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2 INTRODUCTION 

1.1 Cardiovascular diseases 

The human circulatory system consists of the heart, blood, arteries, veins and 
capillaries. The heart is the muscular organ which pumps the blood through the 
human body (Fig. 1.1,1.2). Deoxygenated blood flows through the right atrium 
into the right ventricle, which pumps the blood into the pulmonary arteries. The 
blood is carried to the lungs, where it passes through a capillary network that 
enables the release of carbon dioxide and the uptake of oxygen. Oxygenated 
blood then returns to the heart via the pulmonary veins and flows from the left 
atrium into the left ventricle. The left ventricle then pumps the blood through the 
aorta, the major artery which supplies blood to the rest of the body [Drake et a!., 
2005; Guyton and Halt 1996]. Therefore, it is vital that the cardiovascular system 
remains healthy. Disease of the cardiovascular system, if untreated, ultimately 
leads to the failure of other organs and death. 

Fig. 1.1: Artist impressions of the heart, originally published in Gray [1918], made 
available by www.bartleby.com. (a) Front view of the heart and lungs, (b) front view, 

(c) back view. 

An estimated 17 million people globally die of cardiovascular diseases every 
year, accounting for approximately 30% of deaths worldwide, making it one of 
the major causes of death [Libby eta!., 2008, p. 1]. Cardiovascular diseases span 
a wide range of disorders, from hypertension, coronary heart disease (e.g. heart 
attack) and cerebrovascular disease (e.g. stroke) to more specific cases such as con­
genital heart disease and cardiomyopathies [World Health Organization, 2009]. 

The World Health Organization has a 'Cardiovascular Disease Progranune', 
which aims at developing global strategies to reduce the incidence, morbidity 
and mortality of cardiovascular disease burden by 
o effectively reducing cardiovascular disease risk factors and their determinants, 
o developing cost-effective and equitable health care innovations for manage-

ment of cardiovascular diseases, 
o monitoring trends of cardiovascular diseases and their risk factors. 

Thus, the focus is not only in the prevention by promoting a healthier diet reg­
ular exercise, and discouraging smoking, but also on diagnosis and treatment. 
Therefore, novel ways of monitoring and diagnosis of cardiovascular diseases 
are highly relevant. Nowadays, many imaging modalities exist for this purpose: 



1.2 MEDICAL ULTRASOUND 

Fig. 1.2: (a) Artist impression of cross-section of heart/ originally published in Gray 
[1918], made available by www.bartleby.com. (b) Schematic representation; arrows 

indicate the directionality of blood flow. Image from commons.wikimedia.org. 

X-Ray angiography, magnetic resonance imaging (MRI), cardiac computed to­
mography (CT) and CT angiography, positron emission tomography (PET) and 
single photon emission computed tomography (SPECT). But most widely-used is 
ultrasound imaging or 'echocardiography' [Libby eta!., 2008, p. 227]. Echocardio­
graphy has some considerable advantages with respect to other modalities: 
o Echocardiography is cheap and portable: compared with MRI, echography is 

very cost-effective. Nowadays, portable systems with little more than a laptop 
are available for imaging at bedside and private practice. Also, echocardiogra­
phy does not exclude patients with prostheses which are sensitive to magnetic 
fields. 

o Echocardiography is safe: ultrasound has no harmful ionizing radiation, as 
opposed to CT, PET, SPECT, and angiography. No negative biological effects 
have been reported, as long as the guidelines for the use of diagnostic ultra­
sound are respected [Barnett eta!., 2000]. 

o Echocardiography provides real-time, high-resolution images: current sys­
tems are suitable for imaging in real-time, with resolutions comparable with 
MRiandCT. 
These advantages have contributed toward the wide-spread popularity of 

medical ultrasound, not only in cardiology, but also in e.g. urology, obstetrics, 
and gynaecology. Nowadays, ultrasound imaging is a standard clinical tool in the 
monitoring, diagnosis and treatment of disease and injury. 

3 



4 OORODUCTION 

1.2 Medical ultrasound 

1.2.1 Physics of sound 

Sound is basically mechanical energy which is transmitted through a solid, liquid, 
or gas. Most people relate the word 'sound' to audible waves, in the form of mu­
sic, verbal speech, or general noise. But in nature, sound has other uses as well. 
A famous example is that of the bat which uses high frequency sound waves 
to form an image of its surroundings. For some decades now, this principle has 
been put to use in the medical field to visualize objects inside the human body. 
Ultrasound imaging of an unborn fetus is perhaps one of the most famous exam­
ples of medical ultrasound. However, ultrasound can also be used in other areas, 
e.g. in urology, gastroenterology, and cardiology, for monitoring and diagnosis of 
disease. 

Diagnostic ultrasound imaging is based on the transmission and reception of 
high frequency sound waves. A sound wave is transmitted, which propagates 
through the body until it is scattered, reflected or absorbed. Part of these scat­
tered and reflected waves, or echoes, are received and processed. The time be­
tween transmission and reception is directly related to the distance between the 
source and the reflecting object and the speed of sound. Since the average ultra­
sound speed through biological soft tissue can be considered as a constant value 
of approximately 1540 m/s, one can approximate the distance between the source 
and the object. Since the amount of scattered and reflected waves depends on 
the acoustic properties of the various media through which the ultrasound beam 
passes, one can make an~ acoustic' image of the :interrogated region by converting 
this temporal echo signal into a 'spatial' signal. For example, bone produces high 
echoes compared with soft tissue. By sending sound waves repeatedly, image se­
quences can be obtained, allowing the analysis of temporal behavior of anatomical 
structures. 

The propagation of an acoustic wave can be characterized by its speed c, fre­
quency f, and wavelength A. This is captured in a simple relation: 

c=JA. (1.1) 

1n medical ultrasound, commonly used frequencies are in the range of 1 to 50 
MHz, far beyond the upper limit of human hearing. The choice of frequency 
is a trade-off between the axial resolution and imaged depth. By increasing the 
frequency, higher axial resolution can be obtained. However, higher frequencies 
also suffer from an increased attenuation (absorption) of the ultrasound wave, 
resulting in a smaller penetration depth. Typically for adult echocardiography 
transmit frequencies of 2-4 MHz are used, which allows a penetration depth of 
10-15 em. 

Since a sound wave travels at a finite speed through the medium, an infinitely 
high frame rate cannot be achieved. The transducer has to wait for the echo to 
return before the next pulse is transmitted. This poses limitations on the spatial 
extent and frame rate of the image sequence. 
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Image acquisition 1.2.2 

Ultrasound imaging technology began with the discovery of piezo-electric mate­
rials. These materials can convert an electric field into mechanical deformation 
and vice versa, which makes them very suitable for transmitting and receiving 
ultrasound waves (which is basically a mechanical deformation). Piezo-electric 
materials are used for the fabrication of the device used to transmit and receive 
ultrasound waves, the transducer. 

In clinical practice, the transducer is connected to an ultrasound machine, 
which contains the necessary electronics to adequately process the received elec­
tronic signals into images. Images are usually made by clinical experts known 
as sonographers, who are specially trained for this purpose. The sonographer 
places the transducer on the patient's body, and locates the object to be imaged 
by rotating and translating the transducer while watching the real-time images 
on a display. Images can be recorded and stored for offline analysis if desired. 
Nowadays, this is done digitally. 

Multi-dimensional imaging 1.2.3 

In the past 60 years, ultrasound imaging has evolved from a one-dimensional 
imaging technique to a two-dimensional (2D) and nowadays an increasingly pop­
ular three-dimensional (3D) technique. The earliest clinical application of ultra­
sound consists of transmission and reception of a single echo. A one-dimensional 
(M-mode) image along the direction of the beam is then obtained. Throughout 
the years, advances in transducer technology led to the development of phased­
array 2D transducers, which contain a row of several piezo-electric elements (see 
Fig. 1.3a). By slightly varying the delay of transmission or reception, the ultra­
sound beam can be focused and steered 'electronically' in different angles in the 
imaging plane. 2D imaging is currently still the most used technique in clinical 
practice, because it is relatively cost-effective and can achieve high frame rates. 

In the past decade, 3D imaging has evolved from a research tool into a viable 
clinical imaging technique. Traditionally, 3D images were reconstructed from 
images acquired with a 2D transducer, which was moved manually or mechani­
cally to scan an entire volume. The fast rotating ultrasound (FRU) transducer de­
veloped at our department (Thoraxcenter Biomedical Engineering, Erasmus MC, 
Rotterdam, the Netherlands) is based on this principle (Fig. 1.3b). The transducer 
is rotated around its axis by a motor, at a constant rate of 4-8 rotations per second, 
obtaining a sparse spatial distribution of echo lines. 3D volumes can then be re­
constructed offline using interpolation techniques. Currently, most commercially 
available systems use matrix transducers, which have a 2D array of elements. The 
ultrasound beam can be steered electronically throughout the whole 3D volume, 
providing a true 3D acquisition (Fig. 1.3c). 

5 



6 INTRODUCTION 

fig. 1.3: Transducers for ultrasound imaging: (a) 2D imaging, (b) 3D imaging with 
rotational transducer, (c) 3D imaging with matrix transducer. 

1.2.4 Imaging modalities 

The standard imaging modality involves the display of the local amplitude of the 
echo as pixel intensities. This modality provides information of the structure of 
the imaged objects. An other widely used modality is Doppler imaging, which 
provides direct motion information by exploiting the Doppler effect. Doppler 
imaging is used to assess blood flow and tissue motion. 

An important development in imaging is the use of higher harmonics. This 
method exploits the nonlinear wave propagation in tissue and blood, giving rise 
to the generation of higher harmonics of the fundamental frequency. By receiv­
ing at e.g. twice the frequency of the transmitted pulse, a narrower ultrasound 
beam is obtained, as well as reduced energy very close to the transducer and re­
duced side lobes [Duck, 2002]. This leads to reduction of near-field artifacts and 
enhancement of the spatial resolution. Tissue harmonic imaging is nowadays a 
standard imaging mode in echocardiography. 

Another extension is the use of contrast agents for imaging. Contrast agents 
are tiny bubbles (with a diameter of a few micrometers), which have high ultra­
sound reflectivity. For cardiac imaging, contrast agents can be used for imag­
ing the blood pool in e.g. the left ventricle by injecting a small amount into the 
bloodstream. This allows a better visibility of the boundary between the blood 
and myocardium [Von Bardeleben et a!., 2004]. Despite this advantage, contrast 
agents are not always used, because it requires an intravenous injection. Also, 
contrast imaging suffers from more attenuation, so that structures far away from 
the transducer are less visible. Moreover, there is a cost-related aspect: the use of 
contrast agents is relatively expensive compared to noncontrast imaging. 
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Echocardiography 1.3 

In the previous sections, we have already touched upon the concept of echo· 
cardiography. Echocardiography is a cardiac imaging modality to evaluate all 
cardiovascular diseases related to a structural, functional, or hemodynamic ab­
normality of the heart and great vessels [Libby et al., 2008, p. 277]. Ultrasound 
images of the heart are also known as echocardiograrns. Echocardiography is an 
effective tool in the diagnosis of cardiac disease, such as myocardial ischemia, 
congenital diseases, and valvular diseases. 

Imaging 1.3.1 

The most common imaging method is transthoracic imaging: the transducer is 
placed on the patient's chest and directed toward the heart, while avoiding the 
bony thoracic cage and adjacent air-filled lungs. Due to these obstacles in imag­
ing, patient positioning and sonographer experience are critical factors in obtain­
ing diagnostic images. Transthoracic images are typically obtained by positioning 
the transducer on various places on the chest, so that the heart is imaged from 
different angles or acoustic windows, such as the parasternal, apical, subcostal, 
and suprasternal notch windows ([Feigenbaum et al., 2005, p. 109], [Henry et al., 
1980]). 

Echocardiography can be used to image structures in the heart such as the 
ventricles, atria, and valves. There has been much continuing research on the 
left ventricle. Since oxygenated blood is pumped through the body by the left 
ventricle, it is important to study its structural and functional behavior. Also, by 
studying the motion of the left ventricle, one can deduce the health of the major 
coronary arteries, which supply blood to the heart itself. 

Standard tomographic planes for imaging the left ventricle are usually defined 
with respect to the long-axis of the left ventricle, defined as the line through the 
left ventricular apex and the center of the left ventricular base. Common imaging 
planes are, according to the current standardization for cardiac CT, cardiac MR, 
PET, SPECT, and echocardiography [Cerqueira et al., 2002; Otto, 2004]: 
o horizontal long-axis plane (approximated by the four-chamber plane in echo­

cardiography), passing through the long-axis and intersecting right and left 
ventricles and atria (Fig. 1.4a), 

o vertical long-axis plane (approximated by the two-chamber plane in echocar­
diography), passing through the long-axis, perpendicular to the horizontal 
long-axis plane, showing only the left ventricle and left atrium (Fig. 1.4b), 

o long-axis plane (the three-chamber plane in echocardiography), passing 
through the long-axis and the center of the aortic valve (Fig. 1.4c), 

o short-axis planes, perpendicular to the long-axis, at basal, mid-cavity, and 
apical heights (which should each be one-third of the long-axis) (Fig. 1.5). 

These planes are the most commonly used cross-sectional images for assessing 
myocardial motion [Nanda et al., 2004]. 

Instead of transthoracic imaging, images can also be acquired transesopha-

7 
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Fig. 1.4: Standard cardiac anatomical cross-sections: (a) four-chamber (horizontal long­
axis) (b) two-chamber (vertical long-axis) (c) three-chamber (long-axis). From left to 
right: 3D overall view, cross-section in 3D, 2D schematic cross-section, cross-section 
through 3D echocardiogram. Abbreviations: AO = aorta, AP = apex, LAX = left ven­
tricular long-axis, LV = left ventricle, MV = mitral valve, RV = right ventricle, TV = 

tricuspid valve. 

geally. In this case, the transducer is placed in the patient's esophagus at the 
level of the heart. The thoracic cage and lungs can be avoided this way, providing 
unimpeded, high resolution ultrasound visualization of virtually all areas of the 
heart. The disadvantages are that it is a mildly invasive procedure and that it car­
ries elements of risk and patient discomfort associated with any upper endoscopic 
procedure [Feigenbaum eta!., 2005, p. 60]. 

1.4 Stress echocardiography 

Stress echocardiography, or stress echo for short, is a diagnostic technique for as­
sessing left ventricular (LV) dysfunction and underlying coronary disease [Mar­
wick, 2003]. The causal relationship between induced myocardial ischemia and LV 
wall motion abnormalities was first reported back in the late 1970's by Mason et 
a!. [1979] and Warm eta!. [1979]. Since then, due to the development in digital ac­
quisition technology and improvements in image quality, stress echo has evolved 
from a research tool to a well-established routine technique for diagnosing the 
presence, site and extent of myocardial ischemia [Feigenbaum eta!., 2005]. 

Stress echo consists of acquiring echocardiographic images of the left ventri-
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Fig. 1.5: Standard cardiac anatomical cross-sections: (a) apical short-axis (b) mid-cavity 
short-axis (c) basal short-axis. From left to right 3D overall view/ cross-section in 3D, 
2D schematic cross-section, cross-section through 3D echocardiogram. Abbreviations: 
4C = four-chamber, 2C = two-chamber, 3C = three-chamber, AO = aorta, LV = left 

ventricle, RV = right ventricle. 

de when the patient is at rest and at different levels of stress, i.e. elevated to 
maxilnal workload for the cardiac muscle. This stress can be induced by physi­
cal means (exercise e.g. using a treadmill or bicycle), or pharmacological means 
(dobutamine, atropine) [Sicari et al., 2009]. By studying the regional motion pat­
terns of the LV wall, myocardial tissue functionality can be diagnosed. Deterio­
rating contractility in one or more segments in stress is a sign of local ischemia, 
associated with a stenosis in the corresponding coronary artery. 

Most often, the wall motion is assessed visually by assigning a qualitative 
score to each segment. Different scoring systems are in use; the currently pre­
ferred system consists of assigning points to each of the 17 LV segments. The 17 
segment model is shown in Fig. 1.6. Previously, 16 segment [Schiller et al., 1989] 
and 13 segment models [Nijland et al., 2002] were used. Each left ventricular seg­
ment is assigned to a coronary territory, which is fed by a coronary artery, in a 
standardized way (Fig. 1.7). Points are assigned as follows: 1 = normal, charac­
terized by a uniform increase in wall excursion and thickening; 2 = hypokinesia, 
denoted by reduced ( <5mm) inward systolic wall motion; 3 = akinesia, is marked 
by an absence ( <2mm) of inward motion and thickening; 4 = dyskinesia, indicated 
by systolic thinning and outward systolic wall motion. [Geleijnse et al., 1997; Mar­
wick, 2003]. Hypokinetic segments can be classified as mild (2A) or severe (2B), 
for further refinement. By using this semi-quantitative analysis, scores between 
different patients can be compared. 

Typically, stress echo is performed using transthoracic 2D echocardiograms 
of the cross-sections of the left ventricle. To cover all segments, four-chamber 
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Fig. 1.6: Standard 17 myocardial segment model for stress echocardiography. 
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Fig. 1.7: Assignment of the 17 segments to territories of the left anterior descending 
(LAD), right coronary artery (RCA), and the left circumflex coronary artery (LCX). 
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and two-chamber views are acquired from the apical window, and long-axis and 
short-axis views from the parasternal window. For exercise stress, images are 
usually acquired in the rest and peak (or immediately after) exercise [Feigenbaum 
eta!., 2005, p. 491-3]. For dobutamine stress, rest, low-dose, peak and recovery 
stages are recorded [Geleijnse eta!., 1997]. Contrast can be applied to enhance the 
myocardial wall visibility in patients who are difficult to image. To facilitate wall 
motion analysis, images of the various stages can be displayed next to each other 
in one screen (for the standard dobutamine stress, this is called the quadscreen 
format). 

Although widely applied, 2D stress echo is not void of some limitations: 
o variabilities in imaged cross-sections: the acquisition of stress echo images 

is complex and requires elaborate protocols. To find the optimal 2D cross­
sections, the sonographer has to translate and rotate the ultrasound probe in 
the right position. This is especially challenging in the stress stage, as only 
a limited time span is available for the acquisition. Related to this is the 
problem of the foreshortening of apical views: the actual imaged 4-chamber, 
2-chamber, and long-axis cross-sections may not pass through the long-axis 
at all, because ribs or other obstructions frequently force the sonographer to 
choose suboptimal cross-sections. This is especially problematic in the analy­
sis of apical segments. 

o variabilities in interpretation: since the wall motion scores are assigned vi­
sually, interpretations may differ between two institutions, between two ob­
servers, or even within one observer analyzing at different times [Hoffmann et 
a!., 1996, 2002]. Subtle differences between normal and abnormal motion, un­
der varying circumstances and cross-sections, may be hard to judge visually. 
This is widely acknowledged as a major weakness of stress echo. 

Therefore, both stress echo acquisition as well as interpretation require a long 
learning curve. 

Recently, there has been much interest in 3D stress echo [Armstrong and 
Zoghbi, 2005; Matsumura et a!., 2005; Yang et a!., 2006; Zwas et al., 1999]. Re­
cent advances in real-time 3D echocardiography [Caiani eta!., 2005; Jenkins eta!., 
2006], show great potential in overcoming the major limitations of traditional 2D 
stress echocardiography [Lang et al., 2006b; Monaghan, 2006]: 
o better standardization of cross-sections: since 3D echo can image the whole 

left ventricle, optimal 2D cross-sections can be selected retrospectively for vi­
sual analysis. This can be done manually by following more consistent pro­
tocols, or the whole process can be automated. Also, since the whole LV is 
imaged at the same time, the acquisition is greatly simplified. This is espe­
cially relevant in the stress acquisition. 

o quantification of true 3D wall motion: since the heart is a 3D structure, with 
3D echo, the true 3D behavior of the heart can be analyzed. 3D echo allows by 
definition more accurate, realistic, and detailed volume and motion analysis, 
simply because more image information is available. 
However, real-time 3D echocardiography for stress testing currently still poses 

some challenges, compared with 2D imaging: 
o limited spatiotemporal resolution: as discussed earlier in section 1.2.1, the 

11 
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finite speed of sound limits the spatial extent and frame rate of the image 
sequence. Every extra scan plane that is acquired in the third dimension re­
duces the maximum frame rate. Because of this limitation, full volume imag­
ing of the left ventricle is currently achieved by stitching four to seven smaller 
subvolumes, each acquired from a single heartbeat [Von Bardeleben et a!., 
2004]. If the position of the heart or the transducer changes during this time, 
it may lead to motion artifacts, which present themselves as discontinuities 
from one subvolume to the next [Brekke et a!., 2007; Yang et al., 2008a]. Cur­
rently, it is therefore recommended that a small scan sector is chosen. Lately, 
clever ultrasound beamforming technologies have been investigated to reduce 
the imaging time to a single cardiac cycle, thus shortening the acquisition 
time and eliminate stitching artifacts [Lang et a!., 2006b]. Last year, two of the 
major manufacturers launched such ultrasound systems (Siemens: ACUSON 
SC2000, GE: Vivid E9). The image quality obtained using these promising 
systems remains a subject of future research. 

o technological challenges: current commercial systems make use of matrix ar­
ray transducers, which typically have a larger surface area than a 2D trans­
ducer. This makes it more difficult to image between the ribs, often resulting 
in suboptimal imaging of parts of the myocardium. Also, the fact that the 
signal from each of approximately 2000 piezo-electric element needs to be 
analyzed, makes it especially challenging from an electronics point-of-view. 
Also, measures may have to be taken to prevent overheating of the electronics. 

o image rendering and clinical workflow challenges: despite the fact that a 3D 
image is made, 2D cross-sections are usually used for stress analysis, since 
current displays merely render the image in 2D. Systematic methods for se­
lecting the correct anatomical views are therefore necessary. If this takes too 
much time, it will adversely affect the clinical workflow of stress echo. 

o challenges in automated image analysis: the wealth of data in 3D may ulti­
mately require smart automated methods for quantification of left ventricular 
clinical parameters [Badano et al., 2007; Hung et a!., 2007]. For example, to 
calculate the true 3D volume of the left ventricle, the endocardial border must 
be delineated in 3D. Obviously, this is very difficult and labor intensive to do 
manually. 
Therefore, besides the challenges in transducer design [Von Bardeleben et a!., 

2004], it becomes apparent that the development of automatic methods for classi­
fying wall-motion, which emulate visual wall motion scoring, is highly desirable. 

1.5 Automated analysis of ultrasound images 

1.5.1 Automated analysis 

In this thesis, we describe some computerized, or automated, methods for ana­
lyzing ultrasound images. The field of image processing, which encompasses the 
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development of such automated methods, can be described as 'the manipulation 
and analysis of information contained in images' [Maintz, 2005]. This is of course 
a very broad definition, and image processing has applications in may research 
areas, such as forensic science (e.g. video surveillance, fingerprint analysis, DNA 
coding), industry (e.g. checking of manufactured parts), and information process­
ing (e.g. recognition of handwritten text, scanning and classification of printed 
images). By developing automated methods, we aim to emulate what a human 
observer would do, by teaching the computer to do the same. 

From the study of human perception, we know that vision is all but a simple, 
straightforward process. The interpretation of highly complex information like 
ultrasound images is a very complicated process, using both 'low' and 'high' 
abstraction levels. A common analogy is in the example of written text: the 
interpretation is performed at low to high levels, from alphabet and spelling, 
to vocabulary, syntax, and semantics, ultimately to the subject of the text and 
adornments like humor, sarcasm, and metaphors. For image analysis, this is 
generally known as the image interpretation pyramid [Otto, 2007, p. 266]. 

Given the difficulties in ultrasound image interpretation, one can envision that 
the incorporation of prior knowledge may be beneficial in developing automated 
analysis methods [Noble and Boukerroui, 2006]. Prior knowledge can manifest 
itself as image features, such as assumptions on the image intensity distribution 
(e.g. Rayleigh distribution), intensity gradients and higher derivatives, phase, and 
texture. Prior knowledge on shape is particularly useful in ultrasound images, 
due to the presence of attenuation, shadowing artifacts, and speckle. Temporal 
priors or models are also relevant in ultrasound imaging, since it is a real-time 
modality. Visual inspection of an ultrasound image sequence is easier than the 
analysis of a still frame. 

In this thesis, many methods exploit prior knowledge in the form of math­
ematical models. These models may contain information on the left ventricular 
structure (shape), function (motion), or appearance (what the heart looks like in 
the ultrasound images). More specifically, they describe typical values and varia­
tions across many patients, which are gathered using expert observer knowledge. 
In other words, the models are trained using observer data. The model can then 
be used to estimate the model variation which best fits an image of a new patient, 
a process called matching. These models operate on the higher abstraction levels 
of the interpretation pyramid. 

The use of models can be both a blessing and a curse. It is important to realize 
that the mathematical models operate in the range of the training set. Suppose a 
model is made of the shape of healthy left ventricles. This model will probably 
have difficulties matching an image of a diseased left ventricle. This drawback 
can be overcome by using large representative training sets, or by using image 
analysis techniques that operate closer to the image. For example, if we want to 
locate the left ventricular wall, we can look at each individual pixel in the image 
and categorize it as blood or tissue according to how bright it is. This example fits 
into the lower abstraction levels of the interpretation pyramid. Obviously, such 
methods may be more sensitive to anomalies: a bright pixel may also occur at 
sharp reflectors such as the rib cage. Therefore, it makes sense to combine low 
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and high levels of abstraction in the analysis methods. 

1.5.2 Requirements for automated methods for stress echo 

Compared with other modalities, automated analysis in echocardiography is es­
pecially challenging. Ultrasound images are hard to interpret: scattering in soft 
tissue results in the infamous speckle patterns, which are interference patterns 
from many subresolution scatterers. Therefore, there is no simple physical re­
lation between pixel intensity and any physical property of the tissue, as is the 
case in computed tomography. These speckle patterns also make it difficult to 
identify the exact endocardial border. Also, ultrasound images may contain arti­
facts such as shadowing, near-field clutter, and reverberations [Feigenbaum et a!., 
2005, p. 29-32], see Fig. 1.8. All this makes the images hard to analyze. Even with 
proper training, interpretation variabilities exist between observers and between 
institutions, which complicates attempts to automate the analysis. Given these 
challenges, several requirements for the automated methods can be formulated: 
o The methods must be accurate: the accuracy of the clinical parameters result­

ing from the automated analysis must be in the order of or better than the 
interobserver variability. 

o The methods must be robust: the methods must give accurate results for a 
variety of patients and imaging devices. Differences in the left ventricular 
appearance should minimally affect the accuracy of the method. 

o The methods must be reasonably fast: the methods must, at least theoretically, 
be able to achieve computation times that are acceptable for clinical workflow. 
Due to the high throughput of ultrasound images in the clinical settings, fully 
automatic methods must achieve results in less than 30 minutes, which is 
approximately the time it takes to image the patient. For interactive, semi­
automated methods, the analysis must take no longer than a few seconds. 

To get a better understanding of the methods described in this thesis, some gen­
era! aspects of medical image analysis are listed in the next section. 

Fig. 1.8: Typical artifacts :in ultrasound images. (a) Side-lobe artifact in four-chamber 
image; (b) near-field artifact ill four-chamber image; (c) shadowing or drop-out in 

short-axis image. 
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Methods for medical image analysis 1.6 

Medical image analysis is an active field of research worldwide. Many researchers 
work on a vast variety of automated analysis methods for modalities such as MRI, 
CT, PET, SPECT, and ultrasound, for the imaging of many organs and for the 
diagnosis of many kinds of diseases. For ultrasound, much effort has been put 
into cardiovascular applications: the analysis of the heart, the coronary arteries, 
the carotid arteries, and aorta, to study the cardiovascular anatomy and function. 

In this large variety of automated analysis methods, one can distinguish some 
important directions of research, which are described below. Here, we strive to 
give a global overview of methods which are used in a medical context, without 
going into the details of individual methods. It is important to note that many 
analysis methods make use of more than one of these research directions. For a 
more detailed description, we refer to recent reviews in the literature and to the 
individual introductions in the following thesis chapters. 
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Image filtering 1.6.1 

Image filtering is often applied for preparing the images for further analysis. This 
process modifies the intensity values of the images, either to enhance interesting 
parts of the image (such as edges), or to reduce noise, for optimal visual and 
quantitative analysis. A basic example is setting the brightness and contrast levels 
on a monitor. Such global intensity transforms affect each pixel individually: 
by transforming the histogram of all image intensities, new intensity values are 
assigned to each pixel. Other common examples of histogram operations include 
thresholding and all kinds of linear and nonlinear intensity mapping techniques 
(such as histogram equalization). Nowadays, these image enhancement methods 
are also available in commercial image editing software. 

Another common way of enhancing images is by using neighborhood-based 
filters. Filters operate on regions-of-interest containing multiple pixels, via the 
spatial convolution of the image with a kernel, generating a new, improved im­
age. These kernels operate in the neighborhood of an image pixel. For example, 
an averaging kernel replaces a pixel in the image with the average value in a re­
gion around the pixel. This is then performed for all pixels in the image. Thus, 
averaging has the effect of 'smoothing' or 'blurring' the image. Other commonly 
used smoothing filters include median and Gaussian filtering. The disadvan­
tage of such smoothing filters is that they may blur sharp boundaries that distin­
guish between large anatomical structures. Anisotropic filtering tries to preserve 
these boundaries, while smoothing within individual anatomical structures [Per­
ona and Malik, 1990]. Buades et al. [2000] gives a review of general image noise 
removal algorithms. 

For ultrasound images, much effort has been put into techniques for reduction 
of local speckle patterns, thus enhancing the global interface between anatomical 
structures (e.g. blood/tissue boundaries). This is not a trivial problem, andre­
quires more dedicated filters. Speckle reduction is an active field of research; for 
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more advanced speckle reduction techniques, we refer to the literature (see e.g. 
[Sun et al., 2004; Tay et a!., 2006; Yu and Acton, 2002]). 

1.6.2 Image restoration and artifact detection 

A research field related to that of image filtering is that of image restoration and 
artifact detection. Artifacts are anomalies in images, which may cause visual or 
quantitative misinterpretations of the images. Due to the increasing popularity of 
digital visual media, smart storage of existing digital imagery and the restoration 
and conversion of previously archived material are quickly gaining interest. The 
detection and removal of artifacts have therefore become increasingly important. 

For example, much research effort consists of smart algorithms to efficiently 
compress digital images, and in restoration of badly compressed images (i.e. 
much image information has been lost during the compression process) [Shen 
and Kuo, 1998]. In this case, the artifacts were introduced during digital com­
pression. Restoration of low quality, analogue video and film has also been of 
interest, especially in the movie industry. Examples of typical artifacts vary from 
degradation of the video by abrasive materials or sunlight to actual tearing of the 
film. 

Within the medical field, artifacts may be caused by the underlying physics 
of the image modality (e.g. ultrasound reverberations between strong reflecting 
surfaces show up as multiple sharp lines), by data acquisition itself (e.g. patient 
motion), or by reconstruction errors (e.g. interpolation from 2D to 3D). As many 
of these artifacts are modality related, each modality has their specific algorithms 
for detection and correction of these artifacts. Nevertheless, methods developed 
outside medical research may have substantial impact on the analysis of medical 
images, and their suitability should be evaluated for ultrasound artifact detection. 

1.6.3 Multiscale analysis 

The notion of scale is an important, yet complex, concept in human vision. To 
give an idea: when we look around us, we instantaneously process our surround­
IDgs at multiple scale levels: at larger scales, we observe e.g. trees, buildings, and 
people, but we also have the ability to zoom in on small-scale objects such as e.g. 
leaves, individual bricks, and faces. Therefore, multiscale analysis is closely re­
lated to the image interpretation pyramid as discussed above. Multiscale analysis 
may be related to the actual, extrinsic resolution (i.e. the sampling of the image), 
or to a more abstract, intrinsic resolution (i.e. how blurred is the image). A popu­
lar method for encoding scales in image processing is the idea of a Gaussian scale 
space, where a 'pyramid' of images is obtained by convolving an image with 
Gaussian kemels of different widths and by sampling the image at different (ex­
trinsic) resolutions. Another popular method for embedding the notion of scale 
is related to the family of wavelet transforms. These transforms can decompose 
an image into more simple basis functions at different scales, similar to the well­
known Fourier transform (which uses sine and cosine basis functions of varying 
frequencies). 
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By analyzing images on different scales, a better balance between interpre­
tation at 'high' and 'low' abstraction levels can be obtained. When analyzing 
an ultrasound image for example, at coarser resolution levels, coarse anatomical 
structures such as the myocardial wall may be observed, whereas at finer resolu­
tion levels, smaller details such as the papillary muscles and trabecular structures 
can be appreciated. Commonly, multiscale analysis is applied subsequently from 
coarser to finer resolutions. This may lead to faster and more robust results. For 
example, if we want to find the papillary muscles in an echocardiogram, one 
might first try to find the cardiac wall. Since the papillary muscles are in this 
vicinity, one can then reduce the search area. By first identifying the rough loca­
tion of a particular region-of-interest, one can avoid running into local minima in 
the detailed analysis. This approach is commonly used in image registration (see 
below). 

More advanced uses are related to feature detection (see below). Interesting 
research has been conducted for determining local key features (such as corners or 
edges) from the Gaussian scale space, which can then be used for locating global 
structures in images. More information can be found e.g. in [ter Haar Romeny, 
2003]. 
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Feature detection 1.6.4 

Image features are essentially simple, low-level, local characteristics of an image. 
Examples include structures such as edges and corners, which can be seen as the 
building blocks of an image. Also referred to as interest point detection in the 
computer vision community, feature detection has been an active field of research 
for many decades now. Feature detection is often an integral part in image pro­
cessing methods such as registration, segmentation, and classification. Today, a 
main application of feature detection is to find points and regions in an image 
that are likely to be useful for image matching and object recognition. 

Most methods developed throughout the years have focused on the detection 
of edges (i.e. sudden spatial changes in intensity), corners (intersection of two 
edges), blobs (points or regions that are either brighter or darker than their sur­
roundings), and ridges or valleys (curves with local maxima or minima, just like 
in landscapes). Most of these methods make use of mathematical formulations 
like derivatives, Laplacian operators, and scale-space notions. Listings of detec­
tors can be found in the literature, see e.g. [Lindeberg, 1993, 1998b; Mohanna and 
Mokhtarian, 2001; Ziou and Tabbone, 1998]. 

Recently, new feature representations have been proposed, which make use 
of wavelet transforms (see above). These new methods process the response of 
wavelets to an image, often making use of the notion of scale-space, resulting 
in more general descriptions of interesting points or regions in an image. A 
popular example is SIFT (scale-invariant feature transform), which is based on 
Gaussian filtering at different image scales [Lowe, 2004]. Recently, Moradi et a!. 
[2006] have reported using SIFT for analysis of MRI and ultrasound images. For 
more information on these new types of features, see also [Bay et a!., 2008; Dalal 
and Triggs, 2005; Mikolajczyk and Schmid, 2005]. 
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For finding larger-scale, parametric structures like circles and cylinders, the 
Hough transform [Hough, 1962] has proved to be a useful and robust detector. 
Although the original formulation only allowed the detection of straight lines and 
circles, this technique has been extended to more complex parametric structures 
[Ballard, 1981]. Previously, it has been used to detect cardiac structures in MRI 
[Miiller et al., 2005; van der Geest et al., 1997] and ultrasound images [Golemati 
et al., 2007; Solairnan et al., 1998]. 

1.6.5 Statistical modeling 

Throughout the years, statistical modeling has become a popular concept for de­
scribing the typical variations in the shape, appearance, and composition of the 
parts of the human body. In general, statistical modeling aims at deriving mathe­
matical formulations which describe these typical variations. These models can be 
used to study variations in patient populations (e.g. differences between healthy 
and diseased populations). More importantly, they can be used for segmentation 
and registration purposes. We have already touched upon this concept in the 
previous section on automated analysis (section 1.5.1). 

For shape modeling, point distribution models are most often used. Point 
distribution models characterize shape and shape variability based on Principal 
Component Analysis (PCA) [Cootes et al., 1992]. Shape knowledge is derived 
from a training set of example shapes, extracted e.g. by delineating contours in 
medical images. The shapes themselves are expressed in coordinates of landmark 
points, which are placed at consistent, identifiable locations in the images. After 
spatially aligning these shapes, PCA is applied, which generates a linear, mathe­
matical model of a mean shape and a number of characteristic shape variations. 
Within certain statistical limits, shapes resembling those from the training set can 
be approximated using the mean shape and a linear combination of the shape 
variations. Inspired by Cootes' work on face modeling, point distribution models 
have found their way in a large variety of medical applications, modeling complex 
structures which have a globally distinct shape. 

A similar concept can be used to generate models of the typical look of an 
image, by applying Principal Component Analysis to image intensities. To re­
move size and shape dependence from these models, the images first need to be 
interpolated to a common coordinate frame. To satisfy the requirement of nor­
mality, intensities also need to be normalized to a Gaussian distribution. The 
resulting model is also called a texture model. The combination of shape and 
texture model is the appearance model, which describes combined variations of 
shape and texture [Cootes et al., 2001] (see Fig. 1.9). 

A common way to incorporate temporal information into these models is by 
putting shape or texture information from multiple time points into the same 
model. In this way, temporal information is modeled implicitly. This has been 
used e.g. in cardiac modeling [Bosch et al., 2002], as the cardiac phases are quite 
well defined for most patients. More recently, temporal information has been 
modeled separately from the spatial information, see e.g. Perperidis et al. [2007]. 

The challenge in creating a model involves selecting the training data (such 
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Fig. 1.9: 3D appearance model of the left ventricle in ultrasound. 

that most typical variations are captured), choosing the right modeling parame­
ters (how many points, how are they distributed across the surface), and defining 
consistency in the training set (how to delineate the true endocardial contours in 
ultrasound images). The analysis of the PCA parameter space or eigenspace has 
been investigated in more detail in the computer vision community [Black and 
Anandan, 1996; Moghaddam and Pentland, 1997]. 
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Image registration :L6.6 

lmage registration is an optimization framework for finding the best spatial cor­
respondence between two or more images [Hill et al., 2001; Little and Hawkes, 
1997; Maintz and Viergever, 1998]. This spatial correspondence can be used to 
infer information from one image to the other(s). For example, image registra­
tion can be used to compare images of one patient, which have been acquired at 
different times (e.g. different cardiac phases; different levels of stress; preopera­
tive, intraoperative and follow-up; monitoring of disease progression). It can also 
be used to compare images obtained using different modalities (multimodality 
registration), to combine their information (a process called image fusion) or to 
guide intervention procedures. Moreover, image registration can be applied to 
compare different patients, e.g. for statistical modeling. Finally, a probabilistic at-
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las (a pixel-based representation of an 'average' organ in the patient population) 
can be registered to an individual patient. 

There are, roughly speaking, two main image registration methods: (1) land­
mark and surface-based methods and (2) intensity-based methods. The first cat­
egory aims at finding the best correspondence between landmarks or contours, 
which define the object of interest in images [Audette et al., 2000]. These land­
marks can be physically introduced into the image space (e.g. skin markers on 
the patient) or extracted from the images themselves (anatomical or geometri­
cal landmarks, contours of objects). The similarity between these landmarks or 
contours are geometrical measures, such as Euclidean distances. The intensity­
based methods operate on the actual image intensities. 1n this case, the similarity 
between the images is a measure of correspondence. Since the intensity-based 
method is the most widely used, the following paragraphs mainly concentrate on 
this technique. 

Finding the best spatial correspondence is not a trivial task. Images can differ 
in appearance, for example if tumor growth is present. Differences can also be 
more significant, especially when images of different modalities need to be com­
pared. Also, there are considerable differences in anatomy between patients. An­
other issue concerns the dimensionality of the data (2D, 2D+time, 3D, 3D+time): 
the images to be registered need not have the same dimensionality. Due to these 
challenges, image registration has become an important and popular subject of 
research in a wide variety of medical applications [Pluim and Fitzpatrick, 2003]. 

The spatial correspondence is encoded in a spatial transform between the two 
images. When registering two images, one is often denoted as the 'fixed' or 'ref­
erence' image, and the other image on which the spatial transform is applied 
is denoted as the 'moving' image. Depending on the desired degree of align­
ment, this spatial transform can be rigid, affine, projective, or curved [Maintz and 
Viergever, 1998]. A rigid transformation consists of only translations and rota­
tions. Affine transforms also include scaling and shearing, but still map parallel 
lines in one image onto parallel lines in the other image. A step further is the 
projective transformation, which maps lines onto lines. Finally, if the transform 
maps lines onto curves, it is called curved or elastic. A transform is represented 
by a set of parameters; the number of parameters increases with the complexity 
of the transform. A transformation is called global if it applies to the entire im­
age, and local if subsections of the image each have their own transformations 
defined. The term nonrigid registration is generally used to indicate all types of 
transforms besides the global rigid transformation, although some consider also 
(global) affine transforms to be rigid. 

The similarity criterion, or metric.r is a measure of correspondence for intensi­
ty-based registration. Some basic metrics are the sum-of-absolute differences in 
intensity between the two images, the sum-of-squared differences, and the cross­
correlation metric. These are commonly used for registering images of the same 
modality. 1n the past two decades, the mutual information metric has become 
popular [Pluim et al., 2003]. Mutual information, based on Shannon's information 
entropy, measures the mutual dependency of two random variables (in this case, 
images) X and Y. Simply put, it is a measure that expresses with what certainty 
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does one know Y, given that one knows X. Muhlal information is computed using 
estimates of probability distributions of the images and their joint distribution. 
Since this metric only assumes that each intensity value in image X has a single 
counterpart in image Y (and vice versa), it is very suitable for multimodality 
registration. 

Given the complexity of these transforms, one can imagine that a brute-force 
search over the entire parameter space to find the best spatial correspondence is 
almost impossible. Registration is basically an iterative optimization framework 
for finding this spatial correspondence in a smart way, without exhaustively eval­
uating the entire parameter space. During each iteration, the current estimate of 
the spatial transform is applied to the moving image. The metric is calculated 
and passed on to an optimizer, which generates a new estimation of the spatial 
transform. The process is repeated until the images are sufficiently aligned. Opti­
mizers may rely on the computation of gradients (gradient ascent, quasi-Newton 
methods, Levenberg-Marquardt); other routines do not use gradient information 
(Powell, Simplex) [Pluim eta!., 2003]. Many optimizers stem from general math­
ematical optimization research [Press eta!., 1992]. 

The spatial transform is actually applied to the coordinates of the moving 
image, after which the intensity values are resampled from the moving image. 
In many cases an interpolation step is required, since the coordinates often do 
not match the image grid exactly. Again, many variants exist, most commonly 
used are nearest neighbor, linear, and b-spline interpolation [Hill eta!., 2001]. For 
mutual information, partial volume interpolation is often recommended [Pluim 
eta!., 2003]. 

Due to the nature of the optimization framework, the starting estimates of the 
spatial transform need to be sufficiently close to the correct position. Otherwise, 
the optimization may run into local minima in the parameter space. A common 
way to limit this is to use registration in coarse to fine image resolutions, again 
exploiting the multiscale paradigm [Lester and Arridge, 1998]. Also, the number 
of parameters to optimize can be expanded tluough each scale, e.g. a nonrigid 
registration is performed after initialization by rigid registration. 
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Motion analysis 1.6.7 

Since real-time echocardiography offers the possibility of evaluation of the myo­
cardial function, there has been much interest in quantitative, automated mo­
tion analysis methods. Although the intensity registration framework as de­
scribed above is suitable for estimating temporal behavior, traditionally, motion in 
echocardiograrns is estimated either using block matching or differential methods 
[Angelini and Gerard, 2006]. Block matching, also known as speckle tracking in 
ultrasound, is performed by dividing an image into small regions, after which an 
exhaustive search in a very limited subset of the parameter space is performed. 
This method has gained considerable popularity, partly due to its use in strain 
estimation. The differential method uses spatial and temporal gradients to esti­
mate motion. This approach is commonly referred to as optical flow [Hom and 
Schunck, 1981; Lucas and Kanade, 1981] (see Fig. 1.10). 
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Fig. 1.10: Example of motion vector field in short-axis image, computed using optical 
flow tracking. 

Other considerable research effort focuses on using model prediction and state 
estimation methods, such as Kalman techniques Uacob et al., 2002, 1999; Orderud 
et al., 2007b]. The Kalman filter is a recursive filter that estimates the underlying 
parameters of a dynamic system from a series of incomplete and noisy measure­
ments [Maybeck, 1979]. More advanced filters, such as particle filters [Arulam­
palam eta!., 2002t are becoming increasingly popular. Expectation-maximization 
[Dempster eta!., 1977t which is used for finding maximum likelihood estimates 
of parameters in probabilistic models, has also been applied [Lorenzo-Valdes et 
a!., 2004]. Another example is the concept of information fusion, which was ap­
plied by Comaniciu et al. [2004] for combining noisy motion estimates with sta­
tistical models. 

1.6.8 Segmentation 

Segmentation, in its broadest sense, is the division of an image into meaningful, 
nonoverlapping regions. These regions correspond with objects or areas of the 
real world contained in the image. It has been a key focus of research in the field 
of medical image analysis. A myriad of methods have been proposed; however, 
in spite of the huge effort invested, there is no single approach that can generally 
solve the problem of segmentation for the large variety of image modalities and 
applications existing today. An excellent review on ultrasound image segmenta­
tion is provided by Noble and Boukerroui [2006]. 

Segmentation methods can be roughly divided into region-based methods and 
edge-based methods [Sonka et al., 1999]. Edge based methods aim at finding 
the borders between regions, where the image properties change. These borders 
can be represented by pixels in the image, by parametric curves, or by spatial 
coordinates (on contours), see Fig. 1.11. On the other hand, region-based methods 
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aim at constructing regions directly, in which the image properties are similar. 
Examples of both types will be described in the following. 

initial 

-;:-manual 

automatic 

Fig. 1.11: Example of edge-based segmentation, from chapter 2. 

Region-based methods 

Thresholding, one of the earliest forms of segmentation, partitions an image by 
considering each pixel with intensity below, between, or above certain thresholds 
as belonging to a distinct region. These thresholds may be predefined or opti­
mized using the statistics of the intensities in the image. Thresholding is often 
applied in conjunction with other more advanced image processing methods. 

Another basic region-based method is region growing [Sonka et a!., 1999]: 
starting from a 'seed' (typically one or a few pixels) in the object to be segmented, 
neighboring pixels are sequentially added to the region if they belong to the ob­
ject, e.g. on the basis of the intensity value. Region merging and splitting are 
variants of this tecl:uUque. 

Another well-known method is watershed segmentation, which uses image 
intensity gradients to define distinct regions of local minima and maxima. Pixels 
with high gradient magnitude correspond to watershed lines, which represent 
region boundaries. Usually, watershed segmentation is used in combination with 
other filtering methods. 

Segmentation can also be achieved using mathematical morphology, a tech­
nique for analyzing and processing of geometrical structures. Common mathe­
matical morphology operations such as dilation, erosion, opening and closing are 
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based on topological and geometrical concepts such as size, shape, and connec­
tivity. Mathematical morphology can also be used for image noise reduction and 
enhancement of object structure (e.g. thinning of edges). 

Classification methods can be used to label pixels as corresponding with sep­
arate regions (see section 1.6.9 for more details). The features are extracted from 
the image, e.g. using the techniques in section 1.6.4. The methods can be unsu­
pervised or supervised. Neural networks have been particularly popular in this 
type of ultrasound image segmentation. 

Graph partitioning methods can also be used for image segmentation. The 
image is represented as a graph, in which each pixel is a node. An link is formed 
between every pair of pixels, its weight is a measure of the similarity between the 
pixels. The image is partitioned by removing the links, so that the weights are 
optimized. Different algorithms exist for removing the links, common methods 
are the 'normalized cut' [Shi and Malik, 1997] and the 'minimum ST-cut' [Boykov 
et al., 2001; Kolmogorov and Zabih, 2004] . 

Edge-based methods 

Active contours, also known as deformable models or snakes, is a segmentation 
method which finds a contour in an image by iteratively minimizing an energy 
function [Kass et a!., 1987]. This method seeks a solution in which both the inter­
nal energy, associated with the length and curvature of the contour, and the exter­
nal energy, associated with image information (such as the gradient strength), are 
optimized. During each iteration, a number of locations in the neighborhood of 
the contour are evaluated, the contour is then moved to the location with optimal 
energy. The method is computationally efficient and flexible in the sense that a 
wide variety of shapes can be found, so that it is suitable for objects which do not 
have predefined shapes (e.g. tumors). The flexibility in the choice of internal and 
external energy functions and the ease of incorporating prior knowledge have 
made active contours a popular paradigm in medical image analysis. Examples 
of active contours for segmenting 3D echocardiograms are Angelini et al. [2001]; 
Gerard et al. [2002]; Montagnat et al. [2003]; Nillesen et al. [2007]; Walimbe et al. 
[2006]. 

The level set method, introduced at around the same time as active contours, 
also finds a segmentation via curve evolution. However, instead of manipulating 
the contour directly, the contour is embedded in a 'level-set' function Y of a higher 
dimension. This function is then evolved under the control of a differential equa­
tion, and the contour is the cross-section at the 'f = 0 plane (the so-called zero 
level set) [Sethian, 1999]. Compared with active contours, the level set method 
can segment objects with changing topology (e.g. an object that splits in two or 
develops holes). Angelini et al. [2005]; Corsi et al. [2002]; Sarti et al. [2005] are 
examples of papers of level set segmentation of echocardiograms. 

Active shape models and active appearance models combine statistical mod­
els (see above) with a segmentation algorithm. Active shape models aim to find 
the instance of the shape model, as dictated by the model parameters, which best 
matches the image in an iterative framework [Cootes et al., 2001]. During each it-
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eration, the region around each contour point is examined to find the best match. 
This best match may be determined using, e.g., the gradient information of the 
image and of training images of which the contours are known. The new contour 
positions are then projected back on the shape model. By constraining the con­
tour coordinates to this shape model within certain statistical limits, the shape is 
forced to resemble the shapes in the training set. In that sense, it is similar to the 
active contour method, but the shape model is used instead of an internal energy 
function. 

In the active appearance models technique, the texture model is matched iter­
atively to the image; the corresponding estimate of the shape model is thus the 
contour. A regression technique is used to find the best match. Before the actual 
matching, an extra training step is applied to determine how changing an ap­
pearance model parameter affects the difference between the texture model and 
the image. This information is used in the matching stage to generate a linear 
update of the parameter, given the current difference between the texture model 
and image. 

Bayesian methods have also been used. Segmentation is formulated as a prob­
ability estimation problem of finding the optimal contour, given prior information 
such as shape templates and image intensity distributions [Storvik, 1994]. This 
framework allows many ways to include this prior information, therefore meth­
ods are highly flexible and are often tailored for specific applications. Due to 
this flexibility, region-based segmentation can also be formulated in a Bayesian 
framework [Boukerroui et al., 2003]. Probability estimation can be performed e.g. 
using maximum likelihood (such as expectation-maximization [Dempster et al., 
1977]) or maximum a posteriori methods. Related are the state estimation meth­
ods (such as Kalman filtering, see section 1.6.7), which are used in this case to 
segment images instead of tracking. 

Graph search techniques can be used in edge-based segmentation, by consid­
ering the contour detection process as finding an optimal path through a graph 
[Sonka et al., 1999]. In this case, an image is considered as a directed graph con­
sisting of layers. Nodes on each layer correspond with points in the image. The 
edges are links between the nodes of two neighboring layers, which have weights 
representing the 'cost' of going from one layer to the next. The aim is to find the 
best path that connects two specified nodes: the start and end nodes. A popu­
lar algorithm is dynamic programming, which finds the optimal path by subse­
quently finding the optimal link in each layer of the graph [ArrUni et al., 1990; 
Bellmann, 1965]. Prior information can be used to set the appropriate weights of 
each edge. 
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Pattern recognition 1.6.9 

Automatic recognition, description, classification, and grouping of 'patterns' 
(such as a fingerprint image, handwritten cursive word, a human face, a speech 
signal...) are important problems in a variety of engineering and scientific disci­
plines. Given a pattern, its recognition may consist of unsupervised classification 
(clustering) in which the pattern is assigned to a yet unknown class, or supervised 
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classification in which the input pattern is identified as a member of a predefined 
class [Jain eta!., 2000]. A simple example of supervised classification is to divide 
a mixed bag of apples and pears into separate bags, each containing either apples 
or pears. In this case, the person sorting the apples and pears has some idea of 
what apples and pears are by their features (things like color, weight, and shape). 
So some kind of prior knowledge is involved. Classification is closely related 
to the estimation of probability density functions. TI:Us helps to determine the 
chance of the object being an apple or a pear, and the chance of it being an apple 
or a pear, given its features. 

To build an automatic supervised classification scheme, this prior knowledge 
is incorporated by teaching the classifier using training samples, of which the 
class outcome is known. Since classification is closely related to estimation of 
probability density functions, classifiers can be parametric (the distribution has 
a parametric form) or nonparametric (no assumptions are made on the form of 
the distribution). Recently, there has been much interest in the combination of 
different classifiers, e.g. via bagging or boosting approaches. Often, a feature 
selection or extraction step is first applied to select relevant features to use. 

In medical image analysis, classification can be used in a number of ways. 
Segmentation can be achieved by considering each pixel as a pattern, which is 
represented by features (such as position, gradients, and wavelet responses) and 
applying a classifier to distinguish between different regions. More often, it is 
combined with other more high-level approaches (e.g. statistical models [van Gin­
neken et a!., 2006]). Classification can also be directly applied to high-level mea­
surements from the image, such as length of contours, areas of surfaces, etc. TI:Us 
is commonly used in the field of computer-aided diagnosis. 

1.7 Scope and outline 

1.7.1 Thesis goal 

Ultimately, we strive for the complete, quantitative automated analysis for 30 
stress echo by computerizing the steps after image acquisition up to the decision 
making process. The goal of the automated analysis is to give the clinician a 
complete, precise report of the function of the left ventricle, in order to make 
an informed diagnosis. The automated analysis methods are used to provide 
quantitative and objective measures of global and local clinical parameters, such 
as left ventricular volume, ejection fraction, and regional wall motion throughout 
the cardiac cycle and in different stages of stress. We also aim at deriving the 
degree of abnormality of these parameters via automated classification. Besides 
these quantitative parameters, the decision making process should be aided by 
properly visualizing the anatomically correct cross-sections of the images. The 
images acquired in different stress stages should also be anatomically aligned for 
this purpose. 
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The automated methods should result in a more quantitative and objective 
analysis of 3D stress echo, compared to current visual analysis. In that way, 
intraobserver, interobserver, and interinstitutional variabilities should be reduced. 
Also, the clinical workflow should be improved. 

For a complete automated analysis for 3D stress echo, one can distinguish 
different steps from image to information on the degree of abnormality of the left 
ventricular wall motion. We have decided to tackle the automation in three steps: 

1. initialization: detection of global anatomical markers in rest and in stress 
stages. This is used to automatically select the appropriate anatomical cross­
sections for stress analysis, or to initialize the next step: 

2. segmentation: detection of endocardial contours in the whole 3D image 
sequence. These are then used to calculate the global and local·clinical 
parameters, which can then be used for: 

3. classification: automated categorization of normal and abnormal motion. 

The methods proposed in this thesis cover many of the medical image analysis 
research described above. 

During the research of the automated methods, we have been developing a 
dedicated 3D stress echo software package, which is intended as a platform for 
automated analysis in clinical routine practice (see Fig. 1.12). On the one hand, 
this software should allow proper display of the stress echo images, to assist the 
traditional visual analysis and to improve the clinical workflow. In time, we wish 
to incorporate promising automated methods into the software, for obtaining and 
visualizing the measured clinical parameters. 
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Thesis outline 1.7.2 

Initialization 

As a starting point, initialization can be used to automatically select the appro­
priate anatomical cross-sections for (visual or automated) stress analysis. This is 
important to allow accurate comparison of wall motion of each left ventricular 
segment between rest and stress. Also, it can be used as a starting point for au­
tomated segmentation methods, to obtam a general location of the left ventricle 
and anatomical landmarks in the images. 

Chapter 2 describes a method for automatically finding the anatomical markers 
in a 3D image using a statistical model of the left ventricular appearance. 
Agam, only sparse information is used to train the model. In order to match 
the model to a new image, a general optimization approach is used, which 
is very similar to the registration framework. By using a statistical model, 
the method corresponds to a more 'high-level' approach. 

Chapter 3 describes an alternative method for automatically detecting the long­
axis and mitral valve plane in a 3D image sequence. In this chapter, a 'low' 
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Fig. 1.12: Dedicated 3D stress echo softvvare package. 

level approach is used: the Hough transform for circles, to find the left ven­
tricular wall in short-axis planes. For a spatiotemporally consistent result, 
the dynamic programming method is used. 

Chapter 4 describes a method for initializing anatomical landmarks (such as lo­
cation of the apex and mitral valve) in a 3D stress image of a patient, given 
manually annotated markers in the rest image of the same patient. This 
is achieved using intensity-based image registration of the rest and stress 
images. The key contribution of this chapter is that only image regions are 
used which contain the important information for describing the best spatial 
correspondence, i.e. sparse :information. 

Segmentation 

In this thesis, we confine ourselves to the detection of endocardial contours in 
the whole 3D image sequence. These contours give both structural and functional 
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information on the left ventricle, which can be used to distinguish between normal 
and abnormal behavior. 

Chapter 5 describes a method called the active appearance model for detecting 
the endocardial contours in a 3D image. Active appearance models, intro­
duced in the past decade, have become a popular method for segmentation 
in medical images, because of their ability to model complex image infor­
mation. In this chapter, a novel method for matching the model to a new 
image is evaluated, which is potentially capable of extending the range in 
which the model operates. 

Chapter 6 describes a method for tracking an endocardial contour throughout 
an image sequence/ given the contour in one frame of the sequence. The 
method is partly based on a high-level statistical model of left ventricular 
motion, and on a low-level pixel-wise, frame-to-frame tracking of image 
regions. The latter is done using the differential optical flow method. 

Chapter 7 describes a method for improving the tracking algorithm of Chapter 
5 using low level temporal information of pixel intensity. As mentioned 
before, ultrasound images often contain many artifacts. The goal of the 
method is to derive information that can be used to indicate the probability 
of pixels as being a part of the left ventricular wall or as being obscured by 
typical ultrasound artifacts. The expectation-maximization method is used 
for this purpose. 

Classification 

In this thesis, we use supervised classification to discriminate between normal 
and abnormal motion. In particular, we focus on using features which are derived 
from the endocardial shapes. 

Chapter 8 describes a novel feature representation which uses a statistical model 
of endocardial shape changes throughout the cardiac cycle. This represen­
tation is obtained using a so-called orthomax rotation of the original shape 
model. The advantage is that this produces features that are more suitable 
for classifying wall motion of individual segments. The image sequences in 
this case are 2D, not 3D. 

Clinical Application 

The development of dedicated 3D stress echo software is, in our opinion, a vital 
step in promoting 3D stress echo in clinical practice. The software should, at 
its very basis, be able to display rest and stress images next to each other in a 
quadscreen-like format, with minimum observer input. This type of software has 
not been available commercially until very recently. 

Chapter 9 describes the first clinical evaluation of the 3D stress echo software. By 
displaying rest and stress images, anatomically aligned, next to each other 
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during visual wall motion scoring, we show that interobserver variabilities 
can be greatly reduced. 

Discussion and conclusion 

Chapter 10 discusses the investigated analysis methods and provides some gen­
eral conclusions. 
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In this chapter, appearance model segmentation and intensity-based image registra­
tion were combined for detecting contours in 3D echocardiograms fully automatically. 
A sparse appearance model was built in 3D, consisting of the anatomical4-chamber, 
2-chamber, and short-axis views, which were extracted from end-diastolic 3D data 
sets. The model was used to segment images in a registration framework, by opti­
mizing appearance and pose parameters simultaneously. Encouraging results were 
obtained with leave-one-out experiments on 10 patient data sets. The method may 
help inter- and intrapatient comparison of images, and is intended as an initialization 
for a complete 3D segmentation. 
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2.1 Introduction 

Three dllnensional (3D) echocardiography is a non-invasive and relatively inex­
pensive tool for visualizing the whole left ventricle (LV) over the complete cardiac 
cycle. New, fast 3D ultrasound imaging devices are entering the market and 
have potential in allowing a rapid, reliable, and user-friendly diagnosis of the 
left ventricle - provided that a suitable automated analysis method is available. 
A disadvantage of ultrasound, compared with other modalities, is the relatively 
complicated image appearance, which poses a considerable challenge for auto­
matic segmentation and registration. 

Many different approaches have been proposed for segmentation of the left 
ventricle in 3D echocardiography. For example, Angelini et a!. [2005] reported on 
a wavelet-based 4D echocardiographic image enhancement followed by a level­
set LV segmentation. Gerard eta!. [2002] proposed a 2-simplex mesh deformable 
model to segment 3D echocardiographic images. Active appearance models 
(AAM) were used by Bosch et a!. [2002] to segment 2D+time echocardiographic 
images and were shown to be applicable in 3D ultrasound as well [Mitchell et a!., 
2002]. AAMs seem especially suitable for the complicated ultrasound images, due 
to their ability to mimic the expert's segmentation decisions, especially in areas 
with typical ultrasound artifacts (such as echo drop-outs). However, AAMs as­
sume that their parameters behave linearly, resulting in a limited lock-in range. 
Therefore, the technique requires adequate initialization of the model in a high di­
mensional parameter space. Moreover, the models require cumbersome training 
before segmentation. 

For alignment of different images of the left ventricle, image registration tech­
niques can be employed. Registration of 3D ultrasound images has been explored 
by e.g. Rohling et a!. [1998] (3D gall bladder images) and Shekhar et a!. [2004] 
(3D stress echocardiography). However, nonrigid registration is computationally 
complex and optimization can be slow, if the images differ considerably. 

In this chapter, we propose to exploit the advantages of both approaches by 
combining appearance modeling and intensity-based registration. To limit com­
putational complexity, the model is built on a sparse subset of the 3D data, con­
sisting of anatomical views of the 4-chamber, 2-chamber, and a short-axis image. 
Inspired by intensity based registration optimization, we match the appearance 
model to unseen images in a registration-like framework. This method will allow 
fully automatic extraction of the standard echocardiographic views. This will aid 
in the selection of images for inter- and intra-patient comparison and may provide 
an initialization for a complete 3D AAM. 
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Methods 2.2 

Sparse appearance modeling 2.2.1 

The AAM [Cootes et al., 1998] is a well-known concept for segmentation of organs 
in medical imaging. This technique consists of modeling the variations in shape 
and texture within the target population, via statistical analysis of a training set of 
example segmentations. In short, principal component analysis (PCA) is applied 
to a training set of shapes (x = x + P,b,) and textures (g = g + P gbg) and to the 
combination of shape (b,) and texture (bg) parameter vectors, 

b = ( ~:, ) = ( ~f[i~ ~~) ) , (2.1) 

where x, g are the mean shape and texture and P ,, P g are the eigenvector matrices 
produced by the PCA. As such one model is obtained, with modes of variation P c 

that describes the variations in appearance (shape and texture): b = P ,c [Cootes 
et al., 1998]. Using this model the training images can be approximated and new 
images are synthesized of whlch the appearance is known. Matching such a 
model to an unseen image aims at finding the best set of parameters c for whlch 
the synthesized image best matches to the unseen image. 

Shape representation 

We model the end-diastolic (ED) left ventricular (LV) endocardium in three or­
thogonal planes, corresponding with the anatomical4- and 2-chamber views and 
one short-axis view at 1/3rd of the long axis. This model contains the standard 
anatomical views used in echocardiography and is similar to the sparse active 
shape model (configuration MV-4) of van Assen et al. [2006]. 

Training sets for the appearance model are created using the semi-automatic 
segmentation method by van Stralen et al. [2005b J. First, all full-cycle data sets are 
aligned to a common anatomical coordinate system, centered at the LV long-axis 
(LAX). The LAX is determined by manually annotating apex and mitral valve cen­
ter iteratively, and selecting the correct 4-chamber image plane angle (see chapters 
4 and 9). An example of the selected views is shown in Fig. 2.1. Full-cycle endo­
cardial surfaces are obtained using pattern matching and dynamic programming 
[van Stralen et al., 2005b]. The contours for the training set are obtained by inter­
secting the ED surface with the three image planes. An example of the manual 
segmentation is shown in Fig. 2.2. 

Point correspondence is determined based on the LAX. For the long-axis con­
tours, an atypical cylindrical/ spherical sampling is used. From the mitral valve to 
3/4 of the apex-mitral valve height, the points are sampled cylindrically, whereas 
spherical sampling is applied in the remaining 1/4 region (Fig. 2.3). For the 
short-axis contours, radial sampling is applied with respect to the LAX point at 
1/3 relative height. This results in 60 points for each long-axis view, 20 points for 



34 SPARSE APPEARANCE REGISTRATION 

Fig. 2.1: Manual selection of 4-chamber, 2-charnber, and short-axis images. 

Fig. 2.2: Manual segmentation of the 4-cham.ber, 2-chamber, and short-axis plane, and 
the corresponding 3D geometry. 

the short-axis view, and the apex and mitral valve center; in totall42 3D surface 
points per set. Before statistical modeling, 3D Procrustes alignment [Mitchell et 
al., 2002] is applied to the sets to remove variation in size and orientation of the 
heart. 

Texture representation 

Point correspondence is required for the texture samples as well, which is di­
rectly derived from the shape point correspondence. Classically, the texture points 
are defined by superimposing a regular Cartesian image grid onto the average 
shape. The texture points are then represented in barycentric coordinates of the 
triangulation of the shape mesh. In our case we choose to exploit the cylindri­
cal/ spherical shape representation and define the texture points only on the lines 
through the mesh points and the LAX (Fig. 2.3). To emphasize the salient struc­
tures, the sampling is extended so as to include points outside the endocardial 
boundary, and sampling is more sparse near the LAX and apex, and more dense 
near the LV boundary and mitral valve. In total 8668 texture points are used per 
training set. 
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Apex. 

Fig. 2.3: Point correspondence in the long-axis planes is defined by the LV long-axis 
and mitral valve center. The shape points are defined by a cylindrical/ spherical sam­
pling. The shape points in the short-axis plane are radially sampled. Texture points lie 

on the lines through the long-axis and shape points. 

Intensity normalization 

In appearance models, the underlying data are assumed to follow a Gaussian 
distribution. However, for the ultrasound texture, histograms tend to peak at 
very low intensities and are very asymmetric. To deal with the non-Gaussian 
intensity distribution, we apply the ultrasound specific intensity normalization 
as presented by Bosch et al. [2002]. Intensities for each training image are first 
normalized by windowing and scaling to relative intensities r E [0, 1], where 0 and 
1 correspond to 0.1-percentile upper and lower bounds. A cumulative histogram 
of the relative intensities over the whole training set is created and a conversion 
table is calculated which normalizes the distribution. Finally, all training textures 
are normalized using this table. This results in an intensity distribution over the 
whole training set that has a nearly Normal distribution. After this ultrasound 
specific nonlinear intensity normalization, general linear intensity normalization 
is applied by shifting and scaling the intensities to zero mean and unit variance. 
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Sparse appearance registration 2.2.2 

The sparse appearance model is applied to an unseen 3D ED image by mini­
mizing the difference between the synthesized model appearance and the image 
itself, in an intensity based registration framework [Maintz and Viergever, 1998]. 
This framework consists of a transform which describes the spatial relationship 
between the model and the image, an optimizer to determine this transform, an 
interpolator for calculating intensities at points not coinciding with the image's 
coordinate grid, and a metric which describes the difference between the model 
and image (see Fig. 2.4). 

The transform descnbes the spatial relationship between the model and the 
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Fig. 2.4: Appearance model based segmentation in registration framework. 

image. This is captured in the 3D pose (three rotations, three translations, and 
uniform scaling) and appearance parameters of the model. The number of ap­
pearance parameters used influences the model's ability of synthesizing images. 
We investigate the effect of using 3 through 7 modes, whlch covers 67% through 
96% of the model variance. Instead of using the standard gradient descent match­
ing algorithm with precomputed regression matrices, the Nelder-Mead downhill 
simplex algorithm [Lagarias et al., 1998] is used to determine the optimal parame­
ters. This removes the need of cumbersome regression training. The simplex algo­
rithm offers the flexibility of optimizing pose and appearance simultaneously, by 
transforming the parameters to a common parameter simplex space. In our case, 
the parameter simplex is normalized so that one unit parameter in this simplex 
domain corresponds to 1mm translation in all directions, {1 o, 1.5°, 0.2°} rotation 
about the {x,y,z} axis, 0.25% scaling, and 0.35 standard deviation perturbation 
of the appearance parameters; all normalizations are determined according to 
the variations encountered in the tra:i.rting set. The rotation about the z axis is 
more restricted to prevent synunetry issues, whlch do not occur in the x and y 
direction. Interpolation is necessary for calculating intensities at points not co­
inciding with the image's coodinate grid. Trilinear interpolation is used because 
of computa tiona! efficiency. The performance of several commonly used regis­
tration metrics is evaluated: sum-of-absolute differences {SAD), sum-of-squared 
differences (SSD), normalized cross-correlation (NCC) [Giachetti, 2000], and nor­
malized mutual information {NMl) [Maes et al., 1997]. NM1 is calculated using the 
hlstogram method. The unseen images are first Gaussian filtered and then halved 
in resolution. Images are masked so that image pixels outside the transducer's 
scan sector do not contribute to the metric. 

The model is initialized in the unseen image at the average pose of the train­
ing samples. At each optimization iteration, the metric value is calculated in the 
image domain. This consists of transforming the model's texture vector with the 
general and ultrasound specific normalization (as described above), and interpo­
lating the unseen image's intensities on the shape-based grid, as determined by 
the model's shape vector and the estimated pose. Registration is considered con-
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verged if the metric value differences between the simplex vertices are less than 
10-4 for SAD and SSD and 10-6 for NCC and NMI, and if the Euclidean distance 
between the vertices are less than 10-3 After convergence, the optimization is 
restarted at the found minimum to check for suboptimality. Mean registration 
times of the algorithm, implemented in MATLAB® (version 6.5.0, release 13, The 
Math Works, Inc.), not optimized for speed, on a 2.8GHz Intel® Pentium® 4 pro­
cessor are 4.6min, 5.7min, 5.1min, 1.8min for the SAD, SSD, NCC, NMI metrics, 
respectively. 
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Data description 2.2.3 

Full-cycle 3D data sets of the LV were acquired from 10 patients, obtained in 
the apical position using the Philips Sonos 7500 ultrasound machine. The sets 
contained 160 x 144 x 208 voxels at a resolution of 1.1 x 1.1 x 0.7mm3 (length x 
width x depth). Appearance models were built and matched on 3D end-diastolic 
(ED) volumes. ED was defined as the time point of the ECG R-peak. 

Results 2.3 

The sparse appearance registration algorithm is tested in a leave-one-out fashion, 
on ED data sets from 10 patients. An example of the registration results (NCC 
metric, 7 modes), together with the manual segmentation and the initial position 
of the model, is given in Fig. 2.5. The segmentation results are in good agreement 
with the manual segmentation. 

Fig. 2.6 shows the effect of increasing the number of modes in the appearance 
model, for the investigated metrics. Mean point-to-point and point-to-surface er­
rors with respect to the manual segmentation are given. The full 3D manually seg­
mented surface is used to calculate the point-to-surface errors. An improvement 
in both error measures can be perceived for all metrics and number of modes 
investigated. Best results are obtained with the NCC metric using the largest 
number of modes in the model. The NCC metric performs better than SAD or 
SSD, which may be because the use of SAD and SSD implicitly assumes that the 
model and image only differ by Gaussian noise, whereas a less strict assumption 
of a linear relationship between the intensity values is made for NCC. Using NMI 
on the other hand, no direct assumption is made in the relation between model 
and image intensities. Therefore, pixels representing blood and tissue may be 
inversely matched with NMI. This may potentially drive the shape component 
of the appearance model in the wrong direction, since matching is based on the 
intensities only. Also, there may be some partial volume effects since linear inter­
polation is used, instead of partial volume interpolation. Further investigation is 
needed to improve NMI in this registration framework. An advantage of using 
NMI may be the ability to exchange models between different modalities. 

In this chapter, we chose a sparse appearance model consisting of three most 
common anatomical views. However, further investigation of the sparseness of 
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Fig. 2.5: An example of registration results (NCC, 7 modes of appearance). The initial 
(dash-dot line) and registered (dashed line) are projected onto the manually segmented 
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fig. 2.6: Point-to-point and point-to-surface errors with respect to the manual segmen­
tation, for the SAD, SSD, NCC, and NMI metrics (see text for abbreviations). Errorbars 
correspond to the 95% confidence .intervals. The best metric, NCC, shows statistically 

significant improvement for all numbers of appearance modes. 

the model is necessary. A different configuration of anatomical planes, such as 
addition of more short-axis planes or a shift in their location along the LAX, 
may lead to better results. Also, the results should be compared to a dense 3D 
representation. In any case, the registration of a sparse set of views may be 
propagated to other LV areas by interpolating the found contours cylindrically 
[van Stralen et al., 2005b]. In this way, an initialization can be found for a full 3D 
AAM. 



2.4 CoNCLUSIONS 

Conclusions 2.4 

We have developed a sparse appearance model based registration algorithm for 
fully automatic extraction of standard anatomical views in 3D echocardiographic 
images. A sparse appearance model is built on manually segmented 4-chamber, 
2-chamber, and short-axis planes of 3D end-diastolic data sets. Adaptations are 
made to accommodate for the non-Gaussian distribution of ultrasound intensities. 
Furthermore, image intensities are modeled and matched in a shape-dependent 
grid, which circumvents cumbersome image warping. In the matching phase, 
the model is used to segment unseen images in an intensity-based registration 
framework. Evaluation on 10 patients data sets revealed improvement in the LV 
segmentation. The registration method can be used to find the global anatomi­
cal coordinate system in ultrasound images and may serve as the basis of a full 
3D I 4D segmentation algorithm. 
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Detection of 
the left ventri-
cular long axis and 
the mitral valve plane 
Automated segmentation approaches for the left ventricle (LV) in 3D echocardiogra­
phy often rely on manual initialization. So far/ little effort has been put in automating 
the initialization procedure to get to a fully automatic segmentation approach. We 
propose a fully automatic method for the detection of the LV long axis (LAX) and 
the mitral valve plane (MVP) over the full cardiac cycle. Our method exploits the 
cyclic motion of the LV and therefore detects salient structures in a time-continuous 
way. Probabilities to candidate LV center points are assigned through a Hough trans­
form for circles. The LAX is detected by combining dynamic programming detec­
tions on these probabilities in 3D and 2D+time to obtain a time continuous solution. 
Subsequently, the mitral valve plane is detected using the previously detected LAX. 
Automatic detection was evaluated using patient data acquired with the fast rotating 
ultrasound (FRU) transducer and with the Philips Sonos 7500 ultrasound system with 
the X4 matrix transducer. For the FRU data, the LAX was estimated with a distance 
error of 2.85±1.70mm and an angle of 5.25±3.17'; the MVP was estimated with a dis­
tance of -1.54 ± 4.3lmm. For the matrix data, these distances were 1.96±1.30mm with 
an angle error of 5.95±2.11 ° and -1.66±5.27mm for the mitral valve plane. These re­
sults confirm reliable detection of the LAX and MVP, allowing automatic initialization 
of 3D segmentation approaches. 

©World Federation for Ultra...;ound in Medicine & Biolq,-y. Reprinted, with pcrmL~ion, fr-om: 
Time contim.1ous detection of the left ventricular long axis and the mitral v:Uve plane in three-dimensional cchocardiography. 
M. van Stralcn, K Y.E. Leung. M.:vL Voormolcn, K. de Jons,. A.F.W. vJ.n dcr Steen, J.H.C. Reiber, and J.G. Bosch 
Ultra:<ound Mcd Biol2008; 34(2); 196-207. 
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3.1 Introduction and literature 

3D echocardiography is an increasingly widely available acquisition technique 
for assessment of left ventricular (LV) function, which is non-invasive, relatively 
cheap and portable. Due to the rapid increase of the use of this modality for diag­
nosing global and regional LV function, valvular disease, etc. there is a growing 
demand for objective, reproducible and automated techniques for identification 
of salient structures and quantification of left ventricular function. 

Recently, several approaches for automated endocardial contour detection 
have been proposed, reporting success in measuring global functional parame­
ters [Angelini et a!., 2001; Corsi et al., 2002; Gerard et al., 2002; Kiihl eta!., 2004; 
van Stralen et al., 2005b; Zagrodsky et al., 2005], and significantly decreasing the 
amount of user interaction that is needed for these measurements. Also, several 
quantification tools have already become available on commercial 3D echocardio­
graphy (3DE) systems. Although time can be gained by using these tools, reliable 
quantification of important clinical parameters is still very labor intensive and not 
yet ready for use in daily clinical routine. This requires techniques that need min­
imal or no user interaction. Moreover, automating the initialization procedure of 
such methods would also eliminate inter- and intraobserver variability from the 
analysis, increasing the reproducibility of the analysis. 

Most previously presented methods for the quantification of LV function re­
quire some manual initialization. Initialization is done either by explicitly arno­
tating the apex, a number of points on the endocardial border or the mitral valve 
[Corsi et al., 2002; van Stralen eta!., 2005b], or by indicating the LV position and 
dimensions by arnotations [Angelini et al., 2001; Gerard et a!., 2002; Ki.ihl et al., 
2004]. 

Although much attention has been paid to minimize this user interaction for 
automated contour detection, little effort has been put in developing dedicated au­
tomatic initialization procedures, which focus on automatically detecting salient 
structures in 3D echocardiography (3DE). Stetten and Pizer [1999] attempt to de­
tect the apex and mitral valve center using medial-node models. Veronesi et al. 
[2006] describe a method for automated detection of the LV LAX based on op­
tical flow, but it still needs manual initialization. The segmentation method by 
Zagrodsky et a!. [2005] is initialized using a time-consuming registration with a 
pre-segmented template image. 

Automated initialization has received more attention for segmentation of car­
diac magnetic resonance (MR) images. We were inspired by work of MUller et 
a!. [2005]; van der Geest et al. [1997], who detect the LV center in short-axis MR 
images using a Hough transform [Ballard, 1981] for circles, for initialization of 
automated endocardial border detection. 

We propose a fully automatic method for reliable estimation of the position of 
the mitral valve and the orientation of the left ventricular long axis for apical 3D 
echocardiographic images of clinical quality. The computation costs are relatively 
low and the method is easily adaptable, which makes it a valuable starting point 
for various high-level segmentation techniques. 
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Materials and methods 3.2 

We propose a method for finding the long axis (LAX) of the left ventricle and 
the mitral valve plane (MVP). Such a method should be capable of dealing with 
typical ultrasound acquisition characteristics, such as inhomogeneous image in­
tensities, speckle and partial dropout of the myocardium. 

The detection of these salient structures of the LV is achieved by a few robust 
consecutive steps (Fig. 3.1). At first, the LAX is detected by locating the main 
circular structure in a number of planes perpendicular to the (apical) acquisition 
axis over time, using a Hough transform for circles (Fig. 3.1a-b ). Consecutively, 
multidimensional dynamic programming is applied in 3D and 2D+time to locate 
probable LV centers (Fig. 3.1c-e). Fitting a line through the LV centers in each 
cardiac phase results in the final LAX (Fig. 3.1£). The estimate for the LAX is used 
for finding the MVP, in a spherical projection of the LV (Fig. 3.1g). 
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Detection of long axis 3.2.1 

For the detection of the LAX in the apical3DE image sequences of the left ventricle 
we choose to detect the LV centers in planes perpendicular to the acquisition 
axis. These planes resemble regular 2D short-axis acquisitions of the LV (Fig. 
3.2a). They are extracted by dividing the image data into a number of slices L 
and integrating the data within each slice along the acquisition axis. We exclude 
the upper 10% and the lower 10% of the image volume from analysis to remove 
influence of near-field noise and to exclude the lower part of the image that has 
been left empty, respectively. 

We aim at detecting the center of the endocardial border, which appears in 
these planes as the inner edge of the main circular structure, using a Hough 
transform [Ballard, 1981] for circles (HT,). The Hough transform is known to be 
robust to partial dropout of target structures and invariant to the circle radius. 

For location of possible circle centers, the HT, utilizes the image gradient G as 
a measure for edge orientation and the gradient magnitude II Gil as a measure for 
edge strength. G is implemented as a convolution with a Gaussian derivative at 
a scale cr. 

We apply a thresholding operation on the gradient image G to remove influ­
ence from noise in the background and use only the strong gradients. We define 
the threshold as the gradient value which corresponds with a certain percentile 
value Zt of the histogram of all gradient images, in order to be invariant to global 
contrast changes throughout the different acquisitions. The optimal value of g, is 
determined experimentally. The HT, transforms the gradient image into a prob­
ability map for circle centers, the accumulator image A (Fig. 3.2b ), with the same 
dimensions as G, using the gradient magnitude I! Gil as a weighing function for 



44 LONG AXIS AND MITRAL VALVE DETECTION 

;a 

~ ~ :7 ~ / 

;b 

' ' /.,;w. / /./ii!il'/ 

c 

~ 
/ 

iiil"!!W'' 

' ' dill!¢'/ 

' ' 

/j 
/ 

( ,.f!!fiif:Y 

/ ,./ 
·, 

' ' 

/j 

/ 

------­i f 

Fig. 3.1: The detection scheme for the long axis (LAX) and the mitral valve plane 
(MVP). (a) From the original 3D+ T image (n projection slices (2) are extracted at a 
certain number of levels per cardiac phase. (b) A Hough transform for circles computes 
a circle center probability map for eacb slice (the accumulator image (3)). (c) For eacb 
cardiac phase, 3D dynamic programming determines the LAX path (4) through the 
probability maps. (d) The probability maps are weighed according to the detected 
circle center from the previous step. (e) The circle centers are tracked through the 
weighed probability maps (5) over time, per slice level. This results in the circle center 
paths (6). (f) For eacb cardiac phase, a weighed line fit determines the LAX (7). (g) The 

LAXs are used to detect the MVP in eacb cardiac phase (8). 

the edge responses, whlch reduces the sensitivity to the threshold value g,, 

Ap = Lgp,qrp,q]IGqll where 
q 

p,q E G 

gp,q = g 
rp,q = {~ 

L( Gq (pq)) :S o:.e 
otherwise 

rmin < IIP'/11 < rmax 

otherwise 

(3.1) 
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for any positions p and q in the gradient image. The parameters r min and r max de­
fine the minimum and maximum radius that should possibly be detected by the 
Hough transform. We set [rmin• Ymaxl to [lOmm, 30mm]. Note that the maximum 
radius rmax corresponds well with normal values for the end diastolic (ED) LV 
diameter (95% interval: 37 - 56mm, [Feigenbaum et al., 2005]). The angle uncer­
tainty IX.c is related to the precision of the gradient estimation. It determines the 
width of the accumulator region for which values are increased. Radius image 
R (also with the same dimensions as G) accumulates the candidate radii that are 
detected for a certain position p, 

Rp = Lgp,qYp,qiiGqiiiiJ?illl· (3.2) 
q 

An estimate for the most likely radius fp of a circle at pis defined as fp = Rp/ Ap· 
We employ this circle detector in L planes perpendicular to the (apical) acquisition 
axis in all cardiac phases and find probabilities for p being a circle center. These 
planes in all cardiac phases constitute a 3D plus time (3D+ T) probability map for 
circle centers. 

Acrumuhltor >lice 30 We<f!;hted 
---+ ---+ uccumulutor ---+ "ccumulutor ,.[kc -o.o"='''"" 

with 

a b c d e 

Fig. 3.2: LAX detection in a 3D image us:ing the Hough transform for circles (HTc). The 
top row shows the accumulator images. In the bottom row the accumulator images are 
blend in vvith the original image. (a) Original image slice perpendicular to image 
axis. (b) The HTc assigns circle center probabilities to the original image slice in the 
accumulator image. (c) Center line detection is performed using MDP to find a path 
approximation of the LAX in 3D. (d) The accumulator image is weighed using the 
detected center in each slice. (e) The circle center trace is detected over time using 
MDP. (f) The LV center as detected in the previous step. This LV center will be used 

for the line fit in each phase. 

Dynamic programming 

Given the 3D+ T probability map, we detect the LAX over the full cycle by mul­
tidimensional dynamic programming. Dynamic programming (DP) is a well­
known graph search technique [Bellmann, 1965]. In image processing it is often 
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Fig. 3.3: Dynamic programming. (a) Initial cost matrix. The costs cij for each node nif 

are shown in the top-left of each node. (b) Computation of the cumulative cost matrix. 
Cumulative costs w1j are shown in bold for the nodes ill the first tvvo columns. The 
dashed arrows represent the edges eijk between the nodes. The bold edge is the edge 
for which the cumulative costs for the bold node are minimal. (c) The complete cumu­
lative cost matrix with, for each node, a reference (represented by k) to the previous 
column. The optimal path is backtracked from the node with lowest cumulative costs 

in the last column/ following the references (solid arrows). 

referred to as a minimum cost algorithm for finding a connective path through a 
2D cost image [Amini et al, 1990; Sonka et aL, 1999]. In this classical approach 
(Fig. 3.3), the pixels in the cost image v (of M rows and N columns) act as nodes 
nij(i = 0, ... , M- 1; j = 0, ... , N- 1) in a directed graph, the corresponding pixel 
values Vfj as the node costs c1j (i.e. the circle center probabilities). The directional 
edges in the graph are defined by imposing a connectivity constraint, the maxi­
mum step size 5. This step size limits the number of neighbors (25 + 1) to which 
a node nij in column j is connected in the next column j + L We denote the di­
rected edge eijk' the edge from nij to ni+k.j+l' where k E [-5,5]. Additional costs 
aijk may be assigned to edge eijk· 

Dynamic programming is a technique that greedily searches to find the cheap­
est path from column 0 to N- 1. This path is found by computing the cumulative 
cost wij for each node nijf 

w··= min (w·~k-~1+"'--k+c--)where 
!J k=-s ... s 1 ,J 1J 1J 

(3.3) 

The value of k for which Wfj is minimal is stored with each corresponding node. 
The optimal path is then easily found by backtracking from the node ni,N~l' for 
which 

wi,N~! =. min (wi,N~!) 
l=O ... M~l 

(3.4) 
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by following the edges for the corresponding k-value stored with each node, down 
to ni,O· 

This algorithm can be extended to find an optimal path through a multidimen­
sional image (with dimension D > 2), by allowing side steps in D - 1 dimensions. 
This extension is known as multidimensional dynamic programming (MDP), as 
previously presented by Dzumcu eta!. [2006]. 

Continuous LAX detection 

We aim at finding the LAX in 3D, continuously over time, in the 3D+ T accumu­
lator image (Fig. 3.2). Therefore, we detect LV centers using two different MDP 
steps. First we approximate the LAX in each cardiac phase by finding a path in 
the 3D accumulator image using MDP (i.e. 2D DP in this case). The MDP will 
obtain a continuous path as an approximation of the LAX for each separate phase 
(Fig. 3.2b,c), but temporal continuity is not imposed in this way. Accordingly, we 
combine the results from the single-phase 3D MDP detections, with 2D+ T MDP 
detections (i.e. detecting the trace of the LV center at a certain (short-axis) level 
over time), by weighing the accumulator image with a distance function (Fig. 
3.2d). The value of this Gaussian distance function decays with the distance from 
the detected path in 3D. We use the weighed accumulator image as the cost image 
for the 2D+ T detection. In this way, we exploit the continuity along the acquisi­
tion axis from the 3D detection and find a continuous LV center path over time 
for each level (Fig. 3.2e). Finally, we employ a weighed least squared distance line 
fit on the detected LV centers (Fig. 3.2£) of the 2D+ T MDP, with the accumulator 
value as the weight, for location of candidate circle centers. The maximum side 
step S, an integer value, should not be too small to allow enough curvature in the 
detected path. On the other hand, a S which is too large increases the computa­
tional cost of the method and weakens the continuity of the detected path. From 
our experiments we found that S = 2 gives both for the 3D and for the 2D+ T 
MDP enough freedom to find the desired LV center points, without degrading 
the continuity. 
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Mitral valve plane detection 3.2.2 

For the detection of the mitral valve plane (MVP) we use the LAX position from 
the previous step. Given the LAX estimation in each cardiac phase we estimate 
the MVP by detecting it in a spherical integration of the LV on a plane through 
the LAX (Fig. 3.4a). We define the MVP as the plane perpendicular to the de­
tected LAX, touching the bottom of the LV endocardial border. In this spherical 
projection we obtain a simplified and integrated representation of the data, as­
suming that the LAX lies within the mitral valve ring and points to the apex, and 
assuming an approximately ellipsoidal shaped LV. We define a spherical coordi­
nate system (p, rp, 8), with p for radius, rp for elevation and e for azimuth. The 
coordinate system has the LAX as its vertical axis. The origin is defined as the 
weighed center of gravity of the LV centers from the LAX detection. We employ 
a mean projection of the intensities I(p, rp,.) on the plane e = c. The intensities of 
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the resulting projection image P, are defined as 

1 [2" 
P,(p,<fJ) = Zrr Jo I(p,</J,&)de. (3.5) 

This projection exploits the circular shape of the myocardium in short-axis planes, 
and therefore increases blood-to-tissue ratio (Fig. 3.4a,b ). We aim at detecting the 
approximate, projected endocardial border and the MVP in this projection using 
a low-level edge detection technique. We employ dynamic programming using 
the radial gradient in the spherical projection as the cost function. A typical result 
for the projection and the detected border are shown in Fig. 3.4c. The detected 
border is then back transformed into the Cartesian image domain to extract the 
MVP (Fig. 3.4d). 

a 

+-- p--+ 

Me<111 projection 
b 

--+ p 

Radial gradient 

c 

+--f----+ 

11itral valve plane 

d 

1 
d 

Fig. 3.4: (a) Spherical projection of the image intensities onto a plane. (b) The projection 
image, mirrored in the LAX. (c) The radial gradient of the projected image, with the 
detected border. (d) An illustration of the detection of the MVP, using the detected 

path (in a cylindrical projection (r,d)). 

3.2.3 Image acquisition 

Transthoracic apical real-time 3DE images were acquired using the Fast Rotating 
Ultrasound (FRU) transducer [Voormolen et a!., 2006], connected to a Vingmed 
Vivid FiVe (GE Vmgmed, Harten, Norway) and using the commercially available 
Philips Sonos 7500, with the X4 matrix transducer (Philips Medical Systems, An­
dover, Massachusetts, USA). The FRU acquisitions were made on a group of 11 
patients (age: 52± 12 years), with a diagnosis of myocardial infarction. These 
patients were selected from an initial group of 14 patients, which were included 
based on sufficient 2D echo image quality. Three patients had severely dilated 
ventricles that could not be imaged entirely and were therefore excluded from 
the study. Acquisitions were made 156 ± 82 days after MI. Image sequences were 
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interpolated to volumetric data [Bosch et al., 2006], 256 x 256 x 400 pixels at 16 
phases per cardiac cycle. For automated analysis the sets were downsampled 
to 128 x 128 x 400 pixels, to reduce computational costs without degrading the 
results. 

Another group of 14 patients (age: 57± 14 years), who were referred for dobu­
tamine stress echo, were examined using the Philips Sonos 7500. Only data from 
the rest stage were used. These images varied from 15 to 24 phases per cardiac 
cycle and had dimensions of 144 x 160 x 208 pixels. Both acquisition sets con­
tained image sequences of varying image quality. An example of both types of 
patient data (of average image quality) is shown in Fig. 3.5. 

fig. 3.5: Two examples of the patient data, note the deviation of the acquisition axis 
(lines) from the LV long axis (not shown). Top: three orthogonal slices of a FRU data 
set of average image quality. Bottom: 1hree orthogonal slices of a Philips Sonos 7500 

(matrix transducer) data set of average image quality. 
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Evaluation 3.2.4 

Both the FRU and matrix acquisitions were analyzed manually using a semi­
automatic segmentation tool for quantitative assessment of full cycle LV volumes 
[van Stralen et al., 2005a]. Two observers analyzed FRU data independently, after 
reaching agreement on the tracing conventions. The matrix acquisitions were 
traced independently by another observer. 

Full cycle endocardial contours were traced semi-automatically by drawing 
contours in four 2D intersections per patient, followed by automatic detection. 
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If desirable, corrections were made iteratively to achieve a fully satisfying seg­
mentation in all the cardiac phases. The endocardial contours from these tracings 
were used to determine the manually defined LAX and MVP. We derived two 
different long axes from the manual segmentations. Generally the LAX is defined 
as the line segment between the mitral valve center (MVC) and the point on the 
contour with largest distance to the MVC. We define our regular LAX (rLAX, 
Fig. 3.6) as the line segment from the MVC to the center of gravity (COG) of the 
apical volume (top 25%), to be less sensitive to small irregularities in the apical 
contour. A disadvantage of these definitions is that it may result in a rLAX that is 
intuitively off-center for a bent LV. Therefore we also compute a centerline LAX 
(cLAX), Fig. 3.6), which is a line fit through the short-axis (given the rLAX) con­
tour centers. Note that for automatic initialization purposes the actual definition 
of the LAX is not critical as long as it represents the main shape, is robust to small 
contour changes and can be estimated accurately. We define the manual MVP as 
the least squares plane fit through the mitral valve ring points. Note that it is not 
necessarily perpendicular to the LAX. 

' . 
Mitral v;;tlw 

Fig. 3.6: The definition of the regular long a"Xis (rLAX) and the centerline long axis 
(cLAX). 

We evaluate the distance and angle of the detected LAX to the rLAX and the 
cLAX. The distance is defined as the smallest Euclidean distance between the 
manual LAX line segment and the automatically detected LAX line segment in 
mm. Such a distance by itself is not a very discriminative measure for evaluation 
of the quality of the detected axes. Two axes may be almost intersecting, and 
thus have a small distance from each other, but may point in a totally different 
direction. Therefore, we also measure the angle between the vectors belonging to 
these axes (in degrees). If both the distance and the angle are small, the axes are 
similar. 

We measure the quality of the detected mitral valve plane as the projected 
signed distance between the detected MVC and the manual MVP. A negative 
distance means that the detected MVP lies above the manual MVP (within the 
LV cavity). We measure the distance, because for initialization purposes we are 
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mostly interested in the level of the MVP, not in the angle with respect to the LAX. 
The proposed method does not measure this angle, because it assumes that the 
MVP is approximately perpendicular to the LAX. 

We optimized the performance of the LAX and MVP detection by systemat­
ically varying the free parameters of the method for both types of acquisition 
systems individually, for the complete cardiac cycle. The metric for this optimiza­
tion is composed of the measured mean and standard deviation for distances and 
angles of the detected LAX to the manual LAX (rLAX or cLAX). In this metric, 
distances and angles are normalized according to the found interobserver vari­
abilities (see below). 

For initial estimation of the optimal parameters we assumed them to be in­
dependent. We evaluated the following parameter ranges and increments ( {pa­
rameter; range; increment}): {a-; [0.5,3.0]; 0.5 sd}, {g1; [70,95]; 5%}, {L; [5,30]; 
5} and {«e; [5,40]; 5°} for both acquisition methods. After determining probable 
ranges, we optimized the parameters, without assuming independence, thus by 
full exploration of the determined remaining parameter space. 

Results 
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Interobserver variability 3.3.1 

We determined interobserver variabilities from the manual FRU tracings by two 
observers. These interobserver variabilities were determined for the full cardiac 
cycle (Table 3.1 and Fig. 3.7). We also obtained interobserver variabilities for 
the distance between the observer's MVPs over the full cardiac cycle (Fig. 3.9). 
The average (signed) interobserver distance was 0.94 ± l.SOmm, with a point-to­
point distance for the MVC of 3.65 ± 1.83mm. Note that interobserver variabilities 
found here are lower than can be expected from a range of users from different in­
stitutions, because both observers reached consensus on the tracing conventions, 
before analyzing the patient data. 

Table 3.1: Interobserver variabilities for two observers on FRU data of 11 patients 
(N = 176 frames). All the results are expressed as mean± standard deviation. 

Distance (mm) 
rLAX 1.39 ± 1.07 
cLAX 1.29 ± 0.98 

Angten 
3.40 ± 1.72 
3.15 ± 1.78 

Parameter optimization 3.3.2 

After initial (independent) parameter optimization for all the parameters 
{ o-, g1, L, «e} for each of the acquisition methods, we determined smaller ranges 
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and smaller step sizes for the full (dependent) optimization. For the FRU data 
we found the following ranges and step sizes: { CT; [0.5, 1.5]; 0.5 sd }, {g,; [90, 97.5]; 
2.5%}, {L; [11, 19]; 2} and {a,; [10,30]; 5°}. For the matrix data these were: {CT; 
[0.5,2.0]; 0.5 sd}, {g1; [85,95]; 2.5%}, {L; [11,19]; 2} and {ae; [10,30]; 5°}. The 
full exploration of these acquisition dependent parameter spaces resulted in the 
optimal parameters for the LAX detection (Table 3.2). The detection results af­
ter full optimization of the parameters improved only a few percent with respect 
to initial (independent) parameter optimizations. This shows the relatively low 
sensitivity of the detection to small parameter changes. 

We found very similar parameters for the two data types. This can be at­
tributed to the fact that the algorithm detects a very coarse structure. At such 
a scale, differences between both acquisition systems are small. The optimal pa­
rameters differ most for CT. This may be due to the lower azimuth resolution of 
the FRU transducer, which results in a higher CT. 

Table 3.2: The optimal parameter settings for LAX detection in FRU and matrix data. 

rLAX cLAX 
IT g, L a, IT g, L a, 

(pixels) (%) (#) n (pixels) (%) (#) COl 
FRU 1.0 90 15 25 1.0 90 15 25 
Matrix 0.5 92.5 15 35 0.5 92.5 15 30 

3.3.3 LAX detection 

Initial LAX errors (with the acquisition axis as LAX estimate) and detection re­
sults for FRU and matrix data are shown in Table 3.3 and 3.4 respectively. LAX 
detection results improve significantly for all cardiac phase (distances and angles) 
with respect to the initial errors (p < 0.01, N = 25), for both FRU and matrix 
data (Fig. 3.8). But also significant differences are found between interobserver 
variabilities and detection errors in some cardiac phases (p < 0.05, N = 11). Nev­
ertheless, detection errors are small and acceptable for initialization purposes, 
when compared with expected clinical interobserver variabilities. 

Detection results are comparable for both acquisition types. FRU data yields 
slightly lower angle errors, while matrix data yields lower distances. Overall, the 
LAX detection approximates the cLAX better than the rLAX, although differences 
are small. This is to be expected, as our LAX detection scheme resembles the 
computation of the cLAX. 

3.3.4 MVP detection 

MVP detection results for FRU and matrix data are listed in Table 3.5 and Fig. 3.9. 
Small mean errors with low standard deviations were found for both data types, 
although the automated detection significantly underestimates the depth of the 
MVP in most systolic phases (p < 0.05, N = 11). In comparison to interobserver 
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Fig. 3.7: Interobserver variabilities for FRU data for the LAX annotation. The mean 
and standard deviation for the distances are plotted for the rLAX and cLAX, with their 

correspondffig maximum values (dashed line). 
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Fig. 3.8: Detection results for the LAX (FRU and matrix combiDed). The mean and 
standard deviations for the angles are plotted for the rLAX and cLAX, with their corre­
sponding maximum values (dashed line). (t) denotes a significant difference (p < 0.05, 
N = 25) between initial and detected errors for the cLAX. (:j:) denotes a significant dif­
ference (p < 0.05, N = 11) between the interobserver variability and the detected error 

(FRU data only, cLAX). 



3.4 DISCUSSION 

Table 3.3: Initial and detection results for LAX on FRU data (N = 176 frames). The 
distance and angles are computed with respect to the manual rLAX and cLAX (all 

results are expressed as mean ± standard deviation). 

rLAX 
FRU Distance (mm) 
Initial 5.41 ± 3.54 
Detected 2.85 ± 1.70 

Angle(') 
11.23 ± 5.30 
5.25 ± 3.17 

cLAX 
Distance (mm) 
6.38 ± 3.36 
2.32 + 1.49 

Angle(') 
10.75 ± 5.37 
4.76 ± 2.95 

Table 3.4: Initial and detection results for LAX on Matrix data (N = 224 frames). The 
distance and angles are computed vvith respect to the manual rLAX and cLAX (all 

results are expressed as mean ± standard deviation). 

Matrix 
Initial 
Detected 

rLAX 
Distance (mm) 
3.12 ± 2.15 
1.96 -'- 1.30 

Angle(') 
11.17 .:._ 3.48 
5.95 ± 2.11 

cLAX 
Distance (mm) 
3.90 ± 2.45 
1.87 ± 1.28 

Angle(') 
10.38 ± 3.46 
4.96 ± 1.93 

variabilities, errors are especially higher in systole, where the automated detec­
tion underestimates the displacement. Near end diastole (ED, phase 1) and end 
systole (ES, "" phase 8) errors are smallest and differences with the interobserver 
variabilities are not significant (p > 0.05, N = 11). 

Point-to-point distances are significantly higher for the automated method 
compared to interobserver variability in most phases (p < 0.05). In this mea­
sure, the error in the LAX estimation is reflected, because the detected MV center 
is based on the estimated LAX. 

Table 3.5: MVP detection results for FRU and matrix data (all results are expressed as 
mean ± standard deviation). 

MVP 
Point-to-Plane (signed) 
Point-to-Point 

FRU (176 frames) 
-1.54 ± 4.31 
6.07 ± 2.36 

Matrix (??4 frames) 
-1.66 = 5.27 
5.61 ± 3.11 

Discussion 3.4 

We presented a method for automatic detection of the LV LAX and the MVP 
over the full cardiac cycle. It is based on the Hough transform for circles for 
finding LV center probabilities in slices perpendicular to the (apical) acquisition 
axis. Subsequently multi-dimensional dynamic programming is used to detect 
circle centers using these probabilities, continuously along the LAX and over time. 
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fig. 3.9: MVP interobserver variability (FRU) and detection results (FRU and matrix 
combined). Mean and sd of point-to-plane and point-to-point distances (MV center to 
MVP) over the cardiac cycle. A positive point-to-plane error means an overestimation 
of the MVP depth. (:f) denotes a significant difference (p < 0.05, N = 11) between the 

interobserver variability and the detected error (FRU data only). 



3.4 DISCUSSION 

We employ least squared distance line fit to find the LAX in each cardiac phase. 
The MVP is located using the detected LAX in a spherical projection, using low­
level edge detection by dynamic programming. 

The method consists of a few consecutive steps. After determination of LV 
center, probabilities using HT, on integrated slices of the volume, MDP in 3D 
results in continuous LV center probabilities and serves as outlier removal for the 
LV center probability. The same holds for MDP over time. In this way, all available 
data is combined and a robust continuous detection is achieved. 

With respect to the initial LAX errors, the method shows significant improve­
ment, with maximum distance errors of 6.07mm in ED and 5.07mm in ES, and 
angle errors of 8.80 for ED and 8.75 for ES (all for the cLAX). These maximum 
errors indicate the usability of the LAX detection as an initialization step, espe­
cially when taken into account that ED and ES are the most important cardiac 
phases for initialization of automated procedures, because they represent the two 
geometrically extreme states of the LV Moreover, LAX detection did not show 
significant differences with respect to our interobserver variabilities, whlch were 
achleved in the idealized situation where both observers agreed on endocardial 
border tracing conventions in advance. In daily clinical situations, these observer 
variabilities are expected to be considerably larger. 

In the analysis of the interobserver variabilities and the detection errors, we 
normalized the patients' cardiac cycles to 16-phases cycle. In this normalization 
the position of the ES-phase has not been taken into account due to small variation 
in the duration of systole among the patients. Therefore, in the analysis shown in 
Fig. 3.8 and Fig. 3.9 there is no cardiac phase that can be depicted as ES. Instead, 
ES has been faded over a few cardiac phases. 

The detection of the MVP depends on the detection of LAX. This may influence 
automatic location of the MVP in patients suffering from pathologies that alter the 
LV shape considerably. The method may be extended by applying same kind of 
quality control or reliability estimate, e.g. by using the quality of the final line fit in 
estimating the LAX per cardiac phase. Nevertheless, a small deviation of the LAX 
from its true position, does not affect the MVP detection much. Thls is because 
the mitral valve is approximately a planar structure, almost perpendicular to the 
LAX. The detection of the MVP is limited to finding a MVP plane perpendicular 
to the LAX, while the true MVP usually is not located exactly perpendicular to 
the LAX. We found deviations of 5.18 ± 2.81 degrees (mean± sd) from the plane 
perpendicular to the LAX (N = 400 frames) in our manual tracings. These small 
differences may be discarded for our initialization purposes. 

Automatic initialization of segmentation of the LV in 3DE decreases analysis 
time for assessment of LV function drastically. Moreover, it eliminates observer 
variability and therefore makes measurements more reproducible and therefore 
allows inter-institutional comparison of LV function assessments. Thls is of great 
value for large studies, for example in clinical trials. However, it of course remains 
to be proven that such automated measurements, employing a combination of 
automated analysis and detection, is accurate in comparison to the gold standard. 

The presented method provides a basis for localization of LV salient structures, 
as has been illustrated by the detection of the MVP. Given the location and ori-

57 



58 LONG AXIS AND MITRAL VALVE DETECTION 

entation of these landmarks one can estimate the complete orientation of the LV 
using the knowledge of the acquisition to determine the angle of the right ventri­
cle (RV) with respect to the LAX. Thls makes it a suitable method for initialization 
of subsequent processing steps, such as LV segmentation. 

As a complete initialization approach for LV segmentation, the proposed 
method lacks true apex detection. Thls should not be seen as an important short­
coming of the method. We expect that initialization can be done reliably using the 
LAX and MVP. The remaining freedom in the LV position and orientation is very 
limited, and final determination of this position, orientation and shape should be 
treated by the segmentation approach. 

3.4.1 Study setup 

In our experiments we evaluated the LAX and MVP detection on data from pa­
tients with various diagnoses of cardiovascular disease. In this population the 
method showed robustness combined with good accuracy. Although patient data 
was used for evaluation, the method might encounter problems in very patholog­
ical cases showing aberrant LV shapes (e.g. apical aneurysms). These topics need 
to be further investigated. Note however, that the definition of the LV LAX in 
these cases also is problematic. Largest errors in the LAX detection in our study 
(which accounted for the maximum angle errors in systole, Fig. 3.8) were caused 
by one patient with a highly trabeculated ventricle, which misled the LV center 
detection. Thls would be a subject for further research on LAX detection. 

The application to patient subpopulations, such as patients with an extremely 
dilated LV probably requires adjustments of the method's parameters concerning 
the expected LV diameter (rmax)-

In this study, because of the limited availability of patient data, the same data 
sets were used for parameter training (optimization) as for testing, while ideally 
these data sets should be different. However, the parameter optimizations have 
shown that parameter choices are not very critical, because of the very small gain 
in performance during the second, dependent, parameter optimization. In this 
optimization, where the optimum neighboring parameter space has been fully 
explored, in 80% of the evaluations the objective metric was less than 12% above 
the optimum. Thls range is small compared to the initial estimation where the 
objective metric is 96% higher. Also, differences in optimal parameters between 
the two acquisition methods were small. In an evaluation of the LAX detection 
on FRU and matrix data with the mean of the individually optimized parameters 
(Table 3.2), the objective metric deviated less than 1% from the optimal case. For 
these reasons, very similar results can be expected if the training set is separated 
from the test set. 

3.4.2 Performance of matrix vs. FRU data 

The initial distance errors for the LAX are lower for the matrix acquisitions. Thls 
can be attributed to the difference in the acquisition procedure. For the matrix 
system, a bi-plane view is shown when positioning the probe. For the FRU acqui-
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sitions, the sonographer currently needs to alter between the two planes, which 
makes positioning slightly more difficult. This is reflected in the higher initial 
distance errors for the FRU data. 

Automatic detection yields very similar performance for the two acquisition 
types. The differences in distance and angle errors between them were not sig­
nllicant (p > 0.05). Detections on matrix data show lower distance errors, while 
detections on FRU data show a slightly lower angle error. These differences are 
small and might be due to differences in the patient populations. 
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Hough transform for circles 3.4.3 

The analysis of the LV in planes perpendicular to the acquisition axis assumes a 
circular shape of the myocardium in these planes. This is an important assump­
tion in the estimation of the LV centers using the Hough transform for circles. 
However, either due to deviation from the true short-axis angle (in fact we are 
trying to detect this angle) or due to the left ventricular shape, the LV may appear 
like an ellipse in the images in which the LV center is detected. As a consequence, 
one might argue that a Hough transform for ellipses would be more appropriate 
when detecting the LV center. A disadvantage of a Hough transform for ellipses 
would be that two extra parameters must be estimated, namely the minor radius 
and the rotation angle of the ellipse. This would make the detection computa­
tionally more expensive. The same holds for the possible extension of the Hough 
transform to 3D for detecting ellipsoids. 

In practice, the HT c will also be capable of approximating centers of ellipses 
with arbitrary minor radius and orientation, as long as the major and minor ra­
dius are close to, or within the accepted range of the radius for the HT,. Also, the 
actual deviation of the planes perpendicular to the acquisition axis from the true 
short-axis planes is limited as the initial errors show (Table 3.3 and 3.4), because 
in the acquisition the sonographer aims at aligning the acquisition axis to the LV 
LAX. 

LV apex detection and LAX length 3.4.4 

In the detection of the MVP, the projected endocardial border is detected using 
the radial gradient in a spherical projection. This border is used to find the MVP. 
Similarly, the apex could be detected for computation of the LAX length. The 
highest point of the detected border, or the intersection of this border with the 
LAX could be used as estimation for the LV apex. A drawback of such an apex 
detection is that it is very sensitive to the initially detected LAX. A small deviation 
of the LAX from its true position leads to a considerably lower intersection of the 
LAX with the endocardial border, especially when the ventricle is narrow near the 
apex, resulting in a misplaced apex and an underestimation of the LAX length. 
Furthermore, the presence of near field artifacts in the image obscures the apical 
region in the projection image. This complicates the detection of the apex in these 
images using a low-level border detection technique. Therefore, we leave the task 
of detecting the apex to the proper segmentation method. 
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3.4.5 Extensions 

The presented method detects the LV LAX, and using this LAX, also the MVP. 
Once the LAX is defined, a multitude of possibilities for detecting other salient 
structures may become feasible. One of the most desirable structures may be the 
right ventricle (RV), or more specifically, the RV attachment points. This would 
allow full determination of the position of the LV in 30, with respect to all six 
degrees of freedom (translation and rotation). The presented method leaves the 
rotation around the LAX (z-rotation) unattended. Note however, that the variation 
in z-rotation is limited, because acquisitions are made using the 2- and 4-chamber 
view as a reference. The detection of the RV in data from current 30E scanners is 
problematic, because in many regular acquisitions the RV is hardly visible. The 
(inferior) RV attachment point is visible in most cases, but the occasional absence 
of this point and the presence of image artifacts that may fool the detection, mak­
ing it a feature that is hard to locate fully automatically. When feature detection 
is used for automatic initialization purposes, such failures are very undesirable. 

Currently, we detect the level of the MVP with respect to the LAX. This serves 
its goal as an initialization for segmentation of the LV. A desirable extension of 
the method may be automatic detection and tracking of the MV hinge points. 
The mitral annular motion is useful in the evaluation of global and regional LV 
function and an important parameter in the diagnosis of annular diseases and LV 
disorders [Eto et a!., 2005; Pai et a!., 1991; Willenheimer et a!., 1999]. The hinge 
points are typically visible as bright structures and seem suitable for automated 
detection. Automated tracking of these points has been shown to be feasible in 
20 echocardiography by Nevo eta!. [2007]. 

3.4.6 Computational costs 

For initialization methods, low computational costs are obviously desirable. The 
detection of the LV LAX and MVP over the full cardiac cycle (16 phases) took two 
to four minutes on a regular PC (Intel Pentium IV, 2.6 GHz), depending on pa­
rameter choices. The implementation of the method (in C++) was not optimized 
for speed and is suitable for parallel processing. Furthermore, the method may 
be considerably sped up by applying it at a lower resolution because of the coarse 
nature of the desired feature detection. Besides, the optimization of the method's 
parameters shows that parameter choices are not very critical. This gives room 
for parameter choices that increase performance in terms of computational costs, 
without noticeably decreasing the accuracy of the method. 

3.5 Conclusions 

We presented a method for automatic detection of the LV LAX and the MVP over 
the full cardiac cycle. It is based on a Hough transform for circles and multidi­
mensional dynamic programming for detecting the LV LAX continuously over the 
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cardiac cycle in 3DE. Using the detected LAX, it locates the MVP by employing 
a DP border detection in a spherical projection of the 3D LV. In an evaluation on 
FRU and matrix data, the method has shown to be robust and accurate in detect­
ing the LAX and MVP. The accuracy, combined with its low computational costs, 
make it very suitable for initialization purposes for automated segmentation al­
gorithms for the LV. 
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Rest-to-stress 
registration 
for 3D stress 
echocardiography 
3D stress echocardiography is a novel technique for diagnosing cardiac dysfunction. It 
involves evaluating wall motion of the left ventricle, by visually analyzing ultrasound 
images obtained in rest and in different stages of stress. Since the acquisitions are 
performed minutes apart, variabilities may exist in the visualized cross-sections. To 
improve anatomical correspondence betvveen rest and stress, alignillg the images is 
essential. We developed a new intensity-based, sparse registration method to retrieve 
standard anatomical views from 3D stress images that were equivalent to the manually 
selected views in the rest images. Using sparse image planes, the influence of common 
image artifacts could be reduced. We investigated different similarity measures and 
different levels of sparsity. The registration was tested using data of 20 patients and 
quantitatively evaluated baSed on manually defined anatomical landmarks. Align­
ment was best using sparse registration with tvvo long-axis and tvvo short-axis views; 
registration errors were reduced significantly, approaching the interobserver variabil­
ities. In 91% of the cases, the registration result was qualitatively assessed as better 
than or equal to the manual alignment. In conclusion, sparse registration improves the 
alignment of rest and stress images, with a performance similar to manual alignment. 
This is an important step toward objective quantification in 3D stress echocardiogra­
phy. 
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4.1 Introduction 

4.1.1 Three-dimensional stress echocardiography 

Cardiovascular diseases are a major cause of death in the western world. A 
commonly used method for detecting myocardial dysfunction and underlying 
coronary artery disease is stress echocardiography [Armstrong and Zoghbi, 2005; 
Marwick, 2003; Matsumura et al., 2005; Yang et al., 2006; Zwas et al., 1999]. This 
technique is used to evaluate wall motion of the left ventricle (LV), usually by 
visual examination of ultrasound images that are obtained in rest and in differ­
ent stages of exercise or pharmacological stress. Recent advances in real-time 3D 
echocardiography [Caiani et al., 2005; Jenkins et al., 2006] show great potential 
in overcoming major limitations of traditional 2D stress echocardiography, such 
as variabilities in the visualized LV cross-sections and high subjectivity of visual 
wall-motion scoring. Our long-term goal is to develop more objective and quanti­
tative analysis methods for 3D stress echocardiography, by automating the image 
analysis. 

We have decided to tackle the automation in tluee steps: 1) alignment of im­
ages acquired in rest and in stress stages, 2) segmentation of the myocardial wall 
and quantification of wall motion, and 3) automatic classification of wall-motion 
abnormalities. This chapter describes the first step. The alignment of the rest and 
stress images is necessary because the rest and stress images are acquired several 
minutes apart. Therefore, variations may exist in the visualized cross-sections 
of the LV [Ahmad et al., 2001]. Possible sources of misalignment between rest 
and stress are placement and tilting of the ultrasound probe, as well as patient 
breathing [Shekhar et al., 2004], both of which may lead to inaccuracies when 
comparing wall motion in the rest and stress stages. We start with image align­
ment for two reasons. First, registration will greatly assist the segmentation of the 
myocardial wall by providing a high-quality initialization for the segmentation in 
the rest image [Pickard et al., 2005; Walirnbe et al., 2006; Zagrodsky et al., 2005] 
or the stress image. Second, misalignment will impair the diagnostic quality of 
the wall-motion differences found in rest and stress, whether by visual scoring or 
by automatic segmentation. Registration will improve the anatomical correspon­
dence of the LV segments, resulting in a better-quality wall-motion comparison 
between rest and stress. 

4!.1.2 Registration research and related work 

Intensity-based image registration is widely used for aligning two or more im­
ages [Hill et al., 2001; Maintz and Viergever, 1998; Makela et al., 2002; Pluim et 
al., 2003]. Although most registration work is performed on computed tomogra­
phy (CT) and magnetic resonance (MR) images, ultrasound image registration has 
gained considerable interest in recent years [Pluim and Fitzpatrick, 2003]. Among 
the early examples of 3D ultrasound intensity-based registration are spatial com-
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pounding of gall bladder images [Rohling et al., 1998] and registration of breast 
images [Kroeker et al., 2000; Meyer et al., 1999]. More recent examples include 
registration of liver images using attribute vectors [Foroughi and Abolmaesumi, 
2006] and tracking brain deformations in intraoperative time series [Pennec et al., 
2003]. Registration of ultrasound images with images from other modalities has 
also been investigated. For example, ultrasound to CT registration was explored 
by Penney et al. [2006] for alignment of images of the femur and pelvis. Ultra­
sound to MR registration is mairly used in the context of aligning intraoperative 
ultrasound images to preoperative MR images of e.g., the liver [Penney et al., 
2004] and the brain [Letteboer et al., 2005; Roche et al., 2001]. 

Several papers have been published recently on 2D and 3D ultrasound car­
diac registration. Using a phase-based similarity measure, Grau et al. registered 
3D images acquired from the parastemal and the apical echocardiographic win­
dows [Grau and Noble, 2005; Grau et al., 2006]. A similar approach was used by 
Zhang et al. [2006] to register 3D cardiac ultrasound images to 2D MR images. 
Nonrigid registration with spatial and temporal constraints has been proposed to 
determine cardiac motion in 2D ultrasound sequences [Ledesma-Carbayo et al., 
2006, 2005]. In the cardiac domain, registration of ultrasound and single photon 
emission computed tomography (SPECT) images was described by Walimbe et al. 
[2003]. 

Registration of rest and stress images has also been investigated. To study 
differences in myocardial perfusion between rest and stress, Declerck et al. [1997] 
registered SPECT images by aligning myocardial feature points with an adapted 
iterative closest point algorithm. Delzescaux et al. [2003] used a surface-based 
registration algorithm involving geometrical models of the left and right ventricles 
to align rest and stress MR images. An intensity-based approach using rest and 
stress templates was proposed by Slomka et al. [1995] for SPECT images. This 
method was later augmented with an intensity normalization factor, to account 
for differences in doses and isotopes used between rest and stress [Slomka et 
al., 2004]. More recently, Juslin et al. [2007] studied registration with the mutual 
information metric to PET images. Independent component analysis was applied 
to the images before registration to extract the voxels representing cardiac tissues. 

Closely related to this chapter is the work of Shekhar et al. on registration of 
cardiac ultrasound 3D images, either in the same time sequence [Shekhar and 
Zagrodsky, 2002] or in rest and in stress [Shekhar et al., 2004]. Rigid and affine 
registration using the mutual information similarity measure was investigated. 
The approach was also used as a first step in cardiac segmentation by Zagrodsky 
et al. [2005] and Walimbe et al. [2006]. However, this full-3D registration method 
was evaluated only qualitatively. 
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Sparse registration 4.1.3 

In this chapter, a new method was developed to align rest and stress images. 
The key feature of this method is sparsity: only anatomical four-chamber, two­
chamber, and short-axis planes of the rest image are used for the registration. A 
big advantage of using only sparse image information is that it allows us to define 
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the structures contributing most to correct alignment explicitly. In practice, these 
anatomical views are usually the starting point for further visual assessment of 
cardiac motion. Selecting and aligning these rest and stress views consistently 
are therefore essential steps in wall-motion comparison. An additional advantage 
of using only sparse views for registration is that the influence of common ul­
trasound anomalies, such as near-field artifacts and echo reverberations, can be 
limited. These artifacts can dominate large regions of the image, which distort 
the calculation of the registration metric. Furthermore, less computation effort is 
needed than in full-3D registration. 

The focus on sparsity and the quantitative evaluation using a manual gold 
standard distinguishes this study from the work of Shekhar et a!. [2004], who 
investigated full-3D mutual-information registration. Our method bears more 
resemblance to the slice-to-volume registration as reported by Fei et a!. [2003], 
rather than to the 3D to 2D registration methods where 2D projections of the 3D 
image are registered in 2D [Penney et al., 1998]. 

To reduce the variability in visualized cross-sections in 3D stress echocardio­
graphy, an intensity-based, sparse registration method was used to retrieve four­
chamber, two-chamber, and short-axis views from 3D stress images that were 
equivalent to the manually selected views in the rest images. The focus is on 
spatial alignment of 3D rest and stress images, rather than temporal alignment 
within a single time-sequence. Four similarity measures, the level of sparsity, and 
optimal resolution levels were investigated. The registration was evaluated quan­
titatively using 20 end-diastolic and end-systolic patient data sets, with manually 
annotated points as the gold standard. The registration results were compared 
with interobserver and intraobserver variabilities in manual alignment. A visual, 
qualitative assessment of the registration performance was also performed. 

4.2 Methods 

The alignment of rest and stress images was accomplished as follows. First, the 
anatomical coordinate system, which consists of the major axis (i.e., long axis) of 
the left ventricle (LV) and the direction of the four-chamber view, was manually 
defined in the 3D rest image. Next, the four-chamber (4C), two-chamber (2C), and 
short-axis (SAX) views were constructed on the basis of this coordinate system. 
These are standard anatomical views used in echocardiography [Cerqueira eta!., 
2002]. Finally, these anatomical views were automatically registered to the 3D 
stress image, thus providing the anatomical coordinates in the stress stage. The 
registration was denoted as sparse, because only the voxels on these anatomical 
views contributed to the metric calculation. We tested different levels of sparsity 
by varying the number of SAX planes. The sparse registration was compared 
with full-3D registration that used all voxels in the 3D image. 
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Manual selection 4.2.1 

For this chapter, we propose a new method for extracting the anatomical coor­
dinate system from a 3D image of the left ventricle. The method is reminiscent 
of cardiac MR image-planning protocols [Lelieveldt et al., 2001] and in agree­
ment with current standards [Cerqueira et al., 2002]. Recent studies have stressed 
the importance of selecting nonforeshortened apical views [Mor-Avi et al., 2004; 
Veronesi et al., 2006], as this is the basis for correct comparison of wall motion. 
In practice, the clinical expert navigates rather randomly through both rest and 
stress images at end-diastole, until the anatomical views are sufficiently aligned. 
Here we present a methodology for consistently annotating key landmarks and 
deriving consistent views in both rest and stress. 

The long axis was determined iteratively. Three points were annotated in an 
initial vertical, approximately apical long-axis, 2D plane of the 3D image: the 
epicardial apex, which was defined as the highest point in the LV cavity, and two 
points where the mitral valve leaflets were attached to the mitral valve ring. The 
new estimate of the long axis was the line through the apex and the center of 
the two mitral valve points. Next, the plane perpendicular to the initial vertical 
plane and coinciding with the long axis was reconstructed. The annotation and 
the plane reconstruction were repeated, until the long axis was correct in both 
perpendicular planes. By annotating the points iteratively, the indicated points 
converged in the true positions. In practice, this takes only three to four iterations 
and is quite fast to perform. 

The 4C direction was determined by examining several candidate long-axis 
planes 4 o apart, 50° counter-clockwise from the aorta outflow tract, which was in­
dicated manually on the short-axis plane at the height of the mitral valve center. 
This 50° angle was an initial guess, the observer could correct the angle manu­
ally afterwards by indicating the desired direction in the short-axis plane. The 
4C plane was defined as transecting the long axis and the center of the tricuspid 
valve. As an additional anatomical landmark for evaluating registration, the in­
ferior attachment of the right ventricular wall, RV-attachment for short, was also 
annotated. This was indicated in the short-axis plane between the mid and basal 
section of the LV, at two-thirds of the apex-to-mitral-valve distance. 

The 2C view was defined as orthogonal to the 4C plane and also passing 
through the long axis. Short-axis planes orthogonal to 4C and 2C were defined at 
different points along the long axis. An example of manual annotation is given in 
Fig. 4.1, showing the large difference in spatial location between the sparse planes 
and the original, unselected views. 

Rest to stress registration 4.2.2 

The anatomical views of the rest image were registered to the 3D stress image 
using a similarity transform. We investigated sparse image registration using dif­
ferent configurations of planes. The three-plane configuration consisted of the 
4C, 2C, and one basal short-axis plane at two-thirds of the apex-to-mitral-valve 
distance. The four-plane configuration consisted of three-plane plus an addi-
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4C"'" 2C 

Fig. 4.1: Orthogonal four-chamber (4C), two-chamber (2C), and short-axis (SAX) views 
of an ED image. The right column shows the orientation of the orthogonal planes in 

3D space. 

tional short-axis plane at the mitral valve height. The five-plane configuration is 
four-plane plus the apical short-axis plane at one-third of the apex-to-mitral-valve 
distance. These configurations are shown in Fig. 4.2. 

3-pl.me 4-plane 

Fig. 4.2: Registration using different levels of sparsity: configurations vvith four­
chamber, two-chamber,. and varying number of short-axis planes. 

Although nonrigid registration is often applied to achieve very precise im­
age alignment, a relatively simple similarity transform was used here. The most 
important reason for this choice was that we intended to compensate global mis­
alignment of the anatomical coordinates in the rest and stress images, and not 
local, stress induced, misalignment of all LV wall segments. In a later stage, non­
rigid registration might be applied to examine local wall-motion abnormalities 
more precisely [Ledesma-Carbayo et al., 2005]. Furthermore, nonrigid registra­
tion usually needs a good initialization, which can be provided by rigid regis­
tration [Rueckert et al., 1999]. In addition, nonrigid registration is generally very 
slow and computationally intensive. To limit any nonrigid motion which may be 
caused by breathing [McLeish et al., 2002]. the images were acquired during one 
breathhold, after full exhalation. 
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The main components of registration are the optimizer, the transform, the in­
terpolator, and the similarity metric. A schematic representation is given in Fig. 
4.3 Here, the transform consisted of (x, y,z) rotation, (x, y,z) translation, and uni­
form scaling. Rotation and translation were needed to compensate for 1) patient 
breathing, which causes displacement of the heart within the thorax; 2) differ­
ences in placement of the probe on the patient's body, and 3) differences in the 
probe's tilt angle which were often needed to capture the whole LV in the im­
age optimally. Uniform scaling was intended to account for the possible volume 
differences between rest and stress [Shekhar et al., 2004]. 

Rest (reference) 

Metric 
i (SAD, SSD, :-.ICC, Nlv!I) 'I 

/0:f 
Optimizer 

~ i (Kcldcr-:vfead Simplex) 

Transform 
(3 rotations, 3 transl;:~tions 

.,.. uniform scJ.ilng) 

fig. 4.3: Schematic of registration framework The sparse rest image is registered to 
the stress image in 3D. 

The parameters of the transform were optimized using the Nelder-Mead 
downhill Simplex algorithm [Lagarias et al., 1998]. This optimizer has been used 
in other registration problems as well [Fei et al., 2003; Kriicker et al., 2000; Shekhar 
and Zagrodsky, 2002; Shekhar et al., 2004; Slomka et al, 1995]. The method in­
volves constructing an enclosing shape, or simplex, in the N-clirnensional param­
eter space from N + 1 vertices. In a 2D parameter space, this would be a triangle, 
in 3D a tetrahedron, etc. In our 7-D parameter space these eight vertices represent 
combinations of the rotation, translation and scaling parameters. During opti­
mization, the metric is calculated at all vertices of the simplex and the vertices are 
reflected, expanded, or contracted accordingly, until the simplex is small enough 
and has therefore converged to a solution [Press et al., 1992]. This optimization 
method distinguishes itself from gradient-based techniques that are more sensi­
tive to local minima in the parameter space. Local minima may often occur in 
the case of ultrasound images, due to the highly anisotropic image formation and 
speckle noise [Zagrodsky et al., 2001]. The simplex method does not require com­
putation of partial derivatives and may therefore be more robust in a complicated 
parameter space. Other advantages are that it is easy to implement and provides 
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a good compromise between robustness and convergence time [Zagrodsky et al., 
2001]. 

Normalized parameters were used during optimization in simplex space. One 
unit simplex parameter corresponded to 1.1mm translation, 0.4° (x,y) rotation, 
0.5° z rotation, and 0.7% scaling. The parameters' normalization factors were 
determined on the basis of the physical displacement of the image voxel furthest 
away from the origin of the transform. As an example, an x rotation of 0.4 ° 
performed on the voxel furthest away from the rotation origin, i.e., in the lowest 
corner of the image, will lead to a physical displacement of 1.1mm (calculated 
on a typical data set of 160 x 144 x 208 voxels of 1.mm x 1.1mm x 0.7mm). To 
correct for the tilt angle of the ultrasound probe easily, the center of the transducer 
was chosen as the origin of rotation. To preserve the position of the LV as much 
as possible, the origin of scaling coincided with the center of the image. The 
initial size of the simplex was 3 units along each parameter axis. Registration was 
considered to be converged when the simplex hypervolume was smaller than 0.01 
and when the differences in metric value at the simplex vertices were less than 
10-4 . Trilinear interpolation was used because of computational efficiency. 

In our sparse registration setup, we tested several similarity metrics which 
are commonly used in registration [Giachetti, 2000; Hill et al., 2001; Makela et 
al., 2002]: sum-of-absolute-differences (SAD), sum-of-squared-differences (SSD), 
normalized cross correlation (NCC), and normalized mutual information (NMI). 
NMI was calculated with the histogram method [Maes et al., 1997]. A btn size 
of 2 was used for the 8-bit data; this was found empirically. Voxels outside the 
transducer's scan sector did not contribute to the metric calculation. Registration 
was carried out on four separate resolution levels of a Gaussian image pyramid 
[Burt and Adelson, 1983]; from full resolution at level 0 to 8 times downsampled 
at level 3. A multiresolution scheme was also tested. 

The sparse image grid was initialized in the stress image, at the same spatial 
coordinates as the rest image. At each registration iteration, the spatial transform 
was applied to the coordinates of the sparse rest-image grid. The stress image 
was then resampled at those coordinates using trilinear interpolation. The metric 
was calculated using only the voxels on the sparse grid. In this manner, anoma­
lies such as near-field artifacts and echo reverberations, which may dominate the 
metric calculation, could be avoided as much as possible. 

4.2.3 Data description and algorithm evaluation 

Full-cycle 3D data sets were acquired at the Thoraxcenter (Erasmus MC, Rotter­
dam, The Netherlands) on 20 patients in sinus rhythm with chest patn referred 
for stress testing. A Dobutarnine-Atropine stress protocol was used [Nemes et 
al., 2007b]. All data sets were obtained in the apical position; each image se­
quence was obtained during one breathhold. Patients were imaged at rest and 
at peak-dose. The data sets for three patients were acquired with the Fast Rotat­
ing Ultrasound transducer [Voormolen et al., 2006] developed at the department 
of Biomedical Engineering (Thoraxcenter, Erasmus MC, Rotterdam, The Nether­
lands). The spatial dimension of the images were 128 x 128 x 388, at 1.4 x 1.4 
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x 0.3mm (length x width x depth). The remaining 17 patients were examined 
using the commercially available Philips Sonos 7500 machlne equipped with the 
X4 matrix-array transducer (both from Philips Medical Systems, Andover, MA). 
These images contained 160 x 144 x 208 voxels of 1.1 x 1.1 x 0.7mm. Reg­
istration was tested on 3D rest-and-stress image pairs at end-diastole (ED) and 
end-systole (ES) separately, because the left ventricle may move differently un­
der stress conditions. We chose to evaluate the registration on ED and ES time 
points because these could be clearly identified for each sequence. ED and ES 
time points were defined, respectively, by the ECG R-peak and by the mitral valve 
opening. 

To get an overall idea of image quality, the visibility of the 17 LV wall segments 
[Cerqueira et al., 2002] was judged visually by an expert observer, blinded from 
the registration results. Each segment was given a score: 4 = optimal, 3 = good, 
2 = moderate, 1 = poor, 0 = invisible [Nemes et al., 2007b ]. This was done for all 
rest and stress image sequences. The average of the 17 scores was then calculated 
for each patient. 

Interobserver and intraobserver variabilities were also analyzed. Two indepen­
dent observers indicated the long axis and 4C direction, as well as the aorta, and 
the RV-attachment in end-diastole and end-systole. The first observer annotated 
each data set twice, at an interval of at least one day. The second observer indi­
cated 11 rest and 11 stress data sets twice, and the remaining data sets once. The 
intraobserver variability in the apex, mitral valve center, aorta and RV positions 
was defined as the average of Euclidean distances between annotated points. The 
intraobserver variability in the 4C angle was defined as the average of absolute 
differences in angle. Mean and standard deviations were calculated over all indi­
cated data sets. The interobserver variability was defined similarly, as the average 
of differences in the mean annotation of each observer. 

Since we were interested in aligning only the anatomical views, a natural 
choice of landmarks for quantitative evaluation of the registration were the land­
marks on the sparse planes. The following landmarks were chosen because they 
were adequately salient structures in the images: the apex and mitral valve points, 
the direction of the four-chamber, the aorta outflow tract, and the posterior at­
tachment of the right ventricular wall. Although only these landmarks were 
evaluated, the rest-to-stress point correspondence of the whole myocardial bor­
der should also benefit from a good initial alignment. Further comparison of 3D 
wall-motion might be hampered if the global anatomical coordinate system was 
not well defined. 

The average over all annotations (three to four per data set) was used as the 
anatomical coordinate system for the registration, thus providing a gold standard. 
The registration errors for each image-pair were defined as the point-to-point Eu­
clidean distances between the gold standard and the registered landmarks. The 
initial error was defined as the point-to-point distances between the gold standard 
and the initial position of the landmarks (the same spatial coordinates as the man­
ual annotation in the rest image). The errors were calculated for each anatomical 
landmark and for each rest-stress image pair separately. The registration error 
was then compared with the initial error using the paired t-test [Altman, 1997]. 
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The registration errors were also compared with the interobserver and intraob­
server variabilities in manual annotation. 

In addition to the quantitative evaluation, a qualitative assessment was per­
formed by an independent observer, blinded from the registration results. The 
observer was presented four-chamber, two-chamber, and short-axis views of 1) 
the manually annotated rest image, 2) the manually annotated stress image, 3) 
the stress image before alignment (initialized by the landmarks indicated in the 
rest image), and 4) the stress image after registration, similar to Fig. 4.4. The 
observer did not know whether set 3) or set 4) corresponded with images before 
or after registration. First of all, to determine whether the registration resulted 
in better rest-to-stress alignment, the observer judged if set 3) or 4) was better 
aligned with set 1), or if there was no visible difference, or if visual assessment 
was impossible due to poor image quality. A set was considered better aligned 
if the position of the long-axis and the direction of the four-chamber view in the 
stress image showed a better correspondence with the rest image. Second, the ob­
server judged whether the set that was selected in the first part of the experiment, 
was worse, equally, or better aligned with the rest image than the manually indi­
cated stress image, again on the basis of the long-axis position and four-chamber 
view. 

4.3 Results 

4.3.1 Annotation of landmarks 

Two independent observers indicated the apex, the mitral valve, the RV-attach­
ment on the short-axis view of the three-plane configuration, the aorta center in 
the short-axis view at mitral-valve height, and the four-chamber direction. Typ­
ically, four three-point annotations were needed to indicate the long-axis cor­
rectly in both perpendicular long-axis views. The annotation was carried out in 
MATLAB® (version 6.5.0, release 13, The Math Works, Inc.), which took a few min­
utes per data set. Later, we developed dedicated visualization software in C++. 
Using this program, the annotation time was reduced to less than half a minute 
for each 3D image. The interobserver and intraobserver variabilities are shown 
in Table 4.1. Of the five landmarks, the mitral valve was the easiest to annotate, 
because it was usually a clear salient structure in the image. 

4.3.2 Image quality assessment 

Using the image-quality scoring system described in the methods section, we 
found that the overall image quality was moderate, with a mean score of 2.0 ± 
1.0 on a scale of 0 (invisible) to 4 (optimal), averaged over the 20 rest and 20 stress 
time-sequences. The maximum score was 4, the minimum score was 0.46, and 
the median was 1.85. Not only the image quality itself, but also the difference 
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Table 4.1: Effect of using different registration sparsity. Registration errors in five 
anatomical landmarks using NCC metric and full-resolution data. Interobserver and 
intraobserver variabilities are also given. ~·means statistically significantly lower error 

than before registration (p < 0.05, paired t-test). 

Apex Mitral 4C RV Aorta 
valve 

Sparsity nun nun 0 nun nun 
Median 
Before registr. 9.3 8.3 8.9 9.7 10.2 
Interobserver 6.3 3.5 6.6 4.7 6.1 
Intraobserver 4.5 2.9 5.8 5.0 5.1 
3-plane 6.1 4.5 7.3 5.8 6.5 
4-plane 7.0 3.6 7.1 5.2 6.7 
5-plane 6.2 4.4 6.2 4.8 7.0 
full-3D 9.7 5.6 6.5 6.5 8.4 
[25% 75% percentiles] 
Before registr. [5.3 13.2] [6.111.3] [5.0 14.7] [7.6 14.4] [7.0 13.9] 
Interobserver [4.7 9.4] [3.1 4.6] [4.8 10.7] [3.8 6.4] [4.3 9.1] 
Intraobserver [3.3 6.1] [2.3 3.6] [3.4 8.1] [3.3 6.4] [3.9 8.0] 
3-plane [3.9 9.7] [2.4 7.5] [5.0 10.4] [3.2 7.8] [3.9 10.8] 
4-plane [4.0 9.4] [2.3 6.0] [4.8 10.7] [3.8 8.0] [4.5 9.1] 
5-plane [4.3 10.0] [2.3 7.1] [3.7 10.3] [3.0 9.3] [4.1 10.6] 
full-3D [4.317.1] [2.7 9.3] [3.110.7] [3.6 10.8] [4.715.5] 
Mean ± standard deviation 
Before registr. 9.4±5.1 9.0±4.0 9.9±5.6 10.9±5.5 11.0±5.9 
lnterobserver 7.1±2.9 3.8±1.3 7.4±4.0 5.0±1.8 6.8±4.2 
Intraobserver 5.2±2.0 3.3±1.5 7.0±3.5 5.5±2.1 6.9±3.2 
3-plane 7.7±4.9* 5.7±4.9* 8.4±4.8 6.6±5.1' 7.8±5.7* 
4-plane 7.6±4.8* 4.5±2.9* 7.8±4.3* 6.3±4.6'' 7.6±5.4* 
5-plane 7.6±5.4* 5.4±4.4* 7.2±4.6'' 6.5±5.2* 7.8±5.7* 
full-3D 11.8±9.2 8.9±14 8.3±6.7 9.4±9.5 12±14 

in image quality between rest and stress could compromise the registration. The 
absolute difference between rest and stress, averaged over the 20 patients, was 
0.82 ± 0.70, the maximum score was 2.1, the minimum was 0, and the median 
was 0.76. This shows the large difference in image quality between rest and 
stress. The image quality in the rest images was generally better than in the stress 
images (16 out of 20 patients). 
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Qualitative assessment of registration 4.3.3 

Fig. 4.4 shows an example of registration using a Philips data set. The set of 
orthogonal four-chamber, two-chamber, and short-axis views of the rest image is 
shown, along with the nonregistered, registered, and manually selected views of 
the stress image. The registered views correspond well with the manual selection. 
An example of the results using a FRU data set is presented in Fig. 4.5. There did 
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not seem to be any noticeable dilierences in registration ac=acy between the 
FRU and the Philips data sets; however, since only 3 FRU data sets are available, 
no clear conclusion can be drawn. 

Fig. 4.4: Orthogonal four-chamber, two-chamber, and short-axis views. Before reg­
istration, the anatomical landmarks are misaligned in the stress images. The results 
of registration are in good agreement with manual annotation. The circles indicate 

improvement in alignment. 

The registration using the four-plane configuration, the NCC metric, and full 
resolution images resulted in the lowest mean registration errors. Therefore, these 
registrations were assessed qualitatively by the independent observer, in all20 ED 
and 20 ES image pairs. The results are shown in Table 4.2. In the majority of the 
cases (29 I 40) the observer selected the registered stress image as the image best 
aligned with the rest image, while in 9 out of 40 cases the registered image was 
either equal to the nonregistered image or could not be judged because of poor 
image quality. Remarkably, in 30 out of the 33 cases (91%) where the registered 
image was better than or equal to the nonregistered image, the registration was 
better than or equal to the manual annotation. 
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four~chamber hvo-chamber short-axis 

Fig. 4.5: Checkerboard images of rest and stress. Alignment improvement is clearly 
visible after registration, especially in the four-chamber view and in the short-axis 

view. The circles indicate improvement in alignment. 

Table 4.2: Qualitative assessment of sparse registration (sparse 4-plane configuration, 
NCC metric, full-resolution data), 20 ED and 20 ES images. 

Better than Same as Worse than Total 
manual manual manual 

annotation annotation annotation 
in stress in stress in stress 

Registered 7 19 3 29 
better than 

nonregistered 
Registered 0 4 0 4 

equal to 
nonregistered 

Registered 0 2 0 2 
worse than 

nonregistered 
Poor image 0 5 0 5 

quality 
Total 7 30 3 40 

75 



76 REST-TO-STRESS REGISTRATION 

4.3.4 Quantitative assessment of registration 

Sparsity 

Fig. 4.6 and Table 4.1 show the results of registration using the normalized cross­
correlation metric and full-resolution data for different levels of sparsity. The 
registration errors over 20 ED and 20 ES image-pairs are presented for each of 
the five landmarks. Minimal differences in errors were found between ED and 
ES image-pairs. Lower median errors were found in most cases, for both sparse 
and full-3D registration. The 25%-75% percentile range of registration errors is 
quite close to the interobserver range (Fig. 4.6). 1n particular, the mean errors 
of the sparse registration with the four-plane configuration were the lowest, and 
comparable with the interobserver variability (Table 4.1). A closer inspection re­
vealed that the mean errors of full-3D were distorted because of outliers of some 
image pairs (Fig. 4.6). For each landmark, the registration of a rest-stress image 
pair was considered failed if the registration error was higher than the maximum 
initial error encountered in all 20 ED and 20 ES image pairs. These maximum 
initial errors were 18.6mm for the apex, 20.4mm for the mitral valve, 22.8° for the 
four-chamber direction, 24.6mm for the RV-attachment, and 30.4mm for the aorta. 

Although the differences between the different levels of sparsity were small, 
registration using the four-plane configuration appeared to be most robust (Fig. 
4.6). Therefore, we will show registration results using this four-plane configura­
tion in the following. 

Registration metric 

Table 4.3 shows the results of registration with the four-plane configuration, for 
the SAD, SSD, NCC, and NMI metrics. Registration using the NCC metric im­
proved the alignment in all five landmarks statistically significantly. 

Image resolution 

Table 4.4 shows the registration results for different image resolutions. Registra­
tion on full resolution data performed better than registration on downsampled 
data. We also tested a multiresolution scheme, starting at resolution level 1, and 
finishing at level 0. 1n 4 out of 40 cases, the registration in level 1 resulted in an 
outlier for at least one landmark. 1n those cases, further registration on level 0 
resulted in minimal improvement. Therefore, these cases were not taken into ac­
count in the reported multilevel results. 1n this subset of registration image pairs, 
minimal differences in results were found between the multilevel approach and 
the single level 0 approach. 
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Table 4.3: Effect of using different registration metrics. Registration errors (mean ± 
standard deviation) in five anatomical landmarks usffig 4-plane configuration and full 
resolution data. Interobserver and intraobserver variabilities are also given. ~· denotes 
statistically signilicantly lower error than before registration (p < 0.05, paired t-test). 

Apex Mitral 4C RV Aorta 
valve 

Metric mm mm 0 mm mm 

Error before 9.4±5.1 9.0±4.0 9.9±5.6 10.9±5.5 11.0±5.9 
registration 
Interobserver 7.1±2.9 3.8±1.3 7.4±4.0 5.0±1.8 6.8±4.2 
variability 
Intraobserver 5.2±2.0 3.3±1.5 7.0±3.5 5.5±2.1 6.9x3.2 
variability 
SAD 9.1±5.7 5.3=3.0*• 7.8±5.3'" 7.3±5.0* 8.2±5.7*• 
SSD 9.8±5.9 5.7±6.2* 8.4±5.1 7.9±6.7* 8.7±8.3 
NCC 7.6±4.8'" 4.5±2.9* 7.8±4.3* 6.3±4.6'" 7.6x5.4* 
NMI 9.0x5.6 6.1±3.7'" 7.6±5.1'" 7.4±4.9'" 8.6±6.3* 

Table 4.4: Effect of using image data at different resolutions, from full resolution (O) 
to eight times (3) downsampled data, as well as multiresolution (1-0). Registration 
errors in five anatomical landmarks using the NCC metric and 4-plane configuration. 
* means statistically significantly lower error than before registration (p < 0.05/ paired 

t-test). Statistical testing was not performed after outlier removal. 

Apex Mitral 4C RV Aorta 
valve 

Resolution mm mm 0 mm mm 

0 7.6±4.8* 4.5±2.9* 7.8_:_4.3*• 6.3±4.6'" 7.6±5.4'" 
1 8.8±5.6 4.8±4.2* 8.9±6.5 6.9±5.2* 8.8±7.9 
2 9.5±6.1 5.5±3.9'" 8.6±7.1 6.9±5.0* 9.1±8.0 
3 11.7±6.1 6.7±4.7* 9.5±6.8 8.2±5.8'" 9.5±6.7 
After outlier removal 
1-0 7.7±4.1 4.3±3.0 7.5±4.3 5.6±3.3 6.8±4.5 
0 7.1±3.9 4.2±2.4 7.4±3.8 5.6±3.2 6.8±3.7 
1 8.1±4.1 4.4±2.8 7.8±4.1 5.7±3.4 7.2±4.2 
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Fig. 4.6: Registration errors in five landmarks, using different levels of sparsity. The 
boxes :indicate the 25%, 50% and 75% percentiles; the whiskers represent 10% and 
90% percentiles. Outliers are shown as plus signs. Registration using the four-plane 

configuration appears most robust. 

Registration time 

The registration time was calculated for the NCC metric, for different resolution 
levels and for the different levels of sparsity. This is reported in Table 4.5. The 
times were calculated using a MATLAB linplementation and a 2.8-GHz Intel Pen­
tium 4 processor. The linplementation was not optimized for speed. The sparse 
registration using four-plane configuration at resolution Ievell is on average thir­
teen times faster than full-3D registration. Due to memory limitations, the full-3D 
registration at resolution level 0 had to be linplemented differently, and those 
times are not reported here. The multilevel method using the four-plane configu­
ration took on average 12±6 min per registration. 
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Table 4.5: Mean ± standard deviation of registration times (min)~ NCC metric. 

Resolution level 
Sparsity 0 1 2 3 
3-plane 13±8 2.5:t2.8 0.45±0.17 0.15±0.07 
4-plane 21±14 3.0±1.9 0.54±0.22 0.17=0.05 
5-plane 23±16 3.5±2.4 0.61±0.31 0.18±0.05 
full-3D 41±23 4.3±1.7 0.43±0.17 

Discussion 4.4 

This study shows that the variability in visualized cross-sections in 3D stress echo­
cardiography can be reduced by using sparse image registration. Registration 
leads to visually better-aligned rest and stress images, in some cases better than 
the manual alignment. The quantitative registration errors were comparable with 
the interobserver variabilities in the manual selection of the anatomical coordi­
nates. Given the moderate image quality and the large differences in appearance 
between rest and stress images, thls is a promising result. 
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Annotation of landmarks and image quality 4.4.]. 

The annotation of landmarks was a fairly easy task which required little user 
interaction. Typically, three to four iterations (9-12 mouse clicks) were required 
to locate the long-axis, with an additional one or two clicks to identify the four­
chamber direction. The overall image quality was comparable to that found in 
a larger study with 36 consecutive patients referred for stress echocardiography 
(image quality score: 2.0 in thls study, versus 2.2 in [Nemes et al., 2007b ], scored by 
the same observer in both studies). Although the annotation protocol was fixed 
and should lead to consistent results, in some cases, the precise location of the 
landmarks were unclear due to poor image quality. This is reflected in the rather 
large interobserver and intraobserver variabilities (Table 4.1). Moderate image 
quality remains a great challenge in the clinical practice of echocardiography, 
especially in 3D [Chan eta!., 2004]. In the near future, significant improvements 
can be expected in ultrasound imaging technology, and these improvements will 
also positively alfect image analysis. Although the definition of the gold standard 
was hampered by the limited image quality, we can still draw some conclusions 
on the effectiveness of sparse registration based on average values over all data 
sets. 

Qualitative assessment 4.4.2 

Qualitative assessment of the registration paints a positive picture: in the majority 
of the cases, sparse registration was able to achieve equally good rest-to-stress 
alignment. More importantly, in several cases, the alignment was considered 
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even better than the manually aligned data sets. Since the rest and stress images 
were not manually annotated next to each other, differences could occur between 
the landmark annotation and the actual landmark position. This is especially the 
case for landmarks which were difficult to define because of poor image quality. 
This may explain why the registered stress image was considered better in terms 
of landmark placement in 7 I 40 cases. 

4.4.3 Sparse registration 

The poor image quality affected the definition of the gold standard, which in turn 
may have influenced the determination of registration success. We showed that 
the registration error was comparable to the interobserver variabilities of several 
key landmarks. Due to the definition of the gold standard, results may not seem 
outstanding compared to subvoxel precision reported in some papers. However, 
the qualitative assessment suggests that the registration method is actually quite 
good, and that rest-to-stress alignment can be achieved in most cases. The sparse 
registration method is qualitatively assessed as comparable to manual alignment, 
and will, therefore, be beneficial in the analysis of rest and stress. 

Since we were interested in alignment of the anatomical views, we chose 
salient landmarks on these sparse planes for evaluating both sparse and full-3D 
registration. For an accurate comparison between rest and stress, it is important 
to first achieve global image alignment before more detailed registration. From 
this study, we can conclude that for initialization purposes, sparse registration is 
a better and a more robust choice than full 3D registration of echocardiographic 
images. Naturally, since sparse registration does not take into account areas of the 
left ventricle outside the sparse planes, no conclusions can be drawn with respect 
to alignment in those areas. However, the nonrigid, full-3D registration of the 
whole left ventricle requires a good, robust initialization, which can be achieved 
using sparse registration. Ultrasound images tend to contain many anomalies, 
such as near-field artifacts, echo dropouts, and acoustic shadowing and noise, all 
of which can easily mislead full-3D registration. In fact, one of the advantages of 
using a sparse approach is to avoid such artifacts, as mentioned in the introduc­
tion. Ultrasound artifact suppression is neither trivial nor easy to do. A robust, 
automated method for detecting such artifacts warrants further study. 

Our results demonstrated that when sparsity changes from the three-plane to 
the four-plane configuration, better alignment is achieved in all manually anno­
tated landmarks. Similar results have been shown in sparsity experiments for 
other applications. Using a sparse active shape model for segmenting cardiac MR 
images, van Assen et a!. [2006] showed that a higher number of short-axis planes 
reduced segmentation errors. However, no significant improvement was found 
using six planes or more. In a slightly different application, Pang showed that ac­
curate volumetric measurements of phantoms with complex geometries could be 
achieved using a limited number of ultrasound image planes [Pang et al., 2006]. 
These findings are in good agreement with the results reported by Voormolen 
et al. [2007] in an in vivo cardiac setting. These reports show that only eight 
planes in 3D images are sufficient for adequate volume analysis. In our case, 
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using the five-plane instead of four-plane configuration had a negative effect on 
the alignment in the mitral valve region. This may be a consequence of adding 
an extra short-axis plane in the apical region, thus reducing the relative contribu­
tion of the mitral plane to the metric calculation. However, a slight improvement 
can be seen in the alignment of the four-chamber direction, probably because a 
small part of the right ventricular wall can be seen in the extra short-axis plane 
at the apical level. The fact that the results are very close to the interobserver 
variabilities suggests that a better gold standard is needed to determine whether 
other configurations of planes lead to better results. This is a subject of further 
investigation. 

Better alignment was achieved in the mitral valve region than in the apical 
region. Several factors may have contributed to this. First of all, the apex is 
quite often obscured by near-field artifacts or is partly outside the scan sector, 
while on the other hand, the mitral valve region usually contains more structural 
information such as the aortic and tricuspid valve, which helps alignment in the 
four-chamber direction. Second, due to our choice of image planes, the number of 
voxels contributing to the metric calculation was higher at the mitral valve region. 
In an earlier registration experiment, we tried to register only the apex, using just 
the top third of the long-axis planes and one short-axis plane in the apical region. 
However, the near-field artifacts caused misalignment in a considerable number 
of cases. We expect that suppressing these stationary signals will lead to better 
alignment in the apical area, for example using harmonic imaging techniques 
[Duck, 2002]. 
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Registration metric 4.4.4 

The best results were obtained using the NCC metric. Whereas SSD implicitly 
assume that images differ only in terms of Gaussian noise, the NCC makes a less 
strict assumption of linear relationship between the intensity values [Hill et al., 
2001; Makela et al., 2002]. This assumption is more valid in our case, because 
ultrasonic image formation is highly anisotropic and position- dependent across 
the different rest and stress acquisitions. Global brightness variations caused by 
differences in gain settings may exist betw"een the rest and stress images, which 
can be handled more adequately with normalized metrics [Giachetti, 2000]. 

SAD performed slightly better than SSD here, probably because SAD is less 
sensitive to outliers [Hill et al., 2001]. This is in accordance with the results re­
ported by Cohen and Dinstein [2002], and in the closely related field of speckle 
tracking in ultrasound images [Janssen et al., 2000; Leung et al., 2006]. Although 
SAD performed better than SSD here, it cannot be interpreted as a general finding. 
The choice for metrics remains very much modality and application dependent. 

NMl on the other hand performed slightly worse, probably because the num­
ber of voxels in the sparse planes was not large enough for computing the joint 
histogram reliably [Pluim et al., 2003]. Otte [2001] reached the same conclusion 
when comparing NCC with NMl in registering subsets of functional MR images. 
One solution to this problem may be to combine the probability distribution of 
the whole image with the local distribution of the sparse planes, as proposed by 
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Likar and Pernu5 [2001]. 
Sophisticated metrics that are specially designed to deal with the complicated 

noise distribution in ultrasound data, may lead to small improvements in registra­
tion accuracy. For example, Cohen and Dinstein [2002] proposed new maximum 
likelihood metrics for ultrasound images, contaminated by Rayleigh distributed 
multiplicative noise. Their results on simulated and in vivo images showed that 
the new metrics outperformed SAD and SSD. In our images, however, we sus­
pect that the influence of the acquisition-related artifacts (echo dropouts, acoustic 
shadowing) is stronger than speckle-related artifacts. Phase-based measures may 
be a more suitable alternative, and their effectiveness has been demonstrated in 
registering global structures in ultrasound images [Grau et al., 2006]. However, 
this is beyond the scope of our study. 

4.4.5 Image resolution 

Registration was best at finer resolutions, despite the Gaussian filtering in coarser 
resolution levels. Although Gaussian filtering can remove speckle noise, it may 
also blur the edges of the myocardial wall, resulting in lower registration accuracy. 
Also, at the coarser resolutions, most of the salient structures had disappeared 
due to filtering. Anisotropic filtering should be able to preserve these structures 
while removing speckle noise [Montagna! et a!., 2003]. Furthermore, since only 
sparse image planes were used in the registration, it is more important to preserve 
the amount of information in the sparse planes. This also explains the slightly 
better results of the single level registration at full resolution than those of the 
multilevel registration. In particular, in the apical region, downsampling might 
have removed too much image information, as can be seen in the registration 
errors (Table 4.4). In the case of such sparse planes, it is best to always use the 
full resolution data which contains the full image information. The multilevel 
registration did not seem to contribute to more robust results, probably because 
the initialization of the landmarks was already pretty close to the optimum. 

4.4.6 Limitations and comparison with other work 

Although the list of possible configurations of sparse planes is unlimited, we have 
demonstrated that adequate results could be achieved with very sparse data sets. 

Because our study aim was to achieve global alignment of rest and stress im­
ages, rigid registration was used. Nonrigid registration, however, should give a 
more exact alignment of the different myocardial wall segments, although it is 
much slower [Hill eta!., 2001]. It might also be used for comparing wall motion 
between rest and stress stages. This should be investigated in future research. 
Other issues in the registration framework which can be further investigated are 
the type of optimizer, such as simulated annealing. Although slower in conver­
gence, it may be more robust and can also be implemented within the simplex 
framework [Press et al., 1992; Zagrodsky et a!., 2001]. For NMI, partial volume 
interpolation should help make the metric function smoother [Maes eta!., 1997]. 

Shekhar et a!. [2004] reported achieving visually better aligned images us-
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ing full-3D mutual-information registration. Full-3D registration did not give the 
best results in our experiments; however, we cannot compare their results VYith 
ours directly. First, their results on rest-to-stress registration were evaluated only 
visually and their work did not relate to sparsity. Second, their images were ac­
quired using the Volumetrics scanner (Durham, NC) and ours mainly using the 
Philips Sonos 7500 system (Philips Medical Systems, Andover, MA). Furthermore, 
the stress was induced physically using a supine bicycle in their case, whereas a 
Dobutarnine protocol was used in this study. Regarding their similarity mea­
sure, the mutual-information metric was calculated on median filtered data, us­
ing partial-volume interpolation, which should be more robust. However, we 
believe that application of our sparse method would be beneficial in the approach 
of Shekhar et al. [2004], provided a suitable algorithm for calculating the joint 
histogram on sparse planes is used. This is a subject of further investigation. · 

To fully analyze the differences in left-ventricular wall motion between rest 
and stress, a full 3D examination of the aligrment outside the sparse image planes 
is necessary. Since the goal of this study was to globally align the anatomical co­
ordinate system in both images, the registration was evaluated using only salient 
landmarks within the sparse planes. One way of examining the aligrment outside 
these planes might be to compare manual segmentations of the 3D endocardial 
surface in the rest and stress sequences, provided that these can be drawn ac­
curately. Since the images are globally aligned, the distances between the 3D 
segmentations should give a more precise measurement of the motion differences 
between rest and stress. 

Although the protocol for selecting landmarks in the 3D images was fixed, 
the intraobserver and interobserver variabilities were still large. This is inherently 
due to the poor image quality, but also due to the lack of a proper tool for viewing 
3D rest and stress images side-by-side. For this purpose, we are currently devel­
oping such a tool for analyzing 3D rest-and-stress echocardiograms (see chapter 
9). With this software program, rest and stress data sets can be manually aligned 
using the protocol described in this chapter, and then visualized side-by-side and 
temporally synchronized. During initial tests, this tool proved to be a great help 
in the manual aligrment, and has shown its use in improving the interobserver 
variability in wall motion analysis. The clinical evaluation of this tool is a subject 
of ongoing research. 

Although this study is focused on spatial aligrment, temporal aligrment may 
further improve the comparison between rest and stress wall motion. The ro­
bust sparse registration setup would be very useful in this context, due to its low 
computation cost. The sparse planes can be annotated in ED and registered to 
the next time frame [Ledesma-Carbayo et al., 2005; Siihling et al., 2005; Veronesi 
et al., 2006]. In this way, the landmarks can be propagated tluough the cardiac 
cycle automatically. Since the differences between two consecutive time-points 
are far smaller than between rest and stress, we anticipate that the registration 
can be performed more quickly and more accurately. A frame-to-frame regis­
tration within a single sequence should be a better alternative than registration 
of rest-stress images per time point, to avoid problems with temporal sampling 
(rest and stress sequences differ in number of time-points because the cardiac 
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cycle is much shorter in stress). Investigation of the displacement of the manu­
ally annotated landmarks from ED to ES revealed that the motion of long-axis 
and the rotation of the four-chamber view are rather close to the interobserver 
variabilities. Therefore, it would be hard to show the improvement in alignment 
quantitatively in this study. Nevertheless, temporal registration may be useful to 
achieve more consistent views across the whole cardiac cycle. 

4.4.7 Application 

We have demonstrated the effectiveness of sparse registration in echocardiograms, 
and we believe that it is also applicable to other registration problems. In any reg­
istration framework, it is important to emphasize the structures of which align­
ment is desired. This is especially true for images with many artifacts, as we 
have shown here. Furthermore, by reducing the number of voxels with which the 
metric is calculated, the speed of registration can be greatly increased. 

We are currently looking into fully automated methods for finding the sparse 
planes in the rest images. Recently Liu and Yang described a template-matching 
based method to select the four-chamber view from 3D echocardiograms [Liu and 
Yang, 2006]. We ourselves have experimented with active appearance model ap­
proaches (chapter 2). Such methods will further facilitate wall motion comparison 
in stress echocardiography. 

4.5 Conclusion 

In this chapter, sparse image registration was used for aligning rest and stress 
images for 3D stress echocardiography. Orthogonal four-chamber, two-chamber, 
and short-axis planes of the 3D rest image were registered to the 3D stress image. 
Different configurations of planes were investigated. Registration using two long­
axis planes and two short-axis planes was most successful, with a performance 
similar to manual alignment. In conclusion, sparse registration improves align­
ment of rest and stress images, making it an important step toward automated 
quantification in 3D stress echocardiography. 
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Automated image processing techniques may prove invaluable in the examination of 
real-time 3D echocardiograms/ by providing quantitative and objective measurements 
of functional parameters such as left ventricular (LV) volume and ejection fraction. In 
this chapter, we investigate the use of active appearance models (AAMs) for automatic 
detection of LV endocardial contours. AAMs are especially useful in segmenting ul­
trasound images, due to their ability to model the typical LV appearance. However, 
since only a limited number of images is available for training, the model may be in­
capable of capturing the large variability in ultrasound image appearance. This may 
cause standard AAM matching procedures to fail if the model and image are signifi­
cantly different. Recently, a Jacobian tuning method for AAM matching was proposed, 
which allowed the model's tra:iillng matrix to adapt to the new, unseen image. This 
may potentially result in a more robust matching. To compare both matching meth­
ods, AA...Ms were built with end-diastolic images from 54 patients. Larger capture 
ranges and higher accuracy were obtained when the new method was used. In con­
clusion, this method has great potential for segmentation in echocardiograms and will 
improve the assessment of LV functional parameters. 
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5.1 Introduction 

Real-time 3D echocarcliography is a commonly used, safe, and noninvasive tech­
nique that allows assessment of left ventricular functional parameters, such as LV 
volume, ejection fraction, and stroke volume. Many currently available methods 
for the detection of endocardial borders require user input, e.g. manual delin­
eation in several two-dimensional cross-sections and in several cardiac phases. 
By automating the full analysis, interobserver variability will be removed, and 
valuable time in manual initialization will be saved. 

Currently, we are :investigating different matching strategies for the active ap­
pearance model (AAV!) technique [Coates et al., 2001], to obtain a fully-automatic 
segmentation of the left ventricle in 3D echocarcliograms. AAMs represent the 
shape and texture of a certain organ (e.g. the left ventricle of the heart) as a mean 
appearance with its eigenvariations, by applying principal component analysis 
on training data which are annotated by experts. AAMs are especially suitable 
for modeling the complex appearance of the left ventricle in ultrasound images, 
because of their ability to describe typical variations in shape and image intensity, 
including common artifacts. 

However, AAMs, like many model-based approaches, depend largely on the 
training data sets. In practice, a small number of training sets is usually available, 
which limits the amount of variation captured in the model. This may pose a 
problem during the matching of the model to a new, unseen image. The matching 
is especially challenging in ultrasound images, because the image appearance is 
highly dependent on acquisition equipment and the transducer's location on the 
body. 

Several modeling and matching methods have been proposed to generate 
more robust segmentation results. For example, Gross et al. [2004] developed 
algorithms to apply AAMs to images of faces with occlusions, by combining their 
inverse compositional approach with a robust error function. An other robust 
approach for detecting object pose in stereo images consisted of selecting the 
appropriate multi-view appearance model and subsequent optimization of the 
robust error function with a modified Gauss-Newton algorithm [Mittrapiyanuruk 
et al., 2005]. A robust principal component analysis (PCA) algorithm was pro­
posed by Skocaj et al. [2002] based on the expectation-maximization algorithm 
for estimating principal subspaces in the presence of missing data. Beichel et al. 
[2005] proposed a mean-shift-based method to estimate outlier residuals during 
the matching process. Their approach was applied to different types of medical 
images containing large artifacts. Recently, Coates and Taylor [2006] proposed a 
new Jacobian tuning method, which allows the model's training matrix to adapt 
itself to new, unseen images during matching. The method is supposedly more 
robust, is comparable with respect to speed with the standard matching method, 
and requires no extra steps in the model-training phase. 

In this chapter, we investigate the Jacobian tuning method for segmenting 
the left ventricle in 3D ultrasound images, extending our previously reported 
active appearance model framework [Bosch et al., 2002; Mitchell et al., 2002; van 
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Stralen et a!., 2007]. The standard matching and Jacobian tuning methods are 
compared using appearance models built with 54 data sets. Capture ranges of 
both methods were examined by initializing the model at the ideal parameters 
and systematically varying the parameters. Matching accuracy was investigated 
by initializing the model at mean parameters. 

Methods 5.2 
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Active appearance models 5.2.1 

Appearance models are statistical representations of the typical shape (contour) 
and texture (image) variations encountered in a collection of training data sets. 
Generated using principal component analysis (PCA), the shape (x) and texture 
(g) variation are controlled by appearance parameters (c) as follows: 

x =X+ t.l>sC 

g = g + <Pgc, (5.1) 

where x is the mean shape, g is the mean texture, and <!>, and <l'g are the eigen­
vector matrices. 1n this chapter, vectors are denoted in lower-case, printed bold, 
matrices are upper-case, printed bold, T denotes a row vector or a transposed 
matrix, -l denotes matrix inverse. 

1n this model representation, images and shapes can be approximated by a set 
of appearance parameters, by global transformation parameters which convert the 
shapes to the model's domain, and by global intensity scaling parameters which 
convert the images to the model's domain [Cootes et al., 2001]. Matching a model 
to a new test image consists of finding the set of appearance, pose, and intensity 
parameters for which the synthesized image best matches the unseen image. 

Standard active appearance model matching 5.2.2 

The standard AA..c\!1 matching strategy consists of minimizing the sum of squares 
of the difference between model and image: 

(5.2) 

where p are all parameters to be optimized and r = r(p) the function returning 
the residual differences between model and image. Using a first order Taylor 
expansion, one can obtain a root-mean-square solution for linear updates dp of p, 
given the current residual and Jacobian Jo of r(p) CJij = ar1 ;api): 

dp = -(J6Jo)-1Jor = -Qr. (5.3) 

1n the standard matching procedure, J o is calculated from training images in ad­
vance, and assumed constant during matching. 1n practice, this algorithm is com­
bined with an efficient line search consisting of update steps k = [1, 1.5, 0.5, 0.25], 
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which results in the basic AAM search algorithm. The line search can be replaced 
by more sophisticated variants, if desired [Cootes and Kittipanya-ngam, 2002]. 

Algorithm 5.1 Standard AAM. 

Initialize: po,ro = r(po),s = 0 
while s < Smax do 

dp, = -Qr, 
for all k; E k do 

a) Ps+l (k;) = Ps + k;dp, 
b) rs+l(k;) = r(Ps+l(k;)) 
c) dr(k;) = Irs 12 - Jrs+l (k;) !

2 

end for 
if dr(k;) 2 0 then 

select Ps+l (k;) and r,+l (k;) for largest dr(k;) 
else 

break 
end if 
s--:.s+l 

end while 

5.2.3 Jacobian tuning for active appearance model matching 

Cootes and Taylor [2006] observed that the assumption that the Jacobian is fixed 
is unsatisfactory, especially if the image to be segmented is significantly different 
from the model mean. Recently, they have proposed a search strategy that up­
dates the Jacobian matrix during each new evaluation of the residual r(p ). The 
algorithm is closely related to the quasi-Newton methods for solving least square 
problems without derivatives [Broyden, 1976]. 

In short, the method uses a set of constraints on the parameter update at 
the current iteration s, given all previous parameter estimates (po, ... , p,) and 
previous residuals (ro, ... , r,). The Jacobian Jo from the training phase provides 
a regularization term for estimating current updates for the Jacobian matrix J. 
The updated Jacobian matrix is then used to update the appearance parameters. 
No additional line search step is required. A summary of the algorithm is given 
below; for the original derivation, we refer to Cootes and Taylor [2006]. 

Consider a set of s observations of parameter differences dpj = Pi - Pi~ 1 and 
residual differences drj = r(pj)- r(pj~l), organized in matrices as follows: 

X= (dp11·· .jdp,) and 

R = (dr1! · ·. jdr,). (5.4) 

We set up s linear constraints on each j; row of J, assumin~ that a linear update 
in the parameters generates a linear change in residuals: xrj; = q;, where qJ is 
the ith row of R. Using our trained Jacobian Jo as a regularizer, we can set up a 
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quadratic function of the form f(ji) = a[XTji- q£1 2 + [j,- jo;[2, where a controls 
the strength of the regularization and j 0, is the zih row of Jo. Differentiating f 
with respect to j, and equating to zero, leads to an equation for computing a new 
estimate of J, given the initial estimate from the training set Jo and all previous 
parameter updates and residuals: 

(5.5) 

where I denotes the identity matrix. 
Eq. (5.5) can be rewritten into a more efficient version, which is then solved 

iteratively. Let us define three matrices A = I + axxT , B = J6 + aXR T, and 
C = BTB. By substituting eq. (5.5) into eq. (5.3), it can be shown that the optimal 
parameter update is given by dp = Ay, if y is the solution to the linear equation 
Cy = -Brr. Instead of calculating A, B, and C using their definitions at every 
iteration, one can show that these matrices can be updated linearly at the current 
iteration s + 1 using their values at the previous iteration s: 

As+l = As+ a5 dp,dp{ 

Bs+l = B, + a,dr,dp{ 
T T T 21 j2 T Cs+1 = Cs + a,B, dr5 dp5 + a5dp5 dr5 B, + a5 ,dr5 dp5 dp5 • 

This leads to the Jacobian tuning algorithm for AAM matching: 

Algorithm 5.2 Jacobian-Tuning AAM. 

Initialize: p0, r0 = r(p0), s = 0, A0 =I, B0 = J0, C0 = BJ"B0 
while [dp5 [

2 < e and s < Srnax do 
1) Solve C,y = - B{ r5 for y 
2) dp, = A,y 
3) Ps-'-1 = Ps + dp, 
4) r,~ 1 = r(Ps+l) 
5) drs = rs+l - r, 
6) z = B{dr5 

7) As+l = As+ a5dp5dp{ 
8) Bs+l = Bs + a5dr5dp{ 
9) Cs+1 = C, +a,zdp{ +a,dp5zT +a~[dr,j2dp5dp{ 
if [rs+1[ 2 > [r,[ 2 then 

Ps-71 = Ps, rs+l = rs 
end if 
11) s ___, s+1 

end while 

(5.6) 

The resulting algorithm has only a series of simple linear operations, and 
can therefore be added straightforwardly to any existing AAM implementation. 
Note that the matrices A, B, and C are updated every iteration, regardless of the 
parameter update. It is usually possible to solve the linear equation in step 1 using 
Cholesky decomposition, as C, is symmetric and (usually) positive definite. As in 
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Cootes and Taylor [2006], we use C<s = (J + ldp,l 2)-1, where J is small, included 
to avoid numerical instability after small steps. 

5.2.4 Data acquisition and appearance modeling 

To investigate the effectiveness of the new algorithm, 3D appearance models were 
constructed using 3D ultrasound images of the left ventricle. AAMs were built 
with end-diastolic images from 54 patients, of which 18 data sets were acquired 
with the Fast Rotating Ultrasound (FRU) transducer, developed at our lab [Voor­
molen et a!., 2006], and 36 data sets were acquired with Philips Sonos 7500 equip­
ment. Typical spatial dimensions of the FRU images were 256 x 256 x 452 voxels 
with 1mm x 1mm x 0.4mm resolution. Typical spatial dimensions of the Philips 
images were 160 x 144 x 208 voxels with 1mm x 1mm x 0.7mm resolution. Full­
cycle endocardial borders were drawn using a semi-automated method, based on 
pattern matching and dynamic progranuning, which allowed manual corrections 
of the detected contour [van Stralen et al., 2005b]. The shape model consisted of 
3D points, sampled cylindrically in short-axis planes at equidistant angles around 
the long-axis. The points near the apex were defined in a spherical coordinate sys­
tem with respect to a point at 3 I 4 distance on the long-axis. This sampling was 
employed to generate a regular sampling of the endocardial surface (Fig. 5.1a). 
The texture was sampled on the grid spanned by the shape points, instead of 
using traditional warping methods (e.g. piece-wise affine warping [Mitchell et 
al., 2002]), to facilitate the texture sampling during modeling and matching (see 
also chapter 2). We sample the texture radially on the line through the surface 
points in short-axis planes (Fig. 5.1b), up to twice the surface radius [van Stralen 
eta!., 2007]. Gaussian smoothing and image downsampling were applied before 
appearance modeling and matching. To remove global pose variation, all shapes 
were pre-aligned using procrustes analysis. Since PCA requires a Gaussian distri­
bution of input samples, the texture patches were normalized using a nonlinear 
intensity normalization method that equalizes the histogram of all the patches to 
a Gaussian distribution with zero mean and unit variance, as introduced by Bosch 
eta!. [2002]. Eigenvariations of the appearance model are shown in Fig. 5.1c. 

5.2.5 Experiments 

Since the Jacobian tuning method allowed the training matrix to adapt to the 
test image, we hypothesized that the method will have a larger capture range. 
Therefore, we tested the convergence of both methods; the model was initialized 
at its ideal pose and appearance in the test image, the appearance parameters 
were then perturbed randomly in a range of several standard deviations, and 
subsequently the standard AAJv! and Jacobian tuning method were applied to 
match the model to the image. The experiments were first performed using a 
model describing 100% of the shape and texture variation (scenario A). Next, a 
model was used which described only 95% of the shape and 75% of the texture 
variation (scenario B); in previous experiments this was shown to be an accurate 
representation of a leave-one-out situation [van Stralen et a!., 2007]. Models A 
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a b 

fig. 5.1: (a) The mean shape, sampled equidistantly in a cylindrical/ spherical coordi­
nate system. (b) The mean texture in three orthogonal views. (c) From top to bottom: 
the first 3 eigenvariations of the AAM. Each row depicts -2 standard deviations (left), 

mean (middle), and -,-2 standard deviations (right). 

and B were built and matched on the same training data. A third scenario (C) 
was considered, in which models were created in leave-S-out fashion, such that 
five data sets were reserved for matching and the rest was used for training. This 
resulted in 11 models (with the last model made by leaving out the remaining 
four patients). 

A higher accuracy in matching can also be expected due to the tuning of the 
Jacobian. To validate this, the models were initialized at mean translation and 
mean appearance parameters. The optimal parameters were then found using 
both methods. The experiments were performed using models A and B, and C. 

For the standard algorithm, update steps k = [1, 11/2, 2, 1/2, 1/4, 1/s, 1/16, 1/32] 
were used. Matching was terminated if jdr[2 for all steps were larger than that 
of the previous iteration. As for the Jacobian tuning algorithm, the matching was 
allowed to continue until jdpj2 was smaller than € = 0.01. For both methods, 
the matching was stopped if the mean squares of the residual was smaller than 
0.001 (in the texture-normalized domain), or if the maximum of 100 iterations was 
reached. All algorithms were written in C++. 

Results 5.3 
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Perturbation from ideal parameters 5.3.1 

Point-to-point errors between the matching results and the manually drawn con­
tours were calculated. With a model describing 100% of the shape and texture 
variation (scenario A), very low matching errors could be expected. For this ex-
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periment, a matching was considered converged if the point-to-point error, aver­
aged over the contour, was lower than 1mm (the largest voxel size). The results 
revealed that the Jacobian tuning algorithm was superior to the standard algo­
rithm (see Fig. 5.2). In this case, 14.2% (69 out of 54*9 = 486) did not converge 
using the standard matching algorithm, whereas the Jacobian tuning algorithm 
achieved a 100% convergence rate. Most outliers occurred because the standard 
algorithm was not able to find an update for all steps k during the first iteration, 
such that the residual was lower than the residual at initialization. 

As for the truncated model (scenario B) and the leave-S-out models (scenario 
C), a lower spread in errors and much higher accuracy was observed when using 
the Jacobian tuning algorithm, especially when large perturbations were applied 
(Fig. 5.3). Similar results are obtained for scenario C (see Fig. 5.4)). 
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fig. 5.2: Perturbation experiments for the 100% model, starting at 0.1, 0.3, 0.5, 0.7, 
1.0, 1.5, 2.0, 2.5, and 3.0 standard deviations, showing excellent convergence for the 
Jacobian tuning method. Boxes indicate 25% and 75% percentiles; whiskers extend to 

10% and 90%. Dots indicate cases with final matching error above lm.m. 

5.3.2 Initialization at mean parameters 

The matching results for initialization at mean translation and mean appearance 
parameters are given m Table 5.1. Slightly lower errors were obtained with the 
Jacobian tuning algorithm. A segmentation example is shown in Fig. 5.5. 
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Fig. 5.3: Perturbation experiments with the truncated model, starting at 0.1, 0.3, 0.5,. 
0.7, 1.0, 1.5, 2.0, 2.5, and 3.0 standard deviations (slightly pulled apart for clearer visu­

alization), showiD.g much more robust results using the new algorithm. 

Leave-Five-Out (scenario C) 
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Fig. 5.4: Perturbation experiments with the leave-five-out model, starting at 0.1, 0.3, 
0.5, 0.7, 1.0, 1.5, 2.0, 2.5, and 3.0 standard deviations (slightly pulled apart for clearer 

visualization), showing much more robust results using the new algorithm. 
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5.4 

ACTIVE APPEARANCE MODEL SEGMENTATION 

Table 5.1: Mean ± standard deviation of point-to-point errors when initialized at mean 
translation and mean appearance parameters. Also shown are the root-mean-squared 
intensity error (RMS), in unnormalized intensity units (range [0 255]). *indicates that 
Jacobian tuning has statistically significantly better results than standard AAM (paired 

!-test, p < 0.05). 

Scenario A B c 
PoiDt-to-point 

Initial 7.5 = 2.6 7.5 ± 2.6 7.5 ± 2.7 
Standard AAM 2.3 ± 1.1 3.6 ± 1.7 4.4 ± 1.7 
Jacobian tuning 0.06 ± 0.03* 2.9 ± 2.0* 3.9 ± 2.0* 

Point-to-surface 
Initial 4.4 ± 1.2 4.4 ± 1.2 4.4 ± 1.2 

Standard AAM 2.0 ± 0.6 2.6 = 0.5 3.0 = 0.7 
Jacobian tuning 0.06 ± 0.03* 2.2 ± 0.7* 2.8 ± 1.0* 

RMS intensity 
Initial 5.2 ± 2.5 5.2 ± 2.5 5.2 ± 2.6 

Standard AAM 3.4 ± 1.7 3.6 ± 1.5 3.9 ± 1.7 
Jacobian tuning 2.0 ± 0.8* 3.5 ± 1.6* 3.8 ± 1.7* 

Discussion 

This study demonstrates the effectiveness of the new Jacobian tuning matching 
approach in AAM segmentation of the left ventricle in real-time 3D ultrasound 
images. We showed that the Jacobian tuning algorithm has a larger capture range 
and higher accuracy than the standard matching algorithm. 

It is interesting to see that the outliers in Fig. 5.2 are all located above ap­
proximately 4mm, suggesting that, below this threshold, it is possible to find the 
optimal appearance parameters using the standard algorithm. The Jacobian tun­
ing method is much more robust because of its larger capture range, obtaining 
a 100% success rate for perturbations up to 3 standard deviations (sd) from the 
ideal parameters. 

Another interesting observation is the lower bound of 2mm point-to-point 
error for the truncated and leave-S-out model, which can be achieved for per­
turbations up to 3 sd using the Jacobian tuning method, whereas the standard 
algorithm starts to fail around 2 sd perturbation from ideal parameters (Fig. 5.3 
and 5.4). Of course, these error bounds and perturbation limits are dependent 
on the amount of variation captured in the model. However, it is clear that the 
Jacobian tuning method has a much larger capture range than the standard AAM 
algorithm. This may have significant consequences in matching models to images 
acquired with different machine settings and transducer equipment. For exam­
ple, it would be worth experimenting with a model built with Philips data and 
matched to FRU data. This is a subject of further investigation. 

Other AAM search algorithms have been reported in the literature which im­
plement updates to the Jacobian matrix. For example, Batur and Hayes [2005] 



5.4 DISCUSSION 

Jacobian 
tuning 

short-axis 4-chamber 2-chamber 

Fig. 5.5: Appearance patches and 3D segmentation results using the standard AAM 
and jacobian tuning algorithms. In this case, the manual gold standard is very different 
from the mean patch (Fig. 5.1). The standard algorithm has trouble finding the right 

segmentation, as opposed to the Jacobian tuning method. 

proposed an algorithm which uses linear updates for the gradient matrix. Their 
approach is different to this one in the sense that the current parameters of the 
texture model are used to update the appearance parameters. This is combined 
with a line search similar to the one in section 5.2.2, and matching is stopped if no 
better residuals are found. This is different in our approach, because in our case 
the Jacobian can be updated infinitely if desired. The Jacobian tuning method is 
closely related to the quasi-Newton method for solving least-squares problems 
without derivatives proposed by Broyden [1976]. More sophisticated approaches 
were proposed by Xu [1990]. These types of algorithms merit further research and 
comparison. 

An interesting extension to the current algorithm will be to replace the param­
eters at certain iterations with a small perturbation, to cover the entire parameter 
space [Cootes and Kittipanya-ngam, 2002]. These 'forced iterations' have been 
shown to improve the standard AAM matching. 

Several contour detection methods have been reported, which combine the 
AAM with other segmentation algorithms, such as an AAM and active shape 
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model hybrid [Mitchell et al., 2001], AAM and pixel classification hybrid [van 
Ginneken et al., 2006], and information fusion approaches [Comaniciu et al., 
2004]. Also, there have been a number of reports on multiview [Bosch et al., 2002; 
Uzfuncii et al., 2005] or multifeature AAMs [Scott et al., 2003]. All could benefit 
from the Jacobian tuning method. Since the AAM is becoming a widely used 
segmentation technique in medical image processing, the method appears to be 
particularly relevant for this scientific community. The large improvements that 
it has to offer may cause the Jacobian tuning method to be set as the standard 
matching approach some day. 

5.5 Conclusions 

The new Jacobian tuning algorithm for AAM matching produces quantitatively 
better segmentations of the left ventricle in ultrasound images. This study demon­
strates the effectiveness of an adaptive training matrix during model matching. 
Given the large variability in ultrasound image appearance, the Jacobian tuning 
algorithm has great potential in improving the standard AAM segmentation. 



Motion-guided 
optical flow 
tracking in 
3D echocardiograms 
To obtain quantitative and objective functional parameters from 3D echocardiograms, 
the use of automated segmentation methods is becoming increasingly important. In 
this chapter, we propose an optical-flow based tracking method to propagate 3D en­
docardial contours throughout the cardiac sequence. To take full advantage of the 
time-continuous nature of the cardiac motion, a pre-trained statistical motion model 
was used to guide the optical-flow solution. The algorithm. was tested on 53 non­
contrast echocardiographic sequences. For high quality images.~ the combination of 
the proposed motion-guided method and a purely data-driven local tracking method 
provided optimal surface estimation with low error (point-to-surface: 1.4 ± 0.4mrn, 
absolute volume 5.6 ± 4.Sml). For low quality images, the motion-guided algorithm 
was superior. Application to 27 contrast-enhanced images also revealed encouraging 
results. This demonstrates the method's potential in automated tracking in a variety 
of clinical 3D echocardiographic protocols. 

Dcrivcd from: 
Motion·Guided Optical Flow fot Tt.acking in 3D Echocardiograms K Y.E. Leung, M.G. Danilouchkine, M. wn StrJ.lcn, 1\'. de 
Jong.. A.F.W. v.:m der Steen, .:md J.G. Bosch 
Proc SPIE Mcd Im.:!g 2009; i259; 7>...590W. 



98 OPTICAL FLOW TRACKING 

6.1 Introduction 

Echocardiography is a commonly used, safe, and noninvasive technique that al­
lows the assessment of left ventricular (LV) function. Real-time 3D echocardio­
graphy has gained much interest in recent years. The advantage of acquiring 
the whole left ventricle in a short period of time, plus recent improvements in 
spatial and temporal resolution, have made this method a viable alternative to 
traditional 2D echocardiography. Due to the large amount of data acquired, there 
is an increasing demand for automated methods to analyze LV functional param­
eters, such as LV volume, accurately and objectively. Therefore, segmentation in 
3D and 4D (3D+time) echocardiograrns has gained considerable attention recently 
[Noble and Boukerroui, 2006]. Common automated methods include deformable 
models [Gerard et al., 2002; Montagnat et al., 2003; Nillesen et al., 2007; Walimbe 
et al., 2006], level sets [Angelini et al., 2005; Corsi et al., 2002], active appearance 
and active shape model techniques [Hansegard et al., 2007b; van Stralen et al., 
2007], state estimation [Orderud et al., 2007b], and clustering/ classification [Pa­
pademetris et al., 2001; Sanchez-Ortiz et al., 2002]. 

To approach 4D segmentation efficiently, one can choose to explicitly distin­
guish between spatial and temporal differences in anatomical shape. Similar 
types of distinctions between variations were previously exploited in Costen et al. 
[2002]; Lorenzo-Valdes et al. [2004]; Perperidis et al. [2005] for segmentation and 
modeling. In the medical imaging context, spatial variation is related to anatomi­
cal diversity across different patients, which can be used as priors in segmenting 
one 3D image. Temporal variation captures the variability in an organ's shape 
due to physiological activity. This knowledge can help propagate the segmenta­
tion throughout the image sequence. The present chapter focuses on the latter 
aspect, which is tracking related. 

It is well known that good ultrasound segmentation needs to make use of 
ali task-specific constraints, as recently stressed in Noble and Boukerroui [2006]. 
Therefore, it is crucial for tracking in echocardiograrns to incorporate temporal 
knowledge, in order to obtain consistent contours throughout the cardiac cy­
cle. Hence, we propose to incorporate anatomical motion models into the track­
ing scheme, to produce reliable segmentations that are likely to occur in in vivo 
echocardiograrns. 

6.1.1 Previous work 

Many ideas for tracking objects in images have been developed within the hu­
man vision research community [Yilmaz et al., 2006]. Recently, tracking in ultra­
sound cardiac images, especially in 3D, has become a popular field of research 
[Angelini and Gerard, 2006]. Tracking methods can be based on deformation of 
surfaces [Yan et al., 2007] or on tracking image intensities. Most commonly used 
intensity-based tracking techniques include nomigid registration [Elen et al., 2008; 
Ledesma-Carbayo et al., 2005; Myronenko et al., 2007], Bayesian techniques [Pa­
pademetris et.al., 2001], template/block matching [Duan et al., 2008; Helle-Valle et 
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al., 2005; Kawagishi, 2008; Linguraru et al., 2008; Yeung et al., 1998b]_ and optical 
flow [Siihling et al., 2005; Veronesi et al., 2006]. If the images differ considerably, 
nonrigid registration may prove more accurate than the other methods. However, 
if these differences are small, the latter two techniques may suffice. 

In this work, we chose to explore a framework based on differential optical 
flow tracking [Hom and Schunck, 1981; Lucas and Kanade, 1981]. The main ad­
vantages of our method lie in its flexibility to incorporate motion information, its 
accuracy in tracking, and a lower computational demand compared with nonrigid 
registration. Unlike most applications in ultrasound imaging (e.g. Danilouchkine 
et al. [2008]), we intend to use the optical flow method to track the endocardial 
border in the images, and not individual speckle patterns. The tracking is per­
formed in time-gain-compensated envelope data, and not the raw radio-frequency 
data. This is important to note, because current 3D ultrasound images are often 
acquired at a lower frame rate with respect to two-dimensional images. Therefore, 
the speckle pattern varies greatly from frame to frame. 

Optical flow based methods have previously been applied for motion analysis, 
modeling, and segmentation in medical imaging. Most methods use the Hom­
Schunck solution [Horn and Schunck, 1981], which applies a global smoothness 
constraint on the motion field, or the Lucas-Kanade solution [Lucas and Kanade, 
198lt which assumes local motion consistency. For magnetic resonance (MR), op­
tical flow based methods have mainly been applied to estimate motion in cardiac 
images [Dougherty et al., 1999; Florack et al., 2007] and brain images [Hata et al., 
2000; Tosun and Prince, 2005]. There are also reports on optical flow for com­
puted tomography (CT) images [Gorce et al., 1997; Kalmoun et al., 2007; Song 
and Leahy, 199lt SPECT images [Laliberte eta!., 2004; Noumeir eta!., 1996L and 
PET images [Lin and Lin, 2004]. 

As for ultrasound cardiac imaging, Mailloux et al. [1987] applied the Horn­
Schunck solution to analyze 2D echocardiograms. Baraldi et al. [1996] compared 
three algorithms on synthesized ultrasound images and concluded that the Horn­
Schunck and Lucas-Kanade approaches generated more favorable results than 
the Nagel method [Nagel. 1987]. Left ventricular wall motion was analyzed us­
ing a basic implementation of the Lucas-Kanade method by Chunke et al. [1996]. 
Mikic et al. [1998] first used optical flow for propagating contours throughout 
echocardiograms. The optical flow was used to initialize the contour in the sub­
sequent frame, after which the actual contour detection was performed by active 
contours. More recently Siihling et al. [2005] developed a combination of optical 
flow and b-splines to segment 2D echocardiographic sequences. An application 
for 3D echocardiography was described by Veronesi et al. [2006]. In their paper, 
the Lucas-Kanade approach was used together with a block matching procedure 
to detect the long-axis of the left ventricle. The novel aspect of the current method 
is the incorporation of a trained statistical motion model, to generate consistent 4D 
contours throughout the cardiac cycle. 

Several methods for incorporating shape models with segmentation have been 
reported in the literature. An interesting approach was described by Malassiotis 
and Strintzis [19991 who constrained an active contour based segmentation by 
applying principal component analysis (PCA) over the contour sequence at hand. 
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This is different from our approach, because the model here is trained with con­
tours of many sequences. Comaniciu et al. [2004] proposed projecting optical 
flow estimates back to the shape model space to generate a more robust segmen­
tation. They used the mean shift method to combine multiple optical flow esti­
mates. Hansegiird et a!. [2007b] proposed to estimate shape model parameters in 
a Kalman filtering approach, using estimates in the previous time-frames to gen­
erate new parameters for the current frame. Their algorithm was real-time, with 
the trade-off that it was less accurate. The approach taken in the current chap­
ter is different, because motion parameters were derived from shapes throughout 
the cardiac cycle, resulting in a time-continuous motion model. Recently, Per­
peridis et al. [2007] suggested a segmentation method using registration with a 
shape model. This model was decoupled into two parts: interpatient statistics 
(spatial variations) and intrapatient statistics (temporal variations). The model 
parameters were numerically optimized in nonrigid-registration fashion, using a 
gradient-descent approach and a gradient-based similarity measure. Our work 
is different because we make use of an optical flow formulation to solve the reg­
istration problem. It can be considered as a light-weight solution as it allows a 
close form solution. 

6.1.2 Study outline 

In this chapter, we propose to combine optical flow tracking with learned patterns 
of motion. This method is different from the technique proposed by Comaniciu 
et al. [2004], who combined optical flow estimates and active appearance mod­
els using information fusion. Instead, our approach most resembles the method 
proposed by Yacoob and Davis [2000] for estimating human motion in 2D video 
sequences. The motion model is derived from manually delineated 4D contours, 
which should result in a realistic modeling of myocardial wall motion. To en­
hance the local tracking accuracy, the motion-guided approach is combined with 
purely data-driven optical flow tracking. The algorithm is tested on 53 noncon­
trast 4D echocardiograms, recorded using different acquisition equipment. As an 
extension, the method is also applied to 27 contrast-enhanced echocardiograms. 

6.2 Methods 

The general idea of the proposed motion-guided segmentation method is to com­
bine optical flow tracking with learned patterns of motion, derived from manually 
drawn 4D contours of the LV endocardial borders. The motion model is then ex­
plicitly embedded in the optical flow equation and motion-model parameters are 
resolved using spatial and temporal image gradients. To enhance the tracking 
performance in good quality images, the method is combined with a basic local 
Lucas-Kanade tracker. 
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Optical flow basics 6.2.1 

Optical flow tracking aims at finding the apparent motion ('flow') of objects in an 
image sequence. The method relies on the assumption that the image intensities 
of the object during movement are constant: I(x, t) = I(x + dx, t + dt), where I 
is the intensity at spatial coordinates x and time t. By applying first-order Taylor 
expansion, the well-known optical flow equation is obtained, which describes 
the relationship between the motion field (v), the spatial (vI = ( ¥x, g~, ~) = 

(I, Iy, I0 )) and temporal gradient (I,= Ml in image intensity: 

vi(x, t) · v(x, t) + I1(x, t) = 0. (6.1) 

v consists of the velocity components of the motion field; for 3D images, v = 
( Vx(a), vy( a), v0 ( a)). Each velocity component can be described with k parameters 
a, to denote different types of velocity models (e.g. translation-only, similarity, or 
affine). 

To solve eq. (6.1) for v, more assumptions are required, because this one equa­
tion contains k unknowns. The commonly-used Lucas-Kanade approach assumes 
that the velocity is constant in a small region around x, in which N gradients are 
sampled. In this study, we use a symmetric kernel of size nw x nw x nw. The 
velocity vector can then be resolved with least-squares. A sum-of-squares error 
term is set up as follows [Lucas and Kanade, 1981]: 

N 
E = E (w(x(n)))2 [I,(x(n)) + vi(x(n)). v] 2

' (6.2) 
n=l 

where w represents a local weight. For a translation-only description of v, this can 
be solved by differentiating eq. ( 6.2) with respect to each translation component 
v = ( Vx, Vy, v2 ), and equating the result to zero. This leads to the following system 
of equations (note that w, Iu, Iv and It depend on n ): 

Rv = e, with 
N 

Ruv = L, w2 Iulv, and 
n=l 

N 

eu=-Lzif-Itiu for u,v=x,y,z. 
n=l 

(6.3) 

Shape-based motion modeling 6.2.2 

In this work, the optical flow equation is regularized with a motion model, trained 
using contours of in vivo data sets. These contours are represented by the 3D co­
ordinates of points which are evenly distributed on the endocardial surface. We 
chose to model the cardiac motion on a frame-to-frame basis, because the in­
tensity difference between two consecutive images is smaller than the difference 
between a reference frame (e.g. in end-diastole) and all subsequent frames. This is 
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important because the optical flow equation assumes brightness invariance, and 
optical flow has proven to have a suboptimal accuracy in tracking large displace­
ments [Danilouchkine et al., 2008]. For the modeling itself, principal component 
analysis (PCA) is used, which generates a compact representation of the motion 
parameters. This is much more efficient and robust than e.g. direct modeling 
of the motion parameters, because PCA reduces the dimensionality of the input 
data, disregarding noisy components. Our approach is different from traditional 
statistical shape models [Cootes et al., 2001], which describe the statistical varia­
tion of the shape using the actual contour points themselves, because we model 
the motion using affine parameters which are extracted from the training con­
tours. 

Furthermore, for a time-continuous result, we choose to model and resolve the 
motion vectors by considering the whole cardiac cycle simultaneously. The goal 
of the proposed optical flow method is to provide a globally consistent tracking 
result, for estimating global parameters such as left ventricular volume. There­
fore, as a good approximation, one affine transform may be sufficient to explain 
a frame-to-frame difference. Although this may seem a rather tight restriction, we 
anticipate that this representation will have a small error, because of limited dif­
ferences between two consecutive frames. Also, as for any modeling technique, 
the amount of input data strongly influences the level of model generalization. 
In the 4D case, the modeling of local variation may require a great many patient 
data sets, which is often unavailable in practice. Therefore, we choose to model 
only the global motion, and will further refine the segmentation using a more 
local tracking algorithm. 

The motion is modeled as affine transforms of the contour from one frame 
to the next, where the changes throughout the cardiac cycle are characterized by 
translation, rotation, shear, and scaling. The steps in motion modeling are visual­
ized in Fig. 6.1 and are described below. Affine parameters in 3D are modeled as 
follows: 

v= (6.4) 

Phase normalization 

Since PCA requires each input to have an equal number of affine parameters, all 
contours must be normalized to a common division of the cardiac phase. As the 
left ventricle contracts in systole and expands in diastole, we propose to match the 
end-diastolic (ED) and end-systolic (ES) time-points in all contour sequences. For 
each phase, the 3D contour is represented by points, distributed on the endocar­
dial surface. All contour sequences are then linearly interpolated between frames 
to generate sequences in the normalized phase division, so that each sequence 
contains F cardiac phases. 
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Fig. 6.1: Flowchart of motion modeling. 

Alignment to common coordinate system 

The affine parameters are obtained using Procrustes analysis [Gower, 1975]. First, 
the ED contours of all training sequences are aligned to a common coordinate 
system. This step resembles what is also done in generating multi-view active 
appearance models [Bosch eta!., 2002], in which the Procrustes criterion is used 
to align all input shapes, in order to eliminate variations in translation, rotation, 
and scaling of the shape model which are not related to anatomical variations. 
1n this study, the ED contours are aligned, after which the resulting alignment 
transform for one ED contour is then applied to the rest of the phase-normalized 
contour sequence. This is necessary to remove the coordinate-system dependence 
of rotation, shearing, and scaling components of the frame-to-frame transform 
across all patient data sets. 

Affine transforms extraction 

Next, Procrustes analysis is applied consecutively, to extract the frame-to-frame 
affine transforms. The whole contour is used, to ensure the robustness of the 
derived transforms. For each contour sequence, the 3D affine modeling of F 
cardiac phases results in 12*(F- 1) parameters. These are concatenated into a 
column vector a and are the inputs to the PCA: 

(6.5) 

Principal components analysis 

PCA gives a compact description of the motion variations through the cardiac 
cycle by reducing the dimensionality of the input affine transforms [Cootes et 
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a!., 2001]. This allows us to approximate a set of affine warps a throughout the 
cardiac cycle using the mean transform a, the PCA eigenvectors <I> and the PCA 
parameters c: 

a"" a+ <I>c. (6.6) 

Since the eigenvectors are sorted :in order of variance, modes with low variance 
can be removed easily by truncating c and <I>. The remaining k modes will then 
encompass only a proportion g of the total variation G: 

k 
I;?.; 2: gG, 
i=l 

p 

with G = L;J.1, 

i=l 
(6.7) 

where p is the total number of modes and A; denotes the i1h eigenvalue [Mitchell 
et a!., 2002]. With formula (6.6), the frame-to-frame affine transform throughout 
the cardiac cycle is described by k parameters c, which are to be solved with 
optical flow. k thus depends on the choice of g. For this study, g = 95% is used, 
corresponding with k = 24 parameters for a model built with 35 noncontrast 
contours, and k = 18 parameters for a model built with 27 contrast contours. 

6.2.3 Motion-guided segmentation 

One of the main ideas of this work is to combine the learned motion model with 
the optical flow equation directly. This results in an efficient and elegant solution 
to the optical flow equation, guided by the typical motion patterns encountered 
in a set of training examples. Each affine component ai (formula (6.4)) of a certain 
cardiac phase f can be described with the corresponding row of <I> and the correct 
components of a and c: 

(6.8) 

This is substituted in each affine component in formula (6.4) and this in turn is 
substituted in eq. (6.1). This leads to the modified optical flow equation: 

E(x,t) =I,+ Ixiix + Iyiiy + Iziiz + (Ix<l>x + Iy<l>y + Iz<I>z) C = 0 (6.9) 

h - -! + -! + -! + -f w ere ad xadO yadl zad2 ad3 f d f f ~f f or =x,y,z. 
and <I> d = x<I> do + y<I> dl + z<i>'d2 + <I> d3 

The objective is to find c, given the spatial gradients Ix, Iy, Iz and temporal gra­
dient I,. A solution is to constrain the equation by assuming that the parameters 
c are identical in all regions and all cardiac phases, similar to the Lucas-Kanade 
approach (formula (6.2)). We can then set up a sum-of-squares error term Etotaz: 

N F-1 

€total = I:;I:;[E(xJ)f =I; I; [E(n,t)f, (6.10) 
x f n=l f=l 
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by gathering the image gradients from N voxel positions per image. These are 
gathered from regions of nw x nw x nw around each contour point (like in eq. 
(6.2)). By differentiating <total to each element in c and setting this to zero, a 
system of linear equations is obtained, similar to eq. (6.3): 

Rc = e, (6.11) 

where R is a k-by-k symmetrical matrix, and c and e are k-by-1 vectors: 

N F-1 

Ruv = L L w2 
( Ixi/J~ + Iyi/J~ + Izi/J~) ( Ixi/J~ + Iyi/J~ + Izi/J~) 

n=1f=1 

N F-1 

eu = - L L w2 (It + Ixiix + Iyiiy + Iziiz) ( Ixi/J~ + Iyi/J~ + Izi/J~) 
n=1f=1 

(6.12) 

where <P'd is the uth element of~' the row in the eigenvector matrix correspond­
ing with phase f (note that all terrns depend on n). Since R is symmetric and 
usually positive definite, eq. (6.11) can be solved e.g. with Cholesky decomposi­
tion. 
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Algorithm scheme 6.2.4 

In practice, the algorithm needs a 3D contour of the end-diastolic frame as a start­
ing point for 4D segmentation in a testing image. In this study, the manually 
delineated ED contour is taken. The spatial derivatives are calculated by convolu­
tion with a Gaussian derivative filter (for !T see Table 6.1). Our implementation of 
optical flow conforms to the principle of reciprocity in image disparity [Birchfield 
and Tomasi, 1998]. In other words, if a given point x in the first image moves in 
the direction d, then the point x + d in the second image travels the same distance 
in the opposite direction. Based on this fact, one may obtain the optical flow 
equation, which ties together the components of the vector velocity field with 
the spatial derivatives computed over the average of two consecutive frames and 
the temporal derivatives calculated as their difference [Birchfield, 1999]. Tempo­
ral derivatives are computed by taking the finite difference between two image 
frames. The weight w in formula (6.12) was 1 if the voxel was inside the trans­
ducer's imaging sector, and 0 otherwise, to prevent the influence of the image 
sector borders on tracking. 

To achieve temporal aligrunent, we chose to adapt the normalized phase di­
vision to match the phase division of the test image, by generating new motion 
models for each test image separately. To achieve spatial aligrunent, the ED con­
tour of the test image was first transformed to the common coordinate system. 
This was achieved by aligning the ED contour of the test image and the average 
of the training contours using Procrustes analysis. The spatial transform is used 
in the gathering of the terms in formula (6.12) and for applying the ED contour 
to the test image (step (D) of alg. 6.1). The pseudo-code in alg. 6.1 illustrates the 
steps for resolving the tracking parameters. 
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Algorithm 6.1 Motion-guided tracking scheme. 

(A) for each image pair f 
(1) calculate spatial and temporal derivatives 
(2) sample gradients on N positions around current contour 
(3) populate formula (6.12) for frame pair f 

(B) Solve eq. (6.11) for c 
(C) Convert c into affine parameters a (formula (6.6)) 
(D) Apply a to ED contour frame-by-frame 

6.2.5 Combined tracking 

Since the frame-to-frame affine transform is derived from the whole 3D contour, 
the model will contain global patterns of motion. This is useful in image regions 
without salient structures.' e.g. :in regions with shadow-artifact or with low signal­
to-noise ratio. However, due to the global nature of the motion-guided method, 
slightly less accurate results may be obtained locally, in particular if local patholo­
gies are present. This will be especially noticeable at sites with clear structures. ln 
an initial feasibility study, we found that the non-motion-guided Lucas-Kanade 
approach (denoted as basic tracking in the following; formula (6.3)) was able to 
track areas with salient structures very accurately, but performed poorly in other 
regions. Therefore, we hypothesize that the combination of the proposed motion­
guided method and this basic Lucas-Kanade tracking would enhance the tracking 
performance. Since the basic tracking was sensitive to noise, we also anticipate 
that this combination is only useful if the images are of sufficient quality. 

The combined result is determined by transforming the ED contour frame-by­
frame, using weighed results of both methods. Each point on the contour at frame 
s - 1 is transformed to coordinates Xcombined' determined by weighing the results 
of the basic tracking (xB) and the motion-guided method (xMc) as follows: 

x;ombined = f3x!J + (1 - f3)x';;rc- (6.13) 

f3 is a weight, which is determined by the tracking accuracy (f3 A) and the presence 
of salient structures (f3s) around the point: 

f3 = (f3A + f3s)/2. (6.14) 

The tracking accuracy is defined as the sum-of-squares difference in intensity 
between two frames, in an area surrounding the point, as this was the tracking 
error term (formula (6.2), 6.10). f3 A is 1 if this difference is lower for Lucas-Kanade 
approach than for the motion-guided method, and 0 otherwise. 

To detect areas with salient structures, the gradient norm I \7 I I of the 3D+ T 
sequence was used. A quadratic function is used to convert the gradient norm 
around the point to a weight. A quadratic function is used because of the lower 
slope around [vi[min' so that the motion-guided method contributes more in 
areas with possible noise. 

f3s = ( !VI[- jvifmm )
2 

lvi[max -[vi[mm 
(6.15) 
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where IVIImin was the minimum and IVIImax was the maximum gradient norm 
in the whole image. 
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Experimental details 6.2.6 

Data description 

To test the performance of the proposed segmentation method, 3D+ T images were 
acquired of the left ventricle in patients referred for stress echocardiography. Only 
images obtained in the rest stage were analyzed. A selection of images is shown 
in Fig. 6.2, to give an idea of the kind of imagery we are dealing with. Data 
of 36 patients were available. One patient was excluded because of severe car­
diomyopathy, which caused an abnormal doubling of the size of the ventricle, 
so that the left ventricle could not be captured properly in the scan sector. The 
remaining 35 data sets were acquired with a Philips Sonos 7500 system (Philips 
Medical Systems, Best, The Netherlands), equipped with an X4 matrix array trans­
ducer. Typical spatial dimensions were 160 x 144 x 208 voxels with 1mm x 
1mm x 0.7mm resolution. The 3D data set comprised 4 electrocardiographically 
gated pyramidal subvolumes. Twenty of these patients underwent coronary an­
giography: 6 patients had no significant vessel disease, 8 patients had one-vessel 
disease (2 in the left-anterior-descending (LAD) coronary artery region, 4 in the 
right-coronary-artery (RCA) region, 2 in the left-circumflex-artery (LCX) region), 
3 patients had two-vessel disease (LCX and RCA, LAD and RCA, LAD and LCX) 
and 3 patients had three-vessel disease. Of the 35 patients, 27 contrast-enhanced 
data sets were also available. The contrast agent SonoVue (Bracco, Milan, Italy) 
was given as a bolus of 0.5 rnl with additional boluses of 0.25 rnl when needed. 
Nineteen of these patients underwent coronary angiography: 5 patients had no 
significant vessel disease, the other 14 patients had the same types of vessel dis­
eases as described above for the noncontrast images. The data sets acquired with 
the Philips system are denoted as 'Matrix' data in the following. 

Eighteen data sets were obtained with the Fast Rotating Ultrasound (FRU) 
transducer, developed at our laboratory [Voormolen et al., 2006]. This transducer 
acquires 2D images that cover the entire left ventricle while rotating at a high 
speed. 4D data sets were reconstructed from approximately 1000 of these 2D 
images using normalized convolution interpolation, for details see Bosch et a!. 
[2006]. Typical spatial dimensions of the FRU images were 128 x 128 x 226 with 
1mm x lmm x O.Smm resolution. Six patients were referred due to myocardial 
infarction, twelve patients were referred for stress echocardiography (only rest 
images were analyzed). No further data on pathologies were available. 

Contour delineation for training 

Full-cycle endocardial borders were drawn with a previously developed semi­
automated method, based on pattern matching and dynamic programming [van 
Stralen et al., 2005a]. In short, the contour was delineated in the 4-chamber and 2-
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Fig. 6.2: A random selection of images used in this study. Four-chamber end-diastolic 
views are shown. Top row: noncontrast matrix images, middle row: FRU images, 
bottom row: contrast matrix images. Solid arrows indicate motion artifacts of the 3D 
image reconstruction, particularly in the right-ventricular area. Dotted arrow indicate 

reduced image contrast in basal areas. 

chamber views in end-diastole and end-systole. End-diastole was determined by 
the R-peak of the ECG, end-systole was defined as the frame before the opening 
of the mitral valve, which was determined visually. These anatomical views were 
selected manually by indicating the apex, the mitral valve, and the direction of the 
4-chamber in the end-diastolic 3D image (chapters 4 and 9). The 2-chamber cross­
section is defined as the view perpendicular to the 4-chamber, passing through 
the long-axis, with the long-axis defined as the line passing through the apex 
and the mitral valve center. Dynamic programming was used to detect the entire 
3D surface, aided by the intensity patterns along the user-delineated contours. 
If needed, the detected contours were manually corrected. This generated more 
intensity pattern information, after which dynamic programming was reapplied. 
This method produced accurate contours that were validated by MRI in a previous 
study [van Stralen et al., 2005a]. The contours were used to train the motion model 
and were the gold standard in validating the tracking algorithm. 

3D points were sampled on the endocardial surface at equidistant angles and 
short-axis levels using the semi-automated contour detection method [van Stralen 
et al., 2007, 2005b]. The points are defined in an anatomical coordinate system, ori­
ented around the long axis of the left ventricle. Near the apex the surface points 
are defined in a spherical coordinate system oriented around a center at 3 I 4 of 
the long axis. In the cylindrical part, the surface points are sampled equidistantly 
along the long-axis in a number of levels L and over the azimuth angle in a num­
ber of angles A. For the apical part of the surface, sampling is done equidistantly 
over the elevation and azimuth angle. This generated an even distribution of 
points on the endocardial surface. The rotational orientation was defined based 
on the direction of the 4-chamber in end-diastole using equidistant, fixed sam­
pling on a set number of levels and angles. As such, the model unfortunately 
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did not contain rotational behavior tangential to the endocardial surface, such as 
twisting of the left ventricle. 

Parameter choices 

Several parameter choices were needed for optimal functioning of the algorithm. 
The initial guesses for those parameters were taken from the recent literature. 
For the image preprocessing step, we relied on the recommendations reported 
in Siihling et al. [2005] and Danilouchkine et al. [2008]. More accurate tracking 
results have been observed for ultrasound images that were mildly smoothed (i.e. 
Gaussian kernel width of cr < 2) prior to optical flow computation [Danilouchkine 
et al., 2008]. Lindeberg [1998a] showed that image smoothing results in more accu­
rate optical flow estimates, because the presence of noise degrades the response of 
the difterential operators used. Likewise, Baraldi et al. [1996] and Danilouchkine 
et al. [2008] employed Gaussian filtering prior to optical flow computation in ul­
trasound images. For the motion-guided method, we used downsampled data as 
in van Stralen et al. [2007], because this method generated global motion patterns 
throughout the whole cardiac cycle. Full resolution data was used for the basic 
tracking, as this was a purely data-driven method. The choice for the tracking 
kernel size N appears to be less critical [Yu et al., 2006]. Duan et al. [2008] used 
73 voxel ( =4.23mm3) kernel size for tracking, while Yu et al. [2006] used 173 vox­
els. We also adhered to the common practice in statistical shape modeling and 
discarded the 5% least significant modes of variation [Cootes et al., 2001]. The 
number of vertices for accurate description of the entire myocardial surface can 
vary between 512 and 1400 [van Assen, 2006, ch. 6],[van Assen et al., 2008], in 
Bosch et al. [2002], the cardiac boundary in a long-axis view was modeled with 
37 landmarks. A = 30 angles and L = 30 levels were used for the motion-guided 
method, as in van Stralen et al. [2007]. The basic tracking used a more sparse 
distribution to match the larger kernel size. The initial values for the parameters 
were experimentally varied and chosen based on the algorithm's performance on 
twelve noncontrast Matrix sequences, by varying only one parameter each time 
while keeping the other parameters constant. None of these parameter choices 
proved to be very critical. The parameter choices based on these experiments are 
listed in Table 6.1. 

Experiments 

We performed tracking experiments using the basic Lucas-Kana de approach, the 
proposed motion-guided approach, and the combination of the two (see section 
6.2.5). For segmenting the noncontrast Matrix and FRU images, the motion mod­
els were built with the noncontrast Matrix data sets. The models were built in 
a leave-one-out fashion for the noncontrast Matrix data. All noncontrast Matrix 
contours were used to build models for tracking in the FRU images. For segment­
ing the contrast Matrix images, the models were constructed using contours from 
the contrast data, also in a leave-one-out fashion. 

Point-to-point, point-to-surface, and volume errors were calculated, with re-
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Table 6.1: Tracking parameters. 

Motion-guided Basic tracking 
Image data 
Gaussian kernel variance Cf2 

Downsampling resolution 
Tracking parameter 
Kernel size ( nw X nw x nw) 

Motion modelmg 
Variation proportion g 
Contour properties 
Number of angles A 
Number of levels L 

1.0 voxel 
1/4 

33 voxels 
(=123mm3) 

95% 

30 
30 

0.5 voxel 
1 (none) 

153 voxels 
(=153mm3) 

10 
10 

spect to the gold standard. Points were distributed evenly on the endocardial sur­
face on 30 angles and 30 levels as described in section 6.2.6. Point-to-point errors 
were defined as the euclidean distances between corresponding landmark points. 
Point-to-surface errors are calculated symmetrically by taking the euclidean dis­
tance between a point of the result contour and its projection on the true contour, 
and vice versa [Gerig eta!., 2001; van Ginneken et al., 2006]. Ejection fraction was 
defined as: EF = (VED- VEs)IVED· Regression analysis was performed for the 
volumes and ejection fractions [Bland and Altman, 1986]. Statistical testing was 
performed using the paired 1-test. Tracking times were calculated on the basis of 
an implementation in C++, with room for improvement in speed. 

6.3 Results 

6.3.1 N oncontrast matrix images 

Fig. 6.3 shows the main modes of variation captured in a model built with 35 
contours delineated in noncontrast images. An example of tracking results in a 
Matrix noncontrast image, using the basic tracking, the motion-guided method, 
and the combined method, can be seen in Fig. 6.4. 

Fig. 6.5 shows the average tracking errors of the motion-guided method, basic 
tracking, and these methods combined, for noncontrast Matrix echocardiograms. 
The results are also summarized in Table 6.2. The initial errors and the lower 
bounds are also given. This lower bound is the error made by representing the 
contour sequence as a frame-to-frame affine transform (extracted via Procrustes) 
of the ED contour. This was listed to show the capability of expressing global 
motion of the endocardial surface as a global affine transform. 

The combination of the motion-guided and basic methods produces the lowest 
surface errors and smallest average and standard deviations for the absolute vol-
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Fig. 6.3: Eigenvariations (3 standard deviations) of the first~ second, and 24th mode 
of the motion model, with the corresponding amount of variation Ad G (see formula 
(6.7)), built with 35 contours. The variation with respect to the average motion in terms 

of point-to-surface distances is color coded onto the surfaces. 

Fig. 6.4: Segmentation using the motion-guided algorithm, basic tracking, and both 
methods combined. The 2-Chamber cross-section is shown. White line denotes the 
ground truth. Solid square: for very salient structures, the basic tracking is better 
than the motion-guided method, which is properly weighed when combining both 
methods. Dotted circle: for no structures, poor basic tracking is compensated by the 

motion-guided method. 
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Fig. 6.5: Tracking errors of the motion-guided method, basic traddng, and their com­
bination, averaged over 35 noncontrast Matrix image sequences. 

Fig. 6.6: Local point-to-surface errors and weights p of the combined method color­
coded on hull's eye plots,. averaged over all patients and cardiac phases, of the non­
contrast Matrix images. A higher weight corresponds to a greater influence of motion­
guided tracking. Notice the improvement in the anterior region using the combined 
method, with locally higher weights, corresponding to better tracking in the typical 

echo-drop out anterior region. 

ume error. Fig. 6.6 shows the local surface errors of the noncontrast Matrix data 
in bull's eye plots, following standard protocol of the American Heart Association 
[Cerqueira eta!., 2002]. Fig. 6.7 shows the results of the regression analysis of the 
volume errors. The ED volume is omitted from the analysis. Due to the limi­
tations in rotational point-correspondence of the ground truth, point-to-surface 
errors are shown, rather than point-to-point errors. 
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Table 6.2: Average ± standard deviation of tracking errors of noncontrast Matrix im­
ages. Initial errors (i.e. the ED contour is the contour for all cardiac phases) and the 
lower bound (i.e. the error made when representing the contour sequence as a frame· 
to-frame affine transform of the ED contour) are also shown. P2S: point-to-surface, 
V: volume, abs(V): absolute volume, EF: ejection fraction, abs(EF): absolute EF. •· 
denotes statistically significantly different from .initial errors (p < 0.05). + denotes not 
statistically different from zero (p < 0.05). Statistical testing only performed on P2S, 
V, and EF of motion-guided, basic, and combined methods. Bonferroni correction was 

applied. 

P2S v abs(V) EF abs(EF) 
mm rnl rnl % % 

Initial 2.50±1.40 34.2±22.4 34.3±22.3 45.0±6.3 45.0±6.3 
Lower bound 0.83±0.30 -0.2±0.6 0.5±0.4 0.1±0.6 0.4±0.4 

Motion-guided 1.51±0.69* -2.0±10.0'" 7.6±6.8 -1.9±6.7'" 5.4±4.3 
Basic 1.52=0.54* 3.8±8.1'" 6.9±5.7 4.8±6.5'" 6.3±5.1 

Combined 1.35±0.44'' 2.3±7.1'" 5.6±4.8 2.5±5.7* 5.0±3.6 

Motion-Guided Basic Combined 
y"' -3.2 + l.Olx y = 5.1 + 0.98Sx y = 3.1 + 0.99x 
R = 0.961 R = 0.974 R = 0.981 

.§. ?00 I _.~1· 200 I /j200 . 
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h-ue volume (ml)--7-
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Fig. 6.7: Regression and limits-of-agreement analysis for volumes of 35 noncontrast 
Matrix data sets. The combination of motion-guided and basic tracking has a low bias 

and narrow error limits. 

113 



114 OPTICAL FLOW TRACKING 

Table 6.3: Average± standard deviation of point-to-surface (P2S), volume (V), absolute 
volume (abs(V)), and ejection fraction (EF) errors of noncontrast FRU images, also 
separated IDto systolic and diastolic values.* denotes statistically significantly different 
from initial errors (p < 0.05). + denotes not statistically different from zero (p < 0.05). 
Statistical testing only performed on P2S, V, and EF of motion-guided, basic, and 

combined methods, and only on overall values. Bonferroni correction was applied. 

P2S v abs(V) EF 
mm ml ml % 

Overall 
Initial 2.7±1.4 35.8±23.8 36.2±23.3 41.3±12.1 

Motion-guided 1.9±0.8'· -3.5±13.3' 10.0±9.4 -2.1±9.1'+ 
Basic 1.9±0.8' 12.2±12.6' 14.3±10.1 13.0±8.6' 

Combined 1.9±0.7' 11.7±12.6' 13.9±10.0 13.0±8.5 
Systole 

Initial 2.4±1.3 44.1±23.8 44.2±23.7 
Motion-guided 2.0±1.0 1.4±10.6 8.0±7.0 

Basic 2.0±0.9 16.6±11.2 16.9±10.7 
Combined 1.7±0.8 16.4±10.9 16.7±10.5 

Diastole 
Initial 3.2±1.5 30.5±22.4 31.1±21.6 

Motion-guided 1.9±0.7 -6.6±13.9 11.3±10.5 
Basic 1.8±0.7 9.4±12.8 12.7±9.4 

Combined 1.9±0.6 8.7±12.7 12.2±9.3 

Fig. 6.8: Average local point-to-surface errors and average weights {3 of the combined 
method color-coded on hull's eye plots of the FRU images. 

6.3.2 FRU images 

Models were built using all Matrix nonqmtrast data sets and then tested on FRU 
images. Table 6.3 shows point-to-surface errors, volumes and ejection fraction 
errors for FRU data sets. 

6.3.3 Extension to contrast-enhanced images 

As an extension, the tracking methods were also applied to contrast-enhanced 
images, to demonstrate the applicability to other types of images. The models 
were trained in a leave-one-out fashion on the contrast contours. Tracking results 
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Table 6.4: Average ± standard deviation of point-to-surface (P2S),. volume (V), abso­
lute volume (abs(V)), and ejection fraction (EF) errors of contrast Matrix images, also 
separated into systolic and diastolic values. * denotes statistically significantly dif­
ferent from initial errors (p < 0.05). + denotes not statistically different from zero 
(p < 0.05). Statistical testing only performed on P2S, V, and EF of motion-guided, 
basic, and comb:ined methods, and only on overall values. Bonferroni correction was 

applied. 

P2S v abs(V) EF 
mm ml ml % 

Overall 
Initial 3.9±2.2 35.0±24.5 35.3±24.1 62.7±9.6 

Motion-guided 1.9±0.7'" -1.5±10.1'" 7.8±6.5 1.3±11.7*+ 
Basic 2.1±0.8* 11.7±12.4'" 12.7±11.4 14.7±10.8* 

Combined 1.8±0.7* 10.1±9.5* 10.8±8.7 12.7±8.5' 
Systole 

Initial 4.8±2.6 42.7..:..27.0 42.8±26.9 
Motion-guided 1.9±0.9 2.0±7.7 6.2±5.0 

Basic 2.0±1.0 10.6±11.5 11.3=10.8 
Combined 1.7±0.8 9.4±8.7 9.8±8.0 

Diastole 
Initial 3.4±1.7 30.2±21.4 30.6±20.9 

Motion-guided 1.9±0.6 -3.7±10.8 8.8±7.2 
Basic 2.2±0.7 12.4±12.9 13.5±11.8 

Combined 1.9±0.6 10.7±10.0 11.4±9.1 

for a contrast-enhanced data set can be found in Fig. 6.9. Table 6.4 shows volumes 
and ejection fraction errors for contrast images. 

frameO (ED) 

Fig. 6.9: Tracking in contrast image. Four-chamber view is depicted. 'White line de­
notes the ground truth. Notice the irregular contours for basic tracking, because errors 

accumulate over the cardiac cycle. 

ns 
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Fig. 6.10: Average local point-to-surface errors and average weights p of the combined 
method color-coded on buJY s eye plots of the contrast images. 

6.3.4 Computation time 

For noncontrast Matrix sequences, which had on average 18.6 ± 3.1 frames, the 
computation times of the algorithms in C++, running on a single core 2.8GHz 
processor, were 131 ± 25 seconds for the motion-guided algorithm (including 
model building of 22 ± 6 seconds) and 139 ± 24 seconds for the basic tracking 
method. The time was lower for the tracking part of the motion-guided method, 
because the size of the kernel in which the gradients needed to be sampled was 
smaller. 

6.4 Discussion 

In this chapter, a motion-guided method based on optical flow principles was in­
vestigated. The performance of this method was compared with that of purely 
data-driven optical flow tracking. We also proposed a combination of the two 
methods. The algorithms were evaluated on noncontrast images of varying qual­
ity and on contrast images. 

6.4.1 Tracking in noncontrast matrix images 

The proposed motion-guided algorithm proved to be able to segment noncontrast 
Matrix images globally. generating point-to-surface errors comparable to the basic 
method, although the volumes errors and ranges were slightly higher (see Table 
6.2). These errors appeared to be distributed globally across the endocardial sur­
face (see Fig. 6.6); since the motion-guided approach is a global method, subtle 
variations in motion, such as due to local pathologies, could be missed. This may 
be seen in the inferoseptal region, where the basic method was better than the 
motion-guided method. On the other hand, the local errors in the anterior region 
were higher for the basic method, as this area usually suffers from drop-out arti­
facts, as corroborated by Nemes et al. [2007b]. The larger errors in the anteroseptal 
view corresponded to the aorta, where basic tracking was relatively difficult due 
to the opening and closing of the aortic valve. In this case, the combination of 
the motion-guided method and basic tracking was an ideal solution, resulting in 
local tracking improvement (Fig. 6.6) as well as better global point-to-surface and 
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volume errors (Table 6.2). 
While the point-to-point errors may seem relatively high, especially at end­

systole, we would like to stress that the ground truth used did not contain rota­
tional components. This may cause the twisting behavior of the left ventricle to be 
omitted. On the other hand, a data-driven tracking method such as optical flow 
should be able to detect this rotational behavior, provided that the myocardium 
is sufficiently visible and not obscured by artifacts. This influences the compari­
son between the ground truth and the tracking results in terms of point-to-point 
errors. This lack of rotational behavior may have had a negative effect on the re­
sults of the motion-guided method. While this is a major limitation of the current 
study, establishing point-correspondence in temporal images is not a trivial task 
(see section 6.4.5). Therefore, in this study, we must rely more on the point-to­
surface and volume errors for judging the merits of our methods. 

The average point errors at the end of the cardiac cycle were lower for the 
motion-guided method than for the basic method (Fig. 6.5). This is due to the 
inherent temporal continuity of the motion-guided method, so that the point er­
rors almost return to their average starting value at the end of the cardiac cycle. 
Because the basic tracking method was performed on a frame-to-frame basis, er­
rors could easily accumulate across the cardiac cycle. This finding can be used to 
adjust the weights of the combined method to rely more on the motion-guided 
tracking near the end of the cardiac cycle. 

Interestingly, the bias in volume error using basic tracking was larger than 
for the motion-guided approach (Table 6.2). This 'lagging' behavior is inherent 
in the Lucas-Kanade solution, as commented by Silltling et al. [2005]. Noisy esti­
mates of the image gradients generally lead to an underestimation of the motion 
[Danilouchkine et al., 2008], so that the contour tends to stay closer to the end­
diastolic contour during the cardiac cycle. For the motion-guided method, how­
ever, the tracking results will tend to resemble the mean motion instead. Also, 
since end-systole was synchronized during phase normalization, the detected 
contour in end-systole should conform to the model's mean contour in that phase. 
The low ejection fraction bias suggests that this might well be the case (Table 6.2). 
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Tracking in FRU images 6.4.2 

For the more challenging FRU images, the motion-guided method was still able 
to provide good results, especially given the fact that the model was built using 
contours of Matrix images. Surface errors were comparable; however, the volume 
errors of the motion-guided method were superior to those of the basic method, 
especially in systole (see Table 6.3). For the basic method, a larger bias in ejection 
volume was found, which may be a result of the 'lagging' behavior as discussed in 
section 6.4.1. This demonstrates the merits of motion-guided tracking in relatively 
'difficult' images. 

Overall, the tracking results in these images are worse than those in the Ma­
trix images. Because the FRU image reconstruction was based on interpolat­
ing irregularly spaced 2D images in 3D+ T domain, the frame-to-frame differ­
ences in intensity were generally larger than those of the Matrix images. These 
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large frame-to-frame differences may disturb the brightness constancy assump­
tion [Danilouchkine et al., 2008]. Whereas the Matrix data are reconstructed by 
stitching four adjacent subvolumes [Brekke et al., 2007], the FRU data are re­
constructed from irregularly distributed ultrasonic beam lines from several heart 
cycles. Patient breathing or motion of the ultrasonic probe could result in mo­
tion artifacts, that present themselves as irregular edges in the images (see Fig. 
6.2). These edges may not necessarily be consistent in time, shifting from frame 
to frame. The higher errors in the inferoseptal region for the basic tracking cor­
respond to a local higher density of these edge artifacts in the images, caused by 
the presence of the right-ventricular wall (as indicated by arrows in Fig. 6.2). 

Also, since motion-artifacts manifest themselves as sharp discontinuities in 
the FRU images, the saliency weights may be large in those areas (section 6.2.5), 
resulting in relatively low weights overall (see Fig. 6.10). This may have caused the 
combined method to falsely rely on the basic tracking, causing the basic tracking 
and the combined results to be similar. More future research is needed to provide 
a more suitable combination of both methods. 

6.4.3 Extension to contrast images 

In this chapter, we also showed the feasibility of applying the motion-guided 
method to contrast-enhanced images. This is very encouraging, since there are 
few reports on automatic segmentation in 4D contrast images in the literature. 
The swirling of the contrast produces highly fluctuating intensity patterns, which 
makes it challenging for any intensity-based tracking method. The inferior basic 
tracking results are probably due to the swirling contrast images. The motion­
guided method has better point-to-surface and volume errors than the basic meth­
od. Also, the bias in ejection fraction is much smaller (see Table 6.4). 

The difficulties in tracking the basal segments are reflected in the local sur­
face errors of the basic tracking method (Fig. 6.10). Similarly, Oost et al. [2006] 
reported difficulties in matching their active appearance models to the basal part 
of the heart in LV angiograms. However, in this case, we think that the attenua­
tion of the ultrasound beam due to the echogenic contrast agent causes a lower 
image contrast further away from the transducer, making tracking more difficult 
compared with noncontrast images (see Fig. 6.2). 

In this study we applied a model which was built using images of one type of 
equipment (Matrix data) to images with different acquisition settings (FRU data) 
quite successfully. The idea of using generic models for segmentation tasks is ap­
pealing. Previously, Van Assen et al. used a cardiac active shape model built with 
MR1 data to segment both CT and MR images under various acquisition settings 
[van Assen et al., 2003, 2006]. This success relies heavily on the fact that the left 
ventricular appearance is similar in both modalities. Similarly, qualitative results 
of a motion model built with tagged MR1 for segmenting the left ventricle in ul­
trasound were presented in Gerard et al. [2002]. Unfortunately, no quantitative 
results were available in that paper for comparison (see section 6.4.4). In our case, 
we were not able to apply the noncontrast motion model to contrast images, be­
cause heart morphology is imaged differently in noncontrast and contrast images. 
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For contrast images, the blood is imaged, whereas for the noncontrast images, the 
muscular myocardial wall and trabeculae are most apparent. In end-systole, tra­
beculae on the inside of the LV contract, so that all blood is squeezed out [Voor­
molen and Danilouchkine, 2007]. This is differently visualized in the noncontrast 
images, resulting in a difference in motion patterns. However, we believe that if 
these differences can be trained, the motion model can be adapted accordingly. 
The differences in contour delineation in noncontrast and contrast may also ex­
plain why the point and volume errors are higher than those of the noncontrast 
images, despite the fact that they come from the same patient database. 
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Comparison with other work 6.4.4 

Table 6.5 lists the comparative analysis of the point-to-surface and volumetric er­
rors achieved by other groups with segmentation algorithms. Due to the vast 
amount of literature on segmentation, the scope of our comparison is constrained 
to the most recent work on cardiac ultrasound. Also, as ours is a 3D tracking 
method, we limit the comparison to automated 3D+time methods with surface 
and volume errors reported in recent technical papers. Furthermore, comparisons 
with papers on strain analysis are omitted, as no strain results were available with 
our method. A distinction was made between segmentation and tracking meth­
ods, as ours is a tracking method. The surface and volume errors obtained in this 
study compares well with the ones reported in the previously published papers. 
However, since ours is a tracking method, and needs a 3D initialization, the er­
rors cannot be entirely compared with those of the segmentation-only papers. A 
second comment is that the methods of Myronenko et a!. [2007] and Duan et a!. 
[2008] were evaluated on open chest animal models, of which the images are not 
contaminated by drop-out artifacts caused by the rib cage (as is the case with in 
vivo clinical data). 

According to Barron eta!. [1994], who tested nine different optical flow algo­
rithms including the Horn-Schunck and Lucas-Kanade methods, the latter algo­
rithm was the most reliable. Si.ihling eta!. [2005] found that their Lucas-Kanade 
based method was more accurate for echocardiograms, although Baraldi et a!. 
[1996] noticed little difference between these two. The difference in results may 
be explained by the choice of parameters, such as kernel sizes and smoothing 
constraints. Here, we chose the Lucas-Kanade method because of its computa­
tion efficiency. Actually, by combining the Lucas-Kanade solution with a statis­
tical motion model, the proposed algorithm also remotely resembles the Horn­
Schunck constraint because a globally smooth affine flow along the endocardial 
boundary was built into the Lucas-Kanade solution. In that sense, the proposed 
method possibly combines the best of both worlds. This general conclusion agrees 
with the one reported by Bruhn et a!. [2005], who combined the Horn-Schunck 
and Lucas-Kanade formulations and obtained better tracking results, especially 
in noisy images. 

Several papers have been published on block matching versus optical flow. 
Malpica et a!. [2004] compared block-matching and the Lucas-Kanade approach, 
and concluded that the latter was best for contrast echocardiograms. Veronesi 
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et a!. [2006] used both methods consecutively to detect the long-axis of the left 
ventricle in echocardiographic sequences. Combinations of smart block-matching 
[Behar et a!., 2004; Lingmaru et a!., 2008] and optical flow may be used to further 
refine the motion-guided approach. 

6.4.5 Limitations 

A major limitation of this study is the lack of rotational point correspondence in 
the motion model, due to the limitation in the semi-automated contour detection 
program that was used to generate training contours. Establishing point corre­
spondence in ultrasound images is not a trivial task. In this study, a ground truth 
of the torsion of the left ventricle was not available. For in vivo patient imaging, 
point correspondence can be obtained for example via MRI tagging [Florack et 
al., 2007; Gerard eta!., 2002]. Such data was not available in this study. For ultra­
sound images, point correspondence may be achieved theoretically using dense 
annotations of endocardial landmarks, which is a time consuming job. Another 
option is using speckle tracking [Helle-Valle et a!., 2005], although this poses a 
challenge in clinical 3D images due to current hardware limitations in frame rate. 

Since the motion model was built with one affine transform per frame, the 
resulting model only showed global patterns of motion. This is a major limitation 
of this study. However, the global errors made by modeling the contour sequence 
as an frame-to-frame affine transformation of the ED contour were quite small 
(lower bound in Table 6.2). Also, by using this global affine transform, spuri­
ous, noisy motion patterns are removed, whlch may arise from inconsistencies in 
the training contours. In this study, we proposed to do a refinement using basic 
tracking to achieve more accurate results locally. This basic tracking may also be 
enhanced using affine-motion representation [Siihling et a!., 2005], higher order 
optical flow terms [Otte and Nagel, 1995], or replaced by smart template matching 
teclmiques, e.g. using features [Yeung et al., 1998a]. Another way is to build more 
local models, e.g. using only a part of the cardiac phase or left ventricular region. 
We have performed some experiments using separate local models and encoun­
tered difficulties in areas with shadowing and in the near-field of the transducer. 
A way to deal with this is to identify these areas, either manually or automatically, 
and exclude these from the tracking. Here, the gradient norm of the images was 
used to determine roughly if image regions contained salient structures, but more 
sophisticated methods can be developed. However, automated artifact detection 
for ultrasound images is not a trivial problem and requires further investigation. 

The current implementation relies on manual identification of the end-systolic 
phase in the image. This could be replaced by a reliable automatic method, based 
on ECG. More time points may be added, such as the end of the rapid-filling phase 
in diastole [Perperidis eta!., 2005]. However, more manual interaction should be 
avoided. 

An inherent limitation of model-based methods is that the training sets should 
comprise the expected variation of the underlying anatomical organ. To demon­
strate the versatility of the proposed approach, the image data included a mixed 
population of normal and abnormal heart function. Still, good results were ob-
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tained in this study, despite this large variability. For a more detailed look at 
the differences between tracking in normal and abnormal sequences, one would 
have to obtain many more patients in all kinds of pathologies, for example in 
an extensive clinical trial. Previously, we have performed feasibility studies on 
classifying localized pathologies in echocardiographic sequences using statistical 
shape models (Bosch et al. [2005], chapter 8). However, the data sets for building 
and validating the model in these studies were considerably larger. Moreover, 
the models represented only 2D motion. Obviously, separate models for different 
pathologies can be built and applied to the images, taking the best performing 
model (e.g. with the lowest intensity tracking error) as the final result. Therefore, 
the question about the suitability of the proposed approach for the purposes of 
classification of the local heart abnormalities remains open and definitely requires 
further investigation. 
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Extensions 6.4.6 

The current motion model was derived from LV contours, however, it would be 
interesting to augment this model with texture information. One way to do this 
is to learn models of brightness variations from one frame to the next. Obviously, 
this requires the images to be acquired using similar equipment. If these patterns 
can be identified, the motion parameters and brightness variation parameters can 
be resolved in an iterative scheme, using the found motion parameters to update 
the brightness variation parameters and vice versa. 

Conclusion 6.5 

A tracking method for delineating contours in 3D+time left ventricular echocar­
diograms was proposed. A pre-trained model of cardiac motion was fitted to the 
images to be segmented, using an optical-flow based formulation. For good qual­
ity noncontrast images, optimal results were obtained using a smart combination 
of a local tracker with the proposed motion-guided method. For data sets of chal­
lenging image quality, the motion-guided method provided good estimates of left 
ventricular volume and ejection fraction. Encouraging results were obtained in 
contrast-enhanced images. 
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Table 6.5: Comparison with cardiac ultrasound 4D segmentation and tracking methods from literature. Average± standard deviation it::l 
of surface, volume V, absolute volume abs(F), ejection fraction (EF), and absolute ejection fraction (abs(EF)) errors. Ns denotes number 

of subjects investigated. Empty columns mean that data ·were not available. 

Publication Ns surface (mm) V (ml) abs(V) (ml) EF (%) abs(EF) (%) 
rnm ml ml % % 

Segnlei1tation only 
···---

Angelini 2001 6 ED: -3.9±20.2 ED: 13.92±13.97 8.8±5.6- 8.8±5.6 
ES: -9.1±8.7 ES: 9.87±7.60 

Corsi 2002 25 -15.58±20.55 (ED&ES only) 
Sanchez~Ortiz 2002 14 6.63±37.07 

Wolf2002 20 3.44±1.18 
2002 2 <:;6 

Lin 2003 24 1.64±0.50 
Angelini 2005 10 ED: 16.1±25.6 ED: 21.35±20.84 0.59:UL3 10.01±4.13 

ES: 6.6±17.5 ES: 10.55± 15.26 
Walimbe 2006 5 ED: 8.01:1.87 7.2±0.84 

ES: 8.8±2.39 
Hansegard 2007 36 3.4±2.3 ED: -3.1±20 -1.3±6.3 

ES: 0.61±13 
Zhu 2007 22 1.451:0.30 

Segmentation ail-d Tracking 
.. ____ 

Zagrodsky 2005 ib ED: 17.5±11 7.6±5.5 
ES: 9.8±10.8 

Hanseg<lrd 2007 21 2.2±0.56 3.4±10 -7.7±6 
Orderud 2007 21 2.7 4.1±12.6 0 

Tracking only " >-l 
_,,- H 

Myronenko 2007 J:il 1.03±0.62 n 

Duan 2008 40" 3.93±2.54 ~ 
Yang 2008 31 1.28±1.11 fl 

··--- 0 
CurreilTmethod :< 

Combiilect 35 1.35±0.44 2.3±7.1 5.6J:4.8 2.5cl:5.7 5.0±3.6 ~ 
n 

11 1 open chest pig, 10 scans 

I~ 11open chest dogs 
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Echocardiography is a commonly-used, safe, and noninvasive method for assessing 
cardiac dysfunction and related coronary artery disease. The analysis of echocardio­
grams, whether visual or automated, has traditionally been hampered by the presence 
of ultrasound artifacts, which obscure the moving myocardial wall. In this chapter, a 
probabilistic framework for trackill.g the endocardial surface .in 3D ultrasound images 
is proposed. Artifacts which obscure the myocardium are detected in order to improve 
the quality of cardiac boundary segmentation. The expectation-maximization algo­
rithm is applied in a stationary and cardiac motion frame-of-reference, and weights 
are derived accordingly. The weights are integrated with an optical-flow based con­
tour tracking method, which incorporates prior knowledge via a statistical model of 
cardiac motion. Evaluation on 35 3D echocardiographic sequences shows that this 
weighed tracking method significantly improves the tracking results. In conclusion, 
the proposed weights are able to reduce the influence of artifacts, resulting in a more 
accurate quantitative analysis. 

Submitted a~: 
Probabilistic fr.un~work foe improving tracking in Mlifact-pron~ 3D ~choc;udiogr.uns K Y.E. kung, M.G. D.:milouchkine, M. 
van StrJkn, N. de Jong, ;md J.G. Bo5Ch. 
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7.1 Introduction 

7.1.1 Artifacts in cardiac ultrasound 

Echocardiography is a commonly-used, fast, and relatively inexpensive imag­
ing modality for assessing left ventricular dysfunction and underlying coronary 
artery disease. 2D echocardiography is used in many hospitals across the world to 
obtain parameters of cardiac function noninvasively. In recent years, 3D echocar­
diography has undergone many technological advances and is becoming increas­
ingly popular. By imaging the whole left ventricle in 3D, many options become 
available for analyzing the heart's true 3D behavior. All this makes ultrasound a 
very attractive imaging modality for cardiac diagnosis. 

Despite these advantages, there are also some drawbacks to ultrasound imag­
ing. Echocardiograms may be difficult to interpret, so that a long learning curve 
is required. The reason is that the images may be contaminated by speckle noise, 
and often contain ultrasound artifacts. Common anomalies in echocardiograrns 
are side-lobes artifacts, reverberations, shadowing, and near-field clutter [Feigen­
baum eta!., 2005, p. 29-32]. 

Side-lobes of the main, central ultrasound beam may cause echoes coming 
from the side-lobe areas to appear as if they come from the main beam [Cobbold, 
2007, p. 438]. This results in an arched 'edge' in the image, and can be clearly seen 
if the object in the side-lobe has a strong reflection. Lesser degrees of the side­
lobe artifact increase the general noise level of the image. Reverberations occur 
when the sound beam bounces back and forth between reflectors in the imaged 
area before it is received by the transducer. This artifact appears as one or more 
echo targets directly behind the reflector [Hedrick and Peterson, 1995]. Typically, 
reverberation and side-lobe artifacts that originate from a fixed reflector (e.g. a 
rib)-will not move with the motion of the heart. A more troublesome artifact is 
shadowing. Shadowing is caused by objects in the ultrasound path which cause 
high reflections or attenuation, leaving an area of low intensity beyond [Nelson 
et a!., 2000]. In transthoracic cardiac images, this is usually caused by the rib 
cage, which prevents the imaging of the myocardium (causing the so-called drop­
out regions). This is especially problematic in 3D echocardiography, because the 
size of the transducer is generally speaking larger than that of the 2D transducer, 
making it harder to image between the ribs. Near-field clutter arises from rever­
berations of high-amplitude signals close to the transducer [Feigenbaum et al., 
2005, p. 32]. This hampers the imaging of objects in this area, and is particularly 
noticeable in echocardiograms acquired from the apical window, where the near­
field clutter often obscures the left ventricular apex. Fig. 7.1 shows examples of 
typical ultrasound artifacts. For accurate visual and quantitative assessment of 
the heart, it is highly desirable to identify such artifacts. Areas where the cardiac 
wall is obscured by such artifacts should be detected and dealt with differently in 
the analysis. 
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Fig. 7.1: Typical artifacts in echocardiographic sequences. (a) Side-lobe artifact. (b) 
Shadowing, obscuring the myocardial wall. (c) Near-field clutter close to the trans­
ducer, in this case more pronounced probably due to a rib echo (arrow); the edge in 
the dotted box is not part of the left ventricular apex but an artifact which does not 

move tl-rroughout the sequence. 
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Related work 7.1.2 

Image artifacts, in the broadest sense, refer to a distortion or anomaly in the data, 
which may cause an interpretation error. Therefore, it has received considerable 
attention in various research topics, e.g. in pictuTe compression [Shen and Kuo, 
1998] and in video and fiim restoration [Kokaram, 2004]. ln the first example, 
much effort has been put into reducing the blocking and ringing artifacts in e.g. 
lossy JPEG images, which are quantization errors due to the use of block-based 
coding algorithms (such as the discrete cosine transform) [Paek et al., 1998]. As 
for video restoration, Kokaram [2004] noted that many artifacts, such as dirt on 
the images, dropout (errors in the video tape), and fiim tear (missing pieces of 
image) manifest themselves as missing data in singular frames. Typical detection 
and restoration algorithms therefore often involve the temporal analysis of the 
image sequence, and are strongly related to motion estimation research. 

Artifact detection can also be seen as an outlier detection problem. ln the 
statistics and computer vision community, considerable effort has been put into 
robust modeling, in which outliers, such as occlusions and gross image noise, are 
detected [Meer et al., 1991, 2000]. Traditionally, least median squares regression 
[Rousseeuw, 1984] and RANSAC methods [Fischler and Bolles, 1981] have been 
popular choices for robust modeling. For the more specific application of statisti­
cal modeling using point-distribution (shape) models, weighed least-squares was 
used for dealing with multiview data in Shum et al. [1995]. De !a Torre and Black 
[2003] propose a robust M-estimation based method for building linear Principal 
Component Analysis (PCA) models. Here, the term 'outliers' refers to data that 
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does not conform to the assumed statistical model. Recently, such methods have 
been extended to matching statistical models more robustly. For example, Rogers 
and Graham [2002] formulated M-estimator and random sampling methods for 
active shape models. Kaus et al. [2004] used a feature model instead, obtained 
by classification of the intensity values, to guide statistical model based segmen­
tation. Lekadir et al. [2007] proposed a geometric constraint, based on the ratio 
of inter-landmark distances, to detect outliers during both model building and 
matching. Likewise, robust methods have been proposed for active appearance 
models [Gross et al., 2004]. In particular, Beichel et al. [2005] developed a ro­
bust matching method using the mean shift algorithm for segmenting X-ray data, 
which were occluded e.g. by surgical implants. 

In Computer Tomography (CT) and Magnetic Resonance (MR) imaging, much 
work on artifact reduction consists of correcting motion artifacts due to patient 
breathing and variations in the heart rate. In MR imaging, respiratory artifacts, 
which cause blurring of the images [Hedley and Yan, 1992], can be limited by 
breath holding [Bogaert et al., 1995], or more advanced navigator-echo methods 
[Firmin and Keegan, 2001]. Many reports can also be found on correcting image 
non-uniformities, caused either by inhomogeneous radio-frequency fields [Had­
jidemetriou et al., 2009] or by surface coils which have a nonuniform spatial sen­
sitivity [Belaroussi et al., 2006; Lai and Ming, 2003]. The latter artifact affects the 
imaging of the apex of the heart: since the apex is closer to the body surface and 
thus also to the coil, it may appear as a bright region so that other structures 
are obscured. Recently, image processing methods have been introduced, which 
make use of image registration [Comte et al., 2004; Danilouchkine et al., 2005; 
Gupta et al., 2003; Stegmann et al., 2005]. For CT, patient motion and heart beat 
variation may cause streaks in the reconstructed images. This can be reduced by 
shortening the acquisition time using multidetector-row systems (multislice CT) 
[Kopp et al., 2004] and dual-source systems [Roberts et al., 2008]. Postprocessing 
methods also exist; e.g. Manzke et al. [2004] developed a retrospectively gated 
reconstruction algorithm which takes into account the heart rate variations. 

For removing ultrasonnd artifactsf much effort involving hardware improve­
ments has been described in the literature, such as different pulsing schemes and 
frequencies, and reduction of the transducer footprint. For example, second har­
monic imaging not only offers spatial resolution improvements and reduced side­
lobes, but also reduces the energy at the very near-field, resulting in less near-field 
clutter [Duck, 2002]. Coded excitation is a popular method for improving signal to 
noise ratio [Takeuchi, 1979]. To improve the overall visibility of the myocardium in 
echocardiograms, contrast agents are often employed [Nemes et al., 2007b]. This 
may help the diagnosis of patients whose images have a low signal-to-noise ratio. 

Several reports can be found on image processing techniques for artifact de­
tection in ultrasound. Stationary clutter rejection methods have been developed 
mostly for color Doppler flow imaging [Bjaerum et al., 2002; Cloutier et al., 2003; 
Yoo et al., 2003]. For identifying reverberations in normal ultrasound images, 
Duarte et al. [2003] presented an algorithm based on the comparison of power 
spectra and time-of-flight. Bylund et al. [2005] proposed to detect reverberation 
artifacts from a static reflector using quadrature filters. These were then removed 
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using 2D+time Wiener filtering. A method to remove near-field noise was re­
ported by Hozumi et al. [1998]. They assume that the noise in the near-field is 
generated by steady reflectors (such as ribs and intercostal muscles), whereas the 
echo from moving myocardium is dynamic. Therefore, they apply a high-pass 
filter over the radio-frequency signal over time, similar to clutter removal in color 
Doppler imaging. Zwirn and Akselrod [2006] proposed to classify the time inten­
sity curves of echocardiographic image sequences. They looked at the temporal 
average and standard deviation of the intensity at each pixel of the image, and 
classified them into stationary clutter, moving cardiac wall, and blood. This was 
done by fitting three Gaussian histograms to the distributions of the average and 
standard deviations throughout the image. Most of the above methods show that 
the temporal information is of great importance in detecting artifacts in echocar­
diographic images. 
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Study goal 7.1.3 

In this chapter, we propose a framework for improving the tracking of endo­
cardial borders in 3D echocardiographic sequences, by detecting areas in which 
the myocardium is obscured by typical artifacts such as shadowing, near-field 
clutter, and static reverberations. The goal is to automatically recognize these ar­
tifacts and suppress their influence on endocardial border tracking, to ultimately 
improve the quality of the segmentation. To accomplish this, we incorporate tem­
poral intensity information from the images into an optical-flow-based tracking 
framework. 

Previously, we have proposed an optical-flow-based method for tracking left 
ventricular endocardial borders throughout the cardiac cycle (chapter 6). The 
method consists of a global tracker which is guided by a statistical cardiac mo­
tion model, followed by a refinement using purely data-driven tracking. The idea 
is that the 'motion-guided tracker' estimates the global motion of the myocar­
dial wall on the basis of the statistically learned patterns of heart contraction. 
Subsequently, this global estimate is refined using a local optical-flow tracker, as 
described by Lucas and Kanade [1981]. To improve this tracking framework, it 
makes sense to only apply the local refinement in salient areas, which can be 
tracked accurately. 

In the previous study (chapter 6), salient areas were detected using a simple 
measure defined using the intensity gradient norm. In ultrasound images, higher 
gradients could be found at the interface between the left ventricular cavity and 
the myocardial wall, if the latter is clearly visible, whereas if the myocardium is 
obscured by shadowing, the gradients would be low. However, high gradients 
can also be found in the near-field region and in areas with static reverberations 
artifacts. In this chapter, we propose a probabilistic framework to also deal with 
the latter artifacts. 

The method we have opted for is inspired by the work of Jepson et al. [2003], in 
which an expectation-maximization (EM) approach was used to categorize tem­
poral features of image sequences. They incorporated this into a framework for 
tracking people in video sequences. This approach resembles the work of Stauffer 
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and Grimson [2000], who also modeled the probabilities of image pixels values 
through time using a Gaussian mixture model. We combine an adapted version 
of the EM approach with our own optical-flow based tracking method. Proba­
bilistic weights are defined based on an initial estimation of cardiac motion; these 
are incorporated into the tracking method to improve the tracking accuracy. By 
examining the difference between the EM results applied in the stationary and in 
the cardiac motion frame-of-reference, a distinction is made between salient and 
obscured myocardium. Our method is evaluated in a considerable set of clinically 
available 3D echocardiograms. 

7.2 Methods 

7.2.1 Categorizing temporal image features 

Jepson et al. [2003] proposed a robust method of tracking objects in a time se­
quence, taking into account the changes in the appearance of the object through 
time. Their idea involved examining the temporal image information and catego­
rizing each image pixel as 'stable', 'wandering', or 'lost', according to the amount 
of change. As an example, they tracked a person's face while he was removing 
his glasses in an image sequence. By identifying parts of the face which were 
stable (i.e. not obscured by the moving glasses), the tracking could be made more 
robust by relying more on these stable components. To detect these stable com­
ponents, an expectation-maximization (EM) approach was applied to temporal 
image features. This categorized the feature time-curve of each pixel into 'stable' 
(i.e. stationary to slowly moving), 'wandering' (i.e. moderately moving), or 'lost' 
(i.e. fast moving and outliers) components. 

When applied in cardiac ultrasound images, higher probabilities of the stable 
component are expected for areas where the myocardium is obscured, since these 
would have a constant intensity. Wandering components may represent areas 
where the myocardium is more clearly visible. Lost components may be fast 
moving structures like opening and closing valves. 

In this study, the formulations used by Jepson et al. [2003] are slightly adapted 
so that instead of tracking objects in long image sequences, the method is suitable 
for tracking in 3D echocardiography, where image sequences often consist of only 
one single heart beat. We define the stable component by a Gaussian probability 
density function p5 : 

P.(d I" cT') = _l_e-(d,-p,)'l2o'f 
!> t rs, s CTsV2TC , (7.1) 

where dt denotes the feature value at time t. These features can be the grey-level 
intensities, or outputs of an image filter (e.g. image gradients). In this study, we 
use only the image intensity as feature; initial testing revealed that features such 
as imao-e cradients led to similar results. "s and a; are the mean and variance of o o r· " 
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the stable component. The wandering component is also drawn from a Gaussian 
distribution Pw• defined as: 

1 (d )2;o ' Pw(dtlflw_t.o;,,,) = e- ,-~w.r -a-;;,,, 
!Tw_tV2ii 

(7.2) 

Note the temporal dependency of the mean and variances of the wandering com­
ponent (flw,t. a;,_,). The lost component is drawn from a uniform distribution, 
defined by the maximum and minimum values of d over all images: 

1 
Pl(d,) = d -d . 

max mm 
(7.3) 

The tluee components are combined in a probabilistic mixture model for dt: 

(7.4) 

where the parameters to be estimated are the mixing probabilities (m = ( m,, mw, 
m1)l and the mean and variance of the wandering component q, = (flw,t. cr;,_,). 

In the Jepson approach, the unknown model parameters (i.e. the mixing prob­
abilities and the mean and variance of the wandering component) are estimated 
with an efficient computational algorithm. This 'online' EM algorithm generates 
linear updates for the parameters per time frame, by considering image features in 
past frames exponentially less important. For an extensive derivation, see Jepson 
et aL [2003]. Two steps are computed for each new image frame: an expectation 
step, in which the ownership probabilities are estimated using previous estimates 
of the unknown parameters, and a maximization step, in which the unknown pa­
rameters are updated using the ownership probabilities. The ownership probabil­
ities, which can be viewed as the probability that the current observation belongs 
to a certain component, given the current estimates of the model parameters, are 
estimated as: 

for iE{w,s,l}. (7.5) 

This makes o,_~ + Ow_t + 01,1 = 1 at each time step. The mixing probabilities are 
updated using a constant IX = 1- e-l/r with T = n,/ log2, where n, is the 
half-life of the exponential function downweighing the estimates of the previous 
frames: 

mi,t=IXOi,t(dt)+(1-1X)mi,t-l for iE{w,s,l}. 

The jth-order, ownership weighed, data moment Mj,t is updated by 

Mj,t = IXd{ow,t(dt) + (1-IX) Mj_t-l 

The mean of the wandering component is calculated using 

Mu 
l'wt = --' 

' Mo,t 

(7.6) 

(7.7) 

(7.8) 
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and the variance of the wandering component is updated with 

(7.9) 

The initial mixing probabilities are set as follows, following recommendations 
in Jepson et a!. [2003]: m;,o = 1/3, Mo.o = mw,o. M1,0 = domw,O• and Mz.o = 
cr;,_0mw,O· The initial mean and variance of the stable component are the mean and 
variance of the feature temporal curve. Since the echocardiographic sequences 
only comprise one cardiac cycle, the algorithm is performed repeatedly on the 
image data for C cycles. The ownerships of the last cycle is retained for calculating 
weights. 

7.2.2 Combination with tracking 

Weight scheme 

As mentioned earlier, the goal of this study is to improve our previously proposed 
tracking algorithm by recognizing areas in which the myocardium is obscured by 
shadowing, near-field, and reverberation artifacts. Our optical-flow-based track­
ing method has been shown to be suitable for propagating a 3D contour in end­
diastole throughout the cardiac cycle, via frame-to-frame tracking (chapter 6). 
The tracking method consists of a global tracker which is guided by a statistical 
cardiac motion model, followed by a refinement using purely data-driven track­
ing. In this study, we propose a weight scheme calculated from the ownership 
estimates of the temporal EM analysis, which is incorporated into the tracking 
method. These weights are used to distinguish salient areas, in which the local 
refinement is useful, from areas obs=ed by artifacts, where the local refinement 
is not desired. 

We propose a probabilistic weight scheme based on an initial estimation of 
cardiac motion. For that purpose, the EM algorithm is applied in two ways. First, 
the ownerships are calculated in a stationary frame-of-reference, which is simply 
a voxel-wise analysis over time (see Fig. 7.2a). The stable component's ownership 
o5 will be high for the areas where the myocardium is obscured and low for areas 
where it is clearly visible. Next, we estimate the cardiac motion and apply the EM 
calculation in this dynamic, cardiac frame-of-reference (see Fig. 7.2b). Suppose 
that this cardiac motion estimate is reasonably accurate. o5 will now be low for 
the obscured areas and high for salient cardiac wall. This motivates us to define 
a weight which has high values for the salient areas and low values for obscured 
cardiac wall: 

(7.10) 

where Os,CF is the stable ownership in the cardiac frame-of-reference and Os,SF is 
the stable ownership in the stationary frame-of-reference. The weight is defined 
so that it ranges from [0, 1] (since o5 E [0, 1 ]). 
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a stationary frame-of-reference 

time 

b cardiac frame-of-reference 

Fig. 7.2: Voxel-wise application of expectation-maximization algorithm on temporal 
feature curves, in (a) the stationary frame-of-reference and (b) the (estimated) cardiac 

frame-of-reference. 

Tracking method 

Our previously proposed tracking method for estimating cardiac motion is based 
on differential optical flow. For echocardiographic analysis, optical flow has been 
investigated by various groups [Baraldi et al., 1996; Chunke et aL, 1996; Mailloux 
et aL, 1987; Mikic et aL, 1998; SUhling et aL, 2005; Veronesi et aL, 2006]. The 
general optical-flow equation describes the velocity v of an object at position x as 

a function of the spatial (vi= (M, ~~'~))and temporal image gradients Ut = Ml 
as follows: 

\7I(x,t) ·v(x,t) +It(x,t) = 0. (7.11) 

A commonly-used method to solve eq. (7.11) for v is proposed by Lucas and 
Kanade [1981]. This approach assumes that the velocity is constant in a small 
region around x, in which N gradients are sampled. The velocity vector can 
then be resolved by setting up a sum-of-squares error term as follows [Lucas and 
Kanade, 1981]: 

N 

E = I; w(x(n)) [vi(x(n)) · v+ I,(x(n))f, (7.12) 
n=l 

where w represents a local pixel weight. For a translation-only description of v, 
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this can be solved by differentiating eq. (7.12) with respect to each translation 
component v = ( v, Vy, Vz), and equating the result to zero. 

In the previous study, we proposed a method to estimate the global cardiac 
motion, called motion-guided tracking (chapter 6). This method involves modi­
fying the general optical flow equation by embedding a trained statistical cardiac 
motion model. The motion model is obtained by applying Principal Component 
Analysis (PCA) on frame-to-frame affine transforms throughout the whole cardiac 
cycle, similar to the approach used in active shape and active appearance models 
[Cootes et al., 2001]. These transforms are calculated using Procrustes analysis 
on a set of training contours. The statistical model is embedded in the optical 
flow equation by substituting the velocity term with the PCA model, resulting 
in a modified equation which relates the spatiotemporal image gradients with 
the PCA model parameters. To track an end-diastolic contour throughout the 
cardiac cycle, the image gradients are gathered from all image frame-pairs, after 
which the modified equation is resolved for the PCA model parameters. These 
parameters are converted back into frame-to-frame affine transforms, which, in 
turn, are used to transform the end-diastolic contour throughout the heart cy­
cle. Since the model parameters are resolved for the whole image and all cardiac 
phases at once; the resulting segmentation is global, time continuous, and more 
robust to local anomalies. However, this means that the local tracking results in 
salient areas, which are easy to track, can still be improved upon. Therefore, we 
use a basic tracker to refine the results locally, at the contour positions estimated 
by the motion-guided method. This basic tracker is the standard Lucas-Kanade 
optical-flow method, as described above [Lucas and Kanade, 1981]. Starting at 
end-diastole, each contour point is tracked throughout the cardiac cycle, using 
the results of the motion-guided method as an initial estimate. The position x1 of 
a contour point at time t is then defined as: 

t yt-1 yt-1 yO yO ( 0) 
X = BT 0 MG 0 ... 0 BT 0 MG X I (7.13) 

where Y~y1 is the estimated transform of the basic tracker from frame t- 1 to t, 
Y MG is the transform of the motion-guided method, and superscript 0 denotes the 
end-diastolic frame. 

Integrating weights with tracking 

The EM-weights are incorporated into this tracking scheme in two ways. First, the 
EM-weights are used to refine the cardiac motion estimation by inserting them as 
w(x(n)) into the sum-of-squares term (eq. (7.12)) for both the motion-guided and 
basic tracking methods. Second, the transform of the basic tracker is weighed, 
so that the salient cardiac wall depends more on the basic tracking. The basic 
transforms, which are frame-to-frame translations, are weighed as: 

YBT,weigl"d (x) = w(x)YBr(x) = ( w(x)vx(x), w(x)vy(x), w(x)vz (x)) . (7.14) 

The proposed EM-weight-based tracking algorithm is as follows: 
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Algorithm 7.1 EM-weight-based tracking algorithm. 

1. Estimate cardiac motion (section 7.2.2) 
2. Estimate EM ownerships in stationary frame-of-reference 
3. Estimate EM ownerships in cardiac motion frame-of-reference 
4. Combine ownerships into weights (eq. (7.10)) 
5. Re-estimate cardiac motion using weights (section 7.2.2) 

Experimental details 7.2.3 

Data description 

To test the performance of the proposed segmentation method, 3D echocardio­
graphic sequences were acquired of the left ventricle in patients referred for stress 
echocardiography. Only images obtained in the rest stage were analyzed. Thirty­
five data sets were acquired with a Philips Sonos 7500 system (Philips Medical 
Systems, Best, The Netherlands), equipped with an X4 matrix array transducer. 
Typical spatial dimensions were 160 x 144 x 208 voxels with 1mm x 1mm x 
0.7mm resolution. The 3D data set comprised 4 electrocardiographically gated 
pyramidal subvolumes. Twenty of these patients underwent coronary angiogra­
phy: 6 patients had no significant vessel disease, 8 patients had one-vessel disease 
(2 in the left-anterior-descending (LAD) coronary artery region, 4 in the right­
coronary-artery (RCA) region, 2 in the left-circumflex-artery (LCX) region), 3 pa­
tients had two-vessel disease (LCX and RCA, LAD and RCA, LAD and LCX) and 
3 patients had three-vessel disease. The study was approved by the institutional 
review board, and all patients gave informed consent. 

Contour delineation 

Left ventricular 3D contours were needed for training the PCA model, as initial­
ization in the 3D end-diastolic image, and as the ground truth in the validation. 
Full-cycle endocardial borders were drawn with a previously developed semi­
automated method, based on pattern matching and dynamic programming [van 
Stralen et aL, 2005a]. In short, the contour was delineated in the four-chamber and 
two-chamber views in end-diastole and end-systole. End-diastole was determined 
by the R-peak of the ECG, end-systole was defined as the frame before the open­
ing of the mitral valve, which was determined visually. These anatomical views 
were selected manually by indicating the apex, the mitral valve, and the direction 
of the four-chamber in the end-diastolic 3D image (chapter 4). The two-chamber 
cross-section is defined as the view perpendicular to the four-chamber, passing 
through the long-axis, with the long-axis defined as the line passing through the 
apex and the mitral valve center. Dynamic programming was used to detect the 
entire 3D surface, aided by the intensity patterns along the user-delineated con­
tours. If needed, the detected contours were manually corrected. This generated 
more intensity pattern information, after which dynamic programming was reap­
plied. This method produced accurate contours that were validated by MRl in a 
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previous study [van Stralen et al., 2005a]. 3D points were sampled on the endo­
cardial surface at equidistant angles and short-axis levels. 

Experiments 

The motion-guided and the basic tracking methods were applied consecutively 
according to the description in section 7.2.2. The motion models were tested in a 
leave-one-out fashion: 34 sequences were used to build the model, which is then 
applied to the remaining sequence. This is repeated for all data sets. 

Point-to-surface and volume errors were calculated, with respect to the gold 
standard. Ejection fraction was defined as: EF = (Vw - VEs) /Vw, with Vw 
denoting the volume in end-diastole and VEs denoting the volume in end-systole. 
Statistical testing was performed using the paired t-test. The difference between 
tracking with and without the proposed weights is investigated. 

Also, we compared the results of the probabilistic tracking framework with 
our previous gradient-based weight scheme, as outlined in detail in chapter 6. 
The gradient norm II V Ill was evaluated at each contour point and linear scaling 
is applied: 

w- llviii-IIviiimin (7_15) 
- llviiimax-llviiimin' 

where llviiimin was the minimum and llviiimax was the maximum gradient 
norm in the whole image. 

7.3 Results 

Fig. 7.3 shows the stable, wandering, and lost ownerships, in the stationary and 
cardiac frames-of-reference. The resulting weights are also shown. Examples of 
images with artifacts and the weight images are displayed in Fig. 7.4. Fig. 7.5 
shows the weights in two frames at end-systole, where the opening of the mitral 
valve can be seen. An example of tracking can be seen in Fig. 7.6. 

Fig. 7.7 shows the point-to-surface and volume errors. Three lines are shown, 
denoting the tracking method without saliency weights, with the previously pro­
posed gradient-based weights, and with the currently proposed probabilistic 
weights, showing the improvement in tracking accuracy using the current method. 

Quantitative tracking results are summarized in Table 7.1. Averages and stan­
dard deviations are taken over the whole cardiac cycle, omitting the ED phase. 

7.4 Discussion 

In this chapter, a method was proposed to distinguish between obscured and 
salient moving myocardium in echocardiograms. The method categorized fea-
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stationary 
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reference 

cardiac 
frame-of­
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fig. 7.3: Stable, wandering, and lost ownerships, and derived weights w. The stable 
ownership is higher and the wandering and lost ownerships are lower aronnd the 
contour in the cardiac frame-of-reference, resulting in higher weights in areas with 

salient cardiac wall. 

Table 7.1: Point-to-surface (P2S), volume (V), absolute volume (abs(V)), ejection frac­
tion (EF), and absolute ejection fraction (abs(EF)) errors in 35 matrix sequences. •· 
denotes statistically significantly better than the unweighed approach (p < 0.05). + 
denotes statistically significantly better than the previously proposed gradient-based 

weight scheme. Statistical testing only performed on P2S, abs(V) and abs(EF). 

P2S v abs(V) EF abs(EF) 
mm ml ml % % 

Motion-guided 1.51±0.69 -2.0±10.0 7.6±6.8 -1.9±6.7 5.4±4.3 
Basic 1.52±0.54 3.8±8.1 6.9±5.7 4.8±6.5 6.3±5.1 

Unweighed 1.49±0.52 3.9±8.0 6.7±5.8 4.8±5.5 6.0±3.9 
Gradient-based 1.35±0.44* 2.3±7.1 5.6±4.8* 2.5±5.7 5.0±3.6* 

EM-based 1.19±0.47''~ 1.4±6.7 5.2±4.5*T 0.9±4.8 3.9±2.9*+ 
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Fig. 7.4: Examples of images with (a) side lobe artifact, (b) large near-field, and (c) 
shadowing artifacts and the corresponding weight images. Black denotes low weights, 

white denotes high weights. 

frame 8 
(ES) 

frame9 

Fig. 7.5: Two consecutive image frames, weights w, lost ovvnership in stationary frame­
of-reference (oz,sF) and cardiac frame-of-reference (oz,cF) at end-systole, where the 
opeWng of the mitral valve can be seen. Since the fast motion of the leaflet is not 
predicted by the cardiac motion model, the resulting weight is low in that area (solid 
arrows). Note that only the valve leaflet has a high lost ownership :in both the cardiac 
and stationary frame-of-reference, whereas the mitral valve hinge points do conform 

to the cardiac motion model and have low ol,CF· 
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&ameO (ED) 

Fig. 7.6: Example of tracking results in tvvo-chamber view. Notice the improved track­
ing in the drop-out areas, which have lower weights as seen in the bottom row. 

ture time-curves in a stationary frame-of-reference and cardiac motion frame-of­
reference. The weights generated by the method were shown to improve optical 
flow tracking, resulting in lower bias and smaller ranges in point and volume 
errors (see Table 7.1, no weights versus weighed). Also, we demonstrated that 
the probabilistic framework improved our previously proposed gradient-based 
weight scheme. Although the method was applied in 3D sequences in this study, 
the method can be used in 2D as well. 

Although Fig. 7.3 suggests that the lost component in the stationary frame-of­
reference alone is useful for detecting the moving cardiac wall, we were not able 
to use it directly for tracking purposes. The reason is that the lost components 
are very high at outliers and fast moving structures such as the opening and 
closing valves (see Fig. 7.5). This in turn gives much larger weights than in the 
myocardium, which is the structure we would like to track. But when combined 
with the ownerships in the cardiac frame-of-reference, the leaflets of the mitral 
valve are properly down weighed during opening because they do not conform to 
the myocardial motion, as can be seen in Fig. 7.5. 

The results of this study are compared with other segmentation methods re­
ported in literature in Table 7.2. Due to the vast amount of literature on segmen­
tation, the scope of our comparison is constrained to the most recent work on 
cardiac ultrasound in automated 3D+time methods, which report errors through­
out the whole cardiac cycle (and not just in end-diastole and end-systole). A 
distinction was made between segmentation and tracking methods. The errors 
contained in this study compare well with those reported in the literature. How-
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138 PROBABUISTIC TRACKING 

Volume Error Point-to-Surface 
Error (nun) 

25r, ------~~----, 
(ml) 

20~----~~----_, 

Fig. 7.7: Results of the unweighed tracking method, the previous gradient-based 
weighed tracking method, and the currently proposed method using the probabilistic 
EM-weights, showing the improvement in S'Ul"face and volume errors using the current 

weight scheme. 

ever, since ours is a tracking method, and needs a 3D initialization in end-diastole, 
the errors cannot be entirely compared with those of the segmentation-only pa­
pers. A second comment is that the methods of Myronenko et al. [2007] and Duan 
et a!. [2008] were evaluated on open chest animal models, of which the images 
are not contaminated by shadowing artifacts caused by the rib cage, which is one 
of the major artifacts we are trying to recognize. 

Jepson et al. [2003] used the phase responses of a steerable pyramid as fea­
tures for their EM approach. Similarly, phase-based measures have been shown 
by Grau et al. [2006] to be suitable for image registration. In initial tests, we found 
that the use of first-order image gradients did not improve the tracking results. 
Other more robust, coarse scale features may also be interesting, e.g. Haar fea­
tures, which have been shown to be useful for image segmentation in ultrasound 
images [Carneiro et a!., 2008; Georgescu et al., 2005]. This is a subject of further 
investigation. 

A major comment on the current algorithm is that it depends on the accuracy 
of the tracking method. By combining the optical flow approach with a statistical 
model of cardiac motion, robust results can be obtained. We have shown here 
that the proposed motion estimation method is accurate enough in a reasonable 
number of images of clinical quality, and that the probabilistic weight scheme 
indeed improves the tracking results. However, if the image quality is very poor, 
or if very large parts of the images are obscured by the artifacts, the tracking 
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Table 7.2: Comparison with cardiac ultrasormd 4D segmentation and tracking methods 
from literature,. divided into segmentation only, tracking only,. and combination of seg­
mentation and tracking methods. Average ± standard deviation of surface, volume V, 
absolute volume abs(V) errors are given. N5 denotes number of subjects investigated. 

Empty colunms mean that data were not available. 

Publication Ns surface v abs(V) 
mm ml ml 

Segmentation only 
Sanchez-Ortiz et al. [2002] 14 6.63±37.07 

Wolf et al. [2002] 20 3.44±1.18 
Lin et al. [2003] 24 1.64±0.50 

Hansegard et al. [2007 a] 36 3.4±2.3 
Segmentation and Tracking 

Hansegard et al. [2007b] 21 2.2±0.56 3.4±10 
Orderud et al. [2007b] 21 2.7 4.1±12.6 

Tracking only 
Myronenko et al. [2007] 1a 1.03±0.62 

Duan et al. [2008] 40b 3.93±2.54 
Yang et al. [2008b] 31 1.28=1-11 

Current method 
EM-based 35 1.19±0.47 1.4±6.7 5.2±4.5 

a1 open chest pig, 10 scans 
bopen chest dogs 

accuracy may be affected. This may in turn have a detrimental effect on the 
weight calculation. However, in that case, the question becomes whether any 
image information can be gathered at all, whether visual or quantitative. Tracking 
in these cases is a subject of future research. 

Using our method, typical steady artifacts which obscured the cardiac wall 
are detected. For less common artifacts which move along with the cardiac wall, 
such as reverberations or side-lobe artifacts due to a strong cardiac reflector (e.g. 
the pericardium [Feigenbaum eta!., 2005, p. 30]), other methods must be devised. 
The development of separate detectors for each type of artifact is also common in 
the archived film and video restoration community, due to the large differences in 
appearance between artifacts. Therefore, it is easier to devise separate detectors 
and combine them accordingly [Kokararn, 2004]. 

As for any model-based method, the accuracy of tracking depends on the 
variations explained by the model. In this study, by using data from patients 
referred for stress echocardiography, both normal and abnormal motion patterns 
are modeled. This should make the motion-guided tracking more robust with 
respect to patient variations. Moreover, the global tracking method is refined 
using a local, purely data-driven method, to account for local variations which are 
not explained by the model. As demonstrated in this study, the initial tracking 
framework is able to provide a good estimate for calculating the probabilistic 
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weights, in spite of the motion variations. 

7.5 Conclusion 

A probabilistic weight scheme was proposed for distinguishing between salient 
and obscured myocardium in 3D ultrasound images for improving endocardial 
border tracking. Expectation-maximization was applied in a stationary and car­
diac motion frame-of-reference. Thls weight scheme was shown to improve track­
ing of left ventricular borders in a considerable number of patient data. Based 
on these promising results, we think that this method shows great potential in 
improving quantitative analysis in 3D echocardiograms. 
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compact shape descriptors ~-~ 
In this chapter~ we investigate whether parametric shape representations of endocar­
dial contours, obtained with principal component analysis (PCA) and the orthomax 
criterion, provide compact descriptors for classifying segmental left ventricular wall 
motion. Endocardial contours were delineated in left ventricular echocardiograms 
from 129 patients. Parametric models of these shapes were built with PCA and subse­
quently rotated using the orthomax criterion, producing models with local variations. 
Shape parameters of this localized model were used to predict the presence of wall 
motion abnormalities, as determined by expert visual wall motion scoring. Best re­
sults were obtained using the varimax criterion and full variance models. "Whereas 
traditional PCA models needed 8.0::::::3.0 parameters to classify segmental wall motion; 
only 5.1±3.2 parameters were needed using the orthomax rotated models (p < 0.05) 
to achieve similar classification accuracy. The classification space also was better be­
haved. To conclude, orthomax rotation generates more local parameters, which are 
successful in reducing the complexity of wall motion classification. Since pathologies 
are typically spatially localized; many medical applications :involving local classifica­
tion should benefit from orthomax parameterizations. 
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8.1 Introduction 

Coronary artery diseases are a major cause of death in the westem world. There­
fore, detection of wall-motion abnormalities of the left ventricle (LV), widely ac­
cepted as predictors for these diseases, is of great clinical importance. Echocar­
diographic examination is often used for diagnosing these wall-motion abnormal­
ities, because of the speed of acquisition, the high spatial and temporal resolution, 
and the relatively low cost of the technique. A well-established method is stress 
echocardiography, which compares the LV wall-motion in images acquired at dif­
ferent stages of stress (i.e. elevated to the maximum workload for the heart mus­
cle) [Marwick, 2003]. However, since the images are often evaluated visually, a 
quantitative and objective measure of wall-motion is still lacking. To obtain such 
quantitative measures, automated analysis of LV wall motion may be preferred to 
currently visual, therefore subjective, assessments. 

Various quantitative measures have been proposed to assess wall-motion in 
the literature [Thomas and Popovic, 2006]. Methods such as acoustic quantifi­
cation and color kinesis [Mor-Avi et a!., 1997] observe the backscatter of the 
ultrasonic signal to measure the endocardial motion. Tissue Doppler imaging 
[Armstrong et a!., 2000] generates measurements of velocity, displacement, and 
strain/ strain-rate values. These values can also be obtained using image-based 
speckle-tracking methods [Helle-Valle et a!., 2005], which are becoming increas­
ingly popular. Other image-based methods use manual or automated delineations 
of the endocardial border to assess e.g. regional volumes, which may be of help 
in quantifying wall-motion [Walimbe et al., 2007]. 

Methods have also been proposed to automatically detect wall-motion abnor­
malities in echocardiograms. Assmann et a!. [1993] proposed to measure wall­
motion using regional ejection fraction, area reduction, and fractional shorten­
ing, based on endocardial contours. Frouin eta!. [2004] proposed factor analysis 
to separate the image-intensity time-curves into a 'constant' and a 'contraction­
relaxation' factor, to distinguish between different levels of wall-motion. Aoued 
et al. [2005] applied principal component analysis to strain and strain-rate time­
curves. A distance measure was proposed, which expresses the distance between 
a patient's time-curve and a model of healthy subjects. A special classifier was 
developed by Fung et a!. [2005] to distinguish between normal and abnormal 
hearts. Previously, we have suggested using point-distribution models of con­
tour sequences in two-dimensional echocardiograms for automated classification 
of wall-motion abnormalities [Bosch eta!., 2005]. 

The goal of this study is to evaluate a new automated classification approach 
for detecting local wall-motion abnormalities. Building on our previous work, 
the wall-motion parameters are derived from contour sequences of the left ven­
tricle [Bosch et a!., 2005]. Point-distribution models with localized variations are 
obtained with orthomax rotations. The parameters are used to classify segmental 
wall-motion. 
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Materials and methods 8.2 

Stress echo and visual wall motion scoring 8.2.1 

Stress echo is a commonly used diagnostic technique for assessing LV dysfunc­
tion and underlying coronary disease [Marwick, 2003]. This technique consists 
of acquiring echocardiographic images of the left ventricle when the patient is at 
rest and at stress (maximum workload for the cardiac muscle). By studying the 
regional motion patterns of the LV wall, myocardial tissue functionality can be 
diagnosed. Deteriorating contractility in one or more segments in stress is a sign 
of local ischemia, associated with a stenosis in the corresponding coronary artery. 

The wall motion is assessed visually by assigning a qualitative score to each 
segment. Different scoring systems are in use; the data in this chapter use a four­
point system (0: normokinesia, 1: hypokinesia; 2: akinesia; 3: dyskinesia) and 13 
segments [Nijland et al., 2002]. Since each qualitative score is associated with a 
numeric value, semiquantitative results can be calculated, such as the total score 
of all segments. However, because the scoring is performed visually, the work is 
time-consuming and the scoring may suffer from intraobserver and interobserver 
variabilities [Hoffmann et al., 1996]. Development of an automatic method for 
classifying wall-motion which emulates visual wall motion scoring, is therefore 
highly desirable. 

Analysis of endocardial contours via shape models 8.2.2 

Previously, we have proposed using shape models for classifying LV wall motion 
automatically [Bosch et al., 2005]. Shape models, or point-distribution-models, are 
parametric representations of a set of shapes [Coates et al., 2001]. These models 
are usually built using Principal Component Analysis (PCA). This technique gen­
erates a statistical representation of the global shape variations encountered in 
the input data, e.g. LV endocardial contours of a set of patients. This allows a 
shape, represented by spatial point-coordinates concatenated in a vector x, to be 
accurately approximated by a limited number of shape parameters, or modes, 
concatenated in a vector b: 

x=x+Pb, (8.1) 

where x is the average shape, and P is the eigenvector matrix. Typically, the 
number of shape modes is similar to the number of input training samples. Any 
new shape can be projected to this model using the pseudoinverse (P-1) of the 
eigenvector matrix: b ""p-1(x- x). 

The modeling technique was extended to time sequences of echocardiograrns 
[Bosch et al., 2002].ln this way, the model comprised variations in LV wall-motion 
patterns across a group of patients. The complex motion pattern of the left ven­
tricle could then be accurately described with these shape modes. 

The shape modes were then used to classify global clinical parameters (e.g. LV 
volume) and local parameters (e.g. visual wall-motion scores) [Bosch et al., 2005]. 
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Although clear correlations were found, a relatively high number of shape modes 
were needed to classify these local wall-motion scores accurately. This is because 
the PCA technique inherently generates models of global variations, whereas for 
classifying local parameters, local variations are desired. Therefore, we hypothe­
size that models with local variations are more compact representations of local 
wall motion. Fewer modes should be needed to classify the wall motion with the 
same degree of accuracy. 

8.2.3 Orthomax rotations 

Recently, a method called orthomax rotations has been suggested to obtain local 
models from the global PCA model [Stegmann et al., 2006]. The main advantages 
of this technique are: 1) computational feasibility in high-dimensional spaces, 
which often is the case for shape models; 2) automatic localization with little 
fine-tuning of the method; and 3) availability of implementation in a variety of 
statistical packages (SPSS®, SAS/STAT®, MATLAB®). 

Orthomax rotations are basically reparameterizations of the PCA model space 
[Browne, 2001]. The PCA eigenvectors, which act as orthogonal axes in a high­
dimensional space, are rotated so that the axes are more ~sparse'. This can best 
be understood from a visual example (Fig. 8.1): rotation of the PCA axes results 
in a matrix with a minimal number of nonzero elements. This implies that the 
variation in the positions of certain shape points (part of x) will depend more on 
the variation of only one model parameter (one element of b). In other words, 
varying one model parameter leads to a localized variation. 

In mathematical terms, the orthomax rotation seeks to find a rotation matrix 
R, so that the following criterion is maximized: 

(8.2) 

where G;i denotes the scalar element in the ;th row and j'h column in the rotated 
eigenvector matrix G = PR, and ')' is the orthomax type. The shape coefficients 
after rotation bR can be found with bR = R-1b. 

The orthogonal orthomax criterion is equivalent to the Crawford-Ferguson cri­
terion, which is a weighed sum of row and column complexity of the eigenvector 
matrix [Crawford and Ferguson, 1970]. Therefore, orthomax rotations can be in­
terpreted as a redistribution of the elements of the eigenvector matrix so that each 
row or column has a minimal number of nonzero elements, as can be observed 
in Fig. 8.1. The two extremes are quartimax (/' = 0), favoring row sparsity, and 
factor parsimony(')'= n), which favors column sparsity [Browne, 2001]. Varirnax 
(')' = 1), a commonly-used type, resides somewhere in between [Kaiser, 1958]. In 
practice, complete row or column sparsity cannot be achieved because the shape 
model is restricted to the observed, physically allowed variations in the training 
samples. 

Since PCA orders the shape modes automatically according to variance, modes 
with low variation generally contain noise. Eliminating some of these modes may 
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Fig. 8.1: Top row: eigenvector matrices of PCA and orthomax rotated shape model of 
the left ventricle. Bottom row: shape variations of the fifth mode, showing localization 

of variation for the rotated model. 

lead to more representative local variations in the rotated shape model. However, 
if too many modes are removed, subtle variations in wall motion may be lost, 
and the accuracy of classification may be reduced. Therefore, we investigate how 
different proportions f of the total variance V (sum over all eigenvalues) affect 
the classification: 

k 

L"i ?JV, (8.3) 
i=l 

where k denotes the number of eigenvectors with the largest eigenvalues Ai. 
Modes with low eigenvalues, corresponding with the rightmost columns of the 
eigenvector matrix P, are removed before the orthomax rotation. 

Orthomax rotation was applied to the four-chamber and two-chamber shape 
models, using an iterative method based on singular value decomposition [Steg­
mann et al., 2006], as implemented in MATLAB® (version 7.0.4, release 14, The 
Math Works, Inc.). 
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Clinical data and contour delineation 8.2.4 

The effect of orthomax rotations on wall motion classification was demonstrated 
on low-dose Dobutarnine stress echo data from 129 unselected infarct patients 
[Bosch et al., 2005; Nijland et al., 2002]. From all patients, the two-dimensional 
transthoracic apical four-chamber and two-chamber sequences from the rest stage 
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fig. 8.2: LV segments in four-chamber and tvvo-chamber views (LAD = left anterior 
descending artery, LCX = left circumflex artery, RCA = right coronary artery). 

were available for shape modeling (Fig. 8.2). Each temporal sequence was normal­
ized to 16 frames, of which the first and last frame corresponded to end-diastole 
(ED) and the ninth frame to end-systole (ES). Endocardial borders were delin­
eated independent of the visual wall motion scoring, using a semi-automated 
tracing program (ECHO-CMS system, MEDIS Medical Imaging Systems, Leiden, 
the Netherlands [Bosch et al., 1998]). The contour in each frame was modeled by 
37 points. 

For training of the PCA model, the x andy coordinates of these contour points 
of all frames were concatenated in x. This was carried out for all training patient 
data sets. These vectors were the input to the PCA. 

8.2.5 Wall motion classification 

Two classification experiments were performed, denoted as the 'TRN L-1-0' and 
the 'TST' case. The total data set was split randomly into a training set (TR.t'J) of 65 
patients and a testing set (TST) of 64 patients. Shape models of the four-chamber 
and two-chamber were built with the training set, as in our previous work [Bosch 
et al., 2005]. Shape parameters b and bR were calculated for all data sets. In 
the 'TR.t'J L-1-0' case, a leave-one-out approach was used, where the classifier 
was trained on the TRN set except for one sample and tested with that sample. 
This process was then repeated for all TRN samples. In the 'TST' situation, the 
classifier was trained on the whole TRN set and then tested on all TST cases. This 
resembled classification in the real-world: both shape model and classifier were 
trained with a limited training set and tested on completely 'new' shapes. 

For single segments and combinations of two to five segments, a distinction 
was made between normal (summed score= 0) and abnormal (summed score> 
0) motion. For combinations of more than five segments, in which many scores 
were summed, this distinction would result in very biased classes (because the 
patient set contained only infarct patients and no normals). Therefore, a distinc­
tion was made between mild (summed score ::; 3) and severe (summed score > 
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3) wall motion abnormalities. This distinction in scores was used as the response 
(dependent) variables in the classification. 

To classify the wall motion abnormalities, Linear Discriminant Analysis (LDA) 
was used. This classifier searches for a linear combination of the shape parameters 
that provides the best discrimination between classes [Webb, 2002]. In the param­
eter space spanned by the shape parameters, this discriminant can be observed 
as a hyperplane, separating the normal-motion and abnormal-motion classes: 
L,j~1 cx;b; + cxo = 0, where q is the number of shape parameters in the classifi­
cation space. Linear discriminant analysis was performed using the statistical 
package SPSS (v. 11.0.1, 2001). Shape parameters were added automatically by 
the classifier using the 'stepwise' option and the 'unexplained variance' criterion, 
so that an optimal subset q of the k shape parameters were selected that best 
discriminate between normal and abnormal motion. 

To investigate whether the normal and abnormal classes were better separated 
in the orthomax parameter space than the original PCA space, cluster measures 
were computed. After the classifier has selected a subset q of the k shape parame­
ters which best predicts normal or abnormal wall motion, these q parameters of a 
particular patient can be seen as a point in the q-dimensional classification space. 
Ideally, for a linear classifier such as LDA, points of the normal class should form 
a compact cloud (or cluster), completely separated from the point-cluster of the 
abnormal class. A common measure of cluster compactness is the within-class 
scatter matrix Sw, whereas the between-class scatter matrix S B is often used to 
describe cluster separation. A measure of overall cluster quality is the ratio J of 
the trace of the two scatter matrices ([Webb, 2002], p. 311): J = tr(SB) /tr(Sw ). 
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Results 8.3 

Orthomax rotations 8.3.1 

Orthomax rotations were applied to four-chamber (4C) and two-chamber (2C) 
shape models. Whereas PCA shape modes are ordered according to variance, 
thus exhibiting global variations in the first modes, orthomax modes show lo­
cal variations in most modes (see Fig. 8.3). Since the whole cardiac cycle was 
modeled, the variations were localized along the spatial as well as the temporal 
extent. 

Orthomax criteria 8.3.2 

Shape parameters were used to predict the presence of wall motion abnormali­
ties for each individual LV segment. Significantly fewer orthomax modes were 
needed than PCA modes, without compromising classification accuracy (i.e. the 
proportion of segments correctly classified as normal or abnormal, see Table 8.1). 
The varimax criterion needed the least number of modes. 
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Table 8.1: Classification accuracy of individual segments versus the number of shape 
parameters used (mean±sd) for different orthomax criteria, averaged over 9 segments. 
f denotes different proportions of retained variance in the shape models. * denotes 

that significantly (p < 0.05, paired t-test) fewer parameters than PCA were needed. 

Classification accuracy #Para-

f TRNL-1-0 TST meters. 
PCA 99.9% 88.9 ±5.9% 74.0 _:_ 9.4% 8.0±3.0 
quartimax 99.9% 90.1 ±5.2% 75.4 ± 9.8% 5.6±3.9* 
factor parsimony 99.9% 89.4±5.7% 76.3 ± 10.3% 5.4= 3.2* 
varimax 99.9% 91.1 ±4.5% 76.5 ± 10.5% 5.1 ±3.2'" 

99% 88.9 ±5.9% 76.0 ± 8.7% 5.7±3.3* 
98% 87.7±7.0% 75.8 ± 9.5% 6.4±3.5 
95% 86.3± 6.1% 76.3 ± 9.0% 6.6±3.7 

8.3.3 Proportion of retained variance 

We investigated the effect of using different proportions of retained variance in 
the shape model (formula (8.3)). Fig. 8.3 shows the motion patterns of models 
with different proportions. Interestingly, a lower f results in less localized shape 
variations, because each mode must capture more variation. 

Results for classification accuracy are shown in Table 8.1. Proportions of f = 
95%, 98%, 99% and 99.9% were investigated, corresponding to k = 27, 40, 48, and 
63 modes in the four-chamber model, and to k = 25, 38, 46, and 62 modes in the 
two-chamber model. Models with higher f needed fewer shape modes during 
classification. 

8.3.4 Segmental classification 

The classification results for combinations of segments and for each individual 
segment are given in Tables 8.2 and 8.3 for the varimax criterion. For combinations 
of two segments, the reduction in the number of classification parameters was 
not statistically significant. However, for the single segments, significantly fewer 
modes were needed. 

Fig. 8.4 shows the cluster quality J in PCA and varimax space. Clearly, varimax 
rotation resulted in better definition of the classification space, as shown by higher 
values J for most segments. 

The actual modes used for classifying the individual segments are depicted in 
Fig. 8.5. As expected, many PCA modes used for classification had large eigen­
values, which corresponded with large global variation. For the orthomax rotated 
modes, no clear relation could be seen. 
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Table 8.2: Classification accuracy in multiple segments versus the number of PCA and 
varimax shape parameters used, for combinations of segments. N denotes the number 
of segments which were combined. The percentage of normal motion of all data sets 

is also listed. 

Classification accuracy #Para-
View Segment (N) normal TRNL-1-0 TST meters 

PCA/=99.9% 

4C+2C All (9) 25.6% 89.2% 70.3% 11 
4C Total4C (5) 22.5% 87.7% 78.1% 13 
2C Total2C (5) 6.2% 100% 96.9% 21 
4C Septal (2) 29.5% 100% 67.2% 28 
4C Lateral (2) 49.6% 81.5% 70.3% 10 
2C Anterior (2) 61.2% 93.8% 73.4% 11 
2C Inferior (2) 30.2% 93.8% 75.0% 14 

2-segment combinations: 
mean 42.6% 92.3% 71.5% 15.8 
sd 15.5% 7.8% 3.5% 8.3 

Varimax f = 99.9% 

4C+2C All (9) 100% 70.9% 47 
4C Total4C (5) 96.9% 81.3% 18 
2C Tota!2C (5) 100% 96.9% 35 
4C Septal (2) 92.3% 64.1% 24 
4C Lateral (2) 90.8% 70.3% 8 
2C Anterior (2) 93.8% 75.0% 9 
2C Inferior (2) 98.5% 76.6% 14 

2-segment combinations: 
mean 93.9% 71.5% 13.8 
sd 3.3% 5.6% 7.3 
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Table S.3: Classification accuracy in individual segments versus the number of PCA 
and varimax shape parameters used. The percentage of normal motion of all data sets 
is also listed. * denotes that significantly (p < 0.05, paired t-test) fewer parameters 

than PCA were needed. 

Classification accuracy #Para-
View Segment (N) normal TRN L-1-0 TST meters 

PCA/=99.9% 

4C+2C Apical 34.9% 93.8% 81.3% 7 
4C Septal Basal 59.7% 86.6% 70.3% 10 
4C Septal Mid 42.6% 92.3% 73.4% 12 
4C Lateral Basal 84.5% 86.2% 64.1% 8 
4C Lateral Mid 51.2% 76.9% 69.8% 6 
2C Anterior Basal 97.7°/o 95.4°/o 95.3% 3 
2C Anterior Mid 61.2% 93.8% 74.6% 11 
2C Inferior Basal 42.6% 84.6% 71.9% 5 
zc Inferior Mid 39.5% 90.8% 65.6% 10 

mean 57.1% 88.9% 74.0% 8.0 
sd 21.4% 5.9% 9.4% 3.0 

Varimax f = 99.9% 

4C+2C Apical 95.4% 85.9% 6 
4C Septal Basal 90.8% 64.1% 5 
4C Septal Mid 92.3% 73.4% 11 
4C Lateral Basal 90.8% 82.8% 2 
4C Lateral Mid 81.5% 71.4% 2 
2C Anterior Basal 96.9% 96.9% 2 
2C Anterior Mid 93.8% 76.2% 9 
2C Inferior Basal 90.8% 71.9% 5 
2C Inferior Mid 87.7% 65.6% 4 

mean 91.1% 76.5% 5.1'" 
sd 4.5% 10.5% 3.2 
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Discussion 8.4 

Localized shape models of the left ventricle, generated using orthomax rotations, 
were more effective in classifying local wall motion. Significantly fewer parame­
ters were needed for classifying segmental wall motion in 2D echocardiographic 
sequences, while preserving classification accuracy. 

Orthomax criteria 8.4.1 

Similar results were obtained for the quartimax, factor parsimony, and varimax 
criteria, probably because the reparameterizations were restricted by the allowable 
variations in the training set, rather than the actual criterion. In fact, similar 
modes can be found for each criterion. This suggests that the criterion used has 
only a minor influence on the localization. Varimax is a commonly used criterion, 
and often implemented in statistical packages, making it desirable for use. 

Proportion of retained variance 8.4.2 

Best results were obtained using all PCA modes before the orthomax rotation. 
More modes in the original PCA model means more degrees of freedom for the 
rotation. As a result, the rotated basis is sparser, so the variations are more lo­
calized (Fig. 8.3). Thus, fewer parameters needed to be combined to classify an 
individual segment. 

Segmental classification 8.4.3 

For classification of five or more segments, more orthomax parameters are used 
than PCA parameters. This is as expected, because more localized modes must 
be combined to explain global variations. However, when classifying combina­
tions of two segments, a slight decrease in the number of parameters can already 
be observed. Localization of model modes results in much more subtle motion 
patterns, which are more meaningful for local wall motion classification. 

It is important to keep in mind that the orthomax method automatically gener­
ates sparse representations, given the variations in the training set. The relatively 
large improvement in the number of used modes in the lateral region may be due 
to the combination of the orthomax rotation and these training variations, which 
by chance produced a sparser parameter representation in those segments. The 
same holds for segments in which the improvement was smaller (e.g. the septal 
mid segment). 

The fact that the used orthomax modes did not correlate with variance sug­
gests that better methods may be needed to categorize these modes (Fig. 8.5). 
Recently, Suinesiaputra eta!. [2004] suggested that modes may be ordered locally, 
which is of particular interest for local classification. This is a subject of further 
investigation. 
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8.'1.4 Visual wall motion scoring and alternatives 

The absence of a true gold standard for diagnosing cardiac disease is a limitation 
of this study. Stress echo is noted for its variability in visual scoring [Hoffmann 
et al., 1996]. Regrettably, this variability could not be determined for this data set 
because the scoring was performed by consensus. 

More objective measures as gold standard would be helpful in evaluating the 
orthomax method. For example, quantitative deformation parameters, derived 
from tissue Doppler imaging [Armstrong et al., 2000], or strain/strain-rate of 
speckle tracking techniques [Helle-Valle et al., 2005], can be used. A step further 
would be to relate quantitative coronary angiography data with the orthomax 
shape modes. This is more challenging, because shape modes are related to the 
myocardial contractility, and not directly to coronary artery disease. 

8.4\.5 Limitations of study setup 

Although the goal of this study is to show the compactness of the orthomax rep­
resentation, it will be interesting to see if the classification accuracy actually im­
proves with the sparse approach. To draw solid conclusions, many more patients 
need to be analyzed. Also, the choice of classifier may impact the performance. 
The cluster quality J (Fig. 8.4) revealed that there is still a reasonable amount of 
overlap of the classes, suggesting that better classification may be achieved with 
a nonlinear discriminant function. More advanced feature selection methods and 
nonlinear classifiers, such as support vector machines, may lead to better classifi­
cation accuracy. 

The proposed method could be directly applied to Dobutamine stress images, 
rather than the rest images alone. Also, the parasternal short-axis and long-axis 
images were not available for modeling. Combined models for rest and stress, or 
models of differences between these two, are also an option to explore [Suinesia­
putra eta!., 2005]. Finally, with the recent interest in 3D stress echocardiography 
[Aggeli et al., 2007; Pulerwitz et al., 2006], orthomax rotations should be useful 
there as well. 

8.4.6 Orthomax extensions and alternatives 

Although orthomax is particularly interesting in terms of computational effi­
ciency, it would be interesting to compare the proposed orthomax method with 
other localization methods, such as tndependent component analysis [l}zfuncu et 
al., 2003] and sparse PCA methods [Sjostrand et al., 2006; Zou et al., 2004]. Alter­
natives which make use of the intensity patterns, instead of shapes, might also be 
interesting [Frouin et al., 2004]. 

Although not explored here, sparse texture models can be constructed in a 
very similar manner [Stegmann et al., 2006]. The direct cardiac application would 
be to examine local myocardial thickening, which might also be a predictor of 
coronary disease. Such texture models might be more suitable for image modal­
ities such as magnetic resonance imaging rather than echocardiography, which 
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suffers from speckle noise. 

Conclusions 8.5 

In this chapter we showed that classification of local left ventricular wall motion 
is feasible using local shape models, obtained with orthomax rotations. Due to 
the localization of shape variation, the classification needs fewer parameters to 
obtain similar accuracy with respect to normal global models. 

Since pathologies are typically spatially localized, we anticipate many medical 
applications where sparse representations are preferred to the conventional PCA 
approach. The orthomax criterion is shown to be suitable for building these sparse 
representations with relative ease. Researchers interested in local modeling are 
encouraged to explore the technique and use it for their own application. 
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Dobutamine stress echocardiography (DSE) suffers from high interobserver and in­
terinstitution variability in the diagnosis of myocardial ischemia. Therefore, we devel­
oped a 3D analysis tool that makes it possible to anatomically align 3D rest and stress 
data systematically. This allows the display of optimal, nonforeshortened standard 
anatomical cross-sections, and synchronized and side-by-side analysis. In this study, 
we IDvestigate whether this 3D analysis tool could improve interobserver agreement 
on myocardial ischemia during 3D DSE. The study comprised 34 consecutive patients 
with stable chest pain who undervvent both noncontrast and contrast 3D DSE. Two 
observers scored segmental wall motion using a conventional analysis and the novel 
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of myocardial ischemia in 81 of 102 coronary territories (agreement 79%, kappa (x) 
= 0.28) during noncontrast 3D imaging and 92 of 102 coronary territories (agreement 
90%, K = 0.65) during contrast-enhanced 3D imaging. With the new 3D analysis 
software these numbers improved to 98 of 102 coronary territories (agreement 96%, 
K = 0.69) during noncontrast 3D imaging and 98 of 102 coronary territories (agree­
ment 96%, K = 0.82) during contrast-enhanced 3D imaging. In conclusion, the use of a 
3D DSE analysis tool improves interobserver agreement for myocardial ischemia both 
for noncontrast and contrast images. 
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9.1 Introduction 

Dobutamine stress echocardiography (DSE) is an accepted tool for the diagnosis 
of coronary artery disease (CAD) [Geleijnse et al., 1997]. The interpretation of the 
echocardiographic images, however, is critically dependent on the experience of 
the observer. Unfortunately, a high interobserver and interinstitution ariability in 
the diagnosis of myocardial ischemia is present [Hoffmann et al., 1996; Picano et 
al., 1991]. Recently, 3D echocardiography has become an option for DSE analysis 
[Aggeli et al., 2007; Matsumura et al., 2005; Nemes et al., 2007a,b; Pulerwitz et al., 
2006; Takeuchi et al., 2006; Takuma et al., 2000]. 3D echo provides the possibil­
ity to eliminate differences in cross-sections between rest and stress stages, since 
these cross-sections can be selected retrospectively. Unfortunately, there is cur­
rently no software that enables clinicians to analyze 3D images at different stress 
stages side-by-side. Moreover, the comparison of nonforeshortened and identical 
cross-sections during rest and stress, one of the potential benefits of 3D imaging, 
depends on manual selection of these images, which is a complex 3D task. There­
fore, we developed a specialized tool for 3D stress echo analysis. With this tool it 
is possible to anatomically align 3D rest and stress data systematically, to generate 
optimal, nonforeshortened standard anatomical cross-sections and to analyze the 
images synchronized and side-by-side. The specific objective of this investigation 
was to evaluate whether this 3D tool could improve interobserver agreement on 
myocardial ischemia during 3D DSE. 

9.2 Patients and methods 

9.2.1 Patient population 

The study comprised 34 patients (22 men, mean age 57 ± 13 years) in sinus 
rhythm with chest pain referred for stress testing. These patients were previously 
included in a study by our group in which the usefulness of ultrasound contrast 
in 3D DSE was assessed [Nemes et al., 2007b]. The institutional review board 
approved the study and all patients gave informed consent. 

9.2.2 Dobutamine-atropine stress protocol 

Dobutamine was administered through a peripheral vein by 3-min stages of 10, 
20, 30, and 40 l'g/kg/min, respectively. The infusion was stopped when 85% of 
age-predicted maximum heart rate was reached. Otherwise, Dobutamine infusion 
was continued and supplemented by 0.25 mg doses of atropine (to a maximal 
dose of 1 mg). The stress test was terminated when severe angina, shortness of 
breath, symptomatic decrease in systolic blood pressure (>40 rnmHg), arterial 
hypertension (>240/120 rnmHg), severe arrhythmias or other serious adverse 
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effects occurred. Images were recorded using second harmonic imaging with 
and without use of the SonoVue contrast agent (Bracco, Milan, Italy). This was 
given as a bolus of 0.5 ml with additional boluses of 0.25 ml when needed. A 
low mechanical index (0.3) was used. Care was taken to record the images at a 
phase when contrast flow was relatively stable with absent or minimal swirling 
of contrast in the apex. 
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Three-dimensional Dobutamine stress echocardiography 9.2.3 

The 30 images were acquired from an apical window with a Sonos 7500 echo 
system (Philips Medical Systems, Best, The Netherlands) equipped with an X4 
matrix array transducer. After visualizing the reference images (the approximated 
apical 4-chamber and orthogonal views) a full left ventricular (LV) volume data 
set was acquired from four electrocardiographically gated pyramidal subvolurnes. 

Off-line conventional data analysis 9.2.4 

The digitally stored 30 data set was initially analyzed off-line with assistance of 
40 TomTec Echo-View 5.3 software (TomTec Inc., Unterschleissheim, Germany). 
Wall motion was assessed using the standard 17-segment LV model [Cerqueira 
eta!., 2002] of the three reconstructed apical views by two independent observers 
(AN, MLG) who were blinded to the patients' clinical data. Segments scored as 
invisible were excluded from further analysis. Wall motion was scored as normal, 
mild hypokinesia, severe hypokinesia, akinesia, and dyskinesia. A test was con­
sidered positive in case of new or worsening wall motion abnormalities during 
stress, according to standard recommendations [Geleijnse et a!., 1997]. Diagnosis 
of ischemia was established using one segment [Elhendy et a!., 1998]. Akinetic 
segments that became dyskinetic were not considered indicative of myocardial is­
chemia [Arnese et al., 1994]. Segmental wall motion abnormalities were assigned 
to coronary artery territories as described before [Cerqueira eta!., 2002; Geleijnse 
eta!., 1997]. 

Off-line novel data analysis 9.2.5 

In addition, the 30 data sets were analyzed using a specially developed 3D stress 
echo analysis software program. With this program, 30 rest and stress data can 
be aligned systematically using a standardized protocol. to generate optimal, non­
foreshortened standard anatomical views. These views can then be analyzed syn­
chronized and side-by-side, to better distinguish the differences between rest and 
stress. These optimal views are obtained by manually annotating the epicardial 
apex and the mitral valve hinge points in the approximated apical 4-chamber 
view in end-diastole (see chapter 4). 

A new orthogonal view through the new long-axis is then generated. This 
annotation process is repeated in this orthogonal view and if necessary multiple 
times in both views (Fig. 9.1), to quickly and accurately approximate the true long 
axis of the LV (Fig. 9.2). The 4-chamber, 2-chamber, and 3-chamber views are then 
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obtained by selecting the correct angles. These anatomically correct cross-sections 
can then be played in a cineloop, synchronized on the ECG R-peak. The software 
can also display short-axis views in the apical, mid, and basal planes. 

Fig. 9.1: Selected anatomical 4-chamber, 2-chamber, short-axis, and 3-chamber views 
using the novel analysis software. 

To analyze the correct cross-sections of rest and stress data side-by-side, the 
optimal views were selected first in the rest sequence. The markers were then 
copied into the stress sequence, after which the user further optimized the planes, 
if necessary, by following the same procedure. Similarly, the annotation of the 
contrast images was aided by copying the markers of the noncontrast image from 
the same patient to the contrast image, because the mitral valve was sometimes 
hard to distinguish in the contrast acquisition. The markers were then further 
optimized, while preserving the length of the anatomical long-axis as much as 
possible. The whole aligrunent process took on average 3 min. The view selection 
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in the conventional analysis was not timed, but took considerably more time and 
effort. 

Next, the rest and stress standardized views were displayed side-by-side. The 
sequences could be synchronized in different ways, and zooming, contrast and 
brightness could be user-adjusted for all views simultaneously. The side-by-side 
display also allows easy, simultaneous reslicing through the sequences, e.g., for 
displaying different short-axis levels. For wall motion assessment, the 4-chamber, 
2-chamber, 3-chamber, and the short-axis view at one-third of the long axis were 
used. The stress sequence was slowed down to match the speed of the rest se­
quence. For evaluating the effect of anatomical alignment, the user could switch 
between the originally selected orthogonal cross-sections and the anatomically 
aligned cross-sections. 1n most cases anatomical similarity between rest and stress 
stages was improved considerably (Fig. 9.3). 
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Fig. 9.3: Improved anatomical correspondence be-t.vveen rest and stress images by align­
ment. Left: vvi.thout anatomical alignment; right: 'With anatomical alignment. 

9.2.6 Statistical analysis 

All values were expressed as a mean ± sd. The kappa (K) coefficient was calcu­
lated to determine interobserver agreement. " <0.4 was considered poor, 0.4-0.7 
moderate, and >0.7 good. Kappa values were obtained using standard statistical 
software (SPSS®, version 12.0, Chicago, IL, USA). 

9.3 Results 

9.3.1 Dobutamine stress data 

Heart rate increased from 70 ± 12 to 123 ± 23 beat/min and systolic blood pres­
sure from 127 ± 20 to 141 ± 31 mmHg. No significant side effects were encoun­
tered during the stress contrast study. 

9.3.2 Myocardial segmental visibility 

At peak stress, 434 of the 578 segments (76%) could be analyzed during noncon­
trast 3D imaging. With contrast-enhanced 3D imaging, the number of available 
LV segments increased to 526 (91 %). 
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Interobserver agreement for segmental ischemia 9.3.3 

As seen in Fig. 9.4, the two observers agreed on the presence or absence of myo­
cardial ischemia in 387 of 434 LV segments (agreement 89%, K = 0.24) during 
noncontrast 3D imaging and 477 of 526 LV segments (agreement 91%, K = 0.37) 
during contrast-enhanced 3D imaging. With the new 3D analysis software these 
numbers improved to 430 of 434 LV segments (agreement 99%, K = 0.83) during 
noncontrast 3D imaging and 516 of 526 LV segments (agreement 98%, K = 0.78) 
during contrast-enhanced 3D imaging. 

N oncontrast Contrast 
+ + 

+ 10 28 + 18 24 
Old 

method 
19 377 25 459 

K=0.24 K-0.37 

+ + 

+~ +~ New 
method 

- 0 420 - 1 497 

K= 0.83 K=0.78 

Fig. 9.4: Interobserver agreement of segmental myocardial ischemia us:ing the old and 
new analysis methods during conventional and contrast-enhanced 3D stress echocar­

diography. 

Interobserver agreement for coronary territorial ischemia 9.3.4 

The two observers agreed on the presence or absence of myocardial ischemia in 
81 of 102 coronary territories (agreement 79%, K = 0.28) during noncontrast 3D 
imaging and 92 of 102 coronary territories (agreement 90%, K = 0.65) during 
contrast-enhanced 3D imaging, see Fig. 9.5. With the new 3D analysis software 
these numbers improved to 98 of 102 coronary territories (agreement 96%, K = 

0.69) during noncontrast 3D imaging and 98 of 102 coronary territories (agreement 
96%, K = 0.82) during contrast-enhanced 3D imaging. 

Discussion 9.4 

The major finding in this study is that side-by-side, synchronized analysis of 
anatomically aligned 3D DSE data sets results in better interobserver agreement 
for the diagnosis of myocardial ischemia, both when noncontrast and contrast 
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Fig. 9.5: Interobserver agreement of coronary territorial myocardial ischemia using the 
old and new analysis methods during conventional and contrast-enhanced 3D stress 

echocardiography. 

data sets were analyzed. Since stress echocardiography is an important clinical 
tool for the detection of CAD [Geleijnse eta!., 1997], we anticipate that dedicated 
visualization tools for evaluation of 3D stress echo may have great potential in 
improving the diagnosis of myocardial ischemia. 

Previously, we have demonstrated that interobserver agreement for myocar­
dial ischemia during 3D DSE can be improved when contrast is used [Nemes 
et al., 2007b ]. However, the results were still not optimal. This may not only 
be caused by the limited spatial and temporal resolution of 3D DSE data sets, 
but also by the lack of a proper review tool. Our new software allows optimal 
analysis of 3D DSE by systematic anatomical alignment and reslicing of rest and 
stress data sets, with synchronized side-by-side display of the standard nonfore­
shortened anatomical cross-sections. These options are not available in current 
commercial 3D analysis packages. In the present study, it is shown that this new 
3D analysis method can further improve interobserver agreement for myocardial 
ischemia. However, reduced interobserver variability does not necessarily corre­
late with an improved accuracy in diagnosis. Due to the lack of angiography data, 
this improvement could not be determined; this is a major limitation of the study. 
A prospective study of stress patients undergoing angiographic examination is a 
subject of future research. 

The new 3D stress analysis software also offers additional possibilities, such 
as side-by-side analysis of multiple short-axis cross-sections, similar to the anal­
ysis that is used in stress magnetic resonance imaging. In the future, the man­
ual annotation and alignment procedure, although it is relatively fast, will be 
replaced by automated alignment of rest and stress data, such as proposed by 
us (chapter 4) and others [Shekhar et a!., 2004]. Alignment of the complete im­
age sequence in time may also be valuable, to compensate cardiac rotation and 
translation throughout the cardiac cycle. Obviously, this step is cumbersome to do 
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manually and should therefore be automated [Shekhar eta!., 2004]. The alignment 
can also serve as a solid basis for automated segmentation of 3D stress echo data 
and automatic quantification of LV wall motion [Bosch et al., 2005; van Stralen 
et a!., 2005a; Zagrodsky et a!., 2005]. 

An intriguing finding in this study is that the use of systematically aligned 
anatomical views resulted in a higher number of LV segments that are scored as 
nonischemic. This may suggest a higher specificity (but also a reduced sensitiv­
ity) for the diagnosis of CAD. Observers are used to imperfectly aligned, slightly 
foreshortened views. In such views, wall thickness and wall motion is overesti­
mated, and differences in alignment and foreshortening in rest and stress may be 
falsely interpreted as a change in wall thickening and motion. If the optimal non­
foreshortened cross-sections are visualized, thickening and motion will be more 
consistent between rest and stress, but abnormalities may be subtler to detect 
(and may need some retraining of the eye). We anticipate that this will result in 
less false positive studies, and thus a better specificity for the diagnosis of CAD. 
To study the true effects of our new analysis software on the diagnostic value of 
3D DSE, a larger cohort of patients undergoing diagnostic coronary angiography 
should be studied prospectively. 
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10.1 Research goals 

Cardiovascular diseases are one of the major causes in the Western world. Im­
provement of diagnostic techniques is therefore of great clinical importance. A 
widely-applied diagnostic method for assessing myocardial dysfunction and un­
derlying coronary disease is stress echocardiography. Wall motion of the left 
ventricle is visualized with echocardiography (ultrasound imaging) at rest and 
at different levels of stress (elevated to maximal workload for the cardiac mus­
cle). Traditionally, the wall motion is analyzed visually by 'eyeballing' cross­
sectional anatomical views, acquired using two-dimensional (2D) imaging tech­
niques. Hence, traditional2D stress echo suffers from differences in the visualized 
cross-sections, within the same patient as well as between different patients. Also, 
2D stress echo is hampered by observer variabilities in the visual analysis. 

Recently, three-dimensional (3D) ultrasound imaging has been proposed for 
stress echocardiography. 3D imaging may offer a better definition of anatomical 
views after the image acquisition, and better possibilities for objective quantifica­
tion of 3D wall motion. Quantification in 3D ultrasound imaging is not an easy 
task. Suboptimal spatial and temporal image resolution results in inferior image 
quality; the various ultrasound specific imaging artifacts hamper the imaging of 
parts of the left ventricle; and the wealth of 3D data requires dedicated automated 
methods to avoid tedious manual, thus subjective, analysis. In this thesis, such 
automated methods are presented, for objective and quantitative analysis of 3D 
stress echo. 

To enable automated analysis, methods have been developed for 
o detection of anatomical markers and automated view selection (chapters 2-4), 

for improving visualization and for initialization of other automated methods, 
o segmentation of left ventricular endocardial borders throughout the cardiac 

cycle (chapters 5-7), for deriving left ventricular motion parameters, and 
o classification of these parameters into normal and pathological motion (chap-

ter 8). 
In addition, we present a clinical evaluation of a dedicated 3D stress echo software 
package, which has been developed in the course of this research project (chapter 
9). This package is intended as a tool for facilitating analysis of 3D stress echo. 

10.2 Summary of contributions 

10.2.1 Initialization 

For anatomical marker detection and automated view selection, we chose to ex­
plore initialization methods based on model-to-image registration, feature detec­
tion via the Hough transform, and image-to-image registration. 

For initial landmark detection, a model-to-image registration approach was 
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investigated, in which a statistical appearance model of the left ventricle was 
matched to an image to find the anatomical landmarks (see chapter 2). To make 
the model more concise, only a sparse set of landmarks on commonly used 
anatomical views (four-chamber, two-chamber, and short-axis) were modeled. By 
matching the pose and model parameters in a registration framework, no cum­
bersome training of the optimizer was needed (unlike the traditional active ap­
pearance model algorithm). The evaluation, albeit on a limited number of data 
sets, showed that the normalized cross-correlation metric gave better results than 
the sum-of-square differences, sum-of-absolute differences, and normalized mu­
tual information metrics. The increase in the number of model parameters (from 
67% to 96% variance coverage) resulted only in a slight improvement ( < lmm 
point-to-point) of the matching results. This confirmed that the matching of the 
pose and the principal modes were more important for initial alignment. The re­
sulting alignment had an error of approximately Smm, which should be adequate 
for initializing the active appearance model with the Jacobian tuning algorithm 
as described in chapter 5 (see Fig. 5.4). 

In chapter 3, a method was presented for finding the long-axis and mitral 
valve plane of the left ventricle in the whole cardiac cycle. As opposed to the 
model-based registration method in chapter 2, the methods used are data-driven. 
The long-axis in each individual 3D image was found by applying the Hough 
transform for circles in approximate short-axis cross-sections. The resulting cen­
ters were spatially and temporally regularized using multidimensional dynamic 
progranmting for a more robust and time continuous result. The mitral valve 
plane was found also by using dynamic progranmting; the endocardial borders 
were detected in spherically interpolated images and the mitral valve was found 
via backprojection in the cartesian domain. The method showed robust results 
in terms of angle and distance errors in data of 25 patients. The errors were 
comparable to interobserver variabilities and the algorithm had low computation 
costs. 

Given annotated landmarks in a rest image, the landmarks in the correspond­
ing stress image were obtained using image-to-image registration (see chapter 4). 
Instead of using the whole 3D image, only the common anatomical views were 
used to calculate the image metric. Qualitative and quantitative evaluation in 20 
end-diastolic and 20 end-systolic data sets showed an improvement in alignment 
after registration. Again, the normalized cross-correlation metric proved to give 
good results, close to the interobserver variability. It was shown that a more ro­
bust landmark detection was obtained using this sparse distribution of anatomical 
views, rather than using the whole 3D image. By using a registration approach, 
we exploited the fact that intra patient variability is smaller than interpatient vari­
ability. This is especially important, given that the quality of stress images is 
generally lower than that of the rest images (see also Nemes et al. [2007b]). 
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Segmentation :w.2.2 

For detecting the endocardial border of the left ventricle, we proposed segmenta­
tion methods based on active appearance models and optical flow tracking. The 
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latter was further improved by assigning lower probabilistic weights to image 
pixels corresponding with stationary artifacts. 

The active appearance model (AAM) technique was applied for detecting 
the left ventricular contours in a single 3D image in chapter 5. This method 
matched a statistical model of shape and texture to an image via regression tech­
niques, which required training of the regression matrix. The traditional matching 
method was compared with a new 'Jacobian tuning' method, which updated the 
regression matrix during matching instead of using a fixed matrix. Better accu­
racy and a larger capture range were obtained using the Jacobian tuning method 
in 54 patients. The larger capture range has important repercussions in applying 
the AAM to ultrasound images, given the variability of left ventricular appearance 
and the large amount of information due to 3D modeling. 

Segmentation in the whole cardiac cycle was posed as a tracking problem in 
chapter 6. The contour in an end-diastolic 3D image is propagated throughout 
the image sequence using spatial transforms, calculated with optical flow. A sta­
tistical model of cardiac motion was embedded in the optical flow calculation, for 
a time-continuous and physically plausible segmentation, even at sites where the 
myocardial wall was obscured. Good tracking results were obtained in 53 non­
contrast images and 27 contrast images, comparing well with results reported in 
literature. The combination of the proposed motion-guided method with the ba­
sic, purely data-driven optical flow method using gradient-based weights proved 
to be best for good quality images. For more challenging images, the motion­
guided method provided still good results, whereas the basic method had more 
difficulties in tracking. 

To further improve the tracking method, a probabilistic weight scheme was 
proposed in chapter 7 to improve the balance between the motion-guided and 
the basic tracking approaches. The idea was to rely on the basic tracking if the 
myocardial wall was clearly visible, and to use the motion-guided method in 
areas where the myocardial wall was obscured by artifacts such as near-field clut­
ter and shadowing. This balance was determined by calculating weights using 
temporal image intensity information. The evaluation on 35 noncontrast image 
sequences showed a further improvement in tracking accuracy, compared with 
the gradient-based weights proposed in chapter 6. This shows that the detection 
of such artifacts, which are often seen in clinical quality images, are beneficial in 
terms of segmentation accuracy. 

10.2.3 Classification 

In chapter 8, the automated classification of segmental wall motion abnormali­
ties was investigated. A model of the left ventricular shape in multiple cardiac 
phases was used to generate simple parameters which characterized wall mo­
tion. The orthomax rotation was applied to generate an even more concise model 
for classifying segmental wall motion. The resulting classification of 2D+time 
echocardiograms was shown to have similar accuracy using fewer parameters in 
a better-defined classification space. An additional bonus is that the orthomax 
rotation is readily available in statistical analysis software, making it easy to use 
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in other applications. 

Clinical application 10.2.4 

The first clinical application of the 3D stress echo software was shown in chapter 
9. The software allowed proper display of the stress echo images, with different 
stress stages side-by-side and (manually) anatomically aligned. Using this soft­
ware, interobserver agreement was shown to drastically improve compared with 
traditional software (which did not feature side-by-side display nor systematic 
alignment), in the analysis of 34 stress noncontrast and contrast data sets. This 
shows that the use of dedicated software is of importance in the analysis 3D stress 
echo. 

Discussion of contributions 10.3 

The goal of this thesis is to present methods which contribute toward the auto­
mated analysis of 3D stress echo. In the following, we will discuss the suitability 
and applicability of these methods in the general clinical setting, keeping in mind 
the requirements that the methods should enable fast, robust and ac=ate analy­
sis. 

Registration 10.3.1 

In chapters 2 and 4, we proposed methods using the registration paradigm. Since 
registration is an optimization process in which the image metric is evaluated 
during each iteration, the method is traditionally slow, and increasingly so with 
the number of parameters. With improvements like limiting the metric calcula­
tion to specific image areas, great gain in computation speed can be obtained. 
This is important for initialization purposes, since the initialization is not the fi­
nal step in the analysis. Since the computation times reported were based on 
an implementation in a prototype environment (10-20 minutes in MATLAB), they 
may give an unrealistically pessimistic view of the methods' speed. With further 
optimizations and improvements in implementation (e.g. using the graphics card 
for image interpolation), registration time can probably be brought down to a few 
seconds (provided that the number of parameters to optimize is limited). 

The ac=acy of the proposed registration methods is probably adequate for 
initializing contour detection method purposes. While registration itself has been 
shown to be able to provide subpixel accuracy, the errors reported seem rather 
large. This may partly be a result of the difficulties in establishing ground truth 
via manual annotation. Also, compared with modalities like CT and MR, ultra­
sound suffers more from artifacts and speckle noise, making both manual anno­
tation and automated processing more difficult. 

The registration paradigm relies heavily on the fact that the images to be regis­
tered must be similar. For the model-to-image registration (chapter 2), the robust-
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ness depends on the ability of the model to approximate an image outside the 
training set (also known as model generalization). To improve this model gen­
eralization, we have chosen to only model the appearance on sparse anatomical 
views. For the image-to-image registration, the template should be similar to the 
target image. In our case, this was achieved by matching the rest and stress im­
ages of the same patient, instead of using a model-to-image registration approach 
for the stress images. 

10.3.2 Model-based analysis 

Statistical models were included in the methods of chapters 2, 5, 6, 7, and 8. In 
chapters 2 and 5, shape and texture models were used to describe the variations 
in left ventricular appearance. Chapters 6 and 7 described models representing 
frame-to-frame affine cardiac motion. In chapter 8, a multiphase shape model 
was used for classification purposes. 

The AAM technique has the advantage of providing faster parameter opti­
mization (chapter 5) than registration (chapter 2), especially when many param­
eters need to be optimized. The AAM achieves this by training the optimizer 
via regression techniques: the model is perturbed with chosen parameters and 
the differences between the model and training images are stored in a regression 
matrix. In the matching stage, the difference between the current estimation of 
the model and the testing image, together with the regression matrix, are used 
to calculate a linear update of the model parameters. Although the regression 
training stage is computationally demanding (a few hours), the matching stage is 
very fast (less than a minute). 

The robustness and accuracy of the AAM method hinges on model gener­
alization. For the current appearance model built using 54 samples, the shape 
model could achieve approximately 95% generalization in a leave-one-out sit­
uation, whereas the texture model could only achieve 65% generalization [van 
Stralen et al., 2007]. This difference could be attributed to the fact that the shape 
model represents 2700 input (coordinate) values, whereas the texture model de­
scribes 22500 (intensity) values. Since the traditional AAM matching algorithm 
uses a fixed regression matrix, the limited texture generalization might explain 
the reduced accuracy for larger perturbations in chapter 5 (Fig. 5.3, 5.4). It is pos­
sible that the Jacobian tuning method is able to extend the limitations of model 
generalization by adapting the regression matrix during matching, resulting in a 
larger capture range. 

Model generalization can be improved in a number of ways. The training 
samples should be representative of the testing population, e.g. containing both 
normal and pathological data. The number of modeled values can be limited by 
finding other representations, such as using affine transforms instead of actual 3D 
points (explored in chapters 6 and 7) or by modeling only local behavior [Seghers 
et al., 2007]. To make models more concise, spatial (interpatient: chapter 5) and 
temporal (intrapatient: chapters 6 and 7) behaviors were modeled separately in 
this thesis. Finally, models can be improved using more training samples. Ways 
of artificially augmenting the number of training samples have been proposed 
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recently [Koikkalainen eta!., 2008]. 
Another important issue is that of point correspondence. To build a good 

statistical model, the modeled points should represent distinct, consistent land­
marks. In chapter 5, the 3D point correspondence is established using the long­
axis and 4-chamber orientation. In chapters 6 and 7, there was a lack of temporal 
anatomical point correspondence, due to the use of a fixed coordinate system 
based on the annotated landmarks in end-diastole. As a result, the model did not 
represent motion tangential to the contour, and this type of motion could not be 
recovered when matching the model to the image. 

Furthermore, methods can be applied which improve the modeling itself. Tra­
ditional principal component analysis (PCA), which is most often used for statis­
tical modeling, implicitly assumes that the underlying data has a single Gaussian 
distribution. For more complex distributions, multiple Gaussian models [Coates 
and Taylor, 1999] and other nonlinear methods [Twining and Taylor, 2001] can 
be used. Robust statistical methods for building and matching can be applied 
to deal with outliers in statistical modeling. Common methods are based on M­
estimation and random sampling techniques [Rogers and Graham, 2002] (see also 
section 7.1.2). 

Principal component analysis yields models of which the eigenmodes are or­
dered according to variance. As a result, the main modes represent global mo­
tion. In chapter 8, an alternative representation was investigated, which rotates 
the modes such that they represent local variations. While the model still contains 
the same amount of variation, it is more concise in modeling local behavior. As a 
result, the number of modes needed to classify local wall motion can be reduced. 
Also, the classification space was better behaved, which may potentially lead to 
better classification accuracy. However, many more patients need to be analyzed 
to draw a solid conclusion. 
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Feature-based analysis :W.3.3 

In this thesis, we also investigated methods which operate on low-level image 
features, such as the circular Hough transform (chapter 3), dynamic programming 
(chapter 3), optical flow (chapters 6 and 7), and probabilistic pixel-wise weight 
schemes (chapter 7). 

The Hough transform is a well-established method for detecting parametric 
structures in low quality images. In chapter 3, the Hough transform has been 
successfully applied for robustly detecting circular structures, even in the pres­
ence of severe artifacts such as shadowing. By estimating circle centers in a set of 
short-axis views, the long-axis can be reconstructed more reliably. Although the 
Hough transform is an n-dimensional teclmique, in this work, we have chosen 
to detect 2D circle centers instead of the 3D long-axis line to limit computation 
time. For that same reason, we chose not to explore the generalized Hough trans­
form [Ballard, 1981]. The computation time can be reduced by using multiscale 
techniques. 

In chapter 3, the dynamic programming technique is used to regularize the 
estimates of the long-axis and to detect the mitral valve plane. Dynamic pro-
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gramming is a robust and fast technique for finding an optimal path through a 
directed graph. This technique is also used for generating left ventricular contours 
as ground truth semi-automatically in chapters 6, 7, and 8. For segmentation, 
the graph was constructed by resampling the image perpendicular to an iritial 
estimate of the contour. In 3D, this technique, together with smart choices for 
cost-functions, proved to generate LV volumes which were comparable with MRI 
[van Stralen eta!., 2005b]. Since dynamic programming is a search through a dis­
crete parameter space, the accuracy also depends on the resolution of the directed 
graph, i.e. the distance between neighboring nodes. Alternative methods which 
can search paths through a continuous parameter space are state estimation meth­
ods such as Kalman filtering [Maybeck, 1979] and particle filtering [Arulampalam 
et a!., 2002]. 

The optical flow method was applied in chapter 6 for tracking the cardiac 
motion. Previously, this method was applied successfully for tracking small-scale 
speckle in 2D images. Since the optical flow is a differential method based on 
calculation of spatial and temporal gradients, both spatial and temporal resolution 
are defiritely an important issue. Currently, the temporal resolution in 2D is 
more favorable than in 3D imaging. Despite this limitation, we have shown that 
tracking larger scale structures (the myocardial wall) in 3D is feasible with optical 
flow. The tracking of speckle in 3D is a subject of continuing research. 

The purely data-driven optical flow method was quite accurate in estimating 
motion at sites with good myocardial wall visibility. However, the method had 
more problems in obscured areas. We have shown that the combination of the 
model-guided approach and the data-driven method leads to more robust and 
accurate tracking results in chapters 6 and 7. Another issue with the traditional 
optical flow method is that errors can accumulate throughout the image sequence 
if the tracking is performed on a frame-to-frame basis, as is implemented in chap­
ters 6 and 7. In the case of a cardiac sequence, a backtracking approach (tracking 
from the end of the sequence to the front), may further improve results. 

In chapter 7, we investigated a pixel-wise probabilistic weight scheme for dis­
tinguishing between cardiac wall which is clearly visible and which is obscured. 
The weights were calculated by investigating the image intensity throughout the 
cardiac cycle. These weights were shown to have a positive effect on the robust­
ness and accuracy of the tracking. The online expectation-maximization frame­
work for calculating the weights themselves allowed for a fast computation which 
can attain real-time performance. Since the weight calculation is based on a pixel­
wise evaluation, explicit spatial information is missing: e.g. the probability of 
encountering near-field artifacts is much higher close to the transducer than in 
other parts of the images. Also, in apically acquired echocardiograms, generally 
more shadowing artifacts are found in the anterolateral region of the left ventricle. 
Such prior information can be encoded, for example using a supervised classifi­
cation approach. In that case, ground truth data (e.g. obtained using phantom 
experiments or manually annotated images) would be necessary. 
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Accuracy for stress echo 10.3.4 

Since traditional stress echo is analyzed visually, few reports can be found on 
quantification of regional wall motion within the vast amount of clinical litera­
ture. This may be attributed to difficulties in cardiac wall delineations and the 
choice of reference standard (see also section 10.5.2). However, there is extensive 
literature on global clinical parameters such as volume and ejection fraction. In 
the following, we will discuss the accuracy of the automated methods in relation 
to clinical applicability in distinguishing between normal and abnormal function. 

Few reports can be found on registration and view initialization, since 3D 
ultrasound imaging is a relatively new technique and view selection is not a post­
processing issue for 2D imaging. Recently, Lu et al. [2008] reported a long-axis 
detection error of 8.2 ± 6.2' in a large database of 326 3D end-diastolic images. 
Orderud et al. [2009] reported errors of 11.8 ± 8.SO. In chapter 3, an error of 5 
to 6' was reported, comparing quite favorably (see Table 3.3, 3.4 and Fig. 3.8). 
However, the mitral valve location can still be improved upon (Lu et al. [2008]: 3.6 
± 3.1mm, Orderud et al. [2009]: 3.6 ± 1.8mm, vs. chapter 3: 5.6 ± 3.1mm). For 
rest-to-stress registration, only qualitative results have been reported [Shekhar et 
al., 2004]. 

Global volume errors are more commonly reported (see Table 7 2). Our signed 
(1.4 ± 6.7ml) and absolute (5.2 ± 4.5ml) errors (Table 7.1) compare well with those 
reported in literature (Table 7.2). In chapter 7, absolute ejection fraction errors of 
3.9 ± 2.9% were reported in a mixed population of 35 normal and abnormal sub­
jects. According to Lang et al. [2006a ], reference limits for ejection fraction (based 
on 2D measurements) are :2: 55% for normal, 45%-54% for mildly abnormal, 30%-
44% for moderately abnormal, and < 30% for severely abnormal left ventricular 
function. Using commercially available software, Soliman et al. [2007] found in­
traobserver variabilities of 6.6 ± 7.4% (53 patients) and interobserver variabilities 
of 7.1 ± 6.9% in ejection fraction. This suggests that the proposed tracking method 
may be able to distinguish between these global differences in function. 

Point-to-surface errors have been investigated more extensively in technical 
papers. Table 6.5 lists segmentation errors in technical papers, ranging from 1.5 
± 0.3mm to 3.4 ± 1.2mm; the Jacobian tuning method of chapter 5 (2.8 ± 1.0mm) 
is within this range. As for tracking errors, surface errors of 1.19 ± 0.47mm were 
found (chapter 7), which is in the range of the spatial resolution of the images 
(1 x 1 x 0.7mm). The obtained accuracy should be sufficient to distinguish between 
akinesis ( < 2mm) and normal(> Smm) endocardial excursion, at least in a global 
sense; however, these standard values were determined rather arbitrarily from 2D 
echocardiograms (see also section 10.5.2). 

Comparison with quantitative regional measures is more difficult, since re­
ports in literature often use their own definitions and a common standard is cur­
rently lacking. In general, regional measures can be derived using imaging tech­
niques (MRl: tagging [Prince and McVeigh, 1992], phase/velocity encoding [Pan 
et al., 2005], echo: acoustic quantification/ color kinesis [Mor-Avi et al., 1997], tis­
sue Doppler [Armstrong et al., 2000]) or image processing techniques. Of the lat­
ter, most often used are intensity based methods [Frouin et al., 2004; Kachenoura 
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et a!., 2009], contour based (either direct measures like excursion or volume, or 
derived measures like in chapter 8), or tracking based (via registration or block­
matching/ optical flow), see also Garcia-Femandez et a!. [2003] for an overview. 
Numerous measures exist [Peilikka, 2005], such as velocity [Voigt et a!., 2004], re­
gional volumes [Nesser eta!., 2007], fractional area/volume change [Fujino eta!., 
2001], wall thickening [Karagiannis et a!., 2007], strain/ strain-rate [Ingul et a!., 
2007], contraction delays [Jenkins et a!., 2009], and torsion in short-axis images 
[Notomi eta!., 2005]. 

Here, we compare our tracking method with endocardial excursion values 
found in literature. DeCara et a!. [2004] measured 2D endocardial excursions 
(from a fixed spatial reference point) of 0-25mm (average 6mm, Fig .5 ofDeCara et 
a!. [2004]) with manually drawn end-diastolic and end-systolic contours and with 
color kinesis in 24 patients (also mixed population). Corsi eta!. [2005] found, us­
ing their level-set contour detection method, that the regional shortening fraction 
(ED to ES motion divided by ED radial dimension) agreed with expert interpreta­
tion of normality in 86% of the segments of 11 patients; this 3D measure was more 
indicative than the motion itself (which was in the range of 0 to 10mm, Fig. 7 of 
Corsi eta!. [2005]). These results are corroborated by Bermejo eta!. [2008], who 
show that lower radial shortening and longer time to peak radial shortening are 
indicative of abnormality. Therefore, we conclude that further regional analysis 
of our segmentation methods is necessary to determine their clinical value. 

10.4 General limitations of current study 

In this thesis, we have presented initialization, segmentation, and classification 
methods for automating the analysis of 3D stress echo. Each method has been 
evaluated individually against a manual or semi-automated reference standard. 
It is important to evaluate each step individually, as a weak link in the chain of 
automated processing methods can have considerable impact on the end result. 
Ultimately, for a complete automated analysis framework, the methods need to 
be concatenated. We have yet to determine the accuracy of detecting normal and 
pathological motion in this total framework. 

Several of the proposed methods have only been tested on rest images. Al­
though the extension to stress images may seem straightforward, images in stress 
tend to be of lower image quality. Therefore, the robustness and accuracy ob­
tained in rest may not give a realistic reflection on the analysis of stress images. To 
improve the analysis, data-driven methods should be augmented by model-based 
methods, which take into account intrapatient variabilities throughout different 
stress stages. Also, the investigation of automated methods in multiple stress 
stages (low-dose, high-dose, peak, recovery) is lacking. 

The current thesis also lacks the classification of 3D wall motion. For exam­
ple, the effect of orthomax rotations (chapter 8) on 3D models has not yet been 
investigated, although the extension from 2D to 3D seems straightforward. There 
are inherent difficulties when using model-based methods, as discussed above: 
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many more parameters need to be characterized in 3D than in 2D, whereas few 
training examples are available. The gathering of a large set of patient data re­
qllires time, and the creation of a public database (such as is available in general 
computer vision [Messer et al., 1999] and increasingly so for medical imaging 
[van Ginneken et al., 2006]) will certainly be beneficial. We expect that a joint 
statistical model of rest and stress motion, e.g. similar to the work of [de Bruijne 
et al., 2007], should be helpful in detecting changes in wall motion. For 2D stress 
echo, hidden Markov models have recently been proposed [Mansor et al., 2008], 
showing that a combined rest-stress model has better classification accuracy than 
individual ones. 

Furthermore, the effect of these automated methods on the sensitivity and 
specificity of stress echo has not yet been investigated. As a first evaluation, we 
were able to show that side-by-side viewing and manual systematical alignment 
can improve interobserver agreement using our own 3D stress echo software. 
To truly evaluate the clinical suitability of our methods, we are currently in the 
process of integrating the methods into the 3D stress echo software. These au­
tomated techniques should then be tested in the clinical setting, preferably in 
multiple centers. The derived parameters should be evaluated against an inde­
pendent reference standard, however, the choice of ground truth is not trivial (see 
section 10.5.2). 
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Recommendations for 3D stress echo 1.0.5 

The goal of this thesis is to develop automated methods to allow objective and 
quantitative analysis of 3D stress echo. Registration, segmentation, and classifica­
tion methods have been developed, which make use of model-based and feature­
based techniques. We have also discussed the first evaluation of using dedicated 
3D stress echo software. From the above, it is clear that we have come a long way 
in developing automated algorithms for 3D stress echo. However, there is still 
much room for improvement and further development. 

As mentioned in the introduction, 3D imaging theoretically offers considerable 
advantages above 2D stress echo. However, due to the wealth of data from this 
extra spatial dimension, together with the need to process the temporal dimen­
sion as well as different stress stages, some type of automation is needed to limit 
tedious and time-consuming manual analysis. Furthermore, the alignment of rest 
and stress views, the delineation of myocardial wall, and the analysis of wall mo­
tion parameters all contribute toward the complexity of stress echo. Therefore, the 
intraobserver, interobserver, and interinstitutional variabilities will only increase 
with each step of manual analysis. Ultimately, we think that automated analysis 
is the key to limiting these observer variabilities. Automated analysis will lead 
to more robust, reproducible results which are more consistent across different 
stress stages and different patients. Therefore, as a general recommendation, one 
should consider using automated tools as a starting point for analysis, after which 
the observer could manually correct inaccuracies, if needed. 
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10.5.1 Better definition of anatomical markers 

One of the major difficulties encountered during this study is the definition of 
anatomical markers and views. This definition should be consistent to enable ac­
curate visualization, statistical modeling, tracking, and wall motion classification. 
These markers should be reproducible not only for the same patient at different 
stress stages, but also for different patients. Throughout the years, anatomical 
definitions have been reported in a number of key publications [Cerqueira et aL, 
2002; Henry et a!., 1980; Lang et al., 2005; Schiller et al., 1989]. In practice, it is 
often difficult to apply these (sometimes not very strict) definitions on each in­
dividual echocardiogram, given the large interpatient and even intrapatient vari­
ability in appearance of the left ventricle, giving rise to difficulties in establishing 
the ground truth. 

In this thesis, the definition of the long-axis of the left ventricle is determined 
by the location of the mitral valve center and the endocardial apex (see chapters 
4 and 9). In (good quality) noncontrast images, the points where the mitral valve 
leaflets are attached to the mitral valve ring can be annotated relatively easily due 
to bright echoes in that area. To avoid apical foreshortening, the annotation of 
the apex is cruciaL In practice, this is hampered by the presence of trabeculation 
and in apically acquired images, by near-field artifacts. In extreme cases, the 
left ventricular shape is so skewed that the resulting long-axis actually transects 
the myocardial wall, or even that the apex cannot be captured within the scan 
sector of the transducer. In those cases, one might choose to resort to defining the 
long-axis as a least-squares fit through circle centers of short-axis slices (similar 
to chapter 3). For manual annotation, the location of markers can be better seen 
when viewing the whole image sequence, rather than visualizing only a single 
still frame. 

The direction of the standard long-axis anatomical views is also not very strict. 
Of the four-chamber, two-chamber, and three-chamber view, the latter can be de­
fined most easily by rotating the image around the long-axis until the aortic out­
flow tract is at its maximum size. The four-chamber direction is more difficult to 
define, since any view where the right-ventricle and atria are visible is eligible. 
In practice, one should try to either maximize the size of the right-ventricle or 
to transect the center of the tricuspid valve, if adequately visible. One can rec­
ommend to first find the three-chamber view, then take a fixed angle (e.g. 30°) 
between the three-chamber and four-chamber views, and further optimize the 
four- and two-chamber views from there. 

Also, one might even extend the annotation to the temporal dimension, to 
allow point correspondence throughout the cardiac cycle. Automated tracking 
teclmiques, such as proposed by e.g. Nevo et al. [2007]; Orderud et al. [2009]; 
Veronesi et al. [2006], may prove invaluable to overcome the labor-intensive man­
ual annotation. It may even be interesting to see if the relative angles between 
the anatomical views vary between different stages of stress, and whether this is 
related to pathology. 
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Choice of reference standard 10.5.2 

For determining the accuracy of the automated methods for stress echo, the choice 
of ground truth is not trivial. The most direct comparison would be to compare 
the quantitative motion parameters with (manual or semi-automated) ground 
truth delineations of the myocardial border. However, the definition of the en­
docardial and epicardial borders is a major diliiculty in 3D echocardiography 
[Chukwu et a!., 2008; Mor-Avi and Lang, 2008]. For an accurate measurement of 
wall motion in stress echocardiography, it is not only important that these bor­
ders are detected consistently in rest and in stress, but also in different patients, 
so that a quantitative reference standard can be established. The presence of the 
papillary muscles and trabeculae, which form an intricate pattem along the myo­
cardial wall changing in appearance throughout the cardiac cycle, hampers the 
definition of the border. Also, it is diliicult to compare volume measurements 
with other modalities such as MRI, which is currently considered as the reference 
standard. In particular, differences in spatiotemporal resolution and in visual­
izing the trabecular structures [Voormolen and Danilouchkine, 2007] affect the 
comparison. Because of this, many papers in the literature report that in vivo vol­
umes measured by 3D echocardiography are different than those by MRI [Badano 
et a!., 2007; Jenkins et a!., 2006; Kiihl et al., 2004; Soliman et al., 2007; Sugeng et 
a!., 2006]. To investigate this, a complex phantom setup is needed which includes 
a beating heart and which can be scanned using different imaging modalities. 
These images should then be visualized and delineated side-by-side to investi­
gate the differences in border definition. Delineations should be checked in both 
long-axis and short-axis views. 

Since the goal of stress echo is to detect underlying coronary artery disease, 
quantitative coronary angiography (QCA) is considered as the gold standard. 
However, QCA measures abnormalities in anatomy, whereas stress echo measures 
abnormalities in function, making a one-to-one comparison difficult. Moreover, 
as demonstrated by Pereztol-Valdes et a!. [2005], considerable interpatient varia­
tions can be found in the correspondence between the 17left ventricular segments 
and the coronary territories in clinical practice. This may also contribute to the 
diliiculty in relating QCA results to wall motion. 

There are also limitations in relating motion parameters with visual wall mo­
tion scores as ground truth, particularly due to observer variabilities, as men­
tioned in chapter 8. The quantitative standard for hypokinesia ( <5mm) and 
akinesia ( <2mm) is set rather randomly and is defined based on 2D echocar­
diographic recordings. Also, this standard oversimplifies the problems in quan­
titating regional motion, as global rotation/ translation is not taken into account 
(see section 10.5.3). Furthermore, visual interpretation is complicated by image 
quality and resolution. Currently, a quantitative measure is still lacking. To com­
pare quantitative wall motion parameters with visual wall motion scores, a large 
database of stress echoes is needed which has been scored by multiple experts (in 
consensus), preferably from multiple institutions. 

Recently, the relationship between heterogeneity in contraction and 3D stress 
echo has been investigated by Jenkins eta!. [2009]. Contraction delays were mea-
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sured based on regional volumes, from semi-automatically drawn endocardial 
contours. Although the accuracy of this 'parametric imaging' method is under 
debate, Jenkins et al. [2009] nevertheless showed that this more quantitative mea­
sure is more sensitive than visual wall motion scoring (55% versus 40%) on the 
same patient data. These low values can mainly be attributed to using only non­
contrast imaging and acquiring the 3D images after the 2D images at peak stress, 
which may have allowed time for wall motion abnormalities to resolve. The latter 
is especially detrimental in exercise stress, as is used in that study. By combining 
both methods, adequate sensitivity (75%) and specificity (84%) (with respect to 
QCA) can be reached. 

An alternative approach to assessing accuracy involves the comparison with 
nuclear perfusion techniques. Many reports show that both methods have similar 
sensitivity and specificity [Feigenbaum et al., 2005, p. 505]. Recently, a fusion of 
3D stress echo and SPECT been proposed by Walirnbe et al. [2009]. This offers 
alternative possibilities of validating stress echo. 

10.5.3 3D visualization and analysis 

Despite the true 3D nature of cardiac motion and the current 3D imaging pos­
sibilities, in practice one still resorts to visual analysis of 2D cross-sections of 
the 3D heart. To achieve true 3D stress echo, both qualitative and quantitative 
measures should represent this 3D wall motion. As mentioned in section 9 .4, ob­
servers are used to 2D acquisitions which are often foreshortened. In such views, 
wall thickness and motion may be slightly overestimated. The visual analysis of 
nonforeshortened 3D views may therefore need slight retraining of the eye. 

In current 2D displays, a visualization feature which has proved quite useful 
in clinical practice is the 'thick slices' setting, i.e. a maximum intensity projection 
of multiple short-axis or long-axis slices (Fig. 10.1). Another interesting option 
is to map the grayscale image to a colormap which represents the depth of the 
slice, thus increasing the 3D feel of the image (such as in the QLab version 7.0 
software). For true 3D visualization, virtual reality stereoscopic systems may be 
an option in the clinical setting [van den Bosch et al., 2005]. These systems are 
becoming more widely available and more portable these days. All these options 
may help better appreciate the 3D nature of cardiac motion. 

Fig. 10.1: Normal (left) and thick-slice (right) short-a.'Xis cross-section. 
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For analysis of stress echo, it may be an option to visualize rest and stress im­
ages superimposed on each other, color-coded to different color channels and syn­
chronized in time, to better emphasize the differences in motion. A fine checker­
board representation (like in Fig. 4.5) may also be beneficial. 

For quantitative analysis, wall motion should of course be measured in 3D. 
One may choose to use an implicit statistical method as proposed in chapter 8 for 
modeling this motion, or one may opt to explicitly model individual segments. 
When explicitly defining segmental wall motion, it is important to choose a good 
spatial reference point, to distinguish between the global rotation/ translation mo­
tion of the heart and local behavior [Marwick, 2003, p. 55]. This is not a trivial task. 
Poor definition may result in the estimated motion of segments opposite one an­
other to affect each other, in cases with severe wall motion abnormality. Probably 
it is more interesting to quantify the differences between rest and stress motion 
per patient, instead of dealing with these stages separately. 

It would be interesting to incorporate a measure of certainty in the interpreta­
tion and visualization of results of automated methods. Since ultrasound images 
often contain artifacts that limit the analysis, areas where e.g. contours could not 
be detected properly should be indicated as such, for example using dotted or 
transparent lines. Chapter 7 is an example of such a measure. This should help 
not only the quantitative analysis but also the visual interpretation of the auto­
matically detected results. 
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Real-time processing 10.5.4 

ln recent years, there has been an increasing interest in developing analysis meth­
ods for (near) real-time analysis, which can be incorporated into the ultrasound 
machines. Currently, methods focus on e.g. state estimation [Hansegard et al., 
2007a; Orderud et al., 2007b] and machine learning schemes [Lu et al., 2008; Yang 
et al., 2008b], which have low computational costs. However, it is always impor­
tant to keep in mind whether these methods sacrifice accuracy for speed. To really 
compete with the clinical workflow of 2D stress echo, anatomical view selection 
methods are needed at the very least, and these should run at (near) real-time. In­
stead of choosing methods with low computational cost, one could also optimize 
existing methods (e.g. using multiscale techniques), or use smart implementation 
techniques (e.g. parallel processing, or gpu-based implementations). 

Another interesting research area is the development of real-time artifact de­
tection methods. These may be used to give direct feedback on the optimality 
of acquisition. For example, Orderud et al. [2007a] have reported on real-time 
detection of poor acoustic contact of the probe on the patient's skin. Such meth­
ods could potentially be used to optimize the probe position during acqulsition. 
The real-time detection and visualization of anatomical views may also help to 
pre-align rest and stress images as much as possible during acquisition. 
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10.6 Future directions 

1().6.1 Improvements 3D stress echo 

When 3D stress echocardiography was first introduced at the beginning of this 
decade, it was received with much enthusiasm. Of the reports on dobutamine 
stress echo, only a few studies [Aggeli eta!., 2007; Ahmad et al., 2001; Krenning 
et a!., 2008; Matsumura et al., 2005] compared 3D stress with coronary angiog­
raphy. These studies reported sensitivity (61%-88%) and specificity (80%-89%) 
values in detecting coronary artery disease, which are in the range of 2D studies 
(average sensitivity=83% and specificity=83%, [Krenning et al., 2004]). Despite 
these encouraging reports, clinical routine application of stress echocardiography 
is still limited, due to the yet unsolved problems of spatiotemporal resolution, 
image quality, time-consuming manual analysis (as discussed in section 10.5), 
and lack of stress specific acquisition protocols. Until these issues are sufficiently 
addressed, it is difficult to evaluate the true value of 3D stress echocardiography. 

Spatiotemporal resolution 

Despite the advances in transducer technology in recent years, the spatiotemporal 
resolution and image quality of 3D echocardiography is still inferior to that of 2D 
echocardiography. Currently, a very promising development is single heart-beat 
imagjng. Using smart beamforming and signal processing teclmiques, the whole 
left ventricle can be acquired within one cardiac cycle, without volume stitching. 
This will eliminate the motion artifacts due to beat-to-beat variations. For stress 
sequences, improvement of temporal resolution may be more important than that 
of spatial resolution, because these sequences are generally shorter than the rest 
sequences due to the higher heart rate. Preferably, the frame rate should be at 
least 30 frames per second [Lang et al., 2005]. 

Image quality 

Ultrasound artifacts form a considerable problem in the analysis of echocardio­
grams. In practice, the visibility of myocardial wall segments in stress images is 
inferior to that of the rest image in the same patient [Krenning et al., 2008; Nemes 
et al., 2007b]. More research is needed to deal with these artifacts, not only using 
image post-processing methods, but also with improvements in hardware. The 
use of higher harmonics and smart pulsing schemes may prove useful here. Also, 
effort should be put into (further) reducing the footprint of the transducer, for 
optimal transthoracic imaging. 
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Stress specific acquisition protocol 

To enable routine use of 3D imaging for stress echo, dedicated protocols for ac­
quisition of stress images should be available on the ultrasound machine. Several 
commercial companies have very recently included or are on the verge of intro­
ducing these protocols. At the very least, these protocols should allow side-by­
side viewing of all stages (to optimize anatomical alignment during acquisition), 
easy switching between acquisition environment of the 2D and 3D transducer, 
simple labeling of different stress stages during acquisition, and exporting to of­
fline analysis. All these things seem quite trivial but are essential in enabling 3D 
stress echo in clinical routine practice. 

Also, the machine settings should be optimized for stress to improve frame 
rate: the scan sector should be as narrow as possible, and the imaging depth 
should also be set so that only the left ventricle is captured (and not too much of 
the atrium). There should also be separate settings for contrast-enhanced imaging 
so that one can switch easily between noncontrast and contrast acquisition, while 
maintaining a high frame rate. 

Alternative approaches to automated analysis 

In this thesis, we have chosen to tackle automated stress echo via initialization, 
segmentation, and classification approaches, using registration, model-based, and 
data-driven techniques. Recently, new machine learning methods have been pro­
posed, based on marginal space learning and probabilistic boosting tree, which 
can be adapted to solve all three problems. These methods involve construction 
of extensive databases of the object to be analyzed using a simple, overcomplete 
set of features. The approach was inspired by the work of Viola and Jones [2001] 
for detecting faces in photographic images, and has very recently been extended 
to medical applications [Carneiro et al., 2008; Georgescu et al., 2005; Zheng et 
a!., 2008]. This promising method appears to be quite robust, accurate and fast 
(in the order of a few seconds), as demonstrated by Georgescu et al. [2005] and 
Yang eta!. [2008b]. However, it does require many annotated training samples, 
many more than the statistical model-based approaches. The application to stress 
echo analysis remains to be investigated, and ways of artificially augmenting the 
database definitely requires further attention. 
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Stress and contrast 10.6.2 

Reports in the literature show that contrast can improve visibility of the my­
ocardium, resulting in more segments which can be analyzed via visual wall 
motion scoring in 3D [Nemes eta!., 2007b]. Therefore, future work should evolve 
around methods for analyzing contrast images. In chapter 6, we presented some 
preliminary work on segmentation of contrast echocarcliograms. The swirling 
patterns and inflow and outflow of contrast in the left ventricular cavity cause 
differences in image intensity between each acquisition, which are difficult to 
capture within model-based analysis. On the other hand, feature-based methods 
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may be able to exploit these fast varying patterns for distinguishing contrast from 
myocardium in segmentation methods. Also, segmentation of the mitral valve 
requires more attention, since this structure is less clearly visible in contrast en­
hanced images due to attenuation by the contrast media. Given the differences 
between noncontrast and contrast-enhanced imaging, it can be envisioned that 
the analysis of contrast images requires the development of dedicated methods, 
which is a subject of further research. 

Another application of contrast echocardiography which is quickly gaining in­
terest is myocardial perfusion [Dijkmans et al., 2006]. This technique examines the 
speed and extent of contrast inflow into the microvasculature in the myocardium. 
Within a stress echo setting, studies have concentrated on detecting stable coro­
nary artery disease and for detecting acute coronary syndromes. For automated 
analysis of these images, multimodality registration and classification approaches 
may be promising [Slomka et al., 2004]. 

10.6.3 Other quantitative measures 

3D strain and strain-rate imaging has also become an interesting topic of research. 
In the past decade, 2D speckle tracking methods have been developed for estimat­
ing the in-plane strain in the left ventricular myocardium [Helle-Valle et al., 2005]. 
Speckle tracking methods can potentially be used for assessing myocardial defor­
mation in stress echo [Govind et al., 2009; Moonen et al., 2009; Reant et al., 2008]. 
These speckle tracking methods are usually based on block-matching and optical­
flow approaches. Since the heart is a moving 3D structure, the through-plane mo­
tion of the heart may cause speckle patterns in 2D images to become decorrelated. 
True 3D speckle tracking can overcome this limitation. However, the i¢erior spa­
tial and temporal resolution and overall image quality pose technical challenges 
which need to be resolved before 3D speckle tracking can be applied in clinical 
practice. Nevertheless, preliminary clinical studies show promising results in 3D 
[Kawagishi, 2008; Nesser and Wmter, 2009]. 

Besides motion, myocardial wall thickening is an important parameter for as­
sessing normal and abnormal contractility. A way to measure wall thickening is to 
detect both the epicardium and the endocardium. Segmentation of these borders 
has been investigated more extensively for CT and MR images. Recently, auto­
mated 3D epicardium detection has been investigated [Walimbe et al., 2006; Zhu 
et al., 2007], which make use of spatial constraints based on the location of the en­
docardium. Epicardium segmentation is more challenging, particularly in apical 
views [Noble and Boukerroui, 2006], due to the limited visibility and suboptimal 
spatial resolution. 

10.7 Conclusions 

In this thesis, automated methods have been proposed for quantitative and ob­
jective analysis of 3D stress echocardiography. These methods are used to ini-
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tialize anatomical markers and views, to obtain endocardial borders throughout 
the cardiac cycle, and to automatically detect wall motion abnormalities based on 
endocardial border information. These methods cover a wide range of techniques 
from medical image processing, including registration, segmentation, and classifi­
cation approaches, using both low-level feature-based and high-level model-based 
techniques. Also, a dedicated software package is developed for clinical routine 
practice, which has been shown in a first clinical study to have significant ben­
efits for reducing interobserver variability, one of the major limitations in stress 
echo. Thus, we have shown that considerable advances have been made to allow a 
more robust and accurate analysis, which, we hope, will also improve the clinical 
workflow and feasibility of 3D stress echo. 

From the above discussion, we have seen that the combination of low level and 
high level image information is crucial for obtaining robust clinical parameters. 
This is especially relevant in the analysis of ultrasound images, where image 
quality is more challenging than e.g. in MR or CT. Also, we anticipate that the 
combination of all available image information via registration, segmentation and 
classification, should enhance the performance of stress echo as a whole. 

As discussed in the previous sections, many opportunities remain for improv­
ing automated analysis of 3D stress echo. The presented methods should be 
evaluated as a whole. The classification of wall motion in 3D still requires further 
investigation, as well as the effect of automation on sensitivity and specificity of 
3D stress echo. Some key issues still need to be addressed, such as better defi­
nition of anatomy, 3D visualization and analysis, and the possibility of real-time 
processing. Future research opportunities remain for contrast imaging and inte­
gration of other meaningful quantitative measures. This could further enhance 
the robustness and accuracy of 3D stress echo. 

Besides dedicated research, the development of dedicated software and ac­
quisition protocols are crucial for boosting automated methods to clinical prac­
tice. For thorough clinical evaluation, implementation of the proposed methods 
is needed. The development of a user-friendly interface is an important part in 
this process, which requires regular contact with clinical experts. In addition, 
through closer collaboration, commercial companies can expedite the testing and 
application of automated methods through inclusion in their own software. 

Given the wealth of data in 3D imaging, we anticipate that automated meth­
ods will be invaluable for improving clinical workflow and reducing observer 
variabilities. The automated methods should give a complete, precise report of 
the function of the left ventricle. The methods developed in this thesis aim at 
providing useful quantitative and objective clinical parameters, as well as at im­
proving the overall clinical workflow. However, it is important to remark that the 
automated methods are a tool for helping the decision making process of the clin­
ical expert. Ultimately, the final diagnosis should be provided by the cardiologist. 
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Summary 

Cardiovascular diseases are among the major causes of death in the Westem 
world. Therefore, improvement of techniques for diagnosing these diseases is 
of great clinical importance. A widely-applied diagnostic method for assessing 
myocardial dysfunction and underlying coronary disease is stress echocardiogra­
phy (stress echo). The technique consists of visualizing the wall motion of the left 
ventricle with echography (ultrasound imaging). This is done while the patient 
is at rest and at different levels of 'stress' (i.e. elevated to maximal workload for 
the cardiac muscle). The images are then analyzed to determine the myocardial 
function. This is usually done visually, which may lead to large variabilities in 
interpretation between observers. 

In the past decade, three-dimensional (3D) ultrasound imaging has become 
available. This imaging technique offers the opportunity to overcome the limi­
tations of traditional two-dimensional stress echo. First of all, with 3D imaging, 
better anatomical views can be defined since different view choices can be made 
after acquisition. Also, it allows better possibilities for quantifying the true 3D 
wall motion. In this thesis, we present automated methods for objective and quan­
titative analysis of 3D stress echo. This is a challenging task, due to the suboptimal 
spatiotemporal resolution, different imaging artifacts, and limited analysis time 
within the strict clinical workflow. Chapter 1 explains the context of this research, 
by giving an overview of medical ultrasound imaging, stress echocardiography, 
and medical image analysis methods. The scope and goals of the thesis are also 
described in more detail. 

Several methods are described which enable the automated analysis of stress 
echo. Firstly, initialization of anatomical markers (such as the apex and mitral 
valve) and automated view selection are described in chapters 2-4. Next, we 
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present methods for segmenting the left ventricular endocardial borders through­
out the cardiac cycle (chapters 5-7). Furthermore, parameters of the left ventricu­
lar motion are derived and classified into normal and abnormal motion (chapter 
8). In addition, we present a clinical evaluation of a dedicated 3D stress echo 
software package, which has been developed in the course of this research project 
(chapter 9). 

A method for automatically finding the basic anatomical cross-sections and 
markers is presented in chapter 2. An appearance model of the left ventricle is used 
to detect this anatomical information in a 3D image. An appearance model is a 
statistical representation of the shape and echo-image intensities of the left ventri­
cle. The model is created using Principal Component Analysis (PCA). This statistical 
technique generates a compact description of the average and typical variabili­
ties over a number of patients. In this chapter, the model describes a sparse set 
of cross-sectional anatomical views (four-chamber, two-chamber, and short-axis). 
Each image of the left ventricle can be approximated using the model description, 
by finding the best model parameters and pose parameters (i.e. the translation, 
rotation, and scaling) of the model with respect to the image. These parameters 
are found within a registration frame--<»ork (see also chapter 4): the Simplex opti­
mizer iteratively evaluates the model-and-image difference, which is measured in 
terms of image intensity. Once these parameters have been estimated, one can 
superimpose the model's shape information on the image, and thus extract the 
corresponding anatomical cross-sections and markers. The evaluation (on a lim­
ited number of images) shows that the normalized cross-correlation difference 
measure gives the best results. The detected markers are sufficiently accurate for 
initializing a following segmentation step. 

In chapter 3, an alternative method for detecting basic anatomical markers 
is presented. This chapter focuses on the detection of the long-axis and mitral 
valve plane of the left ventricle in a 3D image sequence. First, the long-axis is 
detected in each individual 3D image. This is accomplished by taking cross­
sections similar to the short-axis views, in which the left ventricle can be seen as a 
circular structure. The circle centers are used to approximate the long-axis. These 
centers are found by applying the Hough transform for circles, which is a method 
for detecting parametric structures. Next, the resulting centers are spatially and 
temporally regularized using multidimensional dynamic programming. Dynamic 
programming is an algorithm for finding an optimal path through, in this case, 
an image sequence. This generates a more robust and time continuous result. 
Next, the mitral valve plane is found, also by applying dynamic programming. 
Robust detection is achieved in data of 25 patients. The angle and distance errors 
are comparable to interobserver variabilities. Moreover, the algorithm has low 
computation costs. 

Given the annotated anatomical landmarks and cross-sections in a rest image, 
this information is estimated in the stress image of the same patient using image­
to-image registration (chapter 4). Here, the difference measure between a rest and 
a stress image is minimized by modifying the pose parameters iteratively. In this 
way, the spatial correspondence or alignment between the two images is estab­
lished. As before in chapter 2, to put more emphasis on the landmarks in the 3D 
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image, only the sparse set of common anatomical views is used to calculate the 
difference measure. Qualitative and quantitative evaluation in 20 end-diastolic 
and 20 end-systolic images shows an improvement in alignment between rest and 
stress. Again, the normalized cross-correlation measure gives good results, close 
to the interobserver variabilities. Also, we demonstrate that the anatomical land­
marks can be detected more robustly using this sparse distribution of anatomical 
views, rather than using the whole 3D image. 

We now shift the focus from the initialization of anatomical markers to the 
detection of 3D endocardial borders of the left ventricle. In chapter 5, the active 
appearance model technique is applied for segmenting the 3D contours in an end­
diastolic echocardiogram. The appearance model is generated as before; however, 
a full 3D model is used in this chapter. It is then matched to the image via re­
gression techniques, which require prior training of the regression matrix. During 
each iteration, the pose and appearance parameters are updated linearly using the 
model-and-image difference and the regression matrix. The traditional matching 
method, which uses a fixed regression matrix, is compared with a new 'Jacobian 
tuning' method, which iteratively updates the regression matrix during match­
ing. The latter leads to better accuracy and a larger capture range in the contour 
detection in 54 patient images. 

Contour detection throughout the whole cardiac cycle is investigated in chap­
ter 6. The contour in an end-diastolic 3D image is propagated (tracked) through­
out the image sequence using spatial transforms, calculated with optical flow. This 
method estimates the motion of the myocardium via spatial and temporal im­
age gradients. Naturally, this requires that the myocardium is visible in the im­
age. However, this is not always the case for clinically acquired echocardiograms, 
since parts of the cardiac wall may be obscured due to suboptimal imaging con­
ditions. So, to provide a time-continuous and physically plausible tracking result, 
a statistical model of cardiac motion is embedded in the optical flow method. In 
this way, the motion in regions where the cardiac wall is obscured is regularized 
by the motion of the visible cardiac wall. Good tracking results are obtained in 
53 noncontrast image sequences and 27 contrast sequences, comparing well with 
results reported in literature. In good quality images, the combination of the pro­
posed method with a basic optical flow algorithm (i.e. without statistical model) 
generates even better tracking results. 

The contour detection method of chapter 6 is further improved using a proba­
bilistic weight scheme, presented in chapter 7. Weights are derived by analyzing 
the temporal intensity profiles of the 3D image sequence using expectation maxi­
mization (EM). In this chapter, a fast implementation of the EM method is used 
to estimate the probability that each image pixel corresponds with a 'station­
ary', 'wandering', or 'lost' component in the probability density distribution. The 
derived weights reflect the probability that the cardiac wall is clearly visible or 
obscured by typical ultrasound artifacts. In areas where the cardiac wall is clearly 
visible, the motion is estimated using a basic optical flow method. In areas where 
the cardiac wall is obscured, the motion estimation relies on the statistical cardiac 
motion model. The quantitative assessment on 35 noncontrast sequences shows a 
further improvement in tracking accuracy, compared with the results of chapter 
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6. 
To discriminate between normal and pathological cardiac wall motion, a clas­

sification method is proposed in chapter 8. Cardiac wall motion is represented by 
parameters of a statistical PCA model of the left ventricular shape, consisting of 
multiple cardiac phases. The orthomax rotation is applied to this PCA model, to 
generate a more compact representation of the wall motion in each left ventricular 
segment. This concise representation is achieved because the orthomax rotation 
generates more localized variations in spatial and temporal domains, whereas the 
traditional PCA model contains global variations. Wall motion classification using 
these statistical parameters is demonstrated in 129 two-dimensional echocardio­
graphic sequences. Compared with the PCA model, the orthomax rotated repre­
sentation attains a similar classification accuracy, but "With fewer parameters in a 
better-defined classification space. 

In the course of this research project, a dedicated 3D stress echo software pack­
age has been developed. This was necessary since this type of software had not 
been available commercially until very recently. In chapter 9, the first clinical 
evaluation of our software is presented. The essential functionality for analyz­
ing 3D stress echo is investigated: side-by-side viewing of rest and stress data 
and the systematical selection and visualization of anatomical views. Two expert 
observers analyzed 34 noncontrast and contrast clinically available rest-stress im­
ages visually. They compared the new software with traditional software which 
does not have this essential functionality. Using this new software, a drastic im­
provement of interobserver agreement can be seen. 

To conclude, we have come a long way in developing quantitative and ob­
jective methods for analyzing 3D stress echo (chapter 10). Initialization, contour 
detection, and classification methods have been developed, which show that con­
siderable advances have been made to allow a more robust and ac=ate analysis. 
We have also demonstrated the advantages of using dedicated software for the 
analysis of 3D stress echo in the clinical setting. Based on the research in this 
project, opportunities remain for further development, e.g. in the analysis of con­
trast echocardiograms, enhancement of image quality, and improvement of clini­
cal workflow. The tools developed within this research project can provide useful 
quantitative and objective parameters to help the clinical expert in the diagnosis 
of left ventricular function. 



Samenvatting 

Hart- en vaatziekten zijn een van de belangrijkste doodsoorzaken in de wester­
se wereld. Het is daarom van groat klinisch belang om de tedmieken, die deze 
ziekten kunnen opsporen, te verbeteren. Stress echocardiografie (stress echo) is 
zo'n tedmiek. Het wordt vaak toegepast om verminderde functie van het hart­
spierweefsel en het daarmee samenhangende coronairlijden te beoordelen. De 
methode werkt als volgt: de wandbeweging van het linkerventrikel wordt met 
echografie (beeldvorming via ultrageluid) zichtbaar gemaakt. Dit wordt gedaan 
als de patient in rust is en bij diverse niveaus van inspanning van de hartspier 
( d.w.z stress). Aan de hand van deze beelden wordt de hartfunctie beoordeeld. 
Dit gebeurt normaliter visueel, wat kan leiden tot grate interpretatieverschillen 
tussen gebruikers. 

Sinds kart is driedimensionale (3D) echografische beeldvorming beschikbaar. 
Deze afbeeldingstedmiek kan verschillende beperkingen van stress echo, die ge­
woonlijk met tweedimensionale beeldvormlllg wordt uitgevoerd, voorkomen. Ten 
eerste kunnen de anatomische doorsneden in een 3D beeld achteraf exact geko­
zen worden. Daamaast maakt deze tedmiek het mogelijk om de echte 3D wand­
beweging te kwantificeren. In dit proefschrift presenteren we geautomatiseerde 
methoden om 3D stress echo objectief en kwantitatief te analyseren. Dit is beslist 
geen makkelijke taak, vanwege de !age spatiotemporele resolutie, de verschillen­
de beeldartefacten, en de hoge snelheid waarmee de beelden dienen te worden 
geanalyseerd. In hoofdstuk 1 wordt de context van dit onderzoek geschetst, door 
een overzicht te geven van medische beeldvorming met ultrageluid, stress echo­
cardiografie en methoden voor medische beeldverwerking. Ook worden het ter­
rein en de doelen van het onderzoek in meer detail beschreven. 

Om stress echo analyse te automatiseren, zijn een aantal verschillende rnetho­
den ontwikkeld. Allereerst worden in hoofdstukken 2-4 technieken beschreven 
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om anatornische pun ten (zoals de apex en rnitralisklep) in een beeld te vinden 
en om automatisch doorsneden te selecteren. Verder presenteren we methoden 
om het endocard van het linkerventrikel over de gehele hartcyclus te segmenteren 
(hoofdstukken 5-7). Vervolgens behandelen we de afleiding van bewegingspara­
meters van het linkerventrikel, waarrnee onderscheid kan worden gemaakt tussen 
normale of abnorrnale wandbeweging (hoofdstuk 8). Daamaast presenteren we 
een klinische evaluatie van een computerprogramma dat speciaal gemaakt is voor 
3D stress echo en ontwikkeld is in de loop van dit onderzoeksproject (hoofdstuk 
9). 

In hoofdstuk 2 wordt een methode gepresenteerd om de elementaire anatorni­
sche punten en doorsneden in een 3D beeld te vinden. Om deze anatornische in­
formatie te detecteren, wordt een zogenaamd appearance model van het linkerven­
trikel gebruikt. Een appearance model is een statistische representatie van de vorm 
van het !inkerventrikel en de intensiteiten van het echobeeld. Dit model wordt 
gemaakt m.b.v. Principal Component Analysis (PCA). Deze statistische techniek ge­
nereert een compacte beschrijving van het linkerventrikel, in termen van een ge­
rniddelde en van de typische variabiliteit over een verzameling patienten. In 
wezen beschrijft het model in dit hoofdstuk slechts een selectie van anatornische 
vlakken (de vierkamer-, tweekamer-, en de korte-asdoorsneden). Elk beeld van 
een linkerventrikel kan worden benaderd m.b.v. deze modelbeschrijving, door de 
beste model- en orientatieparameters ( d.w.z. translatie, rota tie, en schaling) van 
het model ten opzichte van het beeld te vinden. Deze parameters worden be-­
paald door registratie (zie ook hoofdstuk 4). Hiervoor gebruiken we het Simplex 
optimalisatiealgoritrne, dat het intensiteitsverschil tussen het beeld en het model 
minimaliseert. Zodra deze parameters zijn bepaald, kan de vorrninformatie van 
het linkerventrikelmodel worden toegepast op het beeld, en zodoende kunnen 
de anatornische doorsneden en punten worden geextraheerd. Uit de evaluatie 
( op een beperkt aantal beelden) blijkt dat de genorrnaliseerde kruiscorrelatie als 
verschilmaat de beste resultaten geeft. De gedetecteerde anatornische pun ten zijn 
nauwkeurig genoeg voor een daaropvolgende segmentatiestap. 

In hoofdstuk 3 wordt een altematief gepresenteerd om elementaire anato­
rnische punten te detecteren. In dit hoofdstuk wordt de nadruk gelegd op de 
detectie van de lange as van het linkerventrikel en het vlak van de rnitralisklep 
in 3D beeldreeksen. Eerst wordt de lange as in elk afzonderlijk 3D beeld gevon­
den. We gaan daarbij uit van transversale doorsneden, waarin het linkerventrikel 
als een cirkelvorrnige structuur te zien is. De rniddelpunten van deze cirkels be­
naderen zo de lange as. Deze rniddelpunten worden gevonden door de Hough 
transformatie voor cirkels toe te passen, een methode om parametrische structuren 
te detecteren. Vervolgens worden de verkregen rniddelpunten in het spatiotempo­
rele domein geregulariseerd m.b.v. multidimensionaal dynarnisch progranuneren 
(dynamic programming). Dynarnisch programmeren is een algoritrne om het opti­
male pad te vinden door een netwerk van knooppunten (in dit geval, de pixels 
in een bee!dreeks). Deze aanpak !evert een betrouwbaar resultaat zonder spatiele 
en temporele onregelmatigheden. Daarna wordt het vlak van de rnitralisklep ge­
detecteerd. Ook hiervoor gebruiken we dynarnisch programmeren. De methode 
!evert een goede detectie op in de beelden van 25 patienten. De hoek- en afstand-
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fout is vergelijkbaar met de variaties in het handmatig aangeven van de punten. 
Bovendien zijn de rekenkosten van het algoritme laag. 

Als we de handmatig aangegeven anatomische punten en doorsneden in een 
rustbeeld hebben, kan deze informatie in een stress beeld van dezelfde patient 
worden bepaald met image-to-image registration (beeld-op-beeld registratie, hoofd­
stuk 4). Deze methode minimaliseert het intensiteitsverschil tussen het rust- en 
het stressbeeld door iteratief (stapsgewijs) de orientatieparameters te veranderen. 
Op deze manier word! de spatiele uitlijning (alignment) tussen de twee beelden 
verkregen. Zoals oak in hoofdstuk 2 wordt er meer gewicht toegekend aan de 
anatomische punten in het 3D beeld, door slechts de selectie van standaard ana­
tomische vlakken te nemen om het verschil te berekenen. De registratie methode 
laat een kwalitatieve en kwantitatieve verbetering zien in de uitlijning tussen rust 
en stress in 20 eind-diastolische en 20 eind-systolische beelden. Oak hier geeft de 
genormaliseerde kruiscorrelatiemaat goede resultaten, die de variabiliteit tussen 
twee gebruikers benaderen. Verder Iaten we zien dat de anatomische punten be­
ter kunnen worden gedetecteerd met deze selectie van anatomische vlakken dan 
met het hele 3D beeld. 

We verleggen nude aandacht van ir.itialisatie van anatomische punten en vlak­
ken naar de detectie van het 3D endocardiale oppervlak van het linkerventrikel. 
In hoofdstuk 5 word! de active appearance model techniek gebruikt om 3D contou­
ren in een eind-diastolisch echocarcliogram te segmenteren. In tegenstelling tot 
voorgaande hoofdstukken wordt in dit hoofdstuk een volledig 3D model gebruikt. 
Om een beeld te segmenteren word! het model met het beeld in overeenstemming 
gebracht (matching) via regressietechnieken. Dit vereist dat er vooraf een regres­
siematrix is opgebouwd. Tijdens de matching worden de orientatie- en appearance 
parameters bij elke iteratiestap op lineaire wijze bijgesteld m.b.v. deze regressie­
matrix en het verschil tussen model en beeld. De traditionele matching methode, 
waarbij een constante matrix word! gebruikt, wordt vergeleken met een nieuwe 
zogenaamde Jacobian tuning methode, die bij elke iteratie de regressiematrix bij­
werkt. Uit de contourdetectie in 54 eind-diastolische patientbeelden blijkt dat 
deze nieuwe methode nauwkeuriger is en een groter convergentiebereik oplevert. 

In hoofdstuk 6 word! contourdetectie over de gehele hartcyclus onderzocht. 
De contouren in een hele tijdreeks worden gevonden door spatiele transforma­
ties uit te voeren tussen opeenvolgende beelden, uitgaande van de contouren in 
het eind-diastolische 3D beeld. Deze transformaties worden berekend met opti­
cal flow. Met deze methode word! de beweging van de hartwand tussen twee 
opeenvolgende beelden bepaald, d.m.v. de spatiele en temporele gradienten. Dit 
vereist uiteraard dat de hartwand zichtbaar is in het beeld. Voor klinisch op­
genomen echocardiogrammen is dit helaas niet altijd het geval, aangezien delen 
van de hartwand kunnen wegvallen door suboptimale beeldacquisitie. Daarom 
word! hier een statistisch model van de hartbeweging in de optical flow methode 
opgenomen, om een continue en fysiek plausibele segmentatie te verkrijgen. Op 
deze manier gebruiken we de beweging van de zichtbare hartwand als regulari­
satie om de beweging te bepalen van gebieden waar de hartwand slecht te zien 
is. Deze nieuwe methode is getest op 53 tijdreeksen die zonder contrastrniddel 
zijn opgenomen en in 27 reeksen met contrast en !evert goede resultaten op. Bo-
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vendien steken de uitkomsten gunstig af tegen andere resultaten in de literatuur. 
In beelden van goede kwaliteit Ievert de combinatie van deze methode met een 
klassiek optical flow algoritme (zonder statistisch model) een verdere verbetering. 

De contourdetectiemethode van hoofdstuk 6 wordt nog verder verbeterd met 
behulp van een probabilistische weging, die word! gepresenteerd in hoofdstuk 7. 
De wegingsfactoren worden afgeleid door de intensiteit-tijdsprofielen van de 3D 
reeks te analyseren met behulp van expectation maximization (EM). In d.it hoofd­
stuk wordt een snelle irnplementatie van de EM methode gebruikt om voor elk 
beeldpixel de kans te bepalen dat het behoort tot een 'stationary', 'wandering', of 
'lost' component in de kansverdeling. Op deze manier geven de afgeleide we­
gingsfactoren aan of de hartwand goed zichtbaar is of dat die achter typische 
ultrageluidsartefacten schuil gaat. In gebieden waar de wand goed te zien is, 
wordt de beweging bepaald met de klassieke optical flow methode. In gebieden 
waar de wand slecht of niet zichtbaar is, wordt de beweging bepaald met het sta­
tistisch hartbewegingsmodel. Dit laat een verdere kwantitatieve verbetering zien 
in 35 beeldreeksen zonder contrast, vergeleken met de resultaten van hoofdstuk 
6. 

De classificatiemethode in hoofdstuk 8 wordt gebruikt om onderscheid te rna­
ken tussen normale en pathologische hartbeweging. Hier worden de parameters 
van een statistisch PCA model gebruikt om de hartwandbeweging te beschrijven. 
Dit model geeft de vorm van het linkerventrikel weer in verschillende hartfases. 
Vervolgens wordt de orthomax rotatie toegepast op dit PCA model. Dit resul­
teert in een beknoptere representatie van wandbeweging in elk linkerventrikel­
segment. De orthomax rota tie genereert namelijk meer gelokaliseerde varia ties in 
het spatiotemporele domein, terwijl het traditionele PCA model globale variaties 
beschrijft. Classificatie van wandbeweging met deze trad.itionele en orthomax pa­
rameters is onderzocht in 129 twee-dirnensionale echocardiografische tijdreeksen. 
Met beide soorten parameters wordt een vergelijkbare classificatienauwkeurig­
heid behaald. Echter, voor de orthomax methode zijn rninder parameters nodig. 
Bovend.ien is de classificatieruirnte beter gedefinieerd. 

In de loop van dit onderzoeksproject is een speciaal 3D-stress echo software­
pakket ontwikkeld, omdat er nog geen soortgelijk pakket comrnercieel beschik­
baar was. In hoofdstuk 9 wordt de eerste klinische evaluatie van onze software 
gepresenteerd. De belangrijkste functionaliteit voor het analyseren van 3D stress 
echo wordt hler onderzocht, namelijk de weergave van rust en stress beelden 
naast elkaar en de systematische selectie en visualisatie van anatomische door­
sneden. Twee experts voerden visuele analyses uit op klinisch verkregen rust- en 
stressbeelden van 34 patienten, met en zonder contrast. Hierbij werd zowel de 
nieuwe software getest als de traditionele software, die niet over deze belangrijk­
ste functionaliteiten beschlkt. Door deze nieuwe software te gebruiken wordt de 
overeensternrning tussen de twee experts drastisch verbeterd. 

We concluderen dat we aanzienlijke vooruitgang hebben geboekt in de ont­
wikkeling van kwantitatieve en objectieve methoden voor het analyseren van 3D 
stress echo (hoofdstuk 10). We hebben initialisatie-, contourdetectie-, en classi­
ficatiemethoden ontwikkeld, en aangetoond dat deze methoden de analyses be­
trouwbaarder en nauwkeuriger maken. We hebben ook aangetoond dat het ge-
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bruik van speciale software voor de analyse van 3D stress echo waardevol is in 
de klinische omgeving. Naast de resultaten van dit onderzoek, resteert nog een 
aantal mogelijkheden voor verdere ontwikkeling, zoals bijvoorbeeld speciale me­
thoden voor de analyse van contrast echobeelden, verbetering van beeldkwaliteit, 
en optimaliseren van het diagnostische proces in de klinische omgeving. De tech­
nieken die ontwikkeld zijn binnen dit onderzoek kunnen nuttige, kwantitatieve 
en objectieve parameters opleveren. Deze bieden de klinische expert nieuwe mo­
gelijkheden in het bepalen van de functie van het linkerventrikel. 
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