAF and AU values obtained by HOPWA, for each partition configura-
tion in Scn2 . 100

6.6 MAF and AU values obtained by HOPWA, for each partition configura-
tion in Scn3 . 100

6.7 MAF and AU values obtained by HOPWA, for each partition configura-
tion in Scn4 . 101

6.8 MAF and AU values obtained by HOPWA, for each partition configura-
tion in Scn5 . 101

6.9 Slack factors (system, partitions and e2e flows) for Scn1 103
6.10 Slack factors (system, partitions and e2e flows) for Scn2 104
6.11 Slack factors (system, partitions and e2e flows) for Scn3 104
6.12 Slack factors (system, partitions and e2e flows) for Scn4 105
6.13 Slack factors (system, partitions and e2e flows) for Scn5 105
6.14 Initial available utilization (in %) for each partition in each Configura-

tion (Config.) . 106
6.15 MAF and AU values obtained by HOPWA for the railway use-case . . . 107
6.16 Worst-case response times (in ms) of the railway application under the

different configurations and deadlines tested 107

148 List of Tables

La creciente complejidad de los sistemas de control modernos lleva a muchas

empresas a tener que re-dimensionar o re-diseñar sus soluciones para adecuarlas a

nuevas funcionalidades y requisitos. Un caso paradigmático de esta situación se ha

dado en el sector ferroviario, donde la implementación de las aplicaciones de

señalización se ha llevado a cabo empleando técnicas tradicionales que, si bien

ahora mismo cumplen con los requisitos básicos, su rendimiento temporal y

escalabilidad funcional son sustancialmente mejorables. A partir de las soluciones

propuestas en esta tesis, además de contribuir a la validación de sistemas que

requieren certificación de seguridad funcional, también se creará la tecnología base

de análisis de planificabilidad y optimización de sistemas de tiempo real distribuidos

generales y también basados en particionado temporal, que podrá ser aplicada en

distintos entornos en los que los sistemas ciberfísicos juegan un rol clave, por

ejemplo en aplicaciones de Industria 4.0, en los que pueden presentarse problemas

similares en el futuro.

The increasing complexity of modern control systems leads many companies to have

to resize or redesign their solutions to adapt them to new functionalities and

requirements. A paradigmatic case of this situation has occurred in the railway

sector, where the implementation of signaling applications has been carried out

using traditional techniques that, although they currently meet the basic

requirements, their time performance and functional scalability can be substantially

improved. From the solutions proposed in this thesis, besides contributing to the

assessment of systems that require functional safety certification, the base

technology for schedulability analysis and optimization of general as well as time-

partitioned distributed real-time systems will be derived, which can be applied in

different environments where cyber-physical systems play a key role, for example in

Industry 4.0 applications, where similar problems may arise in the future.

	Portada
	Financiación
	Abstract
	Resumen
	Acknowledgement
	Contents
	1 Introduction
	1.1 Context and background
	1.1.1 Real-time cyber-physical systems
	1.1.2 Real-time safety critical systems
	1.1.3 Model-driven engineering
	1.1.4 Response-time analysis

	1.2 Industrial use-case
	1.3 Objectives
	1.4 Organization

	2 Scheduling and optimization in distributed real-time systems: a literature review
	2.1 Introduction and methodology
	2.2 Genetic Algorithm (GA)
	2.3 Tabu Search (TS)
	2.4 Simulated Annealing (SA)
	2.5 Mathematical Programming
	2.6 Branch and Bound (BB)
	2.7 Heuristics (HEU)
	2.8 Classification of works and conclusions

	3 Real-time system model
	3.1 Logical architecture
	3.2 Physical architecture
	3.3 Hierarchical scheduling
	3.4 Sensitivity analysis
	3.5 Modeling the industrial use-case

	4 Response-time analysis
	4.1 Response-time analysis of linear e2e flows
	4.2 Response-time analysis of multipath e2e flows
	4.2.1 Simple example
	4.2.2 Implementation and tools

	4.3 Industrial use-case evaluation
	4.4 Response-time analysis performance
	4.5 Conclusions

	5 Priority assignment
	5.1 Scheduling-parameter assignment overview
	5.2 Priority assignment in multipath e2e flows within time partitions
	5.2.1 Virtual Deadline assignment
	5.2.2 Virtual Deadline transformation into priorities

	5.3 Evaluation of the priority assignment algorithms
	5.3.1 Industrial use-case
	5.3.2 Performance evaluation

	5.4 Conclusions

	6 Partition window assignment
	6.1 Study of the influence of partition windows on schedulability
	6.1.1 Available Utilization
	6.1.2 Number of windows
	6.1.3 Context switch overheads
	6.1.4 Conclusions of the study

	6.2 Heuristic partition window assignment
	6.2.1 Window Assignment (WinAs) Algorithm
	6.2.2 Heuristic Optimized Partition Window Assignment (HOPWA)

	6.3 Performance evaluation
	6.3.1 Design of the synthetic experiments
	6.3.2 WinAs algorithm characterization
	6.3.3 Evaluating HOPWA algorithm
	6.3.4 Scheduling evaluation of the industrial use-case

	6.4 Conclusion

	7 Step-to-processor allocation
	7.1 Background
	7.1.1 Multicore achitectures
	7.1.2 Allocating real-time applications in heterogeneous systems

	7.2 Slack-Based Allocation (SBA) algorithm
	7.3 Preliminary evaluation
	7.4 Conclusions

	8 Conclusions
	8.1 Thesis contributions
	8.2 Future Work
	8.3 Publications

	Bibliography
	List of Figures
	List of Tables
	Sin título

