35 research outputs found

    Book of Abstracts 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization

    Get PDF
    In this edition, the two events will run together as a single conference, highlighting the strong connection with the Taylor & Francis journals: Computer Methods in Biomechanics and Biomedical Engineering (John Middleton and Christopher Jacobs, Eds.) and Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (JoãoManuel R.S. Tavares, Ed.). The conference has become a major international meeting on computational biomechanics, imaging andvisualization. In this edition, the main program includes 212 presentations. In addition, sixteen renowned researchers will give plenary keynotes, addressing current challenges in computational biomechanics and biomedical imaging. In Lisbon, for the first time, a session dedicated to award the winner of the Best Paper in CMBBE Journal will take place. We believe that CMBBE2018 will have a strong impact on the development of computational biomechanics and biomedical imaging and visualization, identifying emerging areas of research and promoting the collaboration and networking between participants. This impact is evidenced through the well-known research groups, commercial companies and scientific organizations, who continue to support and sponsor the CMBBE meeting series. In fact, the conference is enriched with five workshops on specific scientific topics and commercial software.info:eu-repo/semantics/draf

    Automated Analysis of 3D Stress Echocardiography

    Get PDF
    __Abstract__ The human circulatory system consists of the heart, blood, arteries, veins and capillaries. The heart is the muscular organ which pumps the blood through the human body (Fig. 1.1,1.2). Deoxygenated blood flows through the right atrium into the right ventricle, which pumps the blood into the pulmonary arteries. The blood is carried to the lungs, where it passes through a capillary network that enables the release of carbon dioxide and the uptake of oxygen. Oxygenated blood then returns to the heart via the pulmonary veins and flows from the left atrium into the left ventricle. The left ventricle then pumps the blood through the aorta, the major artery which supplies blood to the rest of the body [Drake et a!., 2005; Guyton and Halt 1996]. Therefore, it is vital that the cardiovascular system remains healthy. Disease of the cardiovascular system, if untreated, ultimately leads to the failure of other organs and death

    Proceedings of ICMMB2014

    Get PDF

    Automated analysis of 3D echocardiography

    Get PDF
    In this thesis we aim at automating the analysis of 3D echocardiography, mainly targeting the functional analysis of the left ventricle. Manual analysis of these data is cumbersome, time-consuming and is associated with inter-observer and inter-institutional variability. Methods for reconstruction of 3D echocardiographic images from fast rotating ultrasound transducers is presented and methods for analysis of 3D echocardiography in general, using tracking, detection and model-based segmentation techniques to ultimately fully automatically segment the left ventricle for functional analysis. We show that reliable quantification of left ventricular volume and mitral valve displacement can be achieved using the presented techniques.SenterNovem (IOP Beeldverwerking, grant IBVC02003), Dutch Technology Foundation STW (grant 06666)UBL - phd migration 201

    Mechanobiology of the Aortic Valve Interstitial Cell

    Get PDF
    The aortic valve (AV) is essentially a passive organ that permits unidirectional blood flow from the left ventricle to the systemic circulation and prohibits regurgitant flow during diastole. The extracellular matrix (ECM) of the AV leaflet is tri-layered with type I collagen making up the fibrosa layer (aortic side), glycosaminoglycans constituting the middle spongiosa layer, and elastin fibers largely in the ventricularis layer. Each component of the ECM is synthesized, enzymatically degraded, and maintained by the resident population of interstitial cells (AVICs) dispersed throughout the leaflet. The AVICs have been recognized as a heterogeneous mix of cells which include fibroblasts, smooth muscle cells, and myofibroblasts, which have characteristics of both fibroblasts and smooth muscle cells but are unique from each. The hypothesis of this dissertation is that the phenotype and function of the AVIC is predicated on the mechanical environment in which it resides, and during times of activated remodeling (increased myofibroblasts), the mechanobiological response of the AVIC may be contributor to changes in valvular tissue integrity. To test this hypothesis, we examine 1) the mechanical properties of the AVIC and the correlation to biosynthesis, 2) the strong connectivity of the AVIC to the ECM which is demonstrated by the AVICs ability to generate tissue-level forces due to contraction, 3) potential tissue remodeling capabilities of the AVIC via collagen gel contraction, 4) the micromechanics of the AVIC to increasing strain levels, and 5) synergistic response of the in situ AVIC to TGF-â1 and cyclic strain.Results from this work highlight the mechanobiological properties of the AVIC myofibroblast phenotype and its role in valvular tissue homeostasis, remodeling, and dysfunction. Moreover, these results demonstrate the unexamined mechanical properties of the AVIC and the strong correlate with ECM biosynthesis. As the AVIC is situated in a tissue with large strains and varying modes of deformation, the mechanical properties of the cell are likely prominent in their function. We believe that these results will add to the growing body of AVIC literature and further believe that our focus on the AVIC micro-mechanical environment will be very relevant to understanding the mechanobiologic function of the AVIC
    corecore