239 research outputs found

    Pluggable AOP: Designing Aspect Mechanisms for Third-party Composition

    Full text link
    Studies of Aspect-Oriented Programming (AOP) usually focus on a language in which a specific aspect extension is integrated with a base language. Languages specified in this manner have a fixed, non-extensible AOP functionality. In this paper we consider the more general case of integrating a base language with a set of domain specific third-party aspect extensions for that language. We present a general mixin-based method for implementing aspect extensions in such a way that multiple, independently developed, dynamic aspect extensions can be subject to third-party composition and work collaboratively

    Towards Dynamic Reverse Engineering Visual Contracts from Java

    Get PDF
    Visual contracts provide a concise and intuitive representation of preand postconditions for operations in object-oriented or component-based systems, which can be used for documentation, testing, or simulation. However, defining visual contracts to correctly describe the behaviour of existing classes or components requires a deep understanding of their data model and behaviour.We propose an approach to automatically extract instantiated versions of visual contracts, or contract instances, by observing the changes an operation performs on the objects in a system. We describe and evaluate the approach and tool to extract contract instances using the case study of Java-based DOM implementation NanoXML

    Continuous Monitoring of Software Services: Design and Application of the Kieker Framework

    Get PDF
    In addition to studying the construction and evolution of software services, the software engineering discipline needs to address the operation of continuously running software services. A requirement for its robust operation are means for effective monitoring of software runtime behavior. In contrast to profiling for construction activities, monitoring of operational services should only impose a small performance overhead. Furthermore, instrumentation should be non-intrusive to the business logic, as far as possible. We present the Kieker framework for monitoring software runtime behavior, e.g., internal performance or (distributed) trace data. The flexible architecture allows to replace or add framework components, including monitoring probes, analysis components, and monitoring record types shared by logging and analysis. As a non-intrusive instrumentation technique, Kieker currently employs, but is not restricted to, aspect-oriented programming. An extensive lab study evaluates and quantifies the low overhead caused by the framework components. Qualitative evaluations provided by industrial case studies demonstrate the practicality of the approach with a telecommunication customer self service and a digital photo submission service. Kieker is available as open-source software, where both the academic and industrial partners contribute to the code. Our experiment data is publicly available, allowing interested researchers to repeat and extend our lab experiments

    Localizing Defects in Multithreaded Programs by Mining Dynamic Call Graphs

    Get PDF
    Writing multithreaded software for multicore computers confronts many developers with the difficulty of finding parallel programming errors. In the past, most parallel debugging techniques have concentrated on finding race conditions due to wrong usage of synchronization constructs. A widely unexplored issue, however, is that a wrong usage of non-parallel programming constructs may also cause wrong parallel application behavior. This paper presents a novel defect-localization technique for multithreaded shared-memory programs that is based on analyzing execution anomalies. Compared to race detectors that report just on wrong synchronization, this method can detect a wider range of defects affecting parallel execution. It works on a condensed representation of the call graphs of multithreaded applications and employs data-mining techniques to locate a method containing a defect. Our results from controlled application experiments show that we found race conditions, but also other programming errors leading to incorrect parallel program behavior. On average, our approach reduced in our benchmark the amount of code to be inspected to just 7.1% of all methods

    An overview of Mirjam and WeaveC

    Get PDF
    In this chapter, we elaborate on the design of an industrial-strength aspectoriented programming language and weaver for large-scale software development. First, we present an analysis on the requirements of a general purpose aspect-oriented language that can handle crosscutting concerns in ASML software. We also outline a strategy on working with aspects in large-scale software development processes. In our design, we both re-use existing aspect-oriented language abstractions and propose new ones to address the issues that we identified in our analysis. The quality of the code ensured by the realized language and weaver has a positive impact both on maintenance effort and lead-time in the first line software development process. As evidence, we present a short evaluation of the language and weaver as applied today in the software development process of ASML

    JVM-based Techniques for Improving Java Observability

    Get PDF
    Observability measures the support of computer systems to accurately capture, analyze, and present (collectively observe) the internal information about the systems. Observability frameworks play important roles for program understanding, troubleshooting, performance diagnosis, and optimizations. However, traditional solutions are either expensive or coarse-grained, consequently compromising their utility in accommodating today’s increasingly complex software systems. New solutions are emerging for VM-based languages due to the full control language VMs have over program executions. Existing such solutions, nonetheless, still lack flexibility, have high overhead, or provide limited context information for developing powerful dynamic analyses. In this thesis, we present a VM-based infrastructure, called marker tracing framework (MTF), to address the deficiencies in the existing solutions for providing better observability for VM-based languages. MTF serves as a solid foundation for implementing fine-grained low-overhead program instrumentation. Specifically, MTF allows analysis clients to: 1) define custom events with rich semantics ; 2) specify precisely the program locations where the events should trigger; and 3) adaptively enable/disable the instrumentation at runtime. In addition, MTF-based analysis clients are more powerful by having access to all information available to the VM. To demonstrate the utility and effectiveness of MTF, we present two analysis clients: 1) dynamic typestate analysis with adaptive online program analysis (AOPA); and 2) selective probabilistic calling context analysis (SPCC). In addition, we evaluate the runtime performance of MTF and the typestate client with the DaCapo benchmarks. The results show that: 1) MTF has acceptable runtime overhead when tracing moderate numbers of marker events; and 2) AOPA is highly effective in reducing the event frequency for the dynamic typestate analysis; and 3) language VMs can be exploited to offer greater observability

    Regression test selection for distributed Java RMI programs by means of formal concept analysis

    Get PDF
    Software maintenance is the process of modifying an existing system to ensure that it meets current and future requirements. As a result, performing regression testing becomes an essential but time consuming aspect of any maintenance activity. Regression testing is initiated after a programmer has made changes to a program that may have inadvertently introduced errors. It is a quality control approach to ensure that the newly modified code still complies with its specified requirements and that unmodified code has not been affected by the maintenance activity. In the literature various types of test selection techniques have been proposed to reduce the effort associated with re-executing the required test cases. However, the majority of these approach has been focusing only on sequential programs, and provide no or only very limited support for distributed programs or database-driven applications. The thesis presents a lightweight methodology, which applies Formal Concept Analysis to support a regression test selection analysis, in combination with execution trace collection and external data sharing analysis, for distributed Java RMI programs. Two Eclipse plug-ins were developed to automate the regression test selection process and to evaluate our methodology

    Experiences In Migrating An Industrial Application To Aspects

    Get PDF
    Aspect-Oriented Software Development (AOSD) is a paradigm aiming to solve problems of object-oriented programming (OOP). With normal OOP it’s often unlikely to accomplish fine system modularity due to crosscutting concerns being scattered and tangled throughout the system. AOSD resolves this problem by its capability to crosscut the regular code and as a consequence transfer the crosscutting concerns to a single model called aspect. This thesis describes an experiment on industrial application wherein the effectiveness of aspect-oriented techniques is explained in migration the OOP application into aspects. The experiment goals at first to identify the crosscutting concerns in source code of the industrial application and transform these concerns to a functionally equivalent aspect-oriented version. In addition to presenting experiences gained through the experiment, the thesis aims to provide practical guidance of aspect solutions in a real application

    Aspect-Oriented Programming for Test Control

    Get PDF
    Distributed and multithreaded systems are usually much more complex to analyze or test due to the nondeterminism involved. A possible approach to testing nondeterministic systems is to direct the execution of the program under test to take a certain path for each test, so that a unique output can be observed. Considering specification-based testing, we assume that a test case is given together with a test constraint for directing the internal nondeterministic choices. To instruct the program under test to execute according to a given test constraint, the program under test needs to communicate with the tester. In this thesis, we propose to use the features in Aspect-Oriented Programs to realize such communication. This solution does not require the availability of the source code of the program under test. We provide an automated translation from a test constraint to a set of aspects using AspectJ
    corecore