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MECHANOBIOLOGY OF THE AORTIC VALVE INTERSTITIAL CELL 
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University of Pittsburgh, 2007

 

The aortic valve (AV) is essentially a passive organ that permits unidirectional blood 

flow from the left ventricle to the systemic circulation and prohibits regurgitant flow during 

diastole. The extracellular matrix (ECM) of the AV leaflet is tri-layered with type I collagen 

making up the fibrosa layer (aortic side), glycosaminoglycans constituting the middle spongiosa 

layer, and elastin fibers largely in the ventricularis layer. Each component of the ECM is 

synthesized, enzymatically degraded, and maintained by the resident population of interstitial 

cells (AVICs) dispersed throughout the leaflet. The AVICs have been recognized as a 

heterogeneous mix of cells which include fibroblasts, smooth muscle cells, and myofibroblasts, 

which have characteristics of both fibroblasts and smooth muscle cells but are unique from each.  

The hypothesis of this dissertation is that the phenotype and function of the AVIC is 

predicated on the mechanical environment in which it resides, and during times of activated 

remodeling (increased myofibroblasts), the mechanobiological response of the AVIC may be 

contributor to changes in valvular tissue integrity. To test this hypothesis, we examine 1) the 

mechanical properties of the AVIC and the correlation to biosynthesis, 2) the strong connectivity 

of the AVIC to the ECM which is demonstrated by the AVICs ability to generate tissue-level 

forces due to contraction, 3) potential tissue remodeling capabilities of the AVIC via collagen gel 

contraction, 4) the micromechanics of the AVIC to increasing strain levels, and 5) synergistic 

response of the in situ AVIC to TGF-β1 and cyclic strain.  
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Results from this work highlight the mechanobiological properties of the AVIC 

myofibroblast phenotype and its role in valvular tissue homeostasis, remodeling, and 

dysfunction. Moreover, these results demonstrate the unexamined mechanical properties of the 

AVIC and the strong correlate with ECM biosynthesis. As the AVIC is situated in a tissue with 

large strains and varying modes of deformation, the mechanical properties of the cell are likely 

prominent in their function. We believe that these results will add to the growing body of AVIC 

literature and further believe that our focus on the AVIC micro-mechanical environment will be 

very relevant to understanding the mechanobiologic function of the AVIC. 
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1.0  INTRODUCTION 

1.1 THE MAMMALIAN HEART AND HEART VALVES 

Mammalian hearts are composed of four chambers which fill alternately to deliver blood 

to both the lungs for oxygenation and the systemic circulation and organs for metabolic nutrition 

and exchange (Figure 1). In the normal cardiac cycle, oxygen depleted blood returns to the right 

side of the heart and is pumped to the lungs for carbon dioxide-oxygen exchange. From there, the 

now oxygen-rich blood is returned to the left side of the heart in order to be pumped to the 

systemic circulation. Each side of the heart employs a dual-chamber pumping mechanism which 

is necessary to allow the chambers of the heart to fill while not pumping blood during the cardiac 

cycle. These chambers are called the atrium and the ventricle. The atrium delivers blood to the 

ventricle, which in turn delivers blood to either the lungs or systemic circulation.   

In the most general terms, heart valves (HVs) are thin, planar membranes that are 

positioned in the mammalian heart such that blood flow progresses in the forward direction only. 

They are necessary for the heart to function properly as a pump with chambers that fill 

alternately. Mammalian hearts have four HVs: tricuspid valve (TV); pulmonary valve (PV); 

mitral valve (MV); and aortic valve (AV) (Figure 2). The TV and MV are termed 

atrioventricular valves as they lie between the atrium and ventricle on both the right and left 

sides of the heart, respectively. The PV and AV are termed semilunar valves, due to the half-

 1 



moon shape of their leaflets or cusps, and lie between the ventricle and the great vessel from 

which their name derives. 

Figure 1. Anatomy of the mammalian heart (www.edwards.com). 
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Figure 2. Location of the four heart valves (www.edwards.com). 
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HVs are essentially passive mechanical structures that are driven to open and close by the 

inertial forces from the surrounding blood during the two functional heart cycles (Figure 3). 

During diastole, when the right and left ventricles are filling, the TV and the MV are open to 

allow blood to pass from the atriums into the ventricles. To keep pressure in the ventricles low 

enough to allow low pressure filling from the atriums, the PV and AV are closed during diastole. 

Once the ventricles are full, they contract opening the semilunar valves (AV and PV), ejecting 

the blood into the great vessels. To prevent retrograde blood flow into the atriums, the MV and 

TV close during systole. This two-cycle mechanism is essential for two reasons: 1) it allows the 

heart generate contractile forces sufficient to propel the blood to both the lungs and the systemic 

circulation; 2) it allows the myocardial muscle tissue of the heart to receive the necessary 

metabolic nutrients it needs during diastole.  
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Figure 3. Two stages of heart function: diastole and systole (www.sjm.com/resources). 
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1.2 HEART VALVE PHYSIOLOGY AND TISSUE LEVEL BIOMECHANICS 

1.2.1 Heart Valve Hemodynamics 

The mechanisms ensuring the proper function of the heart valves are essentially 

controlled by the surrounding hemodynamic environment. Understanding the interactions 

between the heart valves and their dynamic fluid environment is thus critical to better understand 

normal valve function and disease progression. Although the four heart valves present different 

anatomies, and different opening/closing characteristics, they all function to allow the 

unidirectional flow of blood while maximizing flow rate and minimizing resistance to flow.  

Thus, in the following, AV hemodynamics are focused on as an example for all the heart valves.  

 
Figure 4. Diagram of the normal cardiac cycle. During systole, aortic pressure (AP) rises with the opening of the 

AV due to increased pressure in the left ventricle (LVP). During systole, the AV closes and AP is approximately 90-
100 mmHg, which is imposed on the closed AV during this portion of the cardiac cycle. (www.cyphysiology.com.) 
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The AV opens during systole when the ventricle is contracting and then closes during 

diastole as the ventricle relaxes (Figure 4). In healthy individuals, blood flows through the AV 

accelerating to a peak value of 1.35 ± 0.35 m/s [1]. The valve closes near the end of the 

deceleration phase of systole with very little reverse flow through the valve. The axial pressure 

difference causes the low inertia flow in the developing boundary layer along the aortic wall to 

decelerate then to reverse direction resulting in vortices in the sinuses behind the aortic valve 

leaflets [2]. This action forces the belly of the leaflets away from the aortic wall and toward the 

closed position. When this force is coupled with the vortices that push the leaflet tips toward the 

closed position, a very efficient and fast closure is obtained. In vitro studies have shown that the 

axial pressure difference alone is sufficient to close the valve [2]. Thus, without the vortices in 

the sinuses, the valve still closes, but its closure is not as efficient as when the vortices are 

present.  

The velocity profile at the level of the AV annulus is relatively flat. However there is a 

slight skew towards the septal wall (less than 10% of the center-line velocity) caused by the 

orientation of the AV relative to the long axis of the left ventricle [3]. The flow patterns just 

downstream of the AV are of particular interest because of their complexity and relationship to 

arterial disease. Highly skewed velocity profiles and corresponding helical flow patterns have 

been observed in the human aortic arch using magnetic resonance phase velocity mapping [3].  

A complex CFD model was recently developed to simulate the flow through a trileaflet 

semi-lunar heart valve by Ajit Yoganathan’s research group at the Georgia Institute of 

Technology. The kinematics of the valve was prescribed and the unsteady flow solution was 

computed for the case of a peak systole Reynolds number of 3000 (Figure 5). The accelerating 

flow phase is dominated by the instability of the shear layers emanating from the leaflets, which 
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gives rise to complex vortex shedding. The flow predictions provide evidence of the drastic 

difference between the hemodynamic stresses experienced by the aortic and ventricular sides.  

 

Figure 5. Numerical simulation of unsteady, pulsatile flow in a trileaflet prosthetic heart valve. Contours of the out-
of-plane vorticity are shown at two instants during the cardiac cycle: a) fully open phase; and b) closing phase. 

 

The limiting streamlines (i.e., lines tangent to the shear stress vector field) and the shear 

stress magnitude at two instants in time are shown on both the aortic and ventricular sides of the 

leaflets (Figure 6). The ventricular stress field during the open phase suggests a fairly smooth, 

straight, accelerating flow, which is consistent with the favorable pressure gradient experienced 

by the flow as it is pushed by the contracting ventricle to pass through the leaflets. On the aortic 
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side, however, the rapid cross-sectional area expansion in the sinus region imposes an adverse 

streamwise pressure gradient that gives rise to a very complex and disorganized flow. The stress 

field undergoes rapid changes as soon as the leaflets begin to close. On the ventricular side, the 

flow during the closing phase remains fairly straight, albeit less orderly than during opening.  In 

addition to the drastically different flow patterns on the two sides of each leaflet, the 

computations also suggest significant differences in the magnitude of the shear stress field.  In 

general the aortic side is characterized by lower magnitudes but more complex patterns in the 

shear stress vector field than the ventricular side. 

 

Figure   Instantaneous friction streamline and shear stress magnitude plots on the aortic (a and c) and ventricular 
(b and d) sides of the leaflets during the fully open (a and b) and early closing (c and d) phases of the cardiac cycle. 

6.
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1.2.2 Dynamic Leaflet Strains 

Accurate diagnosis and treatment of valve disease, along with the development of 

improved surgical strategies/techniques, requires a complete understanding of normal valve 

dynamics. As an example, investigators have undertaken the task of studying mitral valve (MV) 

dynamics and left ventricular fluid mechanics [2, 4-9]. However, due to the complexity of valve 

anatomy, it is difficult to theoretically [10] or computationally [11-13] determine the functional 

role and importance of each individual component. Moreover, these simulations are currently 

difficult to fully validate in vivo with available imaging technologies. 

Many approaches have been taken to attempt to quantify valvular dynamics. Early work 

by Thubrikar et al used biplane fluoroscopy to determine dynamic valve function. [14-16]. These 

experiments involved lead markers sutured onto the valve leaflets. Thubrikar reported that leaflet 

radial length does not change significantly during maximum flow. Instead he observed when the 

leaflet closes and coapt under increasing pressure, the radial length increases during diastole 

[17].  Thubrikar used two markers at the basal and belly region of the leaflet, which did not cover 

the free edge. Further, two markers only allowed straight distance measurements, and did not 

follow leaflet surface. More recently high resolution approaches, such as biplane x-ray imaging, 

demonstrated significant regional complexities in valve motion and strain [18]. However, in 

these studies the number of markers used was small so that the spatial resolution was insufficient 

for detailed surface strain studies. This is considered critical as the high degree of structural and 

mechanical heterogeneity in heart valve leaflets [19-21] suggest an equally complex regional 

strain response over the cardiac cyclic. 
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1.2.3 Biomechanical Descriptors of Heart Valve Leaflets 

Mechanically, the native semilunar valve leaflets undergo similar passive loading 

regimes: flexure during opening and closing, shear stress from flowing blood when opened, and 

planar tension when closed. The atrioventricular valves are more complicated due to their 

asymmetrical shape and the tethering effect of the chordae tendinae. Aortic and pulmonary valve 

leaflets have an evolved, specialized architecture that allows for efficient opening and closing 

with slight pressure gradients while also withstanding large transvalvular pressures when 

apposed during closure. Additionally, the leaflets have a tri-layered structure, which is composed 

predominantly of fibrillar collagen (fibrosa layer), glycosaminoglycans (spongiosa), and elastin 

(ventricularis). It is the structural arrangement of the aligned fibrillar collagen network that 

largely defines the mechanics of the leaflet.  

Interestingly, the ultimate tensile strength of human aortic and pulmonary valve leaflets 

are very similar (1460 and 1450 kPa, respectively) [22] though they must support vastly different 

transvalvular pressures (10 mmHg for the pulmonary and 80 mmHg for the aortic) [23]. While 

uniaxial testing of native leaflets is useful for failure strength measurements, this information 

does not complete our understanding of the tissue biomechanics, in that they rarely fail 

catastrophically. Of greater concern is their ability to remain sufficiently compliant and coapted 

when apposed, which is a bi-directional response. Because of these considerations, native leaflet 

response to diastolic pressure is best examined mechanically by biaxial testing of the belly region 

of the leaflets [19, 24-26]. It is well known that collagen fibers can withstand high tensile forces, 

but have low torsional and flexural stiffness. Thus, directions in which the fibers are oriented can 

be identified with the directions in which the tissue is able to withstand the greatest tensile 
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stresses. This is especially the case for in the study of the structure of the AV, which is uniquely 

suited for efficient transmission of mechanical stresses with the minimal use of material.  

To quantify the gross fiber architecture of the valve leaflet, we used small angle light 

scattering (SALS) [27]. In SALS, laser light is passed through a tissue specimen and the spatial 

intensity distribution of the resulting scattered light represents the sum of all structural 

information within the light beam envelope. To simulate changes to aortic valve leaflet structure 

with increasing trans-valvular pressure, fresh porcine aortic valves were fixed at trans-valvular 

pressures ranging from 0 mmHg to 90 mmHg. Overall, increasing trans-valvular pressure 

induced the greatest changes in fiber alignment between 0 and 1 mmHg, and past 4 mmHg there 

was no detectable change in fiber alignment.  

Thus, we can see that for the AV much of the observed change in collagen structure is 

due to straightening of the collagen fibers. This is a finely tuned affair; straightening must occur 

at the right strain level and at the right rate to facilitate coaptation, yet not allow excessive tissue 

deformations that may lead to regurgitation. Further evidence of adaptation is the unique 

structure of the commissure region, which approximately corresponds to the coaptation region. 

The coaptation region is under no trans-valvular pressure, but is loaded instead in a uniaxial-like 

manner due to tethering forces generated at the attachment of the commissures to the aortic root. 

Unlike the biaxially loaded belly region, the uniaxial loading of the commissures would tend to 

make their structure more highly aligned, i.e. more like a tendon.  Like tendons, a highly aligned 

fiber network would have a very short transition region from low to high stiffness, as evidenced 

by rapid fiber uncrimping with stress. The highly aligned nature of the commissure region at 

unloaded state and the more rapid realignment with transvalvular pressure in the commissure 

regions are consistent with the pre-transition strain level behavior of tendon-like materials.  
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The ability of heart valve leaflets to open and close efficiently 3 x 109 times during a 

person’s lifetime is also of great importance, and this motion is directly related to the bending 

stiffness of the tissue. Additionally, the bending stiffness of the leaflets can be used to assess 

damage mechanisms associated with calcification and flexural fatigue [28, 29]. Bending tests are 

highly sensitive at low stress-strain values, and when combined with specialized imaging 

techniques and histology, allow investigators to probe the individual layers of a leaflet tissue. 

The sum of these analyses serves to describe the gross mechanical response resulting from the 

fibrous architecture of native heart valve leaflets. Finally, experimental results not only provide 

quantitative data for use in setting engineered tissue goals, but also allow for the development 

and implementation of constitutive models [30, 31] which, when properly formulated and 

validated, can vastly expand the scope of variables that can be perturbed through analytical and 

numerical simulations.  

1.2.4 Tissue Preparation for Biomechanical Testing of Heart Valve Leaflets 

Performing biomechanical analysis is largely dependent upon the size of the sample 

specimen, particularly regarding the ability to grip and apply mechanical loads to the tissue. 

Because of size limitations and our interest in bioprosthetic heart valve biomechanics, the 

majority of our native valvular research has dealt with porcine AV leaflets. Leaflets are excised 

from the valve by cutting along the basal attachment. Typically, a square specimen (10mm x 

10mm) from the central belly region of the leaflet is removed. Depending on what exactly is 

being analyzed, the specimen can be run through the following series of tests in sequential order: 

flexure testing, biaxial testing, and SALS analysis (Figure 7). This sequence is important due to 
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the application of markers with cyanoacrylate that would alter mechanical response if leaflets 

were tested otherwise (i.e. biaxial before flexure). 

 

Explant leaflet Flexure testing Biaxial testing
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r
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10mm
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Figure 7. Schematic of biomechanical analyses of heart valve leaflets. Proceeding form the left to the right, the 
leaflet is excised, tested under flexure, tested biaxially, and then analyzed with SALS. The small black circles 

represent applied markers used for strain determination. 

1.2.5 Flexure Testing of Heart Valve Leaflets 

Loads to achieve flexure are applied by stationary and translatable arms that are coupled 

to the ends of the tissue by short metal sleeves (attached by cyanoacrylate) that slide onto the 

arms of the bending device [28, 32, 33]. The translatable arm is a deformable bar that was 

previously calibrated to determine loads from deflection. Markers are attached to top of the 

tissue nearest the free edge. Specimen deflection is recorded with a CCD camera and real-time, 

resulting moment, M (mN*mm), and change-in-curvature, Δκ (mm-1), values are determined at 

small time increments with a custom program by tracking the marker and bending bar positions. 

The applied moment versus the change-in-curvature is related by the Bernoulli-Euler moment-

curvature equation, M=Eeff I Δκ, where Eeff I, termed flexural rigidity, corresponds to the slope of 

M-Δκ curve, with I as the second moment of inertia calculated as I=1/12t3w. The terms t and w 

are the thickness and width of the sample, respectively. The physical meaning of Eeff is the 

instantaneous effective stiffness for a given Δκ, and is analogous to Young’s modulus from 

uniaxial tension testing. 
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Flexure of soft biological materials offers two distinct advantages over uniaxial 

mechanical testing: 1) the ability to discern slight changes in stiffness at low-stress strain levels 

that would not be appreciable in tension and 2) the ability to assess individual layers of multi-

layered structures. Because of these advantages, flexure is ideal for analyzing slight changes to 

leaflet layer properties due to structural damage, cellular contraction, and ECM biosynthesis.  

1.2.6 Biaxial Testing of Heart Valve Leaflets 

Biaxial testing of native and bioprosthetic leaflets has been described extensively in 

previous publications [19, 34-36]. Briefly, tissue deformations are measured by monitoring the 

movements of four small graphite particles which are attached to the center of the specimen in a 

square configuration. Sutures (four per side) are attached to the sample to apply loads and are 

coupled to the actuating arm of the device via pulleys to allow equal stress distribution at each 

suture point. Additionally, it is essential to allow freedom for strain in the orthogonal direction 

during biaxial testing and this suturing method accomplishes this by not rigidly fixing each side 

of the tissue [37]. When compared to the reference state, these marker movements reveal the 

resulting orthogonal strains and in-plane shear from applied loads, which are simultaneously 

monitored with sensitive load cells. Typically, loads are applied in a quasi-static fashion which is 

not physiological for leaflets; therefore, we recently built a system that was capable of applying 

and tracking high-speed physiologic strain rates (500-1000%/sec) [38, 39]. Both systems reveal 

the orthogonal, coupled stress-strain response which is of paramount importance for anisotropic 

planar tissues such as leaflets. 
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Figure 8.  Biaxial response of a native porcine aortic leaflet. Note the anisotropic response of the tissue. 60 
N/m membrane tension corresponds to in vivo diastolic pressures at rest. 

 

As mentioned above, native AV and PV have an aligned and organized collagen 

architecture that is primarily oriented in the circumferential direction of the leaflet. This fibrous 

architecture largely defines the response to biaxial tension. As in other collagenous tissues with 

some degree of orientation, native leaflets have distinct responses in the circumferential and 

radial directions (Figure 8). At the beginning of the biaxial test, the collagen fibers become 

uncrimped in the circumferential direction and exhibit a sharp rise in tension with little 

increasing strain. This is not surprising since the robust collagen fibers are supporting the applied 

load and are straightened and taut. Radially, there is a much more gradual response since this 

axis has fewer aligned fibers. Initially, there is a large toe region where strain increases with little 

appreciable stress. Then there is a transition leading to a rise in stress where the tissue reaches 

maximum extensibility. The high compliance exhibited in this initial radial direction toe region 

allows the leaflet to stretch and remain coapted during diastole. Conversely, the stiff 

circumferential direction is necessary to support the large transvalvular pressure imposed on the 
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tissue. These distinct directional responses are crucial for proper valve function and must be of 

the highest priority when analyzing engineering constructs.  

1.2.7 Analysis of the Collagen Architecture of Heart Valve Leaflets 

SALS is an effective technique for the microstructural analysis of planar fibrous 

connective tissues, and we have used it previously for mapping the architecture of leaflets from 

normal, pressure fixed, and explanted bioprosthetic valves [20, 27, 40]. Briefly, a continuous 

unpolarized wave laser is passed through the tissue, which scatters light according to the internal 

planar fiber structure. The resulting angular distribution of scattered light intensity about the 

laser axis represents the distribution of fiber angles within the beam envelope at the current 

tissue location. Gathered information includes: 1) preferred fiber direction, 2) distribution skew, 

and 3) orientation index, which represents 50% of the total number of fibers. 

The mechanical response of the native semilunar leaflets is highly dependent on the state 

of the aligned collagen network, and while biaxial testing demonstrates this response, it does not 

reveal local variations in the architecture. Therefore, to identify regions of interest, SALS has 

been utilized to probe areas of collagen disruption and damage [40]. Additionally, SALS has 

been used to assess exactly how the AV collagen fibers rotate due to applied transvalvular 

pressure [20]. It can be seen that increasing pressure on the leaflet induced the greatest changes 

in fiber alignment between 0 and 4 mmHg, with no further change past 4 mmHg (Figure 9).  
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Figure 9.   SALS of the native porcine AV leaflet. Leaflets were fixed at increasing transvalular pressures and 
analyzed for collagen orientation. OI (deg) represents the orientation index and represents 50% of the total number 
of fibers in that area. Essentially, pink areas have a lower OI value and are more aligned whereas blue areas have 

higher OI values and are less aligned. 
 

Additionally, when the native leaflet outer layers are separated by dissecting through the 

spongiosa and rescanned, there is much higher degree of orientation in the fibrosa layer while the 

ventricularis appears to be randomly oriented. At higher pressures (>4 mmHg), differences in 

each layer became less pronounced and indistinguishable at 60 mmHg. These results further 

highlight the complexity of the leaflet structure, and demonstrate a sensitive response to low 

transvalvular pressures. Scaffolds and engineered leaflets may not need to exactly recapitulate 

this structural response, but it is believed that this should be of consideration. 

1.2.8 Development of Constitutive Models for Heart Valve Leaflets 

The mechanics of soft tissues are complex: they exhibit a highly non-linear stress-strain 

relationship, undergo large deformations, complex viscoelasticity, and complex axial coupling 
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behaviors that defy simple experiments and material models. Much of this behavior is a direct 

result of changes in their internal structure with strain, which involves both straightening of 

highly crimped collagen fibers and rotation of these fibers toward the stretch axis. For valvular 

tissues, most previous work on the mechanical properties of the native and chemically treated 

AV has relied on uniaxial mechanical testing [41-43]. These studies demonstrate that chemical 

fixation of intact valves, especially under pressure, alters the mechanical properties of the 

leaflets. Marked decreases in the extensibility are generally attributed to “locking” the collagen 

fibers in the uncrimped state [44, 45]. Tests on thin tissue strips however, cannot mimic the 

heterogeneous multi-axial deformation fields, combined loading sequences, and native fiber 

kinematics found in the physiological environment. Mayne et al. [46] and Christie et al. [47] 

have performed equi-biaxial testing (i.e. equal levels of tension applied to each test axis) that 

overcomes many of the above limitations of uniaxial loading. However, derivation of a 

constitutive relationship solely from equi-biaxial test data is limited due to multiple co-linearities 

that confound the ability to obtain reliable, unique model parameter values [48].     

Billiar and Sacks [19] generated the first complete biaxial mechanical data necessary for 

constitutive modeling of the AV leaflet. Due to the small size and heterogeneous structure of the 

AV leaflet, testing methods were developed and validated. Leaflet specimens were subjected to 

biaxial tests utilizing seven loading protocols to provide a range of loading states that encompass 

the physiological loading state. The leaflets demonstrated a complex, highly anisotropic 

mechanical behavior, including pronounced mechanical coupling between the circumferential 

and radial directions. Mechanical coupling between the axes produced negative strains along the 

circumferential direction and/or non-monotonic stress-strain behavior when subjected to equi-

biaxial tension, a behavior noted by Mayne et al. [46] but was not explained. Clearly, a 
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constitutive model is needed to truly understand the aortic leaflet behavior and its implications 

on the mechanics of the intact valve.  

The quantified fiber architecture [20] and biaxial mechanical data [19] suggest that a 

structural approach is the most suitable method for the formulation of a constitutive model for 

the AV leaflet. Details of the model have been previously presented [30]. In this approach, the 

tissue’s total strain energy is assumed to be the sum of the individual fiber strain energies, linked 

through appropriate tensor transformation from the fiber coordinate to the global tissue 

coordinates. For the AV, we assume that the planar biaxial mechanical properties of the leaflet 

can be represented as a planar array of collagen fibers. Anatomically, these fibers most closely 

represent the dense, highly aligned collagen fibers in the fibrosa layer. Next, the angular fiber 

distribution and the density of the fibers are assumed constant throughout the tissue. Based on 

SALS results for the AV leaflet [20], the angular distribution of the collagen fibers, R(θ), can be 

represented by a Gaussian distribution,  

2

2
1 ( MR( ) exp

22
)⎡ ⎤− θ −

θ = ⎢ ⎥σσ π ⎣ ⎦
     (1) 

where θ is the direction with respect to the x1 or circumferential axis, σ is the standard deviation 

and M is the mean of the distribution. M was determined experimentally for each specimen by 

using the preferred fiber directions as determined by SALS [20]. The "effective" fiber stress-

strain properties were represented using: 

( )f fS A exp BE⎡= ⎣ 1⎤− ⎦      (2) 

where Sf is the second Piola-Kirchhoff fiber stress, Ef is the fiber Green's strain. This formulation 

for the fiber stress-strain law avoids detailed descriptions of complex crimp distributions. 
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 For valvular tissue, it is more convenient to work with membrane stresses due to 

considerations such as variable total and layer thickness, and heterogeneous layer structure [19].  

Further, since the biaxial mechanical tests are run using membrane stress control using the 

specimen's unloaded dimensions, a Lagrangian membrane stress measure is used in the 

constitutive formulation. It is also assumed that inter-specimen variations in fiber volume 

fraction Vf and thickness h are negligible, so that the product hVf can be conveniently absorbed 

into the material constant A. The resulting expressions for the Lagrangian membrane stresses Tij 

are: 

( )

( )

2

2

2

2

* 2
11 f f 1 1

* 2
22 f f 2 2

T S (E )R( ) cos sin cos

T S (E )R( ) sin sin cos d

π

− π

π

− π

= θ λ θ + κ θ

= θ λ θ + κ θ

∫

∫

dθ θ

θ θ

   (3) 

where  A*=hVfA and ( )* *
fS A exp BE 1⎡= ⎣ f ⎤− ⎦ . The parameters A*, B, and σ were estimated by 

fitting Eq. 3 to the complete biaxial data set [19].  

An important aspect of the structural approach is that the two distinguishing aspects of 

the AV leaflet biaxial behavior, namely the extreme mechanical anisotropy and the strong 

mechanical coupling between the axes, can be explained by the angular distribution of fibers.  To 

more clearly demonstrate this effect, simulations were generated under equi-biaxial loading for a 

given set of A* and B values by letting σ vary. These simulations indicate that the value of σ is 

the primary determinant of the biaxial stress-strain response. Although this assumed a simplified 

tissue structure in the formulation of the model, the structural approach highlighted the 

importance of the angular orientation of the fibers in determining the complex anisotropic 

mechanical behavior of the tissue.   
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While the above modeling approach worked well, it should be noted that the use of a 

membrane tension formulation ignores layer specific mechanical contributions and the implicit 

non-uniformity of the transmural stress distribution.  To begin to address these limitations, 

recently conducted novel studies were performed to quantify the biaxial mechanical behavior of 

the two structurally distinct, load bearing AV leaflet layers: the fibrosa and ventricularis [49]. A 

microdissection technique was developed based on previous methods [20, 43] and modified to 

work with the biaxial test specimens rather than the intact leaflet.  While keeping the specimen 

moist with PBS at all times, the ventricularis layer was gently lifted upwards with delicate 

forceps to expose the spongiosa layer. It was found that the spongiosa contained numerous 

interconnecting fibrous structures that couple the fibrosa and ventricularis. In order to separate 

the outer fibrous layers, it was necessary to manually sever each interconnection. This was 

accomplished through the use of a low power dissection microscope and ophthalmic micro-

scissors. For a bilayer tissue configuration, one would normally start with the individual layers in 

their separated, stress free reference configuration. Sequential deformations would then arise 

from coupling the layers in the intact configuration (accounting for any pre-strains) and the 

application of external loads. These states are defined as 

β0 - the separated, unconstrained configuration, 

β1 - the intact unloaded configuration, 

βt - the current configuration of the intact tissue in response to external loads. 

The equibiaxial responses of the fibrosa and ventricularis computed with respect to both 

β0 and β1. Results indicated that both layers exhibited very different non-linear, highly 

anisotropic mechanical behaviors. When referenced to the intact conformation (βo) substantial 

differences were seen between the radial contributions of each layer. Thickness measurements 
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enabled calculation of the corresponding first Piola-Kirchoff stresses: = 95.74 kPa while  

= 26.63 kPa at equivalent levels of stretch. These results suggest that the ventricularis layer 

makes profound contributions to the intact leaflet response in the radial direction. Thus, while the 

leaflet tissue mechanical response was dominated by the fibrosa layer, the ventricularis 

contributed double the amount of the fibrosa to the total radial tension, and experienced four 

times the stress level. Histological-based thickness measurements indicated that the fibrosa and 

ventricularis constitute 41% and 29% of the total layer thickness, respectively. Moreover, the 

extensive network of inter-layer connections and identical strains under biaxial loading in the 

intact state suggest that these layers are tightly bonded. In addition to advancing knowledge of 

the subtle but important mechanical properties of the AV leaflet, this study provided a 

comprehensive data base required for the development of a true 3D stress constitutive model for 

the native AV leaflet. 

v
22P f

22P

1.2.9 Native Leaflet Biomechanics and Candidate Endpoints for Engineered Leaflets 

From a biomechanics point of view, the important functional properties of heart valve 

leaflets are compliance to adeptly open and close, and structural integrity to withstand planar 

tension when apposed during diastole. Therefore, the bending stiffness and biaxial response of an 

engineered tissue will likely need to resemble that of the native leaflet. To achieve this desired 

response, it is intuitive that some collagenous or otherwise organized architecture, similar to that 

of the native leaflet, would be required; hence, SALS is useful in evaluating this. The difficulty 

that faces those analyzing the engineered leaflet tissue biomechanical response is determining 

how to successfully couple these analyses. Flexure data do not incorporate appropriate biaxial 
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coupling, while biaxial testing does not yield transmural tissue mechanical properties. 

Additionally, SALS data can only serve to demonstrate where and how the collagen fibers are 

arranged and oriented; this information is independent of fiber mechanical properties, which can 

only be determined through structural constitutive modeling. While the methods and results 

presented here demonstrate an ability to describe most aspects of leaflet biomechanics, they can 

only be utilized in as much as they are applied in concert. Furthermore, one can easily envisage a 

case where an engineered tissue responds as desired to one or more of these analyses, but 

ultimately does not function as a suitable valve replacement. Hence, it is believed that these 

analyses are important and directive and should compliment surgical intuition derived from 

hands-on in vitro and animal model experience.   

As mentioned previously, it is believed that these analyses are important prior to pre-

clinical animal studies and clinical trials; however, once in these stages, an iterative process will 

likely be required. While quantifying pre-implant mechanics gives an initial starting point, 

effects of host cell remodeling, mechanical fatigue, and biodegradation will need to be assessed 

in the in vivo setting. Therefore, progress must be monitored after sequential improvements or 

longer implant durations. From previous experience with bioprosthetic valves, it is believed that 

monitoring is crucial as unforeseen events can arise during both early [50] and late implant times 

(mechanical fatigue independent of calcification [40]). Hence, biomechanical analysis should not 

be relegated to in vitro studies before moving to in vivo studies; the process will likely require 

multiple generations of engineered valves for continual improvement of the design.   
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1.2.10 Future Directions for Biomechanics of Native and Engineered Valve Leaflets 

The methods and results presented above are not exhaustive, in that they examine the 

global mechanical response of the tissue. Biomechanical analysis at smaller scales (individual 

fibers, cells, and molecules) would undoubtedly yield useful information; however, it is believed 

that initial and prolonged success of an engineered construct will ultimately be at the tissue level. 

The techniques presented here are well documented for AV leaflets due to their importance in 

understanding bioprosthetic heart valve development for adults and the resulting success and 

failure of these valves. However, the pediatric population would greatly benefit from an 

engineered heart valve due to lack of options at the present time, and the pulmonary valve will 

likely have better initial success due to the less demanding mechanical environment. A previous 

study compared native and chemically fixed aortic and pulmonary leaflets under biaxial tension 

and found that they are quite different with respect to their response, suggesting that the collagen 

content was different between the leaflets [24]. It is essential to understand this difference and if 

this difference is important or inconsequential. For instance, clinical explants suggest that 

success of the Ross procedure may be due in part to adaptive remodeling [51]; however, would 

the reverse be true (i.e. aortic to pulmonary switch)? If not, this would indicate that the valve is 

capable of adapting to greater mechanical demands but not less. Therefore, leaflets may need to 

be specifically designed for loads just below what they will see in vivo and adapt once 

implanted.  
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1.3 HEART VALVE DISEASE 

1.3.1 Tissue Engineering, Regenerative Medicine, and Heart Valve Disease 

The previous section dealt with mechanical descriptors of native heart valve leaflets and 

the possible endpoints for tissue engineered heart valves (TEHVs). Primarily, the target for a 

TEHV is the pediatric population due to the potential for the TEHV to grow and repair itself for 

the lifetime of the patient. On the other hand, while a TEHV could possibly benefit an older 

patient, there are reasonably successful alternatives (bioprosthetic or mechanical valves) 

available to this patient subset. Regenerative medicine or preventative measures to avoid valve 

disease in the aging population is the primary focus of this work. While findings here will 

ultimately distill down and contribute to the TEHV literature, this work aims to elucidate the 

mechanisms responsible for age-related valve disease and is, therefore, more in line with the 

field of regenerative medicine for heart valve disease. 

1.3.2 Prevalence  

According to Heart Disease and Stroke Statistics—2006 Update from the American Heart 

Association [52], valvular heart disease resulted in 19,989 deaths directly and was a contributing 

or underlying cause of death in 42,590 cases in 2003. Of the mortality or contributing mortality 

numbers, AV disease was the most prevalent with 12,471 and 26,336 cases, respectively; MV 

disease cases were responsible for 2,759 deaths and 6,600 contributory deaths. Right side valve 

cases were significantly less (PV: 11 deaths and 35 contributory deaths; TV: 16 deaths and 69 

contributory deaths). It is estimated that in 2003 there were 95,000 inpatient valve procedures 
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preformed. These numbers indicate that valvular disease is very prevalent and life threatening 

and additionally that the AV is the most diseased with the highest rate of morbidity.   

1.3.3 Types of Valvular Disease 

There exist two types of valvular heart disease: congenital and acquired [53]. Congenital 

valve disease is an abnormality that develops before birth and this subset of patients are who 

would most likely benefit most from a tissue engineered heart valve. The result of the defect may 

be related to improper valve size, malformed leaflets, or an irregularity in the way the leaflets are 

attached. This most often affects the AV or PV. A very common congenital defect is bicuspid 

AV disease where instead of the normal three leaflets or cusps, the bicuspid AV has only two 

(Figure 10). Without the third leaflet, the valve may be stenotic (narrowing with flow 

obstruction) or regurgitant (allowing backward flow). It is estimated that bicuspid AV disease 

affects about 2% of the population.  

 

Figure 10.   Drawing of tricuspid AV (left) and bicusipid AV (right). (www.surgery.ucla.edu) 
 

Acquired valve disease pertains to problems that develop within valves that were at one 

time normal. This is typically referred to as age-related degenerative valve disease. In the early 

part of the 20th century, the primary cause of acquired valve disease stemmed from rheumatic 
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valve disease; however, this trend has changed dramatically with a decrease in rheumatic valve 

disease and a concomitant increase in age-related degenerative valve disease [53].  

1.3.4 Aortic Sclerosis 

Modern, acquired AV disease is typically referred to as aortic sclerosis and is defined as 

focal thickening of an otherwise normal AV without valve obstruction. With valve obstruction, 

aortic sclerosis becomes known as aortic stenosis (Figure 11) and both of these pathologies 

represent the spectrum of AV disease with progressive calcification and fibrosis of the AV 

leaflets. Typically, aortic sclerosis is associated with age as it is most common in the elderly. In a 

previous clinical study [54], aortic sclerosis was found in 26% of those over 65, in 37% of those 

over 75, and in 48% of those over 85. By contrast, aortic stenosis was prevalent in only 2.9% of 

those over 75.  

 

Figure 11.  Calcified AV with significant stenosis 
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Aortic sclerosis can eventually lead to significant stenosis. In a large observational study 

[55], 2,131 patients with aortic sclerosis were followed for 7 years. Stenosis developed in 15.9% 

of patients. Severe stenosis was observed most often at 8 years follow-up. In a smaller study 

[56], 400 patients with aortic sclerosis were found to develop clinical aortic stenosis (defined as a 

mean gradient across the valve of 16 mmHg or velocity >2.0 m/s) within 44 ± 30 months. Both 

studies indicate that a significant portion of patients with aortic sclerosis eventually develop 

aortic stenosis within 6 to 8 years. 

Aortic sclerosis is associated with increased cardiovascular morbidity and mortality [57]. 

Relative risk (calculated as those with sclerosis divided by those with normal valves) of death 

from cardiovascular causes among subjects without coronary artery disease was 1.66 for those 

with aortic sclerosis versus those with normal AVs. In a recent study [58], it was found that 

patients with aortic sclerosis have twice the number of serious cardiovascular events (death, 

stroke, and myocardial infarction). This is comparable to the risk associated with diabetes or 

prevalent cardiovascular disease. After adjusting for typical cardiovascular risk factors, aortic 

sclerosis independently increases the cardiovascular risk by 50%. 

1.3.5 Epidemiology of Aortic Sclerosis 

The risk factors for aortic sclerosis are similar to traditional clinical risk factors for 

atherosclerosis and coronary artery disease and include age, male gender, hypertension, diabetes, 

triglycerides, and smoking [54, 59, 60]. In fact, the similarities between atherosclerosis and 

aortic sclerosis have led to the hypothesis that acquired valve disease is primarily a manifestation 

of atherosclerosis [61]. The hallmark of valve pathogenesis is the formation of lesions containing 

cell types which are characteristic of chronic inflammation [62-64]. These include macrophages, 
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T lymphocytes, and mast cells. Additionally, there are lipoproteins (LDL and Lp(a)) found in 

human AV lesions, and accumulation of these lipoproteins is mediated, in part, by ECM 

proteoglycans [65, 66]. Besides lipoproteins, recent evidence has shown that the renin-

angiotension system, particularly, angiotensin converting enzyme (ACE) and angiotensin II (Ang 

II), may play a role in AV pathogenesis [67]. Ang II has a number of potential lesion forming 

effects, including inflammation and macrophage cholesterol accumulation. Therefore, there are 

multiple mechanisms for aortic sclerosis to initiate and further perpetuate in the otherwise, 

normally functioning valve (Figure 12). While there has been a marked increase in 

understanding of the pathogenesis of aortic sclerosis in the past 20 years, the direct effect of the 

aforementioned mediators on the resident cell population remains unclear. Furthermore, given 

the dynamic environment in which the valvular cells reside, their response both to chemical and 

biophysical stimuli is undoubtedly crucial. 
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Figure 12.   Potential interplay of lipids and inflammation in the pathogenesis of valve sclerosis and calcification 

(pink area). Light blue region deals with genetic mechanisms not discussed here. Taken from [61]. 

1.4 CELLS OF THE HEART VALVES 

1.4.1 From Tissue to Cells 

The primary focus of the Engineered Tissue Mechanics Laboratory (ETML), wherein the 

following research for this Disseration was conducted, has been largely on the organ and tissue 

level biomechanics of the heart valves (see Sec. 1.2 above). The previous section (Sec. 1.3) dealt 

with the pathophysiology of valve disease, which has not, to date, been an area of investigation 

in ETML. In this Disseration, an effort has been made to begin to probe the response to 
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mechanical stimuli of the heart valve interstitial cells. Ultimately, their adaptive, or in some 

cases maladaptive, response is likely crucial in the development of certain valve pathologies. 

1.4.2 Valve Endothelial Cells 

The leaflets of all four HVs are sheathed by an ‘organ’ of single layer valvular 

endothelial cells (VECs) that have been shown to be morphologically different from aortic ECs 

[68, 69]. Additionally, VECs are aligned with the collagen architecture of the valve, which is 

circumferentially oriented [70]. The VECs are believed to regulate vascular tone, inflammation, 

thrombosis, and remodeling, and their dysfunction has been linked with multiple disorders [71]. 

Within the proximal third of the leaflets, where they are innervated, there is believed to be a 

feedback mechanism between the VECs and valve interstitial cells (VICs) wherein the nerves 

transmit information regarding released substances form the VECs [72]. Primarily, release of 

cytokines has been shown to cause changes in VIC structure and function [73, 74]. It has also 

been speculated that there exists some physical communication between the VECs and VICS. 

However, to date no direct junctions have been observed between the two cell populations [75].  

1.4.3 Valve Interstitial Cells 

Within the three layers of the leaflet tissue, there resides a heterogenic population of 

interstitial cells [75-78]. The heterogeneity of the interstitial cells is made up of fibroblasts, 

smooth muscle cells, and myofibroblasts, which have characteristics of both fibroblasts and 

smooth muscle cells. Studies of the interstitial cell population in both human and porcine 

subjects have revealed that the cell population was not localized to any one region or layer of the 
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leaflet, but was present throughout the tissue [79]. Interest in the myofibroblast cells (typically 

referred to as VICs) has grown in recent years, as they are believed to be crtically important in 

valve pathophysiology. Primarily, VICs serve to maintain the structural integrity of the leaflet 

tissue by remodeling via protein synthesis and enzymatic degradation (e.g. MMPs). Their 

phenotype (which ranges from fibroblast-like to myo-like) is believed to be plastic and 

reversible, as VICs of normal, healthy valves were quiescent (predominantly fibroblasts) while in 

developing, diseased, and remodeling valves, the VICs were activated and contractile [80, 81]. 

While their dualistic nature is not fully understood, the VIC’s multifunctionality may be used for 

cell-cell communication, tissue remodeling, wound healing, and contraction [78]. Further, it is 

believed that when the phenotype of the resident VIC population is myo-like, the cells are 

actively remodeling the ECM. This indicates that the VIC phenotypic state at any given time is 

likely related to the current remodeling demands of the tissue [80]. 

Porcine aortic VIC (AVIC) contractility has been qualitatively studied with cultured cells 

on silicone substrates in the presence of multiple contractile chemical agents [75, 76]. In both 

studies, contraction occurred for most agents within 3 minutes and reached a plateau within 10 

minutes. Additionally, Messier et al. [76] found that the few cells with no initial basal tonus did 

not respond to the administered vasoconstriction drugs. Isoproterenol was used to elicit 

relaxation from active cells, from which all cells recovered their previous basal tonus within 25 

minutes. While not quantitative, these findings were the first examples demonstrating an AVIC 

contractile response. 

Strips of aortic leaflets have been exposed to elevated KCl and endothelin levels in 

uniaxial tension; both treatments responded similarly with cells generating modest forces in the 

circumferential direction, while in the radial direction the cells generated less force [82]. This 
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measurable contraction of the cells at the tissue level is likely made possible by strong 

attachment to the ECM, which has been reported both in situ and in vitro [77, 78]. The concerted 

cell contraction is believed to be mediated by cell communication through integrins with 

surrounding cells and the ECM [77]; AVICs demonstrate extended connecting processes that are 

believed to form a cellular network for communication [75].  

While each of the four valves are exposed to comparable shear stresses, flexure, and mum 

transvalvular pressures (TVPs; 80 and 120 mmHg, respectively) versus their right side 

counterparts (pulmonary, PV; tricuspid, TV; 10 and 25 mmHg, respectively) [83]. In theloading 

time durations, the left side valves (AV and MV) are exposed to elevated maxi AV, TVPs above 

~5 mmHg predominately result in ECM compaction as the collagen fibers become uncrimped 

and taut [20]. From this ECM compaction, significant changes in the AV interstitial cell (AVIC) 

nucleus aspect ratio have been observed with increasing pressures [84] (Figure 13). At 60 

mmHg, the AVIC nuclei aspect ratio increased from 2:1 (at 0 mmHg) to 4.8:1, demonstrating 

that valvular tissue stress is translated into large cell and subcellular deformations. 

 

Figure 13. (Left) NAR versus OI from SALS analysis at different fixation TVP. Moving from right to left 
on the x-axis represents more collagen alignment and increased NAR values represent a more ellipsoidal cell. 

(Right) cartoon of suspected mechanism by which VIC undergo NAR changes with increasing TVP. Both adapted 
from [84]. 
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1.4.4 The Myofibroblast Phenotype 

The myofibroblasts phenotype has been of interest during the past 25 years as it has been 

found in many connective tissues and is believed to be essential for tissue remodeling during 

normal and pathologic wound healing. A superb review of the myofibroblast by Tomasek et al. is 

available for the interested reader [85]. Particular interest in the myofibroblast cell is generally 

relegated to tissues that are under mechanical tension. Typically, most cells found in tissue and 

organs are stress-shielded from excessive loads by their surround ECM. However, this stress-

shielding is not necessarily evident during times of tissue growth or repair from damage. It is 

during these instances when one may see rise of the myofibroblasts phenotype. Originally, the 

notion of tissue contraction during tissue remodeling was thought to initiate from collagen 

shortening; however, modified fibroblasts were first observed by Gabbiani et al. in 1971, which 

led to the suggestion that these cells have an active role in the contraction process [86]. From this 

time, the overarching hypothesis of myofibroblast function has been to establish tension during 

tissue remodeling and, unfortunately, pathologic contracture, but this mechanism is not fully 

explained at this time. 

Major confounding factors in elucidating the precise mechanism by which myofibroblasts 

modulate their phenotype are surrounding cytokines, complicated ECM connections, and various 

other cell signals [87]. Most work in the area of myofibroblast research has dealt with these 

confounding factors in an attempt to better understand how these cells alter the phenotype and 

biological function. Subsequently, it has been found that the myofibroblast expresses α-smooth 

muscle actin (SMA) [88, 89] and that SMA expression and collagen production is regulated by 

transforming growth factor-β1 (TGF-β1) [90]. Therefore, the morphological descriptor of 
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myofibroblasts is the presence of a contractile apparatus comprised of actin microfilaments and 

non-muscle myosin, similar to stress fibers that are normally found in fibroblasts. It is these 

actin-myosin apparatuses that connect to the surrounding ECM at focal adhesions through 

transmembrane integrins. This functionally forms an active mechanotransductive system where 

stress is translated to the cell from the surrounding ECM, and additionally, the myofibroblast can 

in turn transmit contractile forces to the surrounding matrix. 

Though it is clear that myofibroblasts are present during times of growth and repair, it is 

not entirely clear why they are present, as fibroblasts can sufficiently reorganize collagen 

matrices themselves [91, 92]. It was previously thought that if fibroblasts are aptly suited for this 

reorganization on their own, one would think that myofibroblasts are unnecessary. However, it 

was found by Hinz et al. that while fibroblasts may be able to generate sufficient forces during 

wound closure, it was the subsequent appearance of resistance in the surrounding ECM that 

induced a differentiation to the myofibroblast phenotype, and contraction shortly followed [93]. 

From this, it was evident that 1) some mechanistic signal in the damaged tissue, whether it be 

mechanical force, surrounding cytokines, etc., resulted in a phenotypic modulation of the 

resident fibroblasts and 2) that these newly apparent myofibroblast cells were indeed necessary 

for proper (but not ideal) wound repair.  

1.5 MOTIVATION, RATIONAL, AND SPECIFIC AIMS 

As demonstrated in the preceding sections, there is ample evidence that the heart valve 

leaflets are passive tissues which are exposed to large cyclical stresses from before birth to death. 

In particular, AV leaflets are subjected to planar strains (both extensional and shear) during 
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diastole, as well as flexural deformations and surface shear stresses during systole. Though they 

serve an apparently simple physiological function, prolonged changes in leaflet stiffness can alter 

valve competency and severely impair valve performance, ultimately leading to valve failure. 

AV leaflet cells consist of a surface population of VECs and AVICs [76-78]. AVICs are 

primarily of a myofibroblast phenotype characterized by both fibroblast and smooth muscle cell 

markers (α-smooth muscle actin, SMA) and are unique from vascular interstitial cells [69, 75-

77]. The AVICs are solely responsible for maintaining AV leaflet structural integrity by protein 

synthesis and enzymatic degradation. While there has been great interest in AV mechanical 

function, little attention has been given to the AVICs and their role in tissue homeostasis, 

adaptive remodeling, and pathologic etiologies. Since AV tissue homeostasis is believed to be 

dependent upon the synthetic states of the AVIC population, the local stresses transferred from 

the surrounding ECM to the cells and their resultant mechanotransductive effects are critical to 

the understanding of valve function. Because AVICs appear to be highly specialized, there is 

great interest in clarifying their inherent qualities that are essential in maintaining tissue 

homeostasis and proper valve function.  

Therefore, we hypothesize that the AVIC is a unique and phenotypically dynamic cell 

that may alter its characteristics due to the local valvular tissue environment. The potential 

factors believed to alter the AVIC phenotype are both biophysical and biochemical and 

ultimately some of these changes to the AVIC could be catalysts for degenerative valvular 

disease. Hence, in this work, we examine the characteristics of the AVIC with regard to its: 

biomechanical properties; biomechanical contribution to AV leaflet function; tissue remodeling 

capabilities; synergistic response to biochemical and biophysical stimuli; and micromechanical 

environment under physiologic and hyper-physiologic loading. The major general foci of the 
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heart valve research community are shown in Figure 14, with specific areas examined in this 

work in bold text. Because there have been identified many factors that alter the AVIC 

phenotype, we chose to focus primarily on mechanical factors and secondarily on the cytokine, 

TGF-β1 (Figure 14). Additionally, though there are many ECM proteins synthesized by the 

AVICs, we chose to concentrate on type I collagen as it is provides the AV leaflet with most of 

its structural integrity to withstand diastolic pressures. Ultimately, all factes of this study directly 

relate to the AVIC phenotype and resulting biosynthetic and mechanical function. The rationale 

progression of the following research from in vitro studies to in situ studies is shown in Figure 

15. 
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Figure 14. Relation between environmental factors thought to alter AVIC phenotype and the potential effects that 
change in phenotype has for the AVIC. Items in bold are specifically address in this work. ox-LDL=oxidized low 

density lipoproteins, ACE=angiotensin converting enzyme, NO=nitric oxide, GAGs=glycosaminoglycans, 
MMPs=matrix metalloproteinase, TIMPs=tissue inhibition of  metalloproteinases. 

  

a)
C

el
l s

tif
fn

es
s 

an
d 

co
nt

ra
ct

ile
 fu

nc
tio

n 
[A

im
s 

1 
&

 3
]

b)
Ti

ss
ue

 e
la

st
ic

ity
 a

nd
 

st
iff

ne
ss

c)
A

nn
ul

ar
 s

tif
fn

es
s

C
el

l a
nd

 T
is

su
e 

M
ec

ha
ni

cs
U

nd
er

 
no

rm
al

 
co

nd
iti

on
s,

 
th

e 
ac

tiv
at

ed
 m

yo
fib

ro
bl

as
ts

 r
em

od
el

 
th

e 
tis

su
e 

an
d 

re
ve

rt 
to

 
fib

ro
bl

as
ts

; 
ho

w
ev

er
, 

w
he

n 
en

vi
ro

nm
en

ta
l 

fa
ct

or
s 

al
te

r 
th

e 
ph

en
ot

yp
e 

to
 

a 
pe

rs
is

te
nt

 
m

yo
fib

ro
bl

as
t, 

th
is

 m
ay

 l
ea

d 
to

 
de

ge
ne

ra
tiv

e 
va

lv
e 

di
se

as
e 

by
 

af
fe

ct
in

g 
th

e 
m

ec
ha

ni
cs

 
of

 t
he

 
ao

rti
c 

va
lv

e.

A
s 

tis
su

e 
m

ec
ha

ni
cs

 
ar

e 
al

te
re

d,
 a

 c
yc

lic
 m

ec
ha

ni
sm

 
is

 
in

iti
at

ed
 

th
at

 
m

ay
 

ac
ce

le
ra

te
 

th
e 

de
le

te
rio

us
 

fu
nc

tio
n 

of
 th

e 
ao

rti
c 

va
lv

e 
by

 
al

te
rin

g 
th

e 
re

sp
on

se
 

to
 

ph
ys

io
lo

gi
ca

lly
 

im
po

se
d 

fo
rc

es
. 

a)
Ph

ys
io

lo
gi

ca
lly

 im
po

se
d 

m
ec

ha
ni

ca
l f

or
ce

s

a)
St

re
tc

h 
[A

im
s 

4 
&

 5
]

b)
Fl

ex
ur

e 
[A

im
 3

]

c)
S

he
ar

b)
C

irc
ul

at
in

g 
Fa

ct
or

s

a)
LD

L

b)
M

ac
ro

ph
ag

es
 

(s
ou

rc
e 

of
 c

yt
ok

in
e,

 
TG

F-
β1

) [
A

im
s 

2 
&

 5
]

c)
A

C
E

d)
N

O

En
vi

ro
nm

en
ta

l F
ac

to
rs

A
 la

rg
e 

po
rti

on
 o

f n
at

iv
e 

ao
rti

c 
va

lv
e 

re
se

ar
ch

 h
as

 d
ea

lt 
w

ith
 e

xa
m

in
in

g 
en

vi
ro

nm
en

ta
l f

ac
to

rs
 a

nd
 t

he
ir 

ro
le

 
in

 v
al

ve
 p

at
ho

lo
gi

es
. 

Th
es

e 
fa

ct
or

s 
ar

e 
es

se
nt

ia
lly

 p
hy

si
ol

og
ic

 f
or

ce
s 

or
 

ci
rc

ul
at

in
g 

bi
oc

he
m

ic
al

s
or

 c
el

ls
. T

he
 

bu
ild

in
g 

bl
oc

k 
of

 t
hi

s 
di

ss
er

ta
tio

n 
is

 
th

at
 

th
es

e 
fa

ct
or

s 
ar

e 
pr

im
ar

y 
m

od
ul

at
or

s 
of

 a
or

tic
 v

al
ve

 in
te

rs
tit

ia
l 

ce
ll 

ph
en

ot
yp

e.

a)
Ph

ys
io

lo
gi

ca
lly

 im
po

se
d 

m
ec

ha
ni

ca
l f

or
ce

s

a)
St

re
tc

h 
[A

im
s 

4 
&

 5
]

b)
Fl

ex
ur

e 
[A

im
 3

]

c)
S

he
ar

b)
C

irc
ul

at
in

g 
Fa

ct
or

s

a)
LD

L

b)
M

ac
ro

ph
ag

es
 

(s
ou

rc
e 

of
 c

yt
ok

in
e,

 
TG

F-
β1

) [
A

im
s 

2 
&

 5
]

c)
A

C
E

d)
N

O

En
vi

ro
nm

en
ta

l F
ac

to
rs

A
 la

rg
e 

po
rti

on
 o

f n
at

iv
e 

ao
rti

c 
va

lv
e 

re
se

ar
ch

 h
as

 d
ea

lt 
w

ith
 e

xa
m

in
in

g 
en

vi
ro

nm
en

ta
l f

ac
to

rs
 a

nd
 t

he
ir 

ro
le

 
in

 v
al

ve
 p

at
ho

lo
gi

es
. 

Th
es

e 
fa

ct
or

s 
ar

e 
es

se
nt

ia
lly

 p
hy

si
ol

og
ic

 f
or

ce
s 

or
 

ci
rc

ul
at

in
g 

bi
oc

he
m

ic
al

s
or

 c
el

ls
. T

he
 

bu
ild

in
g 

bl
oc

k 
of

 t
hi

s 
di

ss
er

ta
tio

n 
is

 
th

at
 

th
es

e 
fa

ct
or

s 
ar

e 
pr

im
ar

y 
m

od
ul

at
or

s 
of

 a
or

tic
 v

al
ve

 in
te

rs
tit

ia
l 

ce
ll 

ph
en

ot
yp

e.

a)
Fi

br
ob

la
st

b)
S

m
oo

th
 M

us
cl

e 
C

el
l

c)
M

yo
fib

ro
bl

as
t [

A
im

s 
1 

-5
]

C
el

l P
he

no
ty

pe
Th

e 
bi

ol
og

ic
al

 f
un

ct
io

n 
of

 t
he

 a
or

tic
 

in
te

rs
tit

ia
l 

ce
ll 

is
 

th
ou

gh
t 

to
 

be
 

di
ct

at
ed

 b
y 

th
e 

ph
en

ot
yp

e 
of

 th
e 

ce
ll.

 
In

 tu
rn

, t
he

 s
ta

tu
s 

an
d 

in
te

gr
ity

 o
f t

he
 

le
af

le
t 

tis
su

e 
is

 
al

te
re

d 
by

 
th

e 
bi

ol
og

ic
 fu

nc
tio

n 
of

 th
e 

ce
lls

.

a) b)

Sy
nt

he
si

s

a)
Ty

pe
 I 

co
lla

ge
n 

[A
im

s 
1,

 2
, 4

 &
 5

]

b)
G

A
G

s

c)
E

la
st

in

D
eg

ra
da

tio
n

a)
M

M
Ps

b)
TI

M
P

s

Ti
ss

ue
 R

em
od

el
in

g
A

s
in

te
va

ri
sy

nt
h

E
C

M
ac

c
ho la

r
m

yo
re

pa 
th

e 
ph

en
ot

yp
e 

of
 

th
e 

rs
tit

ia
l 

ce
lls

 
ch

an
ge

 
du

e 
to

 
ou

s 
en

vi
ro

nm
en

ta
l 

fa
ct

or
s,

 
es

is
 

an
d 

de
gr

ad
at

io
n 

of
 

 
co

m
po

ne
nt

s 
al

te
rs

 
or

di
ng

ly
 

to
 

m
ai

nt
ai

n 
m

eo
st

as
is

 o
f 

th
e 

tis
su

e.
 I

t 
is

 
ge

ly
 h

el
d 

th
at

 th
e 

ce
lls

 b
ec

om
e 

fib
ro

bl
as

ts
 

du
rin

g 
tim

e 
of

 
ir 

an
d 

re
m

od
el

in
g.

a)
C

el
l s

tif
fn

es
s 

an
d 

co
nt

ra
ct

ile
 fu

nc
tio

n 
[A

im
s 

1 
&

 3
]

b)
Ti

ss
ue

 e
la

st
ic

ity
 a

nd
 

st
iff

ne
ss

c)
A

nn
ul

ar
 s

tif
fn

es
s

C
el

l a
nd

 T
is

su
e 

M
ec

ha
ni

cs
U

nd
er

 
no

rm
al

 
co

nd
iti

on
s,

 
th

e 
ac

tiv
at

ed
 m

yo
fib

ro
bl

as
ts

 r
em

od
el

 
th

e 
tis

su
e 

an
d 

re
ve

rt 
to

 
fib

ro
bl

as
ts

; 
ho

w
ev

er
, 

w
he

n 
en

vi
ro

nm
en

ta
l 

fa
ct

or
s 

al
te

r 
th

e 
ph

en
ot

yp
e 

to
 

a 
pe

rs
is

te
nt

 
m

yo
fib

ro
bl

as
t, 

th
is

 m
ay

 l
ea

d 
to

 
de

ge
ne

ra
tiv

e 
va

lv
e 

di
se

as
e 

by
 

af
fe

ct
in

g 
th

e 
m

ec
ha

ni
cs

 
of

 t
he

 
ao

rti
c 

va
lv

e.

A
s 

tis
su

e 
m

ec
ha

ni
cs

 
ar

e 
al

te
re

d,
 a

 c
yc

lic
 m

ec
ha

ni
sm

 
is

 
in

iti
at

ed
 

th
at

 
m

ay
 

ac
ce

le
ra

te
 

th
e 

de
le

te
rio

us
 

fu
nc

tio
n 

of
 th

e 
ao

rti
c 

va
lv

e 
by

 
al

te
rin

g 
th

e 
re

sp
on

se
 

to
 

ph
ys

io
lo

gi
ca

lly
 

im
po

se
d 

fo
rc

es
. 

 37 



Rationale flow of research

Aim 1: Determine isolated cell phenotype ↔
stiffness ↔ biosynthesis of all VICs

Aim 2: Compare tissue remodeling potential 
of AVICs and PVICs

Aim 3: Examine AVIC-ECM interaction and 
AVIC contractility via flexure stiffness

Aim 4: Probe effects of increasing 
circumferential cyclic strain on AVIC 
phenotype and biosynthesis

Aim 5: Reveal synergistic effects of cyclic 
tension and TGF-β1 

Isolated cell studies 

Isolated cell-tissue analog 
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IN
 VITR

O

Cell-ECM interaction 
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Cell response to 
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Cell response to 
physiologic forces and 
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Figure 15. Rationale for the sequence of Aims and studies preformed. Aims 1 & 2 are comprised of in vitro 

experiments with isolated cells to elucidate essential physiologic differences between VICs from different valves. 
The in situ portion of the work (Aims 3-5) examines the micromechanics of the cells, their environment under 

different loading scenarios, and their subsequent phenotype and biosynthetic performance.  
 

The specific aims of this study were as follows: 

 

1. Determine the correlation between VIC stiffness and biosynthesis in all heart valves. 

We hypothesized that VICs respond to physiological tissue stresses in vivo, which are a 

direct function of transvaluvluar pressure, by altering cell stiffness via cytoskeletal 

composition, and that this relationship, in turn, affects collagen biosynthesis. To test this 

hypothesis, cell stiffness was determined by micropipette aspiration and cytoskeletal 
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quantity and collagen production of the VICs were quantified with surrogates SMA and 

heat shock protein 47 (Hsp47), respectively.  

 

2. Determine the tissue remodeling potential of AVICs in comparison to PVICs in 

vitro. We hypothesized that AVICs and PVICs will reveal differential remodeling 

capabilities, as indicated by contraction of VIC seeded free-floating collagen gels. 

Further, as we have previously examined stiffness differences between the VIC 

populations with the micropipette aspiration technique, we sought to extend our 

understanding of the VIC mechanical properties by utilizing a monolayer-seeded 

configuration and atomic force microscopy (AFM).  

 

3. Determine the AVIC-ECM connectivity and biomechanical contribution of the 

contractile AVIC to leaflet bending stiffness in situ.  We hypothesized that the AVIC 

population would present a significant effect on leaflet stiffness in the contracted and 

relaxed (basal tonus inhibited) state when tested under flexure at low strains. Evaluating 

valve leaflet tissue under flexure offers two advantages over uniaxial tension tests: (1) it 

is highly sensitive at very low strains and stresses, and (2) it allows one to probe the 

mechanical properties of different layers since bending in opposite directions will reveal 

variations in tensile and compressive layer properties.   

 

4. Determine the in situ micromechanical environment of the AVIC under varying 

degrees of circumferential strain and the possible effects of cellular stress overload. 

We hypothesized that elevated levels of circumferential cyclic strain may affect AVIC 
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phenotype and subsequent collagen biosynthesis. To test this hypothesis, porcine AVLs 

received 3 and 6 day treatments of 0, 10, and 20% circumferential cyclic strain levels at 

1Hz. To elucidate the resulting deformation of the AVICs and their nuclei at these strains, 

fresh tissues were fixed at the same strain levels and examined under TEM.   

 

5. Determine the independent and synergistic effects of cyclic tension and TGF-β1 on 

the AVIC in situ. We hypothesized that both cyclic, circumferential tension and TGF-β1 

are modulating factors for the in situ AVIC phenotype and resulting biosynthetic state; 

hence, each were examined independently and in concert to determine their resulting 

isolated and synergistic effects. This was accomplished by exposing circumferential AVL 

tissue strips to extended tissue cultures combinations of mechanical and/or cytokine 

treatments and afterwards assaying AVIC contractile and synthetic proteins, bioactive 

TGF-β1, and performing standard histology for ECM composition.  
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2.0  CORRELATION BETWEEN HEART VALVE INTERSTITIAL CELL 
STIFFNESS AND TRANSVALVULAR PRESSURE: IMPLICATIONS FOR 

COLLAGEN BIOSYNTHESIS 

As mentioned in the Introduction, the transvalvular pressures (TVPs) on the left side 

heart valves (AV and MV) are far larger than on the right side heart valves (TV and PV). In the 

AV, TVPs above ~5 mmHg predominately result in ECM compaction as the collagen fibers 

become uncrimped and taut [20]. From this ECM compaction, significant changes in the AV 

interstitial cell (AVIC) nucleus aspect ratio have been observed with increasing pressures [84]. 

The majority of valve interstitial cells (VICs) within mammalian heart valve leaflets can be 

categorized as myofibroblasts, due to their dual phenotypic characteristics of both fibroblast and 

smooth muscle like cells [76, 78, 94, 95]. While the significance of this dualistic nature is not 

fully understood, the VIC’s multifunctionality has been speculated to facilitate cell-cell 

communication, tissue remodeling, wound healing, and contraction [78]. It has been observed 

that VICs from healthy adult human and ovine valves were predominantly fibroblastic, whereas 

fetal and diseased valves contained VICs which were ‘activated’ and contractile [81]. Thus, it is 

believed that when the phenotype of the resident VIC population is myo-like, the cells are 

actively remodeling the ECM; hence, their contractility may be a function of their biosynthetic 

activity. This indicates that the VIC phenotypic state at any given time is likely related to the 

current remodeling demands of the tissue [80]. 

The primary tensile load bearing ECM component in heart valve leaflets is type I 

collagen [96, 97]. The rate of typical collagen biosynthesis in bovine valve leaflets has been 
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previously studied [98] with the MV demonstrating the highest level of hydroxyproline 

expression, while all the leaflets demonstrated comparable collagen contents. This finding 

suggests that the collagen of the MV has the highest rate of turnover of all the valves. In a 

separate study, normal, floppy, and rheumatic MVs were labeled in an organ culture with 14C-

proline to determine if there was appreciable differences in collagen biosynthesis between the 

VIC populations [99]. Both floppy and rheumatic leaflets had a significant increase in the rate of 

collagen synthesis and total protein content compared to normal valves. There was no significant 

difference in DNA content in either abnormal state, suggesting that the VIC population was not 

larger but was indeed making more collagen. Hence, it appears that the VIC likely plays an 

important role in various valve pathologies according to their synthetic state.  

Plated AVICs have been observed to deform silicone substrates in the presence of 

vasocontricting drugs [76]. Additionally, this population has been shown to generate small but 

measurable forces at the tissue level due to vasocontraction while under uniaxial tension [100]. 

Cultured human AVICs have demonstrated increased proliferation and collagen synthesis in the 

presence of vasoconstrictors [101]. This finding has lead us to speculate that the contractile state 

of VICs is related to the corresponding biosynthetic levels, and ultimately valve ECM 

homeostasis. However, it has not been shown that these two are indeed correlated. Moreover, the 

distinct TVPs experienced by the right and left side heart valves suggest different leaflet tissue 

stress levels, resulting in varying local VIC stress fields. Thus, examination of the VICs from 

each leaflet provides an excellent scenario for determining the relationship between tissue stress, 

VIC stiffness, and related biosynthetic activity. 

We thus hypothesize that VICs respond to physiological tissue stresses in vivo, which are 

a direct function of TVP, by altering cell stiffness via cytoskeletal (CSK) composition, and that 
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this relationship, in turn, affects collagen biosynthesis. This stiffness-synthesis relationship 

presumably exists since higher tissue stresses in the left side valves require greater amounts of 

collagen to be synthesized for proper valve leaflet tissue homeostasis. In the present study, cell 

stiffness was determined by micropipette aspiration and CSK quantity and collagen production 

of the VICs were quantified with surrogates SMA and heat shock protein 47 (Hsp47), 

respectively. Our goal in the present work was to conduct an initial study to investigate VIC 

functionality by examining isolated cells from healthy hearts. 

2.1 PROTOCOLS 

2.1.1 VIC Isolation and Cell Culture 

Ovine hearts (N=5) from young sheep (~10 months, ~150 lbs, Animal Technologies, Inc., 

Tyler, TX) were shipped in PBS containing antibiotics at 4°C and dissected within 24 hours of 

euthanasia. Hearts were grossly dissected in a laminar flow biologic safety cabinet using sterile 

materials. From each valve, all leaflets were excised and each was individually placed in a 35mm 

tissue culture dish; mitral leaflets were halved as they are significantly larger than the other 

leaflets. Standard tissue culture medium was used (DMEM, 10% FBS, L-glutamine supplement, 

all from Mediatech, Inc., Herndon, VA), and antibiotic concentrations were doubled while the 

leaflets remained in the culture wells to prevent infection (200μg/mL penicillin-streptomycin and 

2μg/mL amphotericin B, Mediatech, Inc., Herndon, VA). The dishes were housed in an 

incubator at 37°C, 5% CO2, and the media was changed every 2 days. When VICs appeared, the 

leaflets were removed from the dishes and cells from the same valve were combined and replated 
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in culture media with normal antibiotic levels (day 5). Endothelial cells were believed to be 

abolished after this culture time since the media used was not optimal for endothelial cell 

survival [102, 103]. VICs were carried to approximately 80% confluence, and after 12 days, the 

cells were trypsinized and cryopreserved at -80°C in DMEM with 10% DMSO. Cells from each 

valve were divided into two groups for mechanical testing and protein quantification. The cells 

were thawed and plated simultaneously so that the plating time for both mechanical testing and 

protein assay populations were the same (5 days). 

 
Figure 16.   Micropipette aspiration system schematic. Taken from [104]. 

2.1.2 Micropipette Aspiration of VICs 

Micropipette aspiration has been used to determine the mechanical response of multiple 

cell types [104-109], and the experimental setup (Figure 16) used here has been described 

previously [110]. Briefly, cells were trypsinized, pelleted (1500 rpm, 5 min), and resuspended in 

media prior to testing. For each population, 80μL of cell suspended media was aspirated and 

placed in a chamber that allows entry of a pipette from the side [108]. Capillary tubes (A-M 
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Systems, Inc,. Carlborg, WA) were fabricated into micropipettes with a pipette puller (David 

Kopf Instruments, Tujunga, CA) and then fractured with a microforge to achieve an inner 

diameter of 6-9μm. The micropipettes were then coated with Sigmacote (Sigma, St. Louis, MO) 

to prevent cell adhesion.  

Pressures were applied to the surface of a VIC through the micropipette via a custom-

built water reservoir with an in-line pressure transducer having a resolution of 1 Pa (Model no. 

DP15-28, Validyne Engineering Corp., Northridge, CA). While pressure was applied, digital 

images of the cell aspiration were recorded to a DVD-R with a CCD camera (COHU, San Diego, 

CA) through a bright-field microscope (Diaphot 300, Nikon Inc., Melville, NY), using either a 

40x or 60x oil immersion objective and a 10x wide field eyepiece (Edmund Scientific Co., 

Barrington, NJ). Applied pressure and time were both displayed on a video monitor using a 

digital multiplexer (Vista Electronics, Ramona, CA). Pipette inner diameter, cell diameter, and 

aspiration length was determined with single frame digital images analyzed after testing 

(SigmaScan, Systat Software Inc., Point Richmond, CA).  
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(a) (b) (c)(a) (b) (c)

 

Figure 17. TVIC under micropipette aspiration at (a) Initial tare pressure (56 Pa), (b) 1st pressure step increase (243 
Pa), and (c) 2nd pressure step increase (497 Pa). Drawn vertical bars show aspiration length. Horizontal reference 

bar equals 5μm. 
 

Aspiration of VICs was achieved in a three step process: 1) initial tare pressure (~50 Pa, 

60 s, Figure 17a) to assure that a seal was formed between the micropipette and the cell, 2) first 

instantaneous pressure step increase to ~250 Pa for 120 s (Figure 17b), and 3) second 

instantaneous pressure step increase to ~500 Pa for 120 s (Figure 17c). At the end of each step, 

the applied pressure and aspirated length of the cell was recorded.  

2.1.3 Derivation of the Theret Model for Cell Stiffness with Micropipette Aspiration 

Analysis of cell deformation with micropipette dates back to the mid-1970s with Evans 

and Hochmuth’s seminal studies on erythrocyte membrane viscoelasticity [109, 111-115]. As red 

blood cells are suspended in blood, examining their properties with micropipette aspiration was 

very advantageous as it very closely mimicked the physiologic in situ state. Their methods were 

soon adapted for analysis of endothelial cell viscoelasticity by Nerem and others [106, 116-118]. 

From their work, a homogeneous half-space model for analysis of endothelial cells was proposed 

[119]. This model was needed in order to form a comparative framework of analysis for 

endothelial cells that had been exposed to various flow states and therefore had altered 
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geometrical configurations (elongation). As evidenced by the title of the paper, the work was 

focused on the development of a homogenous model which utilized a half-space, as opposed to a 

plate model which was deemed as tractable but much more complicated. 

The Theret model, as it will be referred to here, uses idealized loading of a tensile stress 

applied over a circular region, which is equilibrated by the stress distribution in the contact zone 

of the cell and micropipette. Additionally, two variations of the Theret model have been 

considered: the force model and the punch model. We will deal with the punch model here as it 

has a more physically realistic boundary condition of no slip in the contact zone versus the 

boundary condition of constant force over the contact zone of the force model. The 

characteristics of the micropipette, for the use of this model, are contingent upon the inner and 

outer radii being much less than the dimensions of the cell and the radius of curvature of the cell 

in the vicinity of the contact zone. This boundary condition imposes that the cell surface 

displacement (Uz) is equal to zero within the contact zone (Figure 18). The simplified 

explanation which follows can be seen in its entirety in [119]. 
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Figure 18. Schematic of the Theret punch model and boundary conditions. Ω represents the half-space of 
the cell and Π denotes the boundary of Ω. Szz and Srz represent stresses (in cylindrical coordinates). a and b are inner 

and outer radii of the micropipette, respectively.  
 

The governing equations for an isotropic, incompressible elastic medium in the absence 

of body forces is written as  

T

 div S = 0
1 e = [grad U + (grad U) ]
2

 div U = 0
 S = -p1+2 eμ

                 (Eq.1). 

Here, S denotes the stress tenor, U the displacement vector, and e the infinitesimal strain 

tensor. The first of the four equations is the equilibrium equation, the second relates the 

infinitesimal strain to the symmetric portion of the displacement gradient, and the third stipulates 

incompressibility. The fourth is the form of the stress-strain relation appropriate for an 

incompressible medium. –p represents the mean stress, which is indeterminate. Modulus of 

rigidity (μ) is related to the Young’s modulus through  
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E = 
3

μ           (Eq. 2). 

As the model is axisymmetric, it is beneficial to use polar coordinates (Figure 18) where 

displacements are Ur and Uz; strains are err, ezz, and erz; and stresses are Srr, Srz, and Szz. 

Therefore, the boundary conditions are as follows:  

zz zz

z

rz

 S  (r,0) = p for 0 r < a,      S  (r,0) = 0 for r > b
 U  (r,0) = 0 for a < r < b
 S  (r,0) =0 for 0  br

Δ ≤

≤ <
           (Eq. 3). 

The overall complexity can be reduced to a boundary-value problem with a single scalar 

field which is identified as a constant multiple of one of two displacement potentials in for half-

space problems where only normal surface loads are present [120]. This is represented by  

z
1 U =  (z grad - e ) on 

2μ
Ψ Ψ Ω             (Eq. 4) 

where ez denotes a unit vector in the z-direction, and Ψ= Ψ (r,z) satisfies  

2   = 0 on ∇ Ψ Ω           (Eq. 5) 

and set 

 p = 
z

∂Ψ
∂

         (Eq. 6). 

It follows that div U = 0 on Ω. Therefore, if the following is set 

T1 e =  [grad U + (grad U) ]
2

 S = -p1+2 eμ
        (Eq. 7) 

it follows that the governing (Eq. 1) equations are satisfied.  

 The follow gives the displacements in cylindrical components and in terms of Ψ,  

r z
1 1 U  = z ,  U  = (z )

2 2r zμ μ
∂Ψ ∂Ψ

− Ψ
∂ ∂

        (Eq. 8)  

 49 



and the components of stress are represented by  

2 2

rr zz rz2 2S  = - z , S  =  - z ,  S  = z
z r z z r

∂Ψ ∂ Ψ ∂Ψ ∂ Ψ ∂ Ψ
+ +

∂ ∂ ∂ ∂ ∂

2

z∂
           (Eq. 9).  

To move forward in the solution of this problem, it is necessary to introduce the potential  

1  = 
p

χ Ψ
Δ

        (Eq. 10). 

With equations c, e, and i, χ is found to be the solution to the mixed boundary-value problem 

2  = 0 on 

  = 1 for z = 0 and 0  r < a

  = 0 for z = 0 and r > b

  = 0 for z = 0 and a < r < b

χ
χ

χ

χ

∇ Ω
∂

≤
∂
∂
∂

z

z

        (Eq. 11). 

To reduce the system of mixed problems above to a linear integral equation, the 

following adapted scheme was devised in the 1960’s by Collins [121]  

a

2 2
0

1 g(S) b-t b-S 2  g(t) + 2 sin -2tln  dS = - t, 0  t  a
t -S2 b+t b+Sπ π

⎡ ⎤⎛ ⎞ ⎛ ⎞ ≤ ≤⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫        (Eq. 12).  

In terms of g, the potential χ appears as  

( ) ( )

( )( ) ( )

a

1/ 2 1/ 22 2 2 2
0

1/ 2 1/ 22 2
b

1 1 1 (r,z) = g(t)  dt 
2i r +(z-it) r -(z+it)

1 1 1            +  j(t)  dt
2 r2+(z+it)r2+ z-it

χ

∞

⎡ ⎤
⎢ ⎥−
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

∫

∫

         (Eq. l3). 

where 
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( )
( )

a

0

1/ 22 2 1/2i

1/ 22 2 -1/2i

2 2 2 2

2

2 Sg(S) 1 g(S)j(t) =   dS =   dS, t > b
t2-S2 t-S

 r +(z+it)  = e  

 r +(z-it)  = e  

   0, 0 <   
 cos  = r +z -t
 sin  = 2zt

η

η

π π

ξ

ξ

ξ η π

ξ η

ξ η

≥ ≤

∫

         (Eq. 14)  

The surface profile is described by 

a

z 2 2
r

r

2 2
b

3 p g(t) U (r,0) = -  dt for 0  r < a
2E t -r

              = 0 for a  r  b

3 p j(t)              =  dt for r > a
2E r -t

Δ
≤

≤ ≤

Δ

∫

∫

       (Eq. 15) 

and the contact pressure between the micropipette and the cell is given by  

a

zz 2 2 2 2
0 b

p d tg(t) tj(t) S (r,0) = - dt - dt ,  a < r < b
r dr r -t t -r

∞⎡ ⎤Δ
⎢ ⎥
⎣ ⎦
∫ ∫       (Eq. 16). 

The length is described as  

a

z
0

3 p g(t) L = -U (0,0) = - dt
2E t
Δ

∫       (Eq. 17). 

 To simplify the analysis and make apparent the role of the wall parameter in the model it 

is useful to introduce the following relation 

 y(x) = g(ax), 0  x  1
a
π

≤ ≤       (Eq. 18). 

Using the integral equation for g (Eq. 11) and the relation above, the integral equation for y is 

1

2 2 2
0

2 1+ -x 1+ - y( ) y(x)+ ln xln d  = -2x, 0  x  1 
1+ +x 1+ + x -

η η ξ ξξ ξ
π η η ξ ξ

⎡ ⎤⎛ ⎞ ⎛ ⎞
− ≤⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ≤      (Eq. 19). 
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From here, it is evident that y depends on a and b only through the wall parameter, η, and this is 

emphasized with the notation of y(ξ;η) Therefore, form Eqs. 17 and 18 the following 

relationship is achieved 

1

0

L 3 p y( ; )  = ( ),  ( ) = - d
a 2 E

ξ ηη η
π ξ
Δ

Φ Φ ∫ ξ        (Eq. 20). 

and through numerical integrations using Eqs. 17, 14, and 13 it can be found that value of Φ(η) 

is essentially ~2.1 for values of η from 0.1 to 1.  

2.1.4 Determining Cell Stiffness with Micropipette Aspiration 

From the previous section, the effective stiffness, E, of the cell was determined with a 

half-space model, to demonstrate the intrinsic stiffness of cell populations and was not intended 

to fully characterize the mechanical behavior of the cells. With this model, E of the cell is given 

by  

3aE = ( )
2 L

η
π

Δ
Φ

p        (Eq. 21) 

where Φ(η) is defined as the wall function, and is set equal to 2.1 (dimensionless parameter 

calculated from the ratio of the pipette inner radius to the wall thickness); a is the micropipette 

inner radius and ΔP/L is determined from the slope of the applied pressure versus aspirated 

length of the cell.  
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2.1.5 Quantification of VIC Protein Levels 

SMA and Hsp47, which interacts with procollagen in the endoplasmic reticulum (ER), 

were quantified by ELISA for CSK and synthesized collagen protein levels, respectively. Hsp47 

is believed to bind to procollagen after it enters the ER and dissociates prior to secretion [122], 

and it has been shown that type I collagen synthesis is dependent upon Hsp47 levels [123]. In 

Rocnik et al., they demonstrated that selectively transfecting smooth muscle cells with a 

retrovirus containing Hsp47 cDNA resulted in increases of both intra- and extracellular steady 

state type I collagen production. Furthermore, Northern blots of total RNA from their cells 

showed a tandem increase in both Hsp47 and procollagen. Hence, Hsp47 was deemed a suitable 

surrogate for type I collagen in this study.  

A 96 well plate was prepared by coating the entire surface of each well with 100μL of 

primary antibody. The primary antibodies were prepared as 2 ng/mL of monoclonal mouse anti-

Hsp47 (Clone M16.10A1) or monoclonal mouse anti-SMA (all from AbCam, Cambridge, MA). 

The plate was wrapped in parafilm and incubated for 24 h at 20°C. Prior to use, each well was 

washed 4x with 400 μL of wash buffer (0.01% PBS-T). 400 μL of blocking buffer (1% BSA, 5% 

sucrose in 0.01% PBS-T) was added to each well and incubated for 1 h at 20°C. Wells were 

washed again 4x with wash buffer, allowed to air dry, and sealed in parafilm until used. 

VIC populations were lysed with RIPA buffer (100mM Tris-HCl, 150mM NaCl, 1% 

DOC, 1% Triton X-100, 1 gm/mL SDS/dH2O), scrapped, and placed on ice for 10 min. The 

solution was pelleted for 10 min at 14,000 rpm at 4°C. Following, the DNA was carefully 

removed with a P200 tip, and the supernatant was removed and stored at -20°C. Total protein 

was determined for each population with BCA kit (Pierce, Rockford, IL). 100μg/mL of VIC 
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lysate protein was added to the wells along with 100 μL of antibody diluent (1% BSA, 0.1% 

PBS-T) and allowed to incubate at 20°C for 2 h; each sample was assayed in triplicate. Wells 

were washed 4x with wash buffer. 100 μL of detection antibody (polyclonal rabbit Hsp47 or 

polyclonal rabbit SMA, AbCam, Cambridge, MA) was added at 1:1000 with antibody diluent. 

Wells were washed 4x with wash buffer. 100 μL of tag antibody (goat anti-rabbit HRP, AbCam, 

Cambridge, MA) was added at 1:1000 with antibody diluent and 0.1% Tween. Wells were 

washed 4x with wash buffer. 100μL of TMB “Sure Blue” Peroxidase Substrate 1 (KPL, 

Gaithersburg, MD) was added for 20 min while covered. 50 μL of stop solution (1N HCl) was 

then added. CD31 was determined with a commercial ELISA kit (#850.710.192, Cell Science 

Inc., Canton, MA). Plates were read with a Versumax plate reader (Molecular Devices, 

Sunnyvale, CA) using a 4-PL curve with standards and samples at 450 and 570 nm (450 and 620 

nm for CD31).  

In order to demonstrate the actual in situ biosynthetic and cytoskeletal state of VICs, 

single leaflets from two additional ovine heart valves were assayed for SMA and Hsp47. Leaflets 

were acquired and assayed as above, with the exception that these were sonicated and 

homogenized. This was a key validation step that was intended to simultaneously show the 

difference between in vitro and in situ cell states, while also demonstrating that any changes 

resulting from in vitro isolation occurred proportionally among all the valves. 

2.1.6 Statistics 

Cell stiffness, dimensional measurements, and ELISA absorbance values are expressed as 

mean ± one standard error. Statistical differences were determined by one-way ANOVA test and 
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group comparisons were determined with the Tukey post-hoc test; p<0.05 was deemed as 

statistically significant. Data correlations were determined from mean values using a Pearson-

product moment correlation and are reported with the correlation coefficient, r, and the 

associated p value. (SigmaStat, Systat Software Inc., Point Richmond, CA). Variable pairs with 

positive correlation coefficients and p values below 0.05 tend to increase together. 

2.2 RESULTS 

2.2.1 VIC Stiffness 

VICs from the four valves of two hearts (H1 and H2) were successfully tested, along with 

additional AVICs and TVICs from a third heart (H3). Stiffness results of VICs were pooled 

together to make up the total cell populations (TVIC, n=21; PVIC, n=17; MVIC, n=18; AVIC, 

n=25); pooling was deemed appropriate after no difference was found between VICs from the 

same valve source between hearts (i.e. AVICs were not different between H1 and H2). Average 

ΔP/L values for the VIC populations demonstrated two distinct mechanical responses (Figure 

19a). The E values for AVIC (E=0.449 ± 0.024 kPa) and MVIC (0.479 ± 0.025 kPa) populations 

were significantly stiffer (p<0.001, Figure 19b) than those of the PVIC (0.276 ± 0.023 kPa) and 

TVIC (0.285 ± 0.030 kPa) populations. No differences were found between the AVIC and MVIC 

stiffness, nor the PVIC and TVIC stiffness. Additionally, there were no differences between cell 

or micropipette diameters (Figure 20a) or the ratio of these two (Figure 20b). This indicates that 

there was not an influence from of the testing geometries on the results affecting the results.  
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Figure 19. (a) Applied pressure versus VIC aspirated length. Note the distinct response between the left and right 

Figure 20. (a) Cell and pipette mean diameters. (b) Ratio of ll/pipette diameter. No significant difference was 

2.2.2 VIC Protein Quantification 

VICs from H1 and H2 were assayed for SMA and Hsp47 protein levels. ELISA 

absorbance results (in pg/mL) for each showed that, consistent with the stiffness results, the 

AVIC (SMA 616.77 ± 2.26, Hsp47 411.57 ± 2.35) and MVIC (SMA 612.68 ± 2.66, Hsp47 

395.62 ± 2.21) protein levels were significantly greater (p<0.001) than the PVIC (SMA 495.63 ± 

istent with the stiffness results, the 

AVIC (SMA 616.77 ± 2.26, Hsp47 411.57 ± 2.35) and MVIC (SMA 612.68 ± 2.66, Hsp47 

395.62 ± 2.21) protein levels were significantly greater (p<0.001) than the PVIC (SMA 495.63 ± 
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n=cells tested for each valve type. 
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2.37, Hsp47 317.63 ± 4.86) and TVIC (SMA 367.18 ± 4.91, Hsp47 244.52 ± 3.58) proteins 

(Figure 21a). No differences were found between the AVIC and MVIC protein levels, nor the 

PVIC and TVIC protein levels. Additionally, the protein levels of in situ VICs (H4 and H5) 

revealed similar differences, with the left side valve proteins significantly greater (p<0.05) than 

the right side valve proteins (Figure 21b). There were also clear similar trends with increasing 

protein levels from the tricuspid to the AV in both the in vitro and in situ VICs (Figures 21a and 

21b). However, the in situ VICs had a 3-fold greater level of both Hsp47 and SMA compared to 

the in vitro VICs. Note that PVL and MVL Hsp47 values were not statistically different (* 

denotes p=0.786, Figure 21b). Results from the CD31 ELISA (TVIC, 63.33 ± 12.29; PVIC, 95 ± 

16.28; MVIC, 68.33 ± 23.30; AVIC, 76.50 ± 16.80) revealed that there were very few 

contaminating endothelial cells in any of the cultured VIC populations compared to the 

manufacturer’s positive control (9608 ± 154), hence the tested cells were almost certainly 

fibroblasts or myofibroblasts. 

Figure 21. ELISA results for SMA
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 and Hsp47. (a) SMA and Hsp47 absorbance from the in vitro VIC populations. 

Significant difference was found between the AVIC and M IC populations compared to the PVIC and TVIC V
populations (p<0.001). Additionally, the PVIC protein levels were significantly greater than the TVIC levels. (b) 

SMA and Hsp47 absorbance from in situ VICs of explanted heart valve leaflets (TVL, PVL, MVL, AVL). Note the 
difference in the data range (y-axis) for the in situ VIC samples compared with the in vitro VICs. As with the in 

vitro VICs, the left side valve protein levels were significantly greater (p<0.05) than the right side valve levels, and 
the PVL levels were greater than the TVL. Hsp47 was not statistically different between the MVL and PVL groups 

(* denotes p=0.786). 
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2.3 DISCUSSION 

2.3.1 Measured Differences between Right and Left Side VICs  

This is the first known study po al properties, as well as the possible 

. The findings of this study 

revealed that AVICs and MVICs are significantly greater than PVICs and TVICs with respect to 

cell stif

The VIC phenotype has been observed to be both plastic and reversible depending on the 

e  development, disease, and adaptation [81]. In that study, it 

was found that 2.5% of the VIC population in normal adult human and ovine valves was SMA+, 

wherea

to re rt VIC mechanic

implications of these measurements on valvular collagen biosynthesis

fness, CSK protein content, and collagen production as determined by SMA and Hsp47 

surrogates, respectively. These results represent an initial attempt to elucidate the differences in 

VIC function between the four heart valves.  Though these in vitro measurements on isolated 

VICs provide an indirect examination of VIC functionality, they do serve to support the 

hypothesis that local stress does affect VIC mechanical and biosynthetic properties in vivo. 

2.3.2 VIC Phenotypic Plasticity  

remod ling state of the tissue due to

s the “developing/activated/diseased” states were significantly higher (19%-62% SMA+). 

Additionally, the phenotypic characteristics of AVICs have been shown as distinct from aortic 

smooth muscle cells in that they have increased ability to synthesize matrix components in 

collagen gels [69]. While it has long been known that the VIC phenotype is dualistic in nature 

[76, 78, 94], it has remained unclear what implications this has on valve function and 

biosynthesis.  
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It has been speculated that the contractility of the VIC population may serve in some 

biomechanical capacity with respect to valve function [100]. However, the contractile forces 

generat

hen contractility is induced by vasoconstrictors. 

2.3.3 

he vicinity of a cell are highly dependent on a number of 

factors, including cell shape, orientation, and the relative properties of the cell and ECM [124].  

Thus, i

ed by the cells are many orders of magnitude below the forces imposed on the leaflets 

during normal valve function [100]. In addition, the delivery of endothelin-1 or KCl levels 

needed to elicit a measurable contraction within the leaflets is unrealistic in vivo. While VIC 

contractile forces are too small to affect valve function, it has been demonstrated that the 

vasoactive agent 5-hydroxytryptamine induces mitosis and collagen synthesis in cultured VICs 

[101]. Taken together, these studies reveal the VIC population as: 

1) Phenotypically dynamic 

2) Contractile when remodeling is necessitated 

3) Mitogenic and secretory w

VIC Functional Correlations  

The local stress-strain fields in t

t is not clear how the pressures imposed on different sides of the heart translate into local 

stress on the VICs. To answer this question a multi-scale mechanical analysis is necessary, which 

is a function of many factors including leaflet dynamic geometry [125], leaflet mechanical 

properties [19], tissue layer thickness and composition [97], and VIC-ECM connectivity. 

Clearly, proceeding from the organ to the cell and subcellular levels is a complex progression 

(Figure 22). Hence, predictions of the effects of TVP on cellular level stress are still largely 

speculative at this time, and sophisticated computational models and experimental validation 

data are needed to further describe this relationship.  
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 Figure 22. Hypothesized mechanism by which transvalvular pressure translates into local tissue stress on the VIC 
and the resulting response. 
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While we do not know the precise local VIC stress state, we believe that the higher left 

side pressures do translate into some increase in local stress on the VICs. For instance, when the 

VIC stiffness measured in this study is plotted versus the maximum TVP [83] experienced by the 

respect

tionship implies that VICs are responsive to their 

mechan

ive valves (Figure 23a), there appears to be a strong dependence on the stress level 

imposed on the cells (r=0.974 with p=0.026). Moreover, the normal AV leaflet is ~700 μm thick 

while the PV is ~400 μm thick. This 2-fold difference in thickness between the PV and the AV is 

small compared to the 8-fold difference in their resting TVPs, further suggesting that left side 

VICs are subjected to elevated stresses. 

Relations between the CSK protein (SMA) and the collagen biosynthetic protein (Hsp47), 

were also strong (Figure 23b). The correlation coefficient for the SMA vs. Hsp47 relationship 

was r=0.996 with p=0.004. This rela

ical environment in order to maintain proper tissue homeostasis.  The increased SMA in 

left side VIC populations suggests that the cells are adapted for the stresses imposed on them, 

while the increased Hsp47 is necessarily expressed to synthesize larger amounts of collagen, the 

primary structural component of heart valves. Furthermore, SMA and Hsp47 quantified from 

VICs in situ reveal a similar correlation, though not as strong (r=0.923, p=0.077, Figure 23c). 

More importantly is the fact that though the in situ VICs contain higher levels of both proteins, 

their relative levels remained consistent after the cells were isolated from the tissue. This result 

validates that the VICs tested in vitro retained the majority of their in situ characteristics. 
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Figure 23. Functional co s plotted versus maximum 
TVP (at rest) experience his relationship was 0.973. 

(b) Hsp47 absorbance rrelation between the two 
proteins (r = 0.996) as t Hsp47 absorbance versus 
SMA absorbance from Though the protein levels 

were much higher (~3x) in the in situ VICs, note the similar slope of the linear regression when compared with (b). 
The correlation coefficient was less for the in situ VICs, however it was still good (r = 0.923).. 

rrelations of E vs. TVP and Hsp47 vs. SMA. (a) Stiffness of VIC
d by their respective valves. The correlation coefficient (r) for t
versus SMA absorbance from in vitro VICs. Note the strong co
he one progresses from the right to the left side of the heart. (c) 

 in situ VICs from heart valve leaflets (TVL, PVL, MVL, AVL). 
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While our data show a strong correlation between SMA and Hsp47 of VICs, the 

mechanism underlying this relationship is not clear. It can be speculated that SMA (or Hsp47) 

expression is the byproduct of Hsp47 (or SMA) expression, or the two may be up-regulated 

simultaneously. The correlation coefficient found for this relationship simply indicates that the 

two are correlated, but does not assign one as the dependent variable.  

A full explanation of the mechanisms behind these correlated protein expressions is 

beyond the scope of the current study; however, other groups have reported findings that shed 

light on this collagen-CSK relationship. Previously, it was found that in human wound closure, 

myofibroblasts were associated with thicker collagen fibers exclusively, and wound contraction, 

presumably facilitated by the SMA+ cells, contributed to 88% of closure [126]. In another study, 

human dermal fibroblasts expressed SMA upon confluence when plated in monolayer culture at 

low density; however, this expression was reduced by 50% when the cells were covered with a 

collagen lattice for 24 hours [127]. This finding was believed to be due to inhibition of cell-cell 

communication via cadherins, which was speculated to interrupt the communicative tension from 

cell to cell needed to maintain a contractile phenotype. Collagen fibril formation in vascular 

smooth muscle cells has been observed as dependent upon both integrins and actin filaments 

[128]. Forming fibrils were found parallel to actin microfilament bundles. Additionally, 

incubating the cells with cytochalasin D resulted in noinhibited collagen fibril assembly, while 

cells transduced with dominant-negative RhoA developed minimal collagen fibril assemblies. 

These findings using different myofibroblast cells support our results of VIC collagen synthetic 

activity as functionally linked to SMA content. 
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2.3.4 

+ cells with longer culture 

times [

lts.  Ultimately, it would be most appropriate to 

measure cellular stiffness in situ; however, mechanical testing of intact cells is much more 

complex, as boundary conditions are difficult to define. Therefore, while we feel confident that 

our current results demonstrate actual differences in VIC mechanical behavior, one must be 

Limitations of Study  

VICs in the present study may have different functional and biosynthetic properties than 

VICs in situ due to the platting technique used to isolate the cells. It has been previously found 

that VIC populations isolated in a similar fashion had increasing SMA

129]. To quantify the biosynthetic changes that were incurred due to the isolation of the 

cells, we compared the in vitro and in situ VIC protein levels. Our results demonstrate that with 

respect to SMA and Hsp47, the VICs were performing at a relatively normal, though diminished 

capacity in vitro (Figures 23b and 23c), and it should be noted that changes were proportional 

among all valves. Finally, the indirect methodology of quantifying collagen biosynthesis via the 

Hsp47 surrogate was utilized to avoid using radioisotopes, which are costly and potentially 

harmful. While previous works have shown a dependence of collagen biosynthesis on Hsp47 

quantities at the RNA level [122, 123], the exact constitutive dependence of the relationship has 

not yet been determined to the authors’ knowledge. 

Cell stiffness may also be altered as the CSK filaments are relieved of stress at their focal 

adhesions when the cells are removed from the tissue. Additionally, the monolayer culture time 

used to expand the VICs (22 days) likely had an effect on the properties measured here. 

However, all VICs were obtained and cultured under identical conditions, which allowed for 

comparison between properties of the cells, and significant differences were apparent. While we 

hypothesized that these properties were different between the valves, we do not believe that the 

in vivo VIC can be fully described by these resu
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cautio s to use these values u for a comprehensive model of valve mechanics or remodeling 

capabilities.  

p47 is a potential biomarker for a number of 

disease

2.3.5 Role in Valvular Physiology, Pathology, and Tissue Engineering  

On the most fundamental level, our results suggest the physiological differences of VICs 

isolated from healthy ovine hearts. It is feasible that the stiffness-synthesis relationship that 

persists for VICs may be applicable to cells of other tissues exposed to cyclic loads (blood 

vessels, tendons, ligaments, myocardium, etc.). With regard to valve physiology and pathology, 

this normal VIC functional relationship is likely not conserved in degeneratively diseased or 

genetically malformed valves (e.g. bicuspid aortic leaflets) as they typically present with fibrosis 

and altered collagen architectures, respectively. In fact, over-expression of Hsp47 has been found 

in multiple fibrotic diseases and is associated with fibrosis following myocardial infarction 

[130]. This finding has led to the suggestion that Hs

s, and we speculate that heart valves may appropriately be added to this repertoire of 

aforementioned tissues that are prone to fibrotic disease. 

Defining the functional endpoints of engineered tissues from native tissue states based on 

the properties and function of native tissues has been understudied to date. The relations shown 

here may serve as a useful index of VIC functionality for tissue engineered heart valves 

(TEHVs). Currently, most TEHVs are constituted from non-valvular cell sources and monitoring 

their adaptation during development is critical. As this study involved young healthy sheep, the 

in vitro development of a TEHV could be compared to this relationship to determine if TEHV 

cells are experiencing proper local tissue stress. For instance, a tissue engineered PV would not 

require the same developmental endpoint before implantation that a tissue engineered AV would. 
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Hence, this SMA-Hsp47 relationship could prove beneficial for assigning homeostatic cellular 

endpoints and tracking VIC destiny under different loading regimes. 

2.3.6 Summary  

This work is the first to report VIC stiffness and the correlation with TVP, and the 

subsequent implications on biosynthesis of collagen proteins. These results suggest a conserved 

homeostatic VIC state from the right to the left side heart valves which are exposed to largely 

different TVPs. Additionally, demonstrated differences were observed between the in vitro and 

in situ VIC biosynthetic function, which reveals the effect of isolation and extended culture on 

VICs. Future work will aim at understanding the in vivo local stress environment of the VIC, 

with special attention given to the tensile loading strain rate, which is germane to valves only 

[131], and the cell-ECM junctions via integrins.   
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3.0  VISCOELASTIC PROPERTIES OF THE AORTIC VALVE INTERSTITIAL 

CELL  

durability of the constituent tissues is maintained by the population of interstitial cells (AVICs). 

ic biomechanical environment in which AVICs reside, recent work has 

examined the mechanical stimuli-dependent biosynthetic and contractile response of these cells 

[132-134]. In these studies, many idealized assumptions have been made regarding the 

toskeleton (CSK) [132, 

133], cell-ECM connectivity [29, 100], and the in-vivo deformations during the cardiac cycle 

[84]. Ultimately, while all these assumptions are appropriate for initial studies, they have 

universally assumed that AVICs are elastic, homogenous materials.   

The primary mechanical modes of loading of the AV leaflet are flexure during opening 

and closing, shear stress while open, and planar tension when closed. During diastole (closed 

valve) the AV is exposed to ~80 mmHg transvalvular pressure, which translates to ~250-400 kPa 

average tissue stress. We recently observed that valve interstitial cells from the aortic and mitral 

valves were significantly stiffer (p<0.001) than those from the pulmonary and tricuspid valves 

[132]. Moreover, AVICs undergo very large deformations during valve closure [84] which occur 

at very high rates, with AV opening and closure occurring in ~0.05 s [131].   

While the primary biomechanical function of the AV is at the organ level, the long term 

Due to the dynam

mechanical properties of the AVIC and their relation to the underlying cy
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In our previous study of AVIC mechanical properties [132], viscoelastic effects were 

ignored and only the equilibrium stiffness E∞ was reported after signs of viscoelastic creep had 

apparently dissipated (>100 s). Hence, in the present study we sought to quantify AVIC 

viscoelastic properties using micropipette aspiration. We then performed simulations of loading 

during valve closure and subsequent creep and stress relaxation during diastole to estimate if 

viscoelastic effects play a significant role in AVIC deformation, and therefore mechanobiology. 

3.1 PROTOCOLS 

Ovine AV leaflets were harvested from a young lamb upon sacrifice. The leaflets were 

2

as strained with a 0.5 μm 

cell str

3.1.2 Viscoelastic Micropipette Aspiration of AVICs 

The micropipette aspiration system and setup used here has been described previously 

[104, 132]. Briefly, AVICs were trypsinized, pelleted (1500 rpm, 5 min), and resuspended in 

media prior to testing. 80μL of cell suspended media was aspirated and placed in a chamber that 

allows entry of a micropipette from the side [108]. Capillary tubes (A-M Systems, Inc,. Carlborg, 

3.1.1 AVIC Isolation 

dissected, surfaces scrapped with a razor blade to remove all endothelial cells, minced into 1x1 

mm  pieces, and digested with collagenase A (Sigma, St. Louis, MO) for 30 min with gentle 

rotation (10 rev/min). Following digestion, the cell-tissue solution w

ainer. The population was plated in complete media (DMEM, 10% FBS, 1% pen/strept, 

and 0.5% fungizone, all from Gibco) for 10 days. 
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WA) w

 

bright-field microscope (Diaphot 300, Nikon Inc., Melville, NY), using a 40x oil immersion 

objective and a 10x wide field eyepiece (Edmund Scientific Co., Barrington, NJ). 11 AVICs 

were tested by applying a tare pressure of ~50 Pa

f ~500 Pa. Aspiration length was recorded until the cell had reached 

equilibrium and no more displacement was detectable (~100 s).  

ation is finite, with the pressure ramped from 

zero to maximum over several seconds. We thus utilized Boltzmann superposition [135] to 

LS model 

ere fabricated into micropipettes with a pipette puller (David Kopf Instruments, Tujunga, 

CA) and then fractured with a microforge to achieve an inner diameter of 7-9μm. Pressures were 

applied to the surface of an AVIC through the micropipette via a custom-built water reservoir 

with an in-line pressure transducer having a resolution of 1 Pa (Model no. DP15-28, Validyne 

Engineering Corp., Northridge, CA). While pressure was applied, digital images of the cell 

aspiration were recorded to a DVD-R with a CCD camera (COHU, San Diego, CA) through a

 for 60 s, then a single step pressure was applied 

for a inal pressure of 

3.1.3 Viscoelastic Models of AVIC Deformation 

In much of the micropipette aspiration literature a standard linear solid (SLS) model is 

typically utilized under the assumption of instantaneously applied aspiration pressure [104]. 

However, the loading time for micropipette aspir

account for aspiration length creep during loading in the S

tt
2 1 2a k dP (k k )L(t) 1 e d ,ε

−
τ

⎡ ⎤φ μ +
= − τ τ =⎢ ⎥

1 1 2 1 20 k k k d k kεπ +∫        (Eq. 22), 
τ⎢ ⎥⎣ ⎦

where φ is defined as the wall function (a dimensionless parameter calculated from the ratio of 

the pipette inner radius to the wall thickness) and is set to 2.1, a is the micropipette inner radius, 

dP is instantaneous differential step pressure, L(t) is the measured aspiration length at time t, and 
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k1, k2, and μ are the SLS model parameters. We refer to this model as the Boltzmann SLS 

(BSLS) throughout for clarity. The traditionally used SLS model simply employs a ΔP term and 

assumes application of a Heaviside step function such that the applied pressure is achieved at 

t>0. Parameter values were determined by fitting each t-L(t) experimental response with the 

BSLS and SLS models using the Marquardt Levenberg algorithm [136] (MathCad, MathSoft). 

From the parameters, the instantaneous stiffness E0=3/2(k1+k2) and equilibrium stiffness (E∞=3/2 

k1) were determined. 

3.1.4 Simulations of AVIC deformation under physiologic loading rates 

With parameters determined for the BSLS and SLS, the following simulations were 

performed based on the micropipette aspiration test. Using a loading time for full AV closure of 

sponse at physiologic loading rates using a 

linear pressure ramp which applied a 500 Pa pressure in 0.05 s. Next, we explored the potential 

effects 

 AVIC while loading in the 

micropipette aspiration experiments mentioned above in 0.05 s, then held for an additional 0.3 s. 

All results and parameter values are reported as mean ± standard error (SEM). 

~0.05 s [137], we estimated the AVIC deformation re

of AVIC viscoelasticity by simulating creep and relaxation over a typical diastolic time 

period (when the AV is closed and the AV tissue fully loaded) of 0.3 s. For creep, simulations 

proceeded from using the same loading history as described above, with the 500 Pa aspiration 

pressure held for an additional 0.3 s. Similarly, stress relaxation was quantified by applying a 

linear aspiration length ramp to the level achieved for that particular
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3.2 RESULTS 

3.2.1 AVIC Time-Dependent Response to Micropipette Aspiration 

 The average applied pressure to the AVICs during the micropipette aspiration tests was 

519 ± 36 Pa, and the average ramp time to apply the pressure was 2.48 ± 0.31 s. This applied 

pressure history resulted in an AVIC response similar to other cells, with a large initial change in 

aspiration length which began to plateau at ~60 s (Figure 24).  Both model parameter values 

(Table 1) were typical of cells measured previously [104]. 

 

Figure 24. Representative response of an AVIC under micropipette aspiration (circles) with both the SLS and mSLS 
model fits. Inset stable shows determined parameters from both models. 
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Table 1. Calculated par LS and mSLS 

AVG ± SEM AVG ± SEM
k1 (Pa) 188.32 49.36 119.83 20.16
k2 (Pa) 613.88 130.52 650.65 92.68

ameters from S

n=11     
AVICs

μ (Pa-s) 3479.09 563.24 2591.18 368.13
τ (s) 37.04 7.02 31.08 5.31

Eo (Pa) 1203.29 262.11 1155.73 149.08

   

R2 0.980 0.003 0.967 0.004

E∞ (Pa) 282.48 74.05 179.75 30.25

SLS model      BSLS model        

 

3.2.2 AVIC Loading Simulations  

To explore the rate dependent influence of viscous effects during AV closure, we

lated aspiration length-time responses for 0.05, 0.5, 2.5, and 5.0 s loading tim

ters determined for the AVIC and the BSLS model. For near physiological loading rates 

we observed little viscous effects (Figure 25a). At 0.5 s, there were negligible viscous effects

(0.74 ± 0.21% increase) versus 0.05 s loading. However, at 2.5 and 5.0 s the viscous effects were 

very pronounced (36.59 ± 9.35% and 66.84 ± 15.20% increases, respectively) comp

0.05 s loading case (Figure 25b).  
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 (Table 2). These basic simulations suggest that during 

diastolic loading timescales viscous-dependent deformations can occur in AVICs. For the SLS 

model, average creep during diastole was 7.92 ± 1.88%, and similarly, the average stress 

relaxation during diastole was 7.35 ± 1.51% (Table 2). 

 

 

 

Figure 25. (a) Viscous effects due to varying simulation loading times for an AVIC at 0.05, 0.5, 2.5 and 5.0 s. (b) % 
increase in simulated aspiration length at the end of the applied pressure ramp versus 0.05 s. As loading time 

increases, viscous effects are more pronounced. While below 0.5 s viscous effects appear to be negligible, it is 
interesting to note that at 2.5 s, the time needed to apply pressure during the micropipette aspiration experiment, 

viscous effects are very pronounced. 

3.2.3 Creep and Stress Relaxation Simulations  

Using the BSLS and SLS models, the representative creep and stress relaxation 

simulations, respectively, are shown for the same cell (Figures 26 and 27). For the BSLS model, 

average creep during diastole was 4.65 ± 1.34%, and similarly, the average stress relaxation 

during diastole was 4.39 ± 1.12%
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Figure 26. Representative creep simulation response for an AVIC loaded to 500 Pa in 0.05 s and held for 0.3 s usin
both the BSLS and SLS models. 
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Figure 27. Representative stress relaxation simulation response for an AVIC aspirated to 2.3 μm in 0.05 s and held 
for an additional 0.3 s using both the BSLS and SLS models. Note that 4.96 μm was the actual aspiration length 

occurring for that AVIC during the micropipette aspiration experiments.  
 

Table 2. Micropipette aspiration simulations of stress relaxation and creep using the parameters from Table 1. For 
both simulations, a loading time of 0.5 s was used, followed by a 0.3 s period where either L or P were held constant 

for stress relaxation and creep simulations, respectively. 
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3.3 DISCUSSION 

3.3.1 Physiologic Relevance of AVIC Viscoelasticity  

In the present study, AVIC viscoelastic behavior over physiological timescales was 

simulated using micropipette aspiration, a well established technique for the study of cell 

biomechanics. Our goal was to examine the potential for viscoelastic contributions to in-vivo 

deformation during AV loading, as well as changes during diastole when the AV is closed. A 

model incorporating Boltzmann superposition (BSLS) was used, as the rapid loading times (0.05 

s) that occur in the valve could not be attained with the micropipette aspiration testing system. 

As the AVIC in vivo deformations have only begun to be explored [138], we used micropipette 

aspiration tests to emulate this response. Physiologic loading, creep, and stress relaxation 

Interesting ales there were 

negligible effects of viscoelasticity on AVIC deformation (Figure 25). Not surprisingly, this 

rate effects occur. Interpretation of these results suggests an elastic response of the AVIC during 

physiologic loading times. Yet, under a diastolic time frame of 0.3 s, model simulations for creep 

and stress relaxation suggest that some degree of time-dependent deformation can occur 

(Figures 26 and 27). Thus, our simulation results suggest that, while not large, AVIC time-

dependent deformations may occur when the AV is closed.   

simulations were performed as bounds on possible in-vivo AVIC behavior. 

ly, we observed that under physiologic loading time sc

result suggests that the 0.05 s loading times are sufficiently fast enough that no cellular strain 
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3.3.2 Use of Boltzmann Superposition fo spiration Analysis   

ine in viscoelastic modeling [135] and 

utilized in most biomechanical testing modalities, it is surprisingly absent in most micropipette 

aspirati

at AFM gives a more accurate 

representation of the mechanical properties of the cell than micropipette aspiration as the cells 

are generally attached to an underlying substrate such that the CSK is extended and rigid as it is 

anchored at focal adhesions. This configuration is in contrast to testing with micropipette 

r Micropipette A

While the use of Boltzmann superposition is rout

on studies. The commonly used SLS model [104] ignores any creep that occurs during 

application of the pressure (~2.5 s in this study), which we believed to be important for study of 

the AVICs. The use of the SLS model in this case resulted in decreased parameter values for k1 

and μ and increased parameter value for k2 versus the BSLS (Table 1). These changes in model 

parameters produced substantial differences in predicted creep and relaxation responses (Figures 

26 and 27). While not large for valvular timescales, these results suggest that for AVIC 

mechanical studies one needs to be cognizant of time-dependent effects that occur during the 

experiment. Clearly, implementation of the correct model could prove beneficial for highly 

viscoelastic cellular studies.  

3.3.3 Limitation of Study 

Previously, the stiffness of ovine AVICs measured by micropipette aspiration [132] and 

porcine AVICs measured with atomic force microscopy (AFM) [133] has been reported. In the 

current study, micropipette aspiration was used to examine the viscoelastic properties of the 

ovine AVIC, which are primarily influenced by the cell membrane and unanchored cytoskeleton. 

From a biomechanics perspective, it can be argued th

 77 



aspiration where the CSK is largely free and not in a physiologic state as the cells float in a 

solution. However, the AFM testing modality does not lend itself well to high speed testing and 

examin

 the micropipette aspiration loading configuration suggest the 

loading time for the AVIC is sufficiently fast that viscous effects are negligible. However, during 

e is subjected to its largest planar stresses, viscoelastic effects may 

contribute to AVIC deformations. These results are believed to be important for 

mechan

ation of viscoelastic properties.   

Regardless of the specific testing modality, the biomechanical environment of the AVIC 

remains ill defined. Current evidence suggests that AVICs are tightly attached to the surrounding 

ECM [29, 139] and are subjected to substantial compression [138]. While the micropipette 

simulations utilized in this study clearly do not emulate the AVIC in-vivo environment, they do 

provide useful insight into the potential for time-dependent effects.

3.3.4  Summary 

The viscoelastic properties of AVICs were measured for the first time using micropipette 

aspiration. Simulations using

diastol  when the AV tissue 

obiological studies of the AVIC, wherein the AV mechanical environment is being 

emulated. 
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4.0  DIFFERENCES IN TISSUE REMODELING POTENTIAL OF AORTIC AND 

 

146]. They are believed to be primarily responsible for the maintenance of the valvular tissue 

matrix through biosynthesis and enzymatic degradation. The biosynthetic demands in the 

different valves have been shown to be different and unique to each valve, thus depending on the 

mechanically demanding environment, their mechanobiological response is related to the cell’s 

cytoskeleton (CSK) structure and function. Hence, there is a need to examine the structural and 

functional properties of the aortic and pulmonary VIC (AVIC and PVIC, respectively) CSK for 

further understanding of valvular tissue remodeling. 

lly, the VIC is usually referred to as a myofibroblast due to its dualistic 

expression of both fibroblast and smooth muscle cell markers (particularly, α-smooth muscle 

actin, (SMA)) [76, 78, 94, 147]. Yet, when observed histologically the population is typically 

heterogeneous with fibroblasts, smooth muscle cells, and the aforementioned myofibroblasts 

present. It is not clear if the population contains one or two distinct phenotypes [78], but recently 

it has been proposed that the VIC phenotype is both dynamic and reversible, depending on the 

synthetic requirements of the tissue in times of development, remodeling, or disease [81]. In 

PULMONARY HEART VALVE INTERSTITIAL CELLS  

Heart valve interstitial cells (VICs) are important for their roles in valve physiology [77, 

132, 140] and pathology [81, 141-144], and have come under increasing scrutiny in recent years 

as a design endpoint in the development of tissue engineered heart valves (TEHVs) [69, 80, 145,

local stress/strain environment of the VICs [132]. As is the case for most biosynthetic cells in a 

Phenotypica
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healthy adult valves, the percentage of smooth muscle cells and myofibroblasts is low (~2.5%) 

compared to cells from valves that are in developing, diseased, or remodeling states (19-62%) 

[81]. This finding suggests that the phenotype of the VIC population is not only an indicator for 

the s ate of the v r some types of 

pathology. 

 hypothesized that AVICs and PVICs will 

reveal differential remodeling cap

floating collagen gels. Further, we have previously shown stiffness differences between the VIC 

populations [132] with the micropipette aspiration technique. To extend our understanding of the 

VIC mechanical properties, we utilized a monolayer-seeded configuration and atomic force 

microscopy (AFM). Taken together, it is believed that this information will be useful in 

understanding the remodeling potential of VICs in normal and pathologic valvular tissue 

remodeling and during the early stages of TEHV development. 

t alvular tissue, but also could be involved in the actual etiology fo

The physiologic importance of phenotypically dynamic and reversible VICs is not 

entirely clear, althougth it is generally believed that this plasticity is likely essential to effectively 

maintain valvular tissues under varying physiological states. Furthermore, while autologous 

VICs are not believed to be an ideal cell source for TEHV due of donor site morbidity, the 

chosen cell source’s function will likely be paramount since it will form the de novo ECM and 

be responsible for subsequent repair and regeneration over time.  Thus, understanding the 

mechanism by which VICs become contractile and remain in this state is undoubtedly a crucial 

functional endpoint in our continued progress towards a TEHV. Given the reported biosynthetic 

and mechanical differences between the VICs of the different heart valves [132], there is a need 

to understand the different remodeling capabilities between the semilunar VIC’s. 

Based on the above, in the present study we

abilities, as indicated by contraction of VIC seeded free-
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4.1 PROTOCOLS 

4.1.1 VIC Isolation 

Porcine AVICs and PVICs were isolated from the same animal (~10 months old, ~200 

lbs.). Upon 

 

sacrifice at a USDA approved abattoir (Thoma Meat Market, Saxonburg, PA), the 

aortic 

id) was then placed on the cover 

and pulmonary valves were submerged separately in Hypothermosol FRS (BioLife 

Solutions, Binghamton, NY) at 4ºC to ensure interstitial cell survival during transport. Within 

three hours of sacrifice, the leaflets were dissected, surfaces scrapped to remove all endothelial 

cells, minced into 1x1 mm2 pieces, and digested with collagenase A (Sigma, St. Louis, MO) for 

30 min with gentle rotation (10 rev/min). Following digestion, the cell-tissue solution was 

strained with a 0.5 μm cell strainer. Both populations were plated separately in 250 ml culture 

flasks in complete media (DMEM, 10% FBS, 1% pen/strept, and 0.5% fungizone, all from 

Gibco). Media was changed every three days and the cells were passaged at 7 days. After 14 

days, the flasks were combined and each population was cryopreserved in DMEM with 10% 

DMSO at a density 1x106 cells/ml in a volume of 2 ml. 

4.1.2 VIC Stiffness with AFM 

To perform AFM measurements of cellular stiffness, a monolayer of seeded VICs were 

prepared for each cell type. VICs were thawed and plated for 72 hours before AFM experiments 

were performed. Cover slips were prepared for collagen coating the day before seeding cells with 

poly-d-lysine (5 mg/50 ml, Sigma) treatment for 5 minutes. Collagen (14 μl of 5.90 mg/ml rat 

tail, type I collagen (BD Biosciences) + 2 ml of 0.02 N acetic ac
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slip surface and left overnight befor ing . VICs were trypsinized, plated on 

AFM VIC stiffness measurements were made per cell using the so-called tapping mode. 

The ca

e be  rinsed with PBS

the cover slips, and allowed to attach for 3 hours. 

ntilever probes used were calibrated by thermal vibrations using software from the AFM 

manufacturer (MFP-3D Inverted Optical Model, Asylum Research, Santa Barbara, CA), with 

cantilever spring constants having values between 65.23 and 72.93 pN/nm. For each VIC, 

approximately 70 indentions were made over the surface of each cell using a rectilinear grid 

sampling pattern (Figure 28a). These measurements were carried out on a total of 7 cells from 

each cell type (AVIC and PVIC), for a total of 14 cells measured. 

The apparent stiffness of the cell, E, was calculated based on the Hertzian model [148] of 

the AFM probe modeled as a conical tip with a probe opening angle of 35º using 

2F(1 )E
( )

− υ
=

π ⋅ φ δ

where φ(δ) is a function of the conical tip probe [149].  φ(δ) is defined as 

            (Eq. 23), 

2
2( ) 2 tan( )⋅ α⎡ ⎤φ δ = δ ⎢ ⎥π⎣ ⎦

               (Eq. 24), 

where α  represents the probe opening angle (35º) and δ describing the indentation depth of the 

probe. The terms υ and F in Eq. 23 represent the Poisson’s ratio (set to 0.5, which assumes an 

incompressible material) and the force applied to the cell by the AFM tip, respectively. With 

these assumptions, E was determined as  

2

FE
0.594

=
⋅ δ

   (Eq. 25). 
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The resulting relation between the indentation depth and applied force (Eq. 25) was then fit with 

a Levenberg-Marquardt variation of the Gauss-Newton method for fitting parameters to a 

nonline

 after disruption of the CSK 

networ

tion depth was 

deemed acceptable.  

As with AFM measurements, VICs were thawed and plated for 72 hours before the gel 

agen gel assay used in these studies is a modification of 

the standard fibroblast populated collagen lattice [151]. Collagen gels with a volume of 200 μl 

were cast in ½” Teflon rings (Seastrom Manufacturing Company, Twin Falls, ID) in 60×15 mm 

Petri dishes (Cardinal Health, Warrendale, PA). The collagen source, Vitrogen (Angiotech 

Biomaterials, Palo Alto, CA), was prepared using the manufacturer’s protocol of a 8:1:1 ratio of 

ar equation (MathCAD, Mathsoft Inc.). 

In analyzing the data, measurement locations with fits that had r2 values above 0.9 were 

included for analysis (Figure 28b). A ceiling value of 150 kPa was also used to remove 

measurements that were believed to be predominantly influenced by underlying cover glass and 

not the VIC. This ceiling value was chosen as smooth muscle cells tested with AFM previously 

had a stiffness of ~100 kPa [148]. A target indentation depth of ~800 nm, previously used for the 

fibroblast cell line Cos-7 to determine changes in cell stiffness

k [150], was used here in order to fully assess the mechanical consequence of the 

underlying CSK. Since the VICs were ~6 μm in height when seeded, this indenta

4.1.3 VIC Gel Contraction  

contraction assay was begun. As a comparison to myofibroblast cells, human adult dermal 

fibroblasts (DFs, from a 66 year-old male, provided by Dr. Patricia Hebda, Dept. of 

Otolaryngology, Children’s Hospital of Pittsburgh) were seeded on another set of gels at the 

same concentration. The free floating coll
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Vitrogen, 10X PBS, and 0.1 M NaOH  while adjusting the final pH with a small amount of 0.1 

M HCl (all from Sigma, St. Louis, MO), to a final concentration of 2.4 mg/ml. The Petri dishes 

were placed in a 37°C water bath for one hour to allow for collagen gelation.  

 were imaged at 0, 2, 4, 24, 48, and 72 hours following the final incubation 

with a digital camera (Diagnostic Instruments, Sterling Heights, MI) connected to a dissecting 

in collagen gel area were measured using 

Metamorph software (Universal Imaging, Downingtown, PA). Percent contraction was 

calculated as the change in area from the initial area at time 0. Dishes were imaged with a 1x1 

cm  visible grid underneath to ensure uniform scaling during image analysis. Cellular viability 

was assessed at each time point with a 10x light microscope to ensure that the VICs were spread 

and healthy. 

Cells were placed on top of the collagen gels inside the rings in a volume of 200 μl 

containing ~3.0×104 cells in complete medium. The dishes were incubated for 30 minutes to 

ensure cell adhesion to the collagen gels. Then, 7 ml of medium was added to the dish, the 

Teflon rings were removed, and the collagen gels were loosened from the surface with a pipette 

tip. The dishes were incubated for another 30 minutes to allow for equilibration of the medium. 

To examine the effects of TGF-β1 on the VICs, additional groups of PVIC (PVICs+TGF) and 

AVIC (AVICs+TGF) gels were fabricated as above; however, in the 7 ml added after cell 

adhesion, a single dose of TGF-β1 (0.5 ng/ml, T5050 from Sigma) [152] was added. 

Collagen gels

microscope (Olympus, Melville, NY). Changes 

2
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4.1.4 VIC Migration and Morphology  

To qualitatively assess the location and migration of the VICs at each time point, one gel 

for eac

chambered cover glass was then mounted on an inverted Laser Scanning Confocal Microscope 

(Olympus Fluoview 1000). DAPI (excitation: 405 nm) and Cy3 (excitation: 543 nm) filter 

images were taken encompassing an area from the center to the edge of the gel. These images 

were concatenated to form a single image. 

4.1.5 Statistics 

tiffness and % area contraction from time 0 are reported as mean ± SE. Stiffness 

values were compared with an unpaired student t-test (SigmaStat) and % area contraction  

differences were first compared with a two-way ANOVA and where significant differences were 

found, post-hoc testing was done with the Tukey pair wise test (at each time point). For each gel 

h VIC type and time point was imaged via fluorescence microscopy. As there was no 

evidence of differences between gel specimens for each VIC population at each time point (i.e. 

all contracted similarly), one gel was deemed sufficient. Gels were fixed in 2% Para 

formaldehyde and imaged by fluorescence microscopy. Gels were treated with 0.1% Triton X-

100 for 20 minutes to allow for infiltration of the stains. After washing 3x with 1xPBS, gels were 

stained with Rhodamine Phallodin for 1 hour to label the total actin of the cells. Cell nuclei were 

then stained with DAPI (4'6-diamidino-2-phenylindole). Gels were put in a chambered 

Borosilicate coverglass (Lab-Tek) with the cell-seeded surface facing the cover glass. The 

combinations were set to sequentially image the cell nuclei and actin. For each gel, three 10x 

 Cell s
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contraction group, a total of six gels were analyzed. Note that gels used for fluorescence imaging 

were not taken from the n=6 group but were made in addition. 

Analysis of the AFM indentation tests data resulted in a at least 60 acceptable AFM 

measurements per cell. As the location of the organelles varied between cells in relation to the 

AFM measurement location grid (Figure 28a), the stiffness values for each cell were sorted by 

easily visualize the VIC AFM stiffness distribution (Figure 28c). In addition, the 60 stiffness 

values were averaged together to obtain an estimated single value of E for the VIC being tested.  

Resulting distributions indicated that the averaged apparent stiffness (Figure 28d) of the AVICs 

(55.06 ± 4.17 kPa, n=7) was approximately twice (p<0.001) the averaged apparent stiffness of 

the PVICs (24.11 ± 3.02 kPa, n=7). Since these values are averaged from multiple indentations 

f both VIC populations (mean population values are shown as horizontal lines 

on Figure 28c), it indicates that there exists a significant overall stiffness difference between 

valve c

 

4.2 RESULTS 

4.2.1 VIC Stiffness  

magnitude then averaged with the other cells from the same group.  This allowed us to more 

over the surface o

ells. 
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Figure 28. A: Atomic force microscopy (AFM) surface topography map of a PVIC, showing the corresponding 

Applied force vs. indentation depth data (circles) from a single indentation of a PVIC with AFM. Data points fit 
(black line, r2=0.992) with the Levenberg-Marquardt variation of the Gauss-Newton method to give the resulting 

least) from all indentations of both VIC populations. Average stiffness values shown as drawn horizontal lines. D: 

the PVICs (p<0.001). 

4.2.2 VIC Gel Contraction 

tapping mode grid where ~70 indentations were applied to the cell surface to estimate local surface stiffness. B: 

apparent stiffness, E (34.3 kPa), of the PVIC at that indentation site. C: Average sorted stiffness values (greatest to 

Averaged E of both VIC populations showing that aortic valve interstitial cells (AVICs) more than twice as stiff as 

oth VIC populations appeared to be viable and well attached during the duration of the 

contraction experiment (Figure 29). All gels were circular at 0 hours and underwent uniform 

contraction over the 72 hour duration of the experiment (Figure 30). With two-way ANOVA, 

both factors of time and cell type were significant (p<0.001) for the gel contraction experiment; 
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all further statistical comparisons are with the Tukey pair wise test. Gel contraction by the VIC 

populations at 2 hours was negligible (AVICs, 0.22 ± 0.52%; PVICs 0.78 ± 0.42%); however, 

the DFs had significantly contracted the gels (23.21 ± 1.79%, p<0.001, Figure 31). Similarly, 

both VIC populations contracted the gels insignificantly (AVICs, 0.51 ± 0.86%; PVICs, 0.64 ± 

0.57%) after 4 hours; DF gels were significantly contracted (47.54 ± 2.67%, p<0.001) compared 

to both VIC gels. 

 88 

Figure 29. 10x light microscopy images of AVICs (left panel) and PVICs (right panel) seeded on the free floating 
collagen gels at 2, 24, and 72 hours. Note the spread and attached nature of the AVICs and PVICs at each time 

point.   
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Figure 30. Time course contraction of VIC seeded co ls (AVICs, left panel; PVICs, right panel) imaged at 
1x; underlying grid is 1x1 cm2 and is necessary for uniform scaling during analysis.  
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At 24 hours, the AVIC population (31.99 ± 3.44%) contracted the gels significantly more 

Figure 31) than the PVIC population (7.57 ± 1.81%). DF gels were highly contra

at 24 hours (79.46 ± 0.96%, p<0.001) and no subsequent contraction was observed. Sim

48 hours, the AVIC (50.68 ± 2.39%) gels were significantly more contracted (p=0.009, 

) than the PVIC gels (34.70 ± 4.34%). Gel contraction differences were insignificant at 72 

hours (AVICs, 58.96 ± 1.03%; PVICs, 53.96 ± 2.29%). From the shape of the contraction 

as deemed best to fit all data sets with a four-parameter sigmoid function, thereby

king it possible to calculate the greatest rate of contraction (dA/dtmax) for each group. For

AVIC gels, dA/dtmax occurred at 15.18 hours and for PVIC gels at 43.59 hours (Figure 31

gel contraction was nearly linear up to 4 hours; however, dA/dtmax occurred at 2.25 hours. 

 
Percent area contraction by both VIC populations and dermal fibroblasts (DFs). DFs contraction 

ficantly greater (*, p<0.001) than both VIC populations at each time point. AVICs and PVICs were no
t at 2 or 4 hours; however, AVIC gels were statistically more contracted at 24 hours (p<0.001) and 48 ho
9) than PVIC gels. All data points are fit with a four-parameter sigmoid function. x’s indicate the greatest 

ontraction (dA/dtmax); both VIC time points occur after VIC clustering shown in Fig. 33. No difference 

(p<0.001, cted 
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VIC induced gel contraction in the presence of TGF-β1 was more rapid and substantial 

than VIC gels without cytokine treatment. At 2, 4, and 24 hours, the AVICs+TGF and 

PVICs+TGF gels were significantly more contracted (p<0.001, Figure 32) than the normal 

AVIC and PVIC gels. However, there was no difference between the cytokine treated gels at 2 or 

4 hours. At 24 hours, the AVIC+TGF gels (81.6 ± 1.28%) were significantly more contracted 

(p<0.001) than the PVIC+TGF gels (70.11 ± 1.2%). Contraction of the TGF treated gels could 

not be observed past 24 hours as they became spherical with no apparent seeded surface. 

 

Figure 32. ed with TGF-β1 
(AVICs+TG cted (p<0.001) at 

2 an  groups were 
significa  was statistically 

All cell populations were spatially distributed at 0 hours (one hour after seeding, Figure 

33) he 

P  

100

 Comparison of VIC contraction results shown in Fig. 31 up to 24 hours with VICs treat
F and PVICs+TGF). Both TGF treated groups (circled) were statistically more contra

d 4 hours versus the AVIC and PVIC groups. Additionally, at 24 hours both TGF treated
ntly more contracted (p<0.001) than untreated VIC groups, and the AVICs+TGF group

more contracted (p<0.001) than the PVICs+TGF group.  

. In the AVIC gels, the cells appeared to cluster and organize around 4 hours, whereas t
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both populations generated their largest rate of contraction (shown as x’s in Figure 32). This was 

then followed, in the next time point, with the VICs radiating out from the center of the gel 

(Figure 33, 24h for AVICs and 48h for PVICs) and a decreased rate of contraction at subsequent 

observations.   

 

Figure 33. f time course 
migration right) at each point 

e (right) 
of gel; central diagram shows geometry of image capture. Note the AVIC clustering near 4 hours and PVIC 

Concatenated fluorescence images (10x, total actin (green) and VIC nuclei (yellow)) o
of VIC populations seeded on free floating collagen gels (AVICs on left and PVICs on 

of gel contraction measurement shown in Fig. 31. Three images were made from the center (left) to the edg

clustering near 24 hours. Following this clustering, both populations contracted the gels at their greatest rate (shown 
as x’s in Fig. 31). After clustering, the cells appear to radiate outward from the center of the gel and though 

contraction continued, it was less pronounced.  
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4.3 DISCUSSION 

4.3.1 Observed Differences in VIC Stiffness  

An important aspect of this study was the observation that, as seen previously with ovine 

VICs measured by micropipette aspiration [132] the stiffness of the AVICs was ~2-fold greater 

than the PVICs. However, it is important to note that the AFM values were also ~100x greater 

than the micropipette values, as anticipated based on studies with other cell types [104, 106, 148, 

153]. The best explanation offered to reconcile these differences concerns the assumptions used 

to model the force-deformation relation and the actual loading technique used. With AFM, a 

localized force is applied to a focal point on the cell membrane, which is supported by the nearby 

structural components (microfilaments, nucleus, etc.). The resulting response is modeled from 

this small, highly localized deformation state. Micropipette aspiration, on the other hand, 

examines the macro-mechanics of the cell and is primarily influenced by the cell membrane and 

unanchored cytoskeleton. Our previous VIC results with micropipette aspiration were modeled 

by assuming the cell to be an isotropic, elastic, and incompressible material that was 

homogenous (discontinuities, such as nuclei and organelles, were ignored).  

Overall, it can be argued that VIC stiffness as measured with AFM allows for a more 

accurate representation of the cellular properties and architecture of the cell than micropipette 

aspiration. This is a result of the fact that the cells are seeded and attached to an underlying 

collagen substrate so that the CSK is extended and rigid as it is anchored at focal adhesions. This 

configuration is in contrast to testing with micropipette aspiration where the CSK is freed and

of a ls) 

 

not in a physiologic state as the cells float in a solution. Ultimately, interpretation and meaning 

ll cellular mechanical analysis techniques (nonlinear viscoelastic, heterogeneous materia
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are tenuous and direct conclusions about cell function and biology are difficult to draw. 

g techniques do not result in similar stifTherefore, while these testin fness values, they do allow 

for direct comparisons between PVICs and AVICs.  

When considering the differences in CSK composition [132], the measured differences in 

stiffness reveals that the underlying  o a strong contributor to overall cell 

stiffness. The necessity of greater CSK content in the AVIC is believed to be required in order to 

ns into the ECM [132]. This has been observed 

previously for other types of myofibroblasts, where human wound closure was facilitated by 

these d

 rapid contraction of 

the gel

 CSK f the AVICs is 

effectively synthesize or expel synthesized protei

ermal myofibroblasts as they produced thicker collagen fibers than fibroblasts and 

contributed to 88% of closure [126]. Therefore, the mechanical properties of the AVIC imply a 

greater ability to remodel the surrounding ECM compared to the PVIC. 

4.3.2 VIC Contraction of Collagen Gels  

The primary finding from this study is the greater ability of AVICs to contract free 

floating collagen gels compared to PVICs under identical experimental conditions. Though the 

substrate of a free floating collagen gel does not fully represent all the characteristics of the in 

vivo ECM of valvular tissue, it does support cell survival, attachment, and contraction. 

Therefore, comparing the contractility of both VIC populations indicates their CSK activity and 

resulting potential for tissue remodeling.  

Human adult DFs, used for comparison in the present study, caused

s which were ~80% contracted at 24 hours; further contraction could not be detected as 

the gels became spherical. Not only did the DFs contract the gels much faster, but the time 

course of their contraction was unlike the VIC populations (Figure 31). DFs did not migrate and 

 94 



form a central cluster at any time point (images not shown), but essentially attached to the 

collagen gel and exerted local contraction without appreciable migration. Conversely, both VIC 

populations attached to the gel and did not exert any measurable contraction at 2 or 4 hours, but 

appeared to migrate to form an organized cluster in the center of the gel. Though there was an 

apparent lag by the PVICs (dA/dtmax for PVIC gels was ~28 hours later than for AVIC gels), 

once they did form the central cluster, they reached the level of AVIC contraction at 72 hours. 

After clustering by both VIC populations, they appeared to disperse and form radiating lines of 

cellular

 speculate that it may be 

due to different size collagen gels, number of seeded cells, or culture conditions. This is 

on was nearly 20% less than our 

observed values. Moreover, Fu et al [154] investigated ascorbic acid and growth factors 

(including bFGF and TGF) on human pediatric AVICs for their effect on tissue development 

when seeded on PGA coated with P4HB. Results indicated that after 7 and 28 days of culture the 

bFGF and TGF groups showed significantly higher DNA content compared to the control. They 

also found denser, more organized tissue development with pronounced matrix protein formation 

in the tissue engineered structures in the TGF group after 28 days, while the addition of bFGF 

 organization, which we speculate is similar to a response that would be seen with smooth 

muscle cells.  

Walker et al. [144] has reported AVIC gel contraction in the presence of the TGF-β1 and 

cytochalasin D. This study examined AVICs only and the dose dependence of TGF-β1 on free 

floating and attached collagen gels. Our results support their findings in that the AVICs+TGF 

group did contract the gels significantly more at 24 hours than the AVIC group; however, our 

results are much more pronounced than theirs for the AVICs+TGF-β1 group (~80% versus 

~20%). It is unclear why such a large difference was observed, but we

supported by results from untreated AVIC gels, as their contracti
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led to 

rtic valvular tissues, which was suspected from the outset. 

a markedly higher collagen synthesis after 28 days. Our results corroborate and further 

support these studies and further indicated that TGF-β1 does serve to significantly activate the 

remodeling activity both semi-lunar valve cell types.   

4.3.3 Role of CSK Contraction in Valve Physiology and Pathology  

As the VICs are the resident population of cells responsible for maintaining valvular 

tissue homeostasis, their mechanobiological function is clearly important. Previously, the level of 

SMA found in each VIC population correlated well with the molecular chaperone HSP47 [132], 

which was used as a surrogate for collagen synthesis [122, 123, 130]. Therefore, the difference 

observed in gel contraction between the AVIC and PVIC populations has two implications. First, 

it implies that the pulmonary valvular tissues remodel more slowly and have less biosynthetic 

demand than ao

The second and unexpected implication from the groups treated with TGF-β1 involves 

valvular pathology. Our results indicate that PVICs respond similarly as AVICs to TGF-β1 

which is known to be a byproduct of infiltrating macrophages [155], and is thought to initiate 

AV calcification [156]. From this fact alone, one would suspect that pulmonary valves may be as 

susceptible to pathologic conditions as AVs, but this is not supported clinically or 

epidemiologically. Therefore, one explanation for not seeing pathologic similarities between 

these two valves is either a lack of TGF-β1 near the PVICs or TGF-β1 may not be as effective 

on PVICs. Current work is aimed at understanding the roll of mechanical stimulation in the 

presence of TGF-β1 on the AVIC to better understand the etiologies of AV fibrosis and 

calcification [134]. 
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4.3.4 Role of CSK Contraction in TEHV Development  

The desired endpoint of any engineered tissue is functional equivalence of the replaced 

tissue or organ. Similarly the goal of a TEHV is accomplished largely at the tissue level where 

the tissue biomechanical behavior is paramount [146]. Much activity has been focused on 

identification and biosynthetic activity of candidate TEHV cell sources during in-vitro tissue 

formation prior to implantation [157-160]. The long-term ability of the chosen cell source to 

continually remodel the ECM will be crucial for success of a TEHV. With this in mind and due 

irement of biosynthetic 

sensitivity to various cytokines may be necessary in choosing a suitable cell source that can be 

activate

ue remodeling ability 

betwee

to the phenotypic plasticity of the native VIC population [80, 81], a requ

d early during the in vitro portion of TEHV development and later quiescent under steady 

state, in vivo conditions. Regardless of the cell source chosen for a TEHV, be it for the aortic or 

pulmonary position, remodeling potential should be considered in light of results shown here. 

4.3.5 Summary  

This work is the first to demonstrate a potential difference in tiss

n the AVIC and PVIC. Moreover, seeded cell stiffness values measured with AFM 

revealed a 2-fold difference between AVICs and PVICs, confirming our earlier result using 

micropipette aspiration [132]. These results suggest a marked difference between the two VIC 

populations with respect to free floating gel contraction which is believed to be an indication of 

tissue remodeling potential. Overall, the PVIC appears to be a similar, but less robust version of 

the AVIC in that it acts slower and in a less pronounced fashion. Future work will be needed to 

elucidate the effects of both local tissue stress and surrounding cytokines on the VIC phenotype 
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and biosynthetic function. Additionally, the question of native VIC phenotypic plasticity and 

resulting biosynthetic function will have to be addressed for development of a successful TEHV 

with whatever cell source is ultimately chose 
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5.0 THE EFFECTS OF CELLULAR CONTRACTION ON AORTIC VALVE 

svalvular pressures greater than 80 mmHg during 

diastole. Studies of native and bioprosthetic AV microstructure, both compositionally and 

mechanically, have been predominantly focused on the extra-cellular matrix (ECM) components, 

including collagen [27, 96, 161] and elastin [97, 162]. Additionally, examination of normal, 

pathological, and substitute valves has demonstrated that: 1) valvular ECM is the principal 

determinant of valve durability, and 2) the quantity and quality of valvular ECM depends on 

viability and function of aortic valvular interstitial cells (AVIC). As the most numerous AV cell 

type, the AVIC population constitutes ~30% volumetric density in mice leaflets [75] and ~78% 

cellular population in human leaflets detected by smooth muscle α-actin [77].   

AVIC are a dynamic population of resident cells of multiple phenotypes that synthesize 

the several types of valvular ECM molecules and express matrix degrading enzymes such as 

matrix metalloproteinases (MMPs), and their inhibitors (TIMPs), that mediate ongoing ECM 

remodeling and repair. AVIC phenotypes range from fibroblast-like to myofibroblasts [77, 140, 

147].  AVIC proteins include α and β myosin heavy chain and troponin isoforms [103] and valve 

leaflet contraction has been demonstrated in response to vasoactive agents [82], some 

investigators have suggested that contractile AVIC may have a function in generating a cyclical 

force that enhances valvular function or adaptation to altered hemodynamic forces.  In further 

 
LEAFLET FLEXURAL STIFFNESS  

Efficiently and elegantly designed, the native AV leaflet is optimized for dynamic motion 

while maintaining the ability to withstand tran
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support of this concept, vasoactive agents have been shown to induce AVIC growth and collagen 

synthesis [101]. However, the mechanical role of AVIC contraction in native leaflet function is 

not well understood. 

tudies of the AVIC ubjects have revealed that 

the cell population was not localized to any one region or layer of the leaflet, but was present 

throughout the tissue [79]. Porcine 

odest 

forces in the circumferential direction (0.31 mN - 0.66 mN), while in the radial direction the cells 

generated less force (0.11 mN -0.23 mN) [82]. From these results, it was proposed that the AVIC 

may help to sustain the hemodynamic forces exerted during systole by managing the stresses 

experienced on the hinge or basal attachment of the leaflet during motion.  

This measurable contraction of the cells at the tissue level is likely made possible by 

strong attachment to the ECM, which has been reported both in situ and in vitro [77, 78]. The 

concerted cell contraction is believed to be mediated by cell communication through integrins 

with surrounding cells and the ECM [77]. AVIC demonstrate extended connecting processes that 

S  population in both human and porcine s

AV myofibroblast contractility has been qualitatively studied 

with cultured cells on silicone substrates in the presence of multiple contractile chemical agents 

[75, 76]. In both studies, contraction occurred for most agents within 3 minutes and reached a 

plateau within 10 minutes. Additionally, Messier et al. [76] found that the few cells with no 

initial basal tonus did not respond to the administered vasoconstriction drugs. Isoproterenol was 

used to elicit relaxation from active cells, from which all cells recovered their previous basal 

tonus within 25 minutes. While not quantitative, these findings were the first examples of AVIC 

contractility. 

Recently, strips of aortic leaflets were exposed to high KCl (90 mM) and endothelin 

levels in uniaxial tension; both treatments responded similarly with cells generating m
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are believed to form a cellular network for communication, while no junctions have been found 

between the AVIC and valvular endothelial cells [75]. Additionally, these cells may use their 

contractile elements to mechanically communicate with the local environment since the presence 

of vaso

 is highly suited for measuring slight changes in leaflet stiffness due to mechanical 

alterati

5.1.1 

entire valve-root complex was submerged in a preservation media, (HypoThermosol HTS-FRS, 

active agents has been shown to increase in collagen synthesis in vitro [101]. While the 

very low magnitude of the generated force levels make it unlikely that AVIC contraction directly 

affect valvular function, they are a dynamic cell source whose mechanical capabilities may serve 

a role in maintaining valve leaflet tissue homeostasis.  

Bending is a major mode of cusp deformation in vivo (during opening and closing of the 

valve) [163]. Evaluating valve leaflet tissue under flexure offers two advantages over uniaxial 

tension tests: (1) it is highly sensitive at very low strains and stresses, and (2) it allows one to 

probe the mechanical properties of different layers since bending in opposite directions will 

reveal variations in tensile and compressive layer properties.  Because of these two advantages, 

flexure testing

ons of the AVIC population. In the present study, we hypothesized that the AVIC 

population would show a significant effect on leaflet stiffness in the contracted state when tested 

under flexure at low strains. 

5.1 PROTOCOL 

Tissue Preparation 

Porcine hearts from young hogs (~10 months old, ~250 lbs) were grossly dissected at a 

local USDA approved abattoir immediately after sacrifice and the intact AV was removed. The 
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BioLife Solutions, Binghamton, NY) and placed in an ice bath to ensure optimal cell survival 

during transportation. Valves remained in the preservation media at 4°C until the leaflets were 

excised in the lab. Circumferential strips were removed by cutting just below the nodulus of 

Arantus with razor blades of a constant width, w (Figure 34). Following dissection, the leaflet 

strips were rinsed to remove the preservation media and placed in Dulbecco’s Modified Eagle 

Medium (DMEM) with high glucose. 

Coapting EdgeCoapting EdgeCoapting EdgeCoapting EdgeCoapting Edge

radial

circumferentialw

 

 
Figure 34. tact leaflet. 

A total of 36 strips were chosen at random from the valve leaflets (i.e. no regard to which 

leaflet they were dissected from) and divided into four testing groups: (1) leaflets bent against 

(AC) the natural curvature of the le (F leaflets bent with (WC) the natural 

u  overnight with 10μM thapsigargin (a calcium ATPase inhibitor) in 

physiological saline to prohibit any smooth muscle contraction and then bent in the AC direction 

(ACthap

 AV leaflet showing orientation of circumferentially oriented specimen in relation to in

aflet igure 35), (2) 

curvat re, (3) leaflets treated

), and (4) leaflets treated overnight in thapsigargin and bent in the WC direction (WCthap). 

From each group, n=9 specimens were tested, however the WCthap group had one leaflet which 
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L
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would not bend properly (n=8). In the present study, we defined improper bending when a hinge-

like bending shape was observed versus a smooth, parabolic bending shape. 

V S FP P

With Unloaded Natural Against 
Curvature Curvature Curvature

V S FP P

With Unloaded Natural Against 
Curvature Curvature Curvature

 
ons of bending for the AV with respective layers (V=ventricularis, S=sponsgiosa, a

ective layers are alternating tension and compression resulting from flexural di
Figure 35. Directi nd F=fibrosa). 

Note that resp rections. 
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5.1.2 Flexure Testing 

The flexural mechanical testing method has been previously presented [33]. Briefly, the 

mean strip thickness, t, was calculated from averaged measurements over the strip’s entire length 

with the use of high precision calipers (0.0254 mm resolution); recordings were made upon 

initial contact to minimize viscoelastic effects from the soft tissue. Next, between 8 and 12 

graphite markers were attached with minimal amounts of cyanoacrylate to the cut surface nearest 

the coapting edge. The specimen was held upright with two sleeves, which were supported by 

stationary posts while the bending bar was applied to the center of the tissue. In order to 

determine the deflection of the bending bar during testing, a reference rod was attached to the 

stage that was displaced equivalently with the bending bar base. Therefore, with all the 

aforementioned components, it is possible to record while testing, the stationary posts, bending 

bar, reference rod, and specimen markers (Figure 3 en was deflected, the image 

was re

 
Figure 36. An example of a leaflet specimen in the flexure testing configuration, with the graphite markers attached 
to the top of the specimen nearest to the coapting edge. The reaction forces Fx and Fy are generated about the post 

acting as a pin due to applied load P during testing. 
 

6). As the specim

corded on a VHS tape which was used for analysis afterwards.  
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The marker, post, and bending bar positions were entered into a custom Matlab program 

that calculated the resulting moment, M (mN*mm), about the right post from the centrally 

applied

eff 

eff 

second moment of inertia calculated as 

I= /12t w        (Eq. 27) 

The terms t and w are the thickness and width of the sample, respectively. The physical 

meaning of Eeff is the instantaneous effective modulus for a given Δκ. As it was not possible to 

know the level of Δκ during the test, each specimen was bent by moving the reference rod to a 

predetermined position marked on the video monitor. This method allowed similar bending for 

all samples; however, because of the initial geometry of the tissue, the AC samples were bent to 

a greater Δκ (Table 3).  

All AC and WC samples were tested in Dulbecco’s Modified Eagle Medium (DMEM) 

with high glucose (containing 5 mM KCl), and the ACthap and WCthap samples were tested in 

Hank’s Balanced Salt Solution (HBSS) without CaCl2, to prevent cells from becoming 

contractively active. Each tissue specimen was loaded and unloaded five times while the process 

was optically recorded. The control media with 5 mM KCl was removed from the testing bath 

solution for 3 minutes. Fol as tested again using the 

 load, P, and the change-in-curvature, Δκ (mm-1) , of the tissue at small time increments 

during the loading. Note that the local radius of curvature was determined from the parabolic 

curve fit to the markers. The applied moment M versus the change in curvature Δκ is related by 

the Bernoulli-Euler moment-curvature equation 

M=E I Δκ     (Eq. 26) 

where E I, termed flexural rigidity, corresponds to the slope of M-Δκ curve, where I is the 

1 3

and media with an additional 90 mM KCl was added. The specimen was left in the hyper-KCl 

lowing the initial 3 minutes, the specimen w
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same p

 

rotocol. Eeff from each M vs. Δκ plot was determined from a linear regression of the data 

up the maximum Δκ value (Table 3).   

Table 3. Summary of specimen dimensions and maximum curvature and applied moment.  

Sample  
# 

t 
(mm) 

I  
(mm4) 

5mM KCl Max M 
(mN-mm) 

5mM KCl Max Δκ 
(mm-1) 

90mM KCl Max M 
(mN-mm) 

90mM KCl Max Δκ  
(mm-1) 

1 0.53 2.53E-02 1.489 0.216 1.975 0.207 
2 0.38 9.22E-03 2.494 0.430 2.080 0.186 

4 0.34 6.72E-03 1.571 
5 0.28 3.63E-03 1.353 

3 0.32 5.33E-03 2.523 0.295 2.949 0.289 
0.266 1.673 0.243 
0.278 2.111 0.261 

6 0.34 6.72E-03 1.485 0.309 1.631 0.299 
7 0.37 8.32E-03 1.126 1.493 0.216 
8 0.44 1.46E-02 0.850 0.903 0.155 
9 0.39 1.02E-02 0.876 0.195 0.856 0.17 

0.238 
0.181 

Mean± 
SEM 

0.38± 
0.03 

1.0E-02± 
 2.18E-03 

1.529± 
0.204 

0.268± 
0.025 

1.741± 
0.215 

0.225± 
0.017 

 
x M 

) 
5mM KCl Max Δκ 

(mm-1) 
90mM KCl Max M 

(mN-mm) 
90mM KCl Max Δκ  

(mm-1) 
Sample  

# 
t 

(mm) 
I  

(mm4) 
5mM KCl Ma

(mN-mm
1 0.56 5.82E-02 3.017 0.288 2.588 0.320 
2 0.51 4.37E-02 3.837 4.471 0.366 
3 0.44 2.93E-02 1.413 1.188 0.167 
4 
5 
6 0.52 4.71E-02 1.299 0.303 1.115 0.303 

9 0.62 7.79E-02 1.357 0.152 1.463 0.280 

0.337 
0.197 

0.44 2.93E-02 1.763 0.297 2.407 0.446 
0.42 2.45E-02 0.320 0.301 0.829 0.407 

7 0.56 5.82E-02 1.649 0.169 1.808 0.356 
8 0.44 2.93E-02 0.303 0.153 0.746 0.154 

p

Mean± 
SEM 

0.50± 
0.02 

4.41E-02± 
6.0E-03 

1.662± 
0.382 

0.244± 
0.025 

1.846± 
0.393 

0.311± 
0.033 

 
Sample  

# 
t 

(mm) 
I  

(mm4) 
5mM KCl Max M 

(mN-mm) 
5mM KCl Max Δκ 

(mm-1) 
90mM KCl Max M 

(mN-mm) 
90mM KCl Max Δκ  

(mm-1) 
1 0.43 2.68E-02 1.591 0.092 1.164 0.194 
2 0.39 2.03E-02 1.144 0.214 1.192 0.197 

4 0.37 1.67E
5 0.44 2.93E

3 0.51 4.37E-02 1.054 0.113 1.081 0.128 
-02 2.862 0.089 3.914 0.124 
-02 1.693 0.148 1.201 0.157 

6 0.38 1.84E-02 1.076 0.121 1.585 0.107 
7 
8 
9 0.39 2.03E-02 1.570 0.148 1.499 0.151 

0.42 2.45E-02 1.995 0.214 1.889 0.224 
0.52 4.71E-02 2.328 0.234 2.341 0.217 

Mean± 
SEM 

0.43± 
0.02 

2.75E-02± 
3.65E-03 

1.701± 
0.203 

0.153± 
0.018 

1.763± 
0.301 

0.166± 
0.014 

 
Sample  

# 
t 

(mm) 
I  

(mm4) 
5mM KCl Max M 

(mN-mm) 
5mM KCl Max Δκ 

(mm-1) 
90mM KCl Max M 

(mN-mm) 
90mM KCl Max Δκ  

(mm-1) 
1 0.37 1.67E-02 3.297 0.044 2.732 0.060 
2 0.77 1.55E-01 2.140 0.171 2.016 0.203 

4 0.34 1.34E-02 1.439 0.178 1.585 0.188 
5 0.74 1.33E-01 0.674 0.149 0.944 0.155 

7 0.51 4.37E-02 1.388 0.209 1.295 0.200 
8 0.52 4.71E-02 1.018 0.198 1.218 0.284 

3 0.44 2.93E-02 1.516 0.257 1.451 0.247 

6 0.57 6.22E-02 1.344 0.200 1.569 0.197 

th
ap

Mean± 0.54± 6.25E-02± 1.602± 0.176± 1.601± 0.192± 
SEM 0.05 1.66E-02 0.284 0.022 0.196 0.023 
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5.1.3 Determining AVIC Density through Leaflet Thickness 

To cal slides 

used for a study of transvalvular effects on AV collagen orientation [20] were examined to 

determine layer thickness and cell counts in the individual layers. All slides used were from the 

control group (two valves for a total of six leaflets) of the previous study, which were fixed at 

0mmHg and stained with either Masson’s Trichrome or Hematoxylin and Eosin. From each 

leaflet, four transmural cross-sections were taken, and five digital images from each section were 

made at 400x magnification. Due to the limited view-range of the microscope, five over-lapping 

photomicrographs were concatenated to view all three layers of the leaflet simultaneously. These 

panoramic images were analyzed to determine both cell density and thickness of layer. Cell 

nuclei counts were performed by counting upon gross inspection, and leaflet thickness was 

determined by layer segmentation upon gross inspection (Figure 37). Thickness measurements 

and cell counts from each layer were normalized as a percentage of the total thickness and total 

cellular population.  

 
Figure 37. Masson’s Trichrome stained porcine AV fixed at 0 mmHg pressure. Black circular regions represent cell 

nuclei, but are not specific to any one cell type. Lines represent approximate layer locations (V=ventricularis, 
S=spongiosa, and F=fibrosa) segmentation of the leaflet. 10% for V, 57% for S, and 33% for F represent the 

respective average layer thickness observed. 
 

demonstrate the effects of transmural cellular density, previous histologi

10%10% 57%57% 33%33%

V S F
10%10% 57%57% 33%33%

V S F
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5.1.4 Statistics 

All data are expressed as mean ± one standard error (SEM). Significance was determined 

by paired, two-tailed student t-tests between control (5 mM KCl) and treatment groups (90 mM 

KCl) with values of p<0.05 significant. When the data were not normally distributed (Normality 

test p<0.05), as in the case of the AC samples, the Wilcoxon signed-rank test was used. 

Comparison between different testing groups (i.e. AC vs. ACthap) was determined with unpaired, 

two-tailed student t-test. When the data were not normally distributed, the Mann-Whitney rank 

sum test was used. 

5.2 RESULTS 

5.2.1 Flexural Stiffness of Aortic Valve Leaflets 

The parabolic curve fit to the markers to determine Δκ fit the data well, with an average 

r2 value for all tests of 0.943±0.007 at the maximum deflection, indicating that the deformed 

leaflet shape was nearly parabolic. Note that in this study all leaflets were chosen at random and 

their corresponding numbers imply no particular leaflet (i.e. right, left, or non coronary, Table 

4).  Linear regression of the M vs. Δκ relations in both bending directions revealed a bi-

directional linearity, w ith the 

addition of 90 mM KCl, there was a 48% increase in Eeff for the AC specimens due to 

ith an average r2 value of 0.913±0.013 (Figure 38, Table 4). W

vasoconstriction of the AVIC (p=0.004); however, there was only a 5% increase for the WC 

 108 



specimens (Figures 38a and 39). Significance was also observed between the hypertonic cases 

of AC and WC (p=0.027) whereas AC and WC controls were not different. 

ble 4. Eeff and r2 values at the maximum deflection point for each specimen.  
 

Ta

Sample  
# Eeff (kPa) r2 Eeff w/ KCl (kPa) r2 

1 252.65 0.9669 380.91 0.8867 
2 529.07 0.9492 856.77 0.8815 

4 962.24 0.7832 1156.82 0.8277 
5 1187.12 0.9954 2056.97 0.9896 

7 564.71 0.9598 826.53 0.9873 
8 323.14 0.9986 413.39 0.9819 
9 485.15 0.9796 599.09 0.93 

A
C

 

Mean± 
SEM 

703.05± 
132.58 

0.9543± 
0.0220 

1040.66± 
229.01 

0.9312± 
0.02 

3 1417.55 0.9809 2290.07 0.9032 

6 605.86 0.9747 785.42 0.9931 

 
Sample  # Eeff (kPa) r2 Eeff w/ KCl (kPa) r2 

1 191.70 0.9743 152.50 0.9831 
2 267.99 0.9216 234.86 0.9866 

th
ap

 3 353.85 0.6864 308.81 0.3531 
4 177.74 0.876 151.02 0.894 
5 47.64 0.9753 84.63 0.6497 
6 94.93 0.8725 95.82 0.8597 
7 190.24 0.9526 95.41 0.9817 
8 81.07 0.6558 196.87 0.7804 
9 112.38 0.934 56.22 0.9805 

A
C

Mean± 
SEM 

168.62± 
32.52 

0.8721± 
.01

152.90± 
 

0.8299± 
0.0236 0 33 27.27

 
Sample  # Eeff (kPa) r2 Eeff w/ KCl (kPa) r2 

1 463.29 0.7106 289.38 0.8479 
2 335.51 0.8444 366.32 0.8059 
3 188.34 0.9259 142.04 0.9527 
4 1538.43 0.9508 1637.70 0.9591 
5 330.34 0.8213 246.19 0.9138 

8 233.77 0.9783 212.41 0.9949 

W
C

 

SEM 135.17 0.0312 159.00 0.0223 

6 469.30 0.9941 916.71 0.9828 
7 396.31 0.9618 373.55 0.9883 

9 469.96 0.9553 464.21 0.9747 
Mean± 491.69± 0.9047± 516.50± 0.9356± 

 
Sample  # E  (kPa) r2 E  w/ KCl (kPa) r2 eff eff

1 654.55 0.9584 448.65 0.8972 
2 37.42 0.9938 38.31 0.9932 

4 300.85 0.9172 352.59 0.8882 
5 46.76 0.9528 66.66 0.9929 

7 254.24 0.9251 405.14 0.6817 
8 103.90 0.9729 92.92 0.9749 

W
C

th
ap

SEM 71.85 0.0108 59.16 0.0373 

3 284.92 0.9908 291.23 0.9963 

6 111.84 0.9952 100.65 0.908 

 

Mean± 224.31± 0.9633± 224.52± 0.9166± 
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Figure 38. M vs. Δκ relations in both the AC and WC directions for (a) specimens tested in 5 mM and 90 mM KCl, 

and (b) specimens flexed in 5 mM KCl and samples treated in 10 μM thapsigargin overnight and then flexed in 5 
mM KCl. 

 

Thapsigargin treated specimens revealed a decreased bending stiffness (Figure 38b). Eeff 

in the 5 mM KCl ACthap specimens was 76% less than the 5 mM KCl AC specimens (p=0.001). 

Similarly, Eeff for the WCthap 5 mM KCl groups was 54% less than the WC specimens with 

physiological KCl levels (p=0.036). There was no change in leaflet stiffness in the thapsigargin 
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5.2.2 

The histological sections from the AV leaflets revealed that both the normalized 

thickness and cellular population (represented by cell nuclei) was consistent between leaflet 

layers with approximate values of 10% ventricularis, 57% spongiosa, and 33% fibrosa ( igure 

40). This result demonstrated that there is not dominance in the spatial distribution or density of 

cells in any layer of the leaflet. 
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treated leaflets after administration of 90 mM KCl, demonstrating the desired effect of inhibiting 

the smooth muscle aspect of the AVIC population (Figure 39). 

 
Figure 39. Effective stiffness Eeff determined from the slope of the M vs. Δκ relations for the AC, WC, ACthap, and 

WCthap specimens before and after KCl addition. On average, increasing the KCl concentration of the bathing 
solution to 90 mM only affected the normal leaflet in the AC bending direction.  Moreover, both bending directions 

experienced a loss of stiffness with the addition of thapsigargin to the bathing medium.  

5.2.2 Cellular Distribution through Leaflet Thickness 

The histological sections from the AV leaflets revealed that both the normalized 

thickness and cellular population (represented by cell nuclei) was consistent between leaflet 

layers with approximate values of 10% ventricularis, 57% spongiosa, and 33% fibrosa ( igure 

40). This result demonstrated that there is not dominance in the spatial distribution or density of 

cells in any layer of the leaflet. 
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at 

5.3.1

As flexure is one of the natural modes of deformation in the AV, we sought to determine 

the change in flexural rigidity of circumferential porcine leaflet strips with altered AVIC states. 

Previous uniaxial results of leaflet tissue strips revealed low stresses generated (~0.5 mN) due to 

AVIC contraction [82]. Because of these previous findings, a low stress/strain technique was 

uniaxia tension, which is where forces gen  the cells are influential. Moreover, flexure 

testing 
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Figure 40. Normalized leaflet thickness and cell population over the total leaflet transmural axis, indicating th
cellular density is relatively uniform within the leaflet layers.   

5.3 DISCUSSION 

 Choice of Testing Method 

needed. The method of soft biological flexure testing offers higher accuracy at low strains than 

erated byl 

allows bending in both directions to reveal any layer stiffness differences; therefore, it 

was deemed ideal for this study. 
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5.3.2 Effects of Cellular Contraction 

After 3 mi eff 

(48%, p=0.004, increase found solely in the AC 

direction can be explained by the spective leaflet layers. 

ibrosa is under 

compression ( ably not show effects of 

cellu ressed. Thus, the ventricularis is the 

primary contributing layer in the active contractile state when the leaflet specimens are flexed in 

the WC direction. Since the ventricularis is composed of both collagen and elastin, we speculated 

that the cells are in fact contracting in this layer, but the compliant elastin is accommodating the 

contraction. This hypothesis is supported by the bending results in the AC direction (Figure 39); 

wherein the fibrosa (which predominantly contains collagen fibers) is in tension, cellular 

c

demonstrated that during bending of heart valve leaflet biomaterials the maximum surface strain 

ollagen fibers of the native aortic 

leaflet would presumably be past the initial toe-region of the stress-strain curve observed in the 

circumferential direction during equibiaxial testing [19, 30]. Thus, some of the undulated 

collagen fibers would become uncrimped and allow for some level of force transmission from 

the cell to the ECM. Uncrimping would be greatest at the upper surface of the fibrosa layer, 

where it would also induce the greatest effect on bending stiffness due to the distance from the 

neutral axis. Additionally, there may be a preferential cell connection to collagen fibers in the 

fibrosa that is not prevalent in the elastin rich ventricularis layer. 

nutes of exposure to 90mM KCl, there was a significant increase in the AC E

Figure 39). We speculated that the large 

unique structure of the ECM in the re

When bending in the WC direction, the ventricularis is in tension and the f

Figure 35). The layer in compression would presum

lar contraction because the cells are already being comp

ontraction is apparent because the more rigid collagen fibers are being stressed (Figure 41). 

Though the collagen fibers are highly undulated in the unloaded leaflet [20], we have 

is ~7% for Δκ = 0.15-0.25 mm-1 [164]. At 7% strain, the c
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Collagen fibers

 

with AVIC in fibrosa layer anchored by rigid collagen fibers and (b) WC bending with AVIC in ventricularis layer 
anchored by collagen (solid) and stretchy elastin (dashed) fibers.  

Figure 41. Schematic of AVIC contraction resulting in different layers due to ECM composition: (a) AC bending 
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5.3.3 Cellular Basal Tonus 

The ACthap and WCthap groups revealed no change in effective stiffness after addition of 

the KCl. This was the anticipated response since thapsigargin is known to inhibit cellular 

contraction. Exposing the valves to thapsigargin was originally intended to demonstrate that the 

addition of KCl was effective only on the AVIC population with their inhibition resulting in no 

changes in stiffness due to cellular contraction (which was the case). More interestingly, 

however, was the dramatic decrease in leaflet stiffness following treatment with thapsigargin in 

both bending directions (Figure 39). A similar qualitative response was seen when cultured cells 

exposed to isoproterenol lost their basal tonus [76]. This decrease in leaflet stiffness for 

thapsigargin treated samples was greater in both bending directions than the increase in stiffness 

due to AVIC contraction in the normal samples. 

This treatment demonstrates the level of basal tonus of the AVIC population, as their 

inactivity resulted in a 4-fold (p=0.001) and 2-fold (p=0.036) decrease in Eeff compared to the 

normal

let fibrosis 

 (5 mM KCl) AC and WC flexure testing, respectively. To the authors’ knowledge, this is 

first known quantification of magnitude of AVIC basal tonus at the at the tissue level.  Moreover, 

it is unclear why no directional differences were found with loss of basal tonus.  Our results 

suggest that AVIC basal tonus imparts an overall, uniform contribution to tissue stiffness via a 

mechanism different from that observed in the contracted state. 

5.3.4 Role in Valve Pathology 

Clinically, our current findings may shed light on the etiology of degenerative heart valve 

disease. The characteristic pathologic features of degenerative valve disease, i.e., leaf
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and calcification with decreases in cellular population and density, may be accelerated by loss of 

AVIC interstitial cell function, senescence, or death. In a study examining the effects of age-

dependent changes in AV leaflet stretch in the radial direction, it was observed that there was a 

trend with stretch decreasing from birth to the age of 20 years, remaining constant to the age of 

40, and then declining with increasing years [47]. These results suggest a declining ability for 

leaflet regeneration and remodeling with increased age, and are consistent with the concept 

AVIC functionality is critical to valve homeostasis [80]. While the role of AVIC contraction in 

leaflet homeostasis is unknown, it can be speculated that it may play some role in facilitating 

collagen fiber formation and integration into the leaflet ECM. Clearly, ongoing studies are 

required to elucidate these issues.  

It is also unclear if AVIC require in vivo strains unique to valvular tissues to maintain 

their functional characteristics. For example, the resting heart valve duty cycle for the mitral 

valve has shown that closing occurs in 50 ms, remains closed for 300 ms, reopens in 50 ms, and 

remains open for 600 ms [131].  While not yet measured for the AV, it is likely loaded in a 

similar pattern. This indicates that the leaflets are under tension for ~40% of the cardiac cycle.  

Recently, two different studies showed that porcine aortic leaflets exposed to either constant 

shear stress [102] or constant static pressure [165] did not maintain the AVIC contractile 

phenotype after 48 hours. From these works, it was suggested that one of the modes of in vivo 

loading might be necessary in maintaining the contractile phenotype of the AVIC. 

5.3.5 Role in TEHV

In addition to valvular pathology, the future success of tissue engineered heart valves 

(TEHV) is likely dependent on the implant’s viability and biosynthetic activity.  Vascular 

 Development 
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smooth muscle cells [80, 166], bone marrow derived stem cells [158], and tricuspid valve 

myofibroblasts obtained from biopsy [167] have been previously suggested as TEHV cell 

sources

 insights on how the AVIC population can alter 

native 

lve leaflet. Regardless of their 

ultimate role in leaflet function, they obviously serve to maintain homeostasis in native leaflet 

 estigation. 

. However, it is currently unclear which cell source would be best suited for TEHV 

success, and there is a need to clarify which cellular endpoints are necessary for proper valve 

maintenance. Future studies will aim to clarify the loading regimen necessary to maintain AVIC 

phenotype in vitro, which is believed to be a necessary requirement as an aortic TEHV cellular 

endpoint.  Additionally, this testing technique may allow analysis of the intact contractile 

functionality of AVIC in explanted tissue engineered valves. 

5.3.6 Summary 

The findings from this work reveal some

leaflet stiffness at low strain levels experience in bending.  These results indicate that 

changes in AVIC population stiffness can be measured at the tissue level. Further, a significant 

basal tone was observed and quantified for the first time. It should be emphasized that the 

mechanical contribution of the AVIC population to the biomechanics of valvular function, while 

currently unknown, is most likely negligible. However, we speculate that the contractile 

properties of these cells is likely related to their role in managing ECM formation, and is 

strongly influence by the local stress environments of the va

tissues and thus warrant further inv
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6.0 IN SITU AORTIC VALVE INTERSTITIAL CELL MICROMECHANICS: 

rcumferential direction [19]. The stiffer response 

in the c

cell phenotype, possibly contributing to further progression of the disease. Additional in vitro 

studies have elucidated possible cytokine agents, particularly TGF-β1, which may lead to the 

AVIC becom

 
CELLULAR OVERLOAD WITH INCREASING STRAIN 

Aortic valve (AV) leaflets undergo very large tissue deformations during the cardiac 

cycle, and most notably significant extension in both the circumferential and radial directions 

during diastole to prohibit blood regurgitation. The mechanical respons of the AV leaflets varies 

largely in these directions with very high stretch-low stress in the radial direction with much 

more modest stretch and higher stress in the ci

ircumferential direction is chiefly dictated by the large fibrillar type I collagen that 

becomes taut at very low strains [20]. In addition to collagen fibers, the AV interstitial cells 

(AVICs) are also oriented primarily in the circumferential direction [75, 77, 78]. It has been 

believed for many years that these cells are responsible for the continual renewal and repair of 

the surrounding ECM [76], and therefore, their function is believed to be paramount for the long 

term integrity of the AV. 

The AVIC phenotype appears to possess characteristics of both fibroblast and smooth 

muscle cells and is typically referred to as a myofibroblast [75, 76]. Clinical explant studies have 

implicated the AVIC myofibroblast in various disease pathologies [80, 81, 168] as an activated 

ing activated [133, 144, 152]; however, there has been no systematic examination 

of the level of circumferential strain and potential effects on AVIC phenotype and function. 
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The theory of stress overload of the AV was presented in 2002 by Robicsek et al. [169] 

and while the theory is highly plausible, little work has been performed since to address this 

potential contributor to valve disease. Primarily, they theorized that the most likely culprit for 

degenerative valve disease is increased stress on the AV leaflets due to loss of compliance in the 

aortic wall. As compliance decreases in the aortic wall, vessel dilation decreases, which inhibits 

stress transfer from the collagen fibers in the circumferential direction to the highly extensible 

elastic fibers oriented radially [21, 97]. To further support this theory of stress overload in the 

circumferential direction, nearly all AV degenerative pathologies originate and perpetuate in 

fibrosa layer of the leaflet where the circumferentially oriented collagen resides [62]. 

need to understand the potential biophysical roles that may be played in 

altering the AVIC phenotype and function in the otherwise healthy AV leaflet from elevated 

tissue s

ditional circumferential strips to 0, 10, and 20% 

strain and afterwards fixed these tissues in their strained state for examination with small angle 

light scattering (SALS) and transmission electron microscopy (TEM).  

There is a 

tress. Therefore, we hypothesize that the level of strain applied to a circumferential strip 

of AV leaflet tissue will modulate the in situ AVIC phenotype and biosynthesis. Moreover, we 

hypothesize that stress overload (prescribed by strain level) of the AVICs will have a detrimental 

effect on cellular function and ultimately AV homeostasis. To test these hypotheses, porcine AV 

leaflet strips were exposed to 3 and 6 day treatments of 0, 10, or 30% strain at 1 Hz. These 

stretch levels were chosen as 10% is the lower bound of the normal physiologic range (range 

between 10 and 20%) and 30% is substantially higher (nearly double the average of the normal 

range). Afterwards, the phenotype of the resident AVICs was quantified along with type I 

collagen production from the AVICs. Moreover, to further elucidate the micromechanical 

environment of the AVICs, we subjected ad
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6.1 PROTOCOLS 

6.1.1 Bioreactor Design  

The tens the previously 

described flexure bioreactor used for flexural stimulation of engineered valvular tissue [32, 33]. 

Cyclic 

n 

approved abattoir (Thoma Meat Market, Saxonburg, PA). The entire valve root complex was 

rectangular strip was dissected from the central portion of the leaflet (15mm x 8mm). The three 

leaflets (NC=non coronary; LC=left coronary, and RC=right coronary) of the AV were separated 

into treatment groups. NC leaflets were used as day 0 controls, LC leaflets as static controls, and 

RC leaflets as strain samples. For each treatment group, n=6 AVs were used. 

ion bioreactor (Figure 42) used in this study is similar to 

stretch is applied to the samples by an environmentally sealed linear actuator 

(UltraMotion, Mattitick, NY) which is rigidly coupled to the base of the system and the cross-

arm of the bioreactor. The cross-arm is coupled to the actuating arms penetrating each chamber 

via a hole that is protected with an accordion-style rubber bellow. Each actuating arm has two 

orthogonal crossbars with exiting holes into which stainless steel pins are inserted. These pins 

align directly across from the stationary pins to apply uni-directional tension to the specimen. 

Applied strain and strain rate are controlled with programmable Si Programmer software 

(Applied Motion Products, Watsonville, CA). The entire device, including lids, pins, and screws 

can be cold gas sterilized with ethylene oxide. 

6.1.2 Tissue preparatio

AVs were collected upon sacrifice of young hogs (~10 mos., ~250 lbs.) at a local USDA 

submerged in PBS and maintained at 4ºC. As reported previously, leaflets were removed and a 
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6.1.3 

 FBS, 1% 

penicil

 

Figure 42. Tension bioreactor used to house and mechanically train AVL strips. Each chamber has 8 wells, which 
ltaneously. 

Treatment configuration 

NC strips were snap frozen immediately after dissection and stored at -80ºC. LC strips 

were each placed in a single well of a 6-well plate. RC strips were threaded with custom made 

stainless steel springs (8 mm long x 2 mm diameter x 10 turns/cm) on the short axis side of the 

tissue. The strips were penetrated with the spring at least four times to allow for uniform stress 

distribution. Tissue strips were then inserted into the tension bioreactor (Figure 42) by sliding 

the springs onto the pins inserted into the floor of the culture well and the actuating arm of the 

bioreactor. For LC and RC strips, 5 mL of complete media was added (DMEM, 10%

lin-streptomycin, and 0.5% fungizone, all from Gibco) and was subsequently changed 

every 24 hours. RC strips received 10, 20, or 30% strain at 1Hz for either 3 or 6 days. After 3 

and 6 days, LC and RC strips were snap frozen and stored at -80ºC. 

allows 16 samples to receive the same mechanical stimulation simu
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6.1.4 AVIC phenotype and collag ios s 

Samples were thawed, homogenized, and the intra-AVIC proteins analyzed by enzyme-

linked imm

propeptide (CICP, Metra CICP EIA Kit, Quidel Corp.) according to the manufacturer’s 

6.1.5 Tissue, cell, and nuclei micromechanical analysis 

To elucidate the micromechanics of the AV leaflet to increasing strain and the in situ 

micromechanical environment of the AVICs, additional leaflets were obtained and dissected as 

above. RC leaflets were subjected to a single extension of 0, 10, or 20% strain and fixed with 

either 2

en b ynthesis analysi

unosorbent assays (ELISAs) for SMA, Hsp47, and CICP as reported previously [132, 

134]. In our previous work, it was shown that Hsp47 accurately represents type I collagen 

production for AVICs [134]. This was validated by an ELISA for type I collagen C-terminal 

instructions. Similarly, biologically active TGF-β1 was assayed with the TGF-β1 Emax® 

Immuno-Assay System (Promega Corp.) according to the manufacturer’s instructions [152]. To 

demonstrate that AVIC phenotype and collagen biosynthesis were equivalent between the three 

leaflets, a set of valves (n=6) was used to form a comparison.  

.5% Grade I or Grade II (EM grade) gluteraldehyde (Sigma Aldrich, St. Lousi, MO) for 

60 min in their strained state. Afterwards, the strips were either analyzed by small angle light 

scattering (SALS) [146, 170] to determine the change in collagen orientation due to increasing 

strain or dissected such that AVICs could be viewed in the circumferential-tissue thickness plane 

with transmission electron microscopy (TEM).  

SALS is an effective technique for the microstructural analysis of planar fibrous 

connective tissues, and we have used it previously for mapping the architecture of leaflets from 
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norma , pressure fixed, and explal nted bioprosthetic valves [20, 27, 40]. Briefly, a continuous 

unpolarized wave laser is passed through the tissue, which scatters light according to the internal 

planar 

All ELISA s could be seen 

with respect to th parisons 

and SALS an

6.2.1 

 

phenotypically and biosynthetically comparable, ELISA values for SMA, Hsp47, CICP, and 

fiber structure. The resulting angular distribution of scattered light intensity about the 

laser axis represents the distribution of fiber angles within the beam envelope at the current 

tissue location. Gathered information includes: 1) preferred fiber direction, 2) distribution skew, 

and 3) orientation index (OI), which represents 50% of the total number of fibers.  

For TEM, tissue specimens were prepared with standard protocol and sectioned at 70 nm. 

Individual AVICs and their nuclei were imaged at 8-15kx. From these images, the orthogonal 

major and minor axes of the cell and nucleus were measured (SigmaScan, SYSTAT) and used to 

calculate aspect ratios as reported previously for AVICs fixed under increasing pressure [84]. 

6.1.6 Statistics 

 results were normalized to their day 0 values such that change

is baseline value; each ELISA data point represents n=6 samples. Com

between ratio values were performed with a one-way ANOVA. For cell and nuclear aspect ratios 

alysis (OI), comparisons were made with an unpaired Student t-test.  

6.2 RESULTS 

Changes in SMA, Hsp47, CICP, and TGF-β1 due to strain level 

In order to demonstrate that the AVICs from the three leaflets of a given AV are
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TGF-β1 from each leaflet were analyzed (Figure 43). As expected, there was no significant 

difference between leaflets with respect to any of the proteins or cytokine analyzed in this study.   

 

e three leaflets of n=6 porcine AVs. b) 
ELISA values for TGF-β1 from the same AVs. These results reveal that the phenotype, biosynthesis, and cytokine 

levels are consistent for the AVICs of the three AV leaflets.  
 

As there was no difference between the three leaflets with respect to the proteins/cytokine 

measur

m any differences observed with Hsp47 as this 

would 

Figure 43. a) ELISA absorbance values for SMA, Hsp47, and CICP for th

ed in this study (Figure 43), it was deemed appropriate to normalize changes at 3 and 6 

days to the day 0 controls (NC leaflets). For SMA, there was no significant difference at either 3 

or 6 days for any of the strain protocols (Figure 44a). There was a decrease of SMA in the static 

samples at 3 and 6 days, but they were not significant. Tissues treated with 10 and 30% strain 

had nearly identical SMA values at 3 and 6 days and neither of these were different from day 0 

values. For Hsp47, there was a significant decrease (+, Figure 44b) at 3 and 6 days for both 30% 

strain and the static group compared to the 10% strain treatment which was nearly unity at both 

time points. CICP was analyzed here to confir

represent collagen actually synthesized and delivered outside of the cell whereas Hsp47 

represents a surrogate for collagen synthesis within the cell. Here, we see that while there is a 
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difference for 30% strain compared to 10% strain with respect to Hsp47, no such difference is 

apparent for CICP (Figure 44c). Like Hsp47, CICP was significantly lower for the static group 

at day 6 compared to both 10 and 30% strain (#, Figure 44c). TGF-β1 was not different for any 

treatments at any time point (Figure 44d).  

 

Figure 44.  ELISA absorbance values for a) S H  and d) TGF-β1at 0, 3, and 6 days exposed to 
static culture or cyclic strain of 10 or 30%. Drawn gray line represents unity. +, significantly less (p<0.05) than 10% 

at time point. 

MA, b) sp47, c) CICP,

strain at that time point. #, significantly less (p<0.05) than 10 and 30% strain at th
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6.2.2 AVIC deformation under circumferential tissue strain 

To appreciate the micromechanical environment of the AVIC, additional leaflets were 

strained and held at 0, 10, and 20% strain and, after fixation, analyzed with TEM (Figure 45) 

and SALS (Figure 46). TEM images of single AVICs were analyzed such that the aspect ratio 

(major axis length/minor axis length) of the entire cell and nucleus were calculated. Using SALS, 

the distribution of the collagen orientation (normalized orientation index, NOI=[(90-

OI)/90]*100) was calculated [171]. OI represents 50% of the fiber distribution for a given 

scattering of light at a point in the tissue (250 μm diameter region). Therefore, as NOI increases 

from 0 to 100, the fiber distribution peak becomes narrower, representing more collagen 

alignment. 

 

Figure 45.  TEM images of AVICs at 0, 10, and 20% strain. Drawn arrows show orientation of circumferential 
strain. 
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Figure 46.  SALS images of circumferential strips of AV tissue under 0, 10, and 20% stain. OI color scale on left 

As found previously, with AVs fixed under increasing diastolic pressure [84], NOI 

increased appreciably with increasing strain (Figure 47a). NOI at 10 and 20% strains are 

significantly greater (p<0.01) than 0% strain. The fact that there is no change in NOI from 10 to 

shows areas of pink as highly aligned and areas of blue as less aligned. 
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20% strain demonstrate that 10% strain is sufficient to largely orient the fibrillar collagen and 

subsequent strains result in elongation of the fibers (Figure 47c). The cell and nucleus aspect 

ratio in

 

Figure 47.  a) NOI versus strain, b) Aspect ratio versus strain, c) Aspect ratio versus NOI, and d) Nucleus aspect 
ratio versus Cell aspect ratio. #, significantly greater than 0% strain.  

 

 

crease together with increasing strain (Figure 47b,d), aspect ratios were significantly 

greater (p<0.05) for the both the cell and nucleus at 20% compared to 0 and 10%. This finding 

demonstrates that the nucleus is indeed a reliable cellular strain gage when examining H & E 

images, as preformed previously [84].  
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6.3 DISCUSSION 

6.3.1 Effects of strain level on AVIC deformation, phenotype, and function 

The goal of this study was to examine both the micromechanical environment of the 

AVIC under varying levels of circumferential strain and probe the hypothesis that biophysical 

mechanisms can lead to AVIC dysfunction. As expected, the AVIC and nuclei deformed in a 

very predictable manner with increasing circumferential strains. This was not surprising given 

our previous findings of changes in tissue stiffness due to AVIC contraction and relaxation [29] 

which highlighted the tight AVIC-ECM binding within the AV tissue.  

The effect of 10% cyclic strain on the AVICs was beneficial for AVIC function 

compared to static culture at both 3 and 6 days as it maintained the day 0 levels of SMA, Hsp47, 

and CICP. There was no change in TGF-β1 from any treatments, at any time. 30% cyclic strain 

was chosen as it represents a substantial increase from what is thought to be the normal 

physiologic strain range which persists during diastolic function. From what is observed in 

diseased AV explants (fibrosis and calcification in the fibrosa layer), there was great interest in 

examining the AVIC response to cyclic strain in the circumferential direction, and it was 

hypothesized that excessive strain may overload the AVICs, leading to dysfunction. Within the 

time frame examined here, this turned out not to be the case. In fact, 30% strain had no effect on

S  

ecome more contractile or produce more collagen. There was a difference in Hsp47 with 30% 

strain, b

 

MA or CICP compared to 10% strain, indicating that the higher strain did not cause AVICs to

b

ut it was actually decreased compared to 10%, which is counterintuitive based on what is 

thought about mechano-sensitive cells and their response to increased strains.  
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Changes in Hsp47 have been observed previously in smooth muscle cells that were 

exposed to excessive heat (42ºC) or oxidized LDL without a subsequent change in collagen 

production [123]. These states are thought to represent non-physiologic cases that were initiated 

in vitro and therefore are not the norm for typical collagen biosynthesis in a healthy tissue. 

Therefore, this finding is doubly confounding: primarily, one would not suspect that increased 

strain would lead to decreased collagen production (Hsp47) and secondly, besides the cases 

m

m

out to be the case and the ELISA results shown above are considered, it would appear that the 

A  

doubles, as in the case of going from 10% strain to 30% strain. Therefore, further experiments 

need to be performed to test the hypothesis of cellular overload possibly by modifying the setup 

entioned above we have not observed an instance with the AVIC where Hsp47 and CICP are 

not essentially in tandem. Hence, while this work may be somewhat preliminary with regard to 

duration and strain levels examined, it appears from first blush that excessive strain does not alter 

the AVIC phenotype nor affect collagen biosynthesis. The mechanism that leads to the decrease 

in Hsp47 for the 30% strain treatment is not known and further studies need to be completed to 

elucidate this.  

The precise mechanism by which AVICs sense and adapt their surrounding 

icromechanical environment is currently unknown. It is assumed that they undergo large 

deformations during diastole which lasts about 300 ms. From the viscoelastic data that was 

presented in Chapter 3, it seems reasonable to assume that the AVICs deform elastically and 

proceed to nearly triple their aspect ratio at 20% strain during this short time frame. While aspect 

ratios of 30% strain were not analyzed here, it is likely that they will continue along the linear 

path similar to the 10 and 20% samples and result in an aspect ratio around 11 or 12. If this turns 

VIC does not modify either phenotype or function even when its aspect ratio deformation
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such that biaxial loading is applied e t has not been considered in detail 

6.3.2 

Examination of the micromechanics of AVICs under circumferential strain was highly 

desirable as it allowed us to test our previous knowledge regarding AVIC deformation under 

increasing transvalvular pressures [84]. While the direct correlation between the uniaxial 

deformation of the AV strips used here and an AV under diastolic loading is not trivial, there is 

good evidence that normal diastolic pressure generates 10-20% circumferential strain. The 

biaxial response of the AV leaflet during diastole additionally includes a much larger strain in 

the radial direction that certainly contributes to the collagen fiber kinematics and resulting 

orientation due to loading. However, as the fibrillar collagen runs circumferentially with the AV 

leaflet, it was believed that this loading direction is likely more crucial in the mechanobiological 

function of the AVICs. Hence, AVIC response to circumferential strain was focused on in this 

study and the normal range of physiologic loading was considered. 

AVIC micromechanics under increasing circumferential strain appear to be largely linear; 

however, from what is known about type I collagen within the AV leaflet, this response is not 

entirely clear. Likely, there is a very low range of tissue strain that may not result in cellular 

deformation as the collagen becomes uncrimped and does not carry an appreciable load. 

Conversely, this may not matter and any elongation of collagen fibers (from uncrimping) could 

cause cellular deformations as the relative compliant cells are attached to the crimped fibers via 

focal adhesions. There is a need to examine low increments to understand how the cells deform 

at the beginning of diastole.  

 to th sample. While i

previously, there is need to understand AVIC deformation response to radial loading as well. 

 AVIC micromechanics 
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6.3.3  Summary 

The goal of this work was to examine the effect of circumferential strain on the AVIC 

micromechanics and potential for excessive strain causing cellular dysfunction. As anticipated, 

the AVIC response to increasing strain was nearly linear and the cells, once again, revealed the 

tight binding to the surrounding ECM. Primarily, the aspect ratio of the AVICs appears to more 

than double during diastole; future studies should use this result as a directive for 

mechanobiological studies. While the results regarding 30% strain were somewhat unexpected 

and imply that excessive strain does not alter AVIC function, we suspect that there is more 

complexity to the theory of stress overload that could be explained here and further studies 

should be designed accordingly.  
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7.0  SYNERGISTIC EF
GROWTH FACTOR-β1

FECTS OF CYCLIC TENSION AND TRANSFORMING 
 ON THE AORTIC VALVE INTERSTITIAL CELL 

tial cells (AVICs) is believed 

to be crucial, it is not known if their biosynt

ly stiffer but also produced significantly more type I collagen, as 

Aortic valve leaflets (AVLs) are unique tissues that are both supple and strong, allowing 

them to perform their primary function of unidirectional blood flow. Their suppleness is required 

for efficient opening and closing, while their compliance and strength permit apposition to 

withstand blood-imposed transvalvular pressure when the valve is closed. The ability to perform 

these passive responses is severely compromised by degenerative disease conditions wherein the 

leaflets become either calcified and/or fibrotic. Both conditions result in stiffening of the leaflets 

which simultaneously decreases their opening and closing efficacy, and may shorten the leaflets 

leading to insufficiency [62].  

The mechanisms by which AVLs maintain their structural and functional homeostasis is 

presently unclear, and although the role of the aortic valve intersti

hetic response is driven primarily by mechanical, 

biochemical, or a synergistic combination of both mechanisms. Valve interstitial cells (VICs) 

have been recognized for many years as a heterogeneous population of fibroblasts, secretory and 

contractile smooth muscle cells, and myofibroblasts, aptly named due to expression of both 

fibroblast and smooth muscle cell markers, primarily smooth muscle α-actin (SMA) [75-78, 81]. 

Using micropipette aspiration, we have recently shown that isolated ovine VICs from the left 

side of the heart were significantly stiffer than the right side VICs [132]. Moreover, the mitral 

and aortic VICs were not on
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determined by the surrogate, heat shock protein 47 (Hsp47). Hsp47 levels correlated well with 

cellular SMA among all VIC populations, which revealed a first-order approximation of their 

mechan

growth factor beta-1 (TGF-β1) 

[172]. This is of importance as TGF-β1 has been demonstrated to effectively alter the AVIC 

phenotype from a quiescent fibroblast to an activated and contractile myofibroblast in vitro [144, 

152]. In vivo, this phenotypic shift is apparent when comparing VICs from normal, healthy 

valves with those from developing, diseased, and remodeling valves [81, 168, 173]. 

Therefore, we hypothesize that both cyclic, circumferential tension and TGF-β1 are 

modulating factors for the in situ AVIC phenotype and resulting biosynthetic state; hence, each 

were examined independently and in concert to determine their resulting isolated and synergistic 

effects. This was accomplished by exposing circumferential AVL tissue strips to extended tissue 

cultures under the following four scenarios and afterwards assaying AVIC contractile and 

synthetic proteins, bioactive TGF-β1, and performing standard histology for ECM composition:  

1) Cyclic tension (Tension)  

2) No loading with exogenously added TGF-β1 (TGF) 

o-dependent biosynthesis. This finding implies that VICs are phenotypically and 

functionally tuned to actively remodel the ECM due to the synthetic demands necessary for 

normal tissue homeostasis. 

The modulating environmental factors controlling AVIC contractility are uncertain. 

Additionally, it is unclear how mechanotransduction from the global and multi-modal stresses 

(i.e. planar tension, flexure, and shear stress) on AVLs translate to the cell and sub-cellular 

levels. Infiltration of neutral lipid and inflammatory cells is thought to initiate AVL calcification 

[156], and it is interesting to note that inflammatory cells (macrophages) are an excellent source 

of many growth factors and cytokines, notably transforming 
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3) Neither loading nor exogenously added TGF-β1 (Null) 

4) Cyclic tension with exogenously added TGF-β1 (Tension+TGF) 

7.1 PROTOCOL 

7.1.1 

s (Figure 48a). Each AVL was then trimmed such that a tissue 

strip w

Tissue strips from the LC and RC groups were prepared to be inserted into the tension 

bioreactor shown in the previous chapter (Figure 42). In order to couple the tissue strips and the 

posts of the bioreactor, the tissue was threaded on both 8 mm ends with stainless steel springs (1 

cm long x 2 mm diameter x 5 turns/cm, Figure 48c) as reported previously for development of 

engineered heart valve tissues [174]. Each end of the tissue was penetrated at least four times by 

the spring, allowing a good stress distribution along the short axis of the tissue during loading. 

Tissue Preparation 

Porcine hearts were excised from young hogs (~10 mos., ~250 lbs.) at a local USDA 

approved abattoir (Thoma Meat Mkt., Saxonburg, PA); for each treatment group four hearts were 

used. Intact AVs were excised on site and placed in preservation media (HypoThermosol HTS-

FRS, BioLife Solutions, Binghamton, NY) at 4°C to assure maximal cell survival during 

transport [29]. Individual AVLs were excised in the lab and separated into left (LC), right (RC), 

and non coronary (NC) group

as formed measuring 20 mm circumferentially and 8 mm radially (Figure 48b). An 

attempt was made to keep the endothelial cells viable by limited handling. 

7.1.2 Treatment Configuration 

 135 



Tissue strips were then inserted into the tension bioreactor by sliding the springs onto the pins 

inserted into the floor of the culture well and the actuating arm of the bioreactor (Figure 48d). 

To each well, 7mL of complete media was added (DMEM, 10% FBS, 1% penicillin-

streptomycin, and 0.5% fungizone, all from Gibco) and was subsequently changed every 24 

hours.  

B
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Specimen
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al
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and LC) was designated for specific treatment durations for all groups. B, Sample preparation from dissected leaflet 

ends; at least four puncture sites in the tissue were used to achieve a uniform stress distribution across the width of 
the s p in the tension bioreactor. The actuating arm is coupled to the linear 

 system to apply 15% stretch to the sample. 
 

 
 

Figure 48. Schematic of AVL strip preparation. A, Opened aortic root with leaflets shown. Each leaflet (NC, RC, 

to attain a circumferential AVL strip measuring (20 x 8 mm). C, Threading of stainless steel springs into both tissue 
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For groups receiving biologically active TGF-β1 (0.5 ng/mL, T5050, Sigma) [152] media 

was pr r use daily to ensure 

that the growth factor remained active over the subsequent 24 hours. For groups receiving cyclic 

tension, the linear actuator was programmed to apply ~15% stretch to the tissue at 1Hz. Groups 

receiving no cyclic tension were mo d i or with the motor inactive and 0% 

 slightly slack). Immediately after the LC and RC groups were 

loaded into the bioreactor, the NC samples were snap frozen in liquid nitrogen (-196°C) and 

stored 

 the radial axis, was 

removed and fixed in 10% buffered formalin for standard histology. Sections were then paraffin-

and stained with Movat’s pentachrome stain for ECM 

composition and distribution analysis. The average thickness of each leaflet was digitally 

calcula

epared as 10x stock (5 mL aliquots), frozen (-20°C), and thawed fo

unte nto the bioreact

stretch applied (tissues were 

at –80°C to serve as day 0 controls of AVIC function and tissue morphology. RC strips 

were exposed to protocols listed previously for 7 days and LC strips for 14 days (Figure 48a). 

After each treatment, tissues were removed from the bioreactor and frozen as with the day 0 

samples.  

7.1.3 Cell and Tissue Analysis 

Samples were thawed and the center 2 mm of the tissue, along

embedded, sectioned at 10μm, 

ted from the histology slides (SigmaScan, SYSTAT) to determine if there was any 

appreciable compression of the specimens during treatment. The remaining tissue was 

homogenized and the intra-AVIC proteins analyzed by enzyme-linked immunosorbent assays 

(ELISAs) for SMA and Hsp47 as reported previously [132]. Hsp47, a molecular chaperone 

located in the endoplasmic reticulum, has been shown to facilitate proper secretion of type I 
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collagen in multiple cell types [122, 123, 130], and has also been found to nearly eliminate 

proper collagen production in Hsp47-/- cells [175, 176]. Moreover, it has been demonstrated that 

selectively transfecting smooth muscle cells with a retrovirus containing Hsp47 cDNA resulted 

in increases of both intra- and extracellular steady state type I collagen production, while 

Northern blots of total RNA showed a tandem increase in both Hsp47 and procollagen [123]. 

Hence, Hsp47 was deemed a suitable surrogate for type I collagen in this study; however, to 

validate the accuracy of Hsp47, all samples were additionally assayed by an ELISA for type I 

collagen C-terminal propeptide (CICP, Metra CICP EIA Kit, Quidel Corp.) according to the 

manufacturer’s instructions. Similarly, biologically active TGF-β1 was assayed with the TGF-β1 

Emax® Immuno-Assay System (Promega Corp.) according to the manufacturer’s instructions 

[152].  

As it is not possible to demarcate the cell type variability within the tissue, we assumed 

that the AVIC population is on a continuum which ranges from fibroblasts to myofibroblasts to 

smooth muscle cells. Therefore, all assays herein are lumped quantifications of the cell 

population. Based on previous work [51, 80, 81, 168, 173], there is strong support that the 

myofibroblast is highly responsible for active valvular tissue remodeling and is very prevalent in 

many valvular pathologies. 

 Statistics 

m  

nalyzed with a repeated measures two-way ANOVA for day and treatment group. Post-hoc pair 

wise comparisons were performed with the Tukey test. Thickness measurements were compared 

7.1.4

ELISA values, thickness measurements, and bioactive TGF-β1 values are reported as 

ean ± standard error (SEM). For statistical comparison, all ELISAs and bioactive TGF-β1 were

a
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with ANOVA within each treatment group. All differences were deemed statistically significant 

for p<0.05. 

7.2 RESULTS  

All biochemical assay results are found in Table 5 (mean ± SEM). It was found that for 

all assays (Hsp47, SMA, CICP, and Bioactive TGF-β1) there was a significant difference 

(p<0.001) for time, treatment, and their interaction. Statistical comparisons that follow were 

preformed with the Tukey test. 

Table 5. Raw values (mean ± SEM) for each assay 

 mean ± 
n=4

SEM       Day SMA              
(ng/ml)

Hsp47             
(ng/ml)

CICP              
(ng/ml)

Bioactive TGF-β1   
(pg/ml)

0 1.65 ± 0.04 1.34 ± 0.03 2.74 ± 0.07 46.78 ± 1.67
7 1.53 ± 0.03 1.25 ± 0.04 2.54 ± 0.07 52.43 ± 2.09

1.15 ± 0.02 0.96 ± 0.02 2.12 ± 0.02 47.20 ± 1.64
 ± 0.05 1.16 ± 0.01 2.29 ± 0.10 52.20 ± 1.28

7 1.57 ± 0.03 1.51 ± 0.02 2.95 ± 0.23 66.86 ± 3.16
14 1.82 ± 0.04 1.52 ± 0.04 2.98 ± 0.09 63.30 ± 1.09
0 1.65 ± 0.02 1.41 ± 0.02 3.04 ± 0.13 50.23 ± 2.33

0 1.58 ± 0.02 1.30 ± 0.06 3.14 ± 0.12 55.43 ± 1.88

Null

TGF

14
0 1.62

Tension

7 1.81 ± 0.02 1.73 ± 0.03 3.50 ± 0.15 117.50 ± 5.56
14 1.96 ± 0.03 2.03 ± 0.04 4.23 ± 0.04 95.25 ± 1.70

7 3.02 ± 0.05 3.42 ± 0.12 7.29 ± 0.19 621.25 ± 8.69
14 3.87 ± 0.04 4.30 ± 0.07 8.72 ± 0.28 647.00 ± 8.13

Tension+TGF
 

Tension group (Figure 49a). The Tension+TGF group was significantly greater (p<0.001) than 

7.2.1  SMA and Hsp47 Quantification 

ELISA absorbance values for SMA (Fig. 3A) and Hsp47 (Fig. 3B) reveal very similar 

trends for each treatment over the duration of the experiment. All SMA data points are 

significantly different (p<0.05) except the following: no difference between any groups at day 0; 

no difference between Null and Tension at day 7; and no difference between day 0 and 7 for the 
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all other groups at both days 7 and 14. All Hsp47 data points are significantly different (p<0.05) 

except the following: no difference between any groups at day 0 except between TGF and 

Tension (p=0.006); no difference between day 7 and 14 for the Tension group (Figure 49b). The 

Tension+TGF group was significantly greater (p<0.001) than all other groups at days 7 and 14. 

 
e 49.  A, SMA ELISA results (mean ± SEM). Tension+TGF group significantly greater (p<0.001) than all 

(p<0.001) than all other groups at 7 and 14 days. Drawn asterisk (*) shows sum of Tension and TGF results 

group. As a reference, the drawn horizontal line represents the average day 0 value of all groups. 
 

7.2.2 CICP Quantification 

Figur
other groups at 7 and 14 days. B, Hsp47 ELISA results (mean ± SEM). Tension+TGF group significantly greater 

individually at 14 days and drawn vertical line represents the difference between this sum and the Tension+TGF 

While Hsp47 expression has been shown to be highly correlated with type I collagen 

t  123, 130, 175, 176], it was confirmed here by the use of a CICP ELISA 

(Figure 50). All CICP data points are significantly different (p<0.05) except the following: no 

differen

biosyn hesis [122,

ce between Tension and Null groups or TGF and Null groups on day 0; no difference 

between day 0 and day 7 or day 7 and day 14 for the Null group; no difference between day 7 

and 14 for the Tension group; and no difference between day 0 and 7 for the TGF group. As with 
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Hsp47 (Figure 49b), CICP values were significantly greater (p<0.001) for the Tension+TGF 

group at both 7 and 14 days, compared to all other groups (Figure 50). Therefore, throughout the 

remainder of this manuscript, only Hsp47 will be discussed when referring to collagen 

biosynthesis, as the present result validates that increases in Hsp47 expression suitably represent 

increased type I collagen synthesis for AVICs. The drawn asterisk (*) on each graph in Figure 

49 and

 

 a rate that Hsp47 is suitable surrogate for type I collagen synthesis 
 t ) shows sum of Tension and TGF results individually at 14 days 

and drawn vertical line represents the difference between this sum and the Tension+TGF group. As a reference, the 
drawn horizontal line represents the average day 0 value of all groups. 

7.2.3 Bioactive TGF-β1 Quantification 

All bioactive TGF-β1 data points are significantly different (p<0.05) except the 

following: no difference between any groups on day 0; no difference between Tension and Null 

 Figure 50 represents the cumulative effects of Tension and TGF at day 14 with the 

vertical arrow representing the difference between this value and the Tension+TGF group, which 

is considered the synergistic response of the two stimuli. 
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groups on day 7; no difference between day 0, 7, or 14 for Null group; and no difference between 

day 0, 7, or 14 for Tension group (Figure 51). The Tension+TGF group was significantly greater 

(p<0.001) than all other groups at both days 7 and 14. 
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7.2.4 Ratio Change due to 14 Day Treatment 
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igure 51. Bioactive TGF (mean ± SEM) was statistically greater (p<0.001) for the Tension+TGF group compared
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Histology of AVL Strips 
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7.2.5 

p

red. All day 0 samples were similar with a distinct tri-layered architecture (fibrosa (F), composed 

oteoglycans; ventricularis (V), composed of elastin; 

Figure 53a). Only 14 day samples are shown (Figure 53b-e) as changes in the 7 day samples 
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With Movat’s pentachrome stain (Figure 53), ECM components are distinguished as 
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Null samples (Figure 53b) appeared to have little or no proteoglycans in the spongiosa 

layer. Moreover, elastin fibers in the ventricularis layer were less pronounced than at day 0. 

Tension samples (Figure 53c) showed the tri-layered structure seen at day 0. TGF samples 

(Figure 53d) appeared to be similar to Null samples with few proteoglycans evident in the 

spongiosa layer. However, unlike the Null samples, TGF samples did have a clear ventricularis 

layer with numerous elastin fibers. Finally, Tension+TGF samples (Figure 53e) did not have an 

apparent spongiosa layer, but had elastin fibers making up nearly half of the thickness of the 

leaflets. In all samples, AVIC nuclei were present and evenly dispersed throughout the thickness 

of the tissue. Thickness changes between groups at any time point were not statistically different 

(Table 6). 

 

Table 6. AVL thickness values (mean ± SEM)  

 mean ± SEM       
n=4 Day Thickness         

(μm)
0 405 ± 38
7 365 ± 49

14 377 ± 33
0 417 ± 17
7 342 ± 48

14 365 ± 14
0 407 ± 38
7 352 ± 36

14 403 ± 64
0 385 ± 33
7 357 ± 36

14 390 ± 45

Null

Tension

TGF

Tension+TGF



 

Figure 53. Movat’s pentachrome staining of the middle portion of treatment strips at day 0 and 14 days. A, Healthy 

ycans and diminshed elastin fibers. C, Tension group at 14 days with similar ECM 
t more intense elastin fibers. D, TGF group at 14 days with no apparent proteoglycans 

and slightly diminished elastin fibers. E, Tension+TGF group at 14 days with no apparent protoeglycans, but intense 
elastin fibers in the central portion of the leaflet. 

porcine AVL (day 0). Note the distinct tri-layered structure (fibrosa (F): collagen (yellow, top); spongiosa (S): 
proteoglycans (bluish green, middle); ventricularis (V): elastin (dark violet fibers, bottom)). B, Null group at 14 days 
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7.3 DISCUSSION  

7.3.1 AVIC Physiology: SMA and Hsp47 Correlates 

The overarching goal of this study was to determine the effects of cyclic tension and 

TGF-β1 on the in situ AVIC phenotype and biosynthetic function. To accomplish this, 

circumferential AVL strips were exposed to isolated and combined biomechanical and 

biochemical treatments for up to 14 days in vitro. Effective changes were determined by 

quantifying the contractile (SMA) and collagen biosynthetic (Hsp47, confirmed with CICP) 

proteins of the AVIC population and examining histology of the AVLs.  

As 

 

p47 were well correlated between isolated 

re interested if this remained the 

sults from this study further 

ent, as SMA and Hsp47 

). The mechanobiological 

echanical and biochemical 

odeling and resulting biosynthetic 

as the profound, 

Figure 49b) levels of the 

s, their effects were not as substantial as 

we previously found that SMA and Hs

ovine VICs of the four different heart valve leaflets [132], we we

case with in situ AVICs under different stimuli. Indeed, the re

support the observation that VICs are highly sensitive to their environm

trends were very similar for each treatment group (Figure 49a, b

consequence of this is that VICs are not only well tuned to their m

environment, but are capable of adaptive cytoskeletal rem

response, which likely serves to retain homeostasis within the tissue.  

7.3.2 AVIC Mediated-Pathology: Synergistic Effects of Tension+TGF 

It is our opinion that the most interesting finding from this study w

synergistic effect of Tension+TGF on SMA (Figure 49a) and Hsp47 (

AVICs. While changes resulted from other treatment
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those seen in the combined group. The effect of TGF-β1, in the presence of applied cyclic 

tension, to dramatically increase the intracellular SMA and Hsp47 levels reveals an important 

finding. Here, we demonstrate the ability to effectuate an altered AVIC state in the presence of 

TGF-β1, which would be analogous to TGF-β1-producing, infiltrating macrophages under quasi-

normal AVL biomechanical function in vivo.  

The effectiveness of added bioactive TGF-β1 was apparent in the TGF group (Figure 

51). However, the mechanism behind the substantial increase in bioactive TGF-β1 for the 

Tension+TGF group is not clear, as Tension alone revealed minimal differences in bioactive 

TGF-β1 at 7 or 14 days. While this sensitivity to TGF-β1 has been shown previously for AVICs 

in culture [144, 152, 177], it has yet, until now, to be demonstrated with AVICs in situ. After two 

weeks of the Tension+TGF treatment, the AVIC population was nearly 2.5-fold more contractile 

(by SMA quantification) and was producing ~3-times as much type I collage (by Hsp47 and 

CICP quantification) compared to day 0 (Figure 51).  

The ramifications of this finding serve to directly implicate the AVIC as a contributor to 

AVL degenerative pathologies. Since cyclic tension can never be relieved in AVLs in-vivo, the 

introduction of TGF-β1 (e.g. by macrophage infiltration) would likely lead to a similar response 

in vivo that was observed here. The chronic effects of hyper-contractile and hyper-collagen 

producing AVICs are not entirely clear at the present time as this study was only conducted over 

a two week period; however, if TGF-β1 levels such as these are achieved in vivo over a period of 

months or years, the resulting state of the AVL architecture would likely no longer resemble that 

com he 

of healthy tissue. Additionally, while Tension alone had little effect on the ECM architecture 

pared to day 0 controls (Figure 53a, c), TGF was similar to Null with a loss of t

spongiosa; however, there was still an apparent layer of elastin. The combination of 
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Tension+TGF (Figure 53e) resulted ss layer with a substantial increase in 

ied in this study, it appears to be 

macroscopically conserved by the AVICs in the presence of TGF-β1 and further examination of 

this wil

The general myofibroblast phenotype found elsewhere in the body is normally identified 

by the presence of SMA, which has been shown to be upregulated in the presence of TGF-β1 

[90]. The efficacy of TGF-

 sensitivity of the AVIC to 

surrounding levels of cytokines in the absence of applied mechanical stimuli. Though an 

During normal in vivo function, AVLs are exposed to cyclic flexure (during opening and 

closing

 in lo of the spongiosa 

elastin. Therefore, while elastin was not directly quantif

l be necessary in the future. 

7.3.3 AVIC Homeostasis: Sensitivity to TGF-β1 and the Role of Cyclic Tension  

β1 is dependent on the co-localization of fibronectin (FN) splice 

variant ED-A-FN in the surrounding ECM [172]. However, it has been shown that the presence 

of both TGF-β1 and ED-A-FN were not sufficient to maintain the contractile phenotype of rat 

dermal myofibroblasts when mechanical tension was released from the tissue [93]. Hence, we 

speculated from the outset of this work that Tension alone would be able to maintain the in vivo 

AVIC protein levels, and that TGF alone would not be effective in this maintenance. This turned 

out not to be the case as TGF alone actually resulted in comparable or greater SMA and Hsp47 

levels than Tension alone. The consequence of this finding reveals the

interesting finding, this situation does not occur in vivo for AVLs.  

), tension (when closed), and shear from passing blood (when opened), with tension 

dominating 60% of the cardiac cycle. Therefore, the effects of cyclic tension were thought to be 

a major contributor in AVIC mechanobiological function. Previously, static pressure [165] and 
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constant shear [102] of AVLs has been unable to maintain the SMA+ AVIC phenotype; hence, 

we sought to examine the cellular response due to circumferential cyclic tension in the 

physiologic range. As expected, SMA and Hsp47 levels of the Tension group at day 14 most 

resembled those of day 0 compared to the other treatment groups. Moreover, the histological 

results (Figure 53) reveal that the Tension group at 14 days was most similar to the day 0 

control

Though data points were only obtained up to two weeks, there is reason to believe that further 

decreases in both protein levels would occur at longer times. This finding is believed to be a 

directive of pre-implant mechanical conditioning that will likely be needed for a tissue 

engineered heart valve. As this was an exemplary tissue, with proper ECM architecture, cell-

ECM connectivity, and cell-cell communication, the loss of in vivo-like qualities of the AVICs 

in the absence of mechanical stimulation further supports the need for proper conditioning of an 

engineered tissue prior to implantation. 

s with respect to ECM composition and architecture. This finding implies that under 

normal physiologic conditions, mechanical stimulation (particularly planar tension during 

diastole) is a key contributor to AVIC phenotypic modulation and resulting biosynthesis. 

Additionally, loss of proteoglycans in the spongiosa region of groups not receiving mechanical 

stimulation was not expected, as tension was believed to likely compress this region; however, it 

appears from the histology that these proteoglycans either dissociated on their own, the non-

stimulated AVICs enzymatically digested them, or the AVICs were not able to actively 

synthesize new proteoglycans in the absence of applied tension.  

The Null treatment resulted in concomitant decreases in all proteins assayed (Figures 49 

and 50) and loss of the tri-layered ECM architecture (Figure 53b). This indicates that AVICs 

require mechanical stimulation or cytokines to remain biosynthetically active and normal. 
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7.3.4 Study Rationale and Limitations  

In the present study, AV leaflets used for each treatment group at 0, 7, and 14 days came 

from the same valves. Chiefly, we assumed that the range of SMA and Hsp47 levels between the 

leaflets of the same AV were small compared to the changes measured in this study due to 

d ified these 

proteins from each leaflet of two AVs [132] and found the range of protein levels to be fairly 

small (

ys, it was not possible to do 

repeate

substantial compared to all other groups, including those at day 0.  

applie  treatments. This was based on results from our previous study where we quant

Hsp47=1.163 ± 0.047 ng/ml; SMA=1.638 ± 0.024 ng/ml; n=6). Thus, this experimental 

design allowed us to use a single leaflet from each valve (NC leaflet) essentially as its own 

control, so that changes at 7 and 14 days in the RC and LC leaflets resulted from the applied 

treatments.  

The small differences between the means of any day 0 groups are believed to be a result 

of collecting specimens on different days from the abattoir. Indeed, consistent with this 

assumption was the observation in the current study that variation in the Hsp47 and SMA values 

for all day 0 means (Figure 49) was very small. Because it was necessary to use slaughterhouse 

animals for this type of study, it was not possible to control variables such as diet, weight, and 

overall health of the animals (nor, screen these protein levels a priori); therefore, day 0 

differences are believed to be due to valve-to-valve variability of the animals collected on 

different days. Moreover, due to the destructive nature of the assa

d measures analysis with these samples. Therefore, with the above considerations, the 

experimental design and statistical comparison were deemed appropriate for the goals of the 

present study. Finally, changes resulting from each applied treatments over time was the focus of 

this work and differences for the Tension+TGF group, due to synergism, were far more 
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The results and interpretation presented here are predicated on the circumferential cyclic 

tension applied to the samples, and 15% stretch is within the normal physiologic range [19]. We 

have recently shown that AVICs undergo profound nuclear deformations during diastolic loading 

[84] and implicitly assumed that the main effect of tissue strain on AVICs is to induce cellular 

deformations to elicit key biological responses. In this previous study [84], we demonstrated that 

these cellular deformations occur at peak diastolic loading, where the circumferential strains are 

approximately 10% to 20% strain [178]. Thus, application of 15% strains to circumferentially 

oriented strips was a suitable approximation to the in vivo mechanical milieu. Moreover, the 

method of attachment of the tissue to the bioreactor actually is considered strip biaxial and not 

uniaxial [49], which is more physiologic because the strain in the radial direction is held at ~0%. 

While the strain level used in this study was within the physiologic range, the strain rate used to 

achieve this level is far below that found in vivo. Currently, we have begun to examine high 

strain rate, tissue-level mechanics of heart valve leaflets [39], and plan on examining these 

effects 

g planned to address this important topic. 

on AVIC function in the near future, while also incorporating load measurement due to 

applied strain for more advanced biomechanical analyses.  

Although AVIC survival was not directly quantified in this study, it has been previously 

demonstrated that extended static cultures of heart valve tissues contained predominantly viable 

VICs throughout the leaflet well past 30 days [179]. Additionally, an attempt was made to 

maintain an intact endothelium on the AVL strips with limited handling; however, examination 

of endothelial cells was not the focus of this study and their state was not assayed at any point. 

While the interaction between the AVICs and endothelial cells likely plays a key role in valve 

physiology and resulting pathologies, their interaction was beyond the scope of this study. Well 

controlled experiments are currently bein
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7.3.5 Summary 

This study was the first to examine the combined effects of cyclic tension and TGF-β1 on 

the AVIC contractile phenotype and resulting collagen biosynthesis. As in previous studies, 

TGF-β1 had an impact on AVICs in the absence of mechanical stimulation; however, this was 

the first examination of in situ AVIC response. Moreover, we demonstrated the ability to elicit 

an activated AVIC phenotype in the combined presence of Tension+TGF, which is extremely 

relevant for the genesis and possible perpetuation of AVL degenerative pathologies such as 

calcification and fibrosis. It is believed that results from this study aid in understanding the 

means by which AVICs maintain homeostasis, the etiology of certain degenerative AVL 

pathologies, and the development of protocols used to condition engineered valvular tissues. 
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8.0 SUMMARY AND CONCLUSIONS 

c aims can be summarized belwo.  

s overload.  

 

8.1.1 Major findings from this work 

The goal of this work was to elucidate the complex mechanobiologic function of the 

AVIC with respect to its biomechanical environment, plastic phenotype, and biosynthetic 

capabilities. To accomplish this, we examined the central hypothesis that the AVIC is a unique 

cell with a plastic phenotype that is modulated due to certain environmental factors and that is 

modulation is important in the homeostasis of AV leaflet tissue. This hypothesis was examined 

via five aims that are recalled below for the benefit of the reader. From these aims, many insights 

were gained and, indeed, the body of knowledge of AVIC mechanobiology was appropriately 

added to. The primary findings from each of the five specifi

 

1. Determine the correlation between VIC stiffness and biosynthesis in all heart valves.  

2. Determine the tissue remodeling potential of AVICs in comparison to PVICs in 

vitro.  

3. Determine AVIC-ECM connectivity and biomechanical contribution of the 

contractile AVIC to leaflet bending stiffness in situ.  

4. Determine the in situ micromechanical environment of the AVIC under varying 

degrees of circumferential strain and the possible effects of cellular stres
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5. Determine the independent and synergistic effects of cyclic tension and TGF-β1 on 

the AVIC in situ.  

ffer 

and containing more SMA. This was accomplished by comparing PVICs and AVICs with 

respect to cell stiffness (with AFM) and remodeling potential via a collagen gel contraction 

protocol. With identical treatment, AVICs were much stiffer when seeded in a monolayer 

configuration and effectively contracted the collagen gels much faster. As the internal 

cytoskeleton generates the necessary forces to resist deformation and elicit contraction, these 

results again reveal that the AVIC has a more substantial cytoskeleton, and therefore, is capable 

of greater tissue remodeling.  

Aim 3 represented a transition from single cell, in vitro experiments to in situ 

experiments. Here, the ability of the AVICs to contract and relax, due to the internal 

myofibroblastic cytoskeleton, was examined by examining the bending stiffness of AV leaflets 

before and after addition of KCl and thapsigargin, respectively. It was found that the AVICs can 

generate different levels of contraction depending on the surrounding ECM which was probed by 

 

From Aim 1, it was found that he left side valves (MV and AV) have interstitial cells that 

are significantly stiffer, contain more cytoskeletal SMA, and produce more type I collagen. 

Additionally, it was found that the level of SMA and type I collagen production are highly 

correlated, suggesting that all VICs are mechano-sensitive cells such that they appropriately 

modulate their level of SMA in order to synthesize the appropriate level of structural collagen. 

This study served to form a firm foundation and reference from which the further studies are 

based.  

Results from Aim 2 studies further highlighted this finding of left side VICs being sti
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bending the leaflets in different layers. While showing that the cellular contraction of AVICs 

does not contribute to tissue level mechanics, this study revealed the intimate binding of the 

AVICs and the various ECM components of the leaflet tissue.   

Aim 4 was envisioned from the outset to be a seminal study in AVIC mechanobiology; 

however, the results were somewhat unremarkable and increasing circumferential strain did not 

 re was a significant decrease in the molecular chaperone 

Hsp47, which is a surrogate for type I collagen production, but this was not confirmed by CICP. 

Though

represent the most clinically relevant work presented here. Essentially, dysfunction of AVICs 

was initiated with the addition of TGF-β1 such that the cell population was 3x more contractile 

and producing 3x more collagen than in normal conditions. Therefore, this final study represents 

a directive for future mechanobiologic studies of the AVIC that highlights the need to understand 

how elevated cytokine levels arise in the AV and the subsequent cascade of events that follow.  

appear to generate cellular overload. The

 excessive strain (30%) in the circumferential direction did elicit a change in Hsp47, this 

decrease was counter-intuitive as previous findings have shown an increase in Hsp47 due to heat 

treatment (42ºC) and excessive oxidized-LDL. Therefore, within the short duration of treatment 

used here, it appears that excessive strain does not overload the AVICs and they are able to 

effectively maintain normal cytoskeletal and biosynthetic levels.  

 Finally, studies from Aim 5 revealed a very significant and synergistic effect of TGF-β1 

in the presence of cyclic strain on the in situ AVIC. This study was the first to examine the 

effects of TGF-β1 on intact AVICs in a quasi-physiologic environment. Results from this study 
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8.1

ative AV leaflet architecture is tri-layered with distinct ECM components in each layer 

though

propriate maintenance is likely as critical as that of the type I collagen of the fibrosa 

layer.  

extracellular anchorage is crucial for mechanotransduction and 

should 

.2 AVIC phenotype and function to maintain tissue homeostasis 

N

 the AVIC population appears to be evenly dispersed and present through the thickness. 

This specialized and highly evolved architecture demonstrates that while they appear 

phenotypically similar despite their location through the thickness, the AVICs effectively 

synthesize and degrade the surrounding and different ECM components that make up constituent 

layers. Although the ventricularis (containing elastin) and spongiosa (containing 

glycosaminoglycans) layers were not the ECM components which were the focus of this work, 

their ap

It has been shown here and by others that the AVIC is sufficiently bound to the 

surrounding ECM such that it can generate tissue-level forces due to contraction and relaxation. 

This measurable quality is a direct reflection of the mechano-sensitive apparatus used by the 

AVIC to effectively modulate its internal cytoskeleton and resulting biosynthetic output 

depending on the state of the surrounding tissue. One component of this apparatus not explored 

here is the focal adhesion where the cell-ECM junction and integrins are found. Just as the 

cytoskeleton is crucial, this 

be appropriately investigated in due course. Moreover, and likely most importantly, the 

internal workings of the AVIC have not, to our knowledge, been explored in any detail and these 

elements certainly hold the greatest wealth of information for understanding the mechanobiology 

of the AVIC.  
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8.1.3 Role of AVIC phenotype and biosynthesis in AV pathologies 

The results from all studies shown here summarily and further demonstrate that the AVIC 

is dyn

ily the case. Though it appears 

that th

e 

primary question that arises at the conclusion of this work is “which environmental factor(s), 

whether physiologic stresses imposed on the tissue or circulating biomolecules/cells, effectively 

alter the AVIC phenotype such that it becomes an activated myofibroblast?” In short, we 

speculate that the future burden of proof appears to be laid upon the circulating factors.   

amic and unique cell with potential for phenotypic modulation that is predicated on 

environmental factors. As these cells are responsible for the synthesis of new proteins and 

degradation of old or damaged ECM proteins, their continued performance is crucial to the long 

term stability of the valvular tissue. Further, their dysfunction is likely paramount for the 

etiology of age-related, degenerative valve disease. As shown in Figure 12, there are multiple 

environmental factors with potential to alter the intracellular machinery and function of the 

AVICs, but we speculated from the outset that the local mechanical environment would be the 

primary modulator and that cytokines would be secondary. During the in situ portion of this 

work (Aims 4 and 5), it became evident that this was not necessar

e dynamic mechanical environment surrounding the AVICs is necessary to elicit 

dysfunction, it was the addition of TGF-β1 that synergistically resulted in altered cell function 

and tissue architecture.  

It appears obvious that the phenotype of the resident AVIC population is a direct 

indication of the state of the tissue and may be a forewarning for future tissue dysfunction during 

instance when the myofibroblast phenotype is not transient but persistent for long periods of 

time. Though these studies were short in duration, our results indicate that circumferential stretch 

alone does not significantly alter the AVIC phenotype or collagen biosynthesis. Hence, th
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8.1.4 Future directions   

To begin to address the question of the precise mechanisms that lead to elevated cytokine 

levels within the AV, future studies should focus on potential initiators of AV sclerosis that 

result from circulating factors in the blood and their penetration via the AV endothelial cells. 

Primarily, it is believed that AV endothelial cell adhesion molecules (CAM) expression initiates 

leukocyte adhesion, which in turn results in leukocyte infiltration, potentially initiating a cascade 

of events resulting in AV sclerosis. Although the role of CAMs in macrophage adhesion and 

infiltration in atherosclerosis in blood vessels is well established, the role of CAMs in 

contributing to sclerosis of the AV is less clear. To date, the precise mechanisms which regulate 

CAM expression in AV endothelial cells are unknown. From studies in the vasculature, it is clear 

that bo

ce or loss of a key cellular attribute necessary for proper synthesis or degradation. 

Or, another possibility is the AVICs inability to effectively modulate its phenotype with 

increasing age. Under normal circumstances, the AVIC may become ‘activated’ when need be 

th biochemical triggers and biophysical conditions, such as altered shear flow, contribute 

to upregulation of cell adhesion molecules and macrophage infiltration in the vessel wall. 

Therefore, future work will likely investigate AV endothelial cell CAM expression and probe the 

possibility that this expression is a function of one or more of the following: aortic-side fluid 

mechanics; increased tissue deformation of the AV due to hypertension; and elevated lipid levels 

in the circulating blood.  

Additionally, changes in AVICs over a lifetime is a largely unexplored area that could 

reveal a potential mechanism for degenerative aortic stenosis alternative to the inflammatory cell 

or lipid hypothesis described by Otto and others [61, 62]. We suspect that the AVICs do indeed 

change their function over the lifetime of the individual and dysfunction seen later in life may be 

do to senescen
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and then revert back to a quiescent phenotype; however, if this ability to revert is lost and the 

AVIC becomes a constitutive myofibroblast, this could potential have a cascade-like effect for 

the wh

r repeated loading cycles. Moreover, if this predictive model 

could b

ole tissue. The question of AVIC proliferation during one’s lifetime has yet to be 

addressed as well, and clarifying how the AVIC adapts to its environment during different 

periods adulthood is an area that would certainly aid in distilling down to the mechanism(s) 

responsible for degenerative valve disease.  

Ultimately, we would like to connect the organ-scale simulations to evaluate our 

understanding of AVIC mechano-transduction. To this end, it would be beneficial to develop an 

AVIC phenotypic/biosynthetic model linked to organ-level deformations. In the AVL, 

physiologic loading during diastole predominately results in ECM compaction as the collagen 

fibers become uncrimped and taut. From this ECM compaction, significant AVIC deformations  

have been observed with increasing pressures. Even a phenomenological model could thus 

simulate the AVIC population with mechanical inputs (quantified by the deformation of the 

AVIC nuclei) and cytokine levels. It could then be possible to predict the phenotypic and 

biosynthetic response of AVICs afte

e realized, it could be further used to address levels of hypertension, hyperlipidemia, and 

potential other sources that may serve to alter AVIC function.  
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