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SUMMARY

Multicore computers are ubiquitous. Expert developers as well as developers with little experience in
parallelism are now asked to create multithreaded software in order to exploit parallelism in mainstream
shared-memory hardware. However, finding and fixing parallel programming errors is a complex and
arduous task. Programmers thus rely on tools such as race detectors that typically focus on reporting
errors due to incorrect usage of synchronization constructs or due to missing synchronization. This arsenal
of debugging techniques, however, is incomplete. This article presents a new perspective and addresses
a largely unexplored direction of defect localization where a wrong usage of non-parallel programming
constructs might cause wrong parallel application behavior. In particular, we make a contribution by
showing how to use data-mining techniques to locate defects in multithreaded shared-memory programs.
Our technique analyzes execution anomalies in a condensed representation of the dynamic call graphs of
a multithreaded object-oriented application and identifies methods that contain a defect. Compared to race
detectors that concentrate on finding incorrect synchronization, our method is able to reveal a wider range
of defects that affect the control flow of a parallel program. Results from controlled experiments show that
our data-mining approach not only finds race conditions in different types of multicore applications, but
also other errors that cause incorrect parallel program behavior. Data-mining techniques offer a fruitful new
ground for parallel program debugging, and we also discuss long-term directions for this interesting field.
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1. INTRODUCTION

Multicore computers with several cores on a chip provide developers with new opportunities
to increase performance, but applications need to be multithreaded to exploit the hardware
potential [1]. Compared to sequential software development, programmers are now additionally
confronted with nondeterminism and parallel-programming errors, such as race conditions or
deadlocks [2, 3]. A significant part of the developer community, however, has little experience
with parallel programming. Even experts have difficulties finding parallel programming errors in
complex applications. Effective debugging tools are needed to ensure good parallel application
quality, in the following sense.

Static and dynamic debugging aids for parallel shared-memory programs are widely available [2,
4, 5, 6, 7, 8, 9, 10]. They focus on identifying atomicity violations, race conditions, or deadlocks
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due to wrong or inconsistent locking. These tools specialize on a particular class of parallel
programming errors that are due to wrong usage of synchronization constructs in parallel
programming languages. This article presents a new perspective showing that little attention has
been paid to other causes (e.g., originating from non-parallel constructs) that might produce wrong
parallel program behavior. As a consequence, quality assurance with existing tools is incomplete
and has to be tackled with appropriate techniques. Throughout this article, we use a more precise
terminology to characterize the colloquial “bug”. In particular, we distinguish between defects,
infections and failures, according to Zeller [11]: Defects are the positions in the source code which
cause a problem, an infection is an incorrect program state (usually triggered by a defect), and
failures are an observable incorrect program behavior (e.g., a user obtains wrong results).

Let us consider some motivating examples. First, suppose that a programmer forgets or incorrectly
specifies a condition when she or he writes the code creating threads in a thread pool. This slip
affects parallel behavior and might lead to an unbounded creation of threads, wrong control flow
and incorrect program outputs. As a second example, think of a programmer who incorrectly
uses a sequential memory allocator in a multithreaded context in a language without automatic
garbage collection. In rare cases, different threads could allocate overlapping parts of the memory
and perform concurrent accesses, which leads to races. Even though race detectors would be able
to intervene and show a report when a race occurs on a particular memory location, many tools
offer little insight on the real cause of the problem. There is a clear need for more general defect-
localization techniques to deal with such situations. Advances in this area are of great importance
for industrial practice and the development of complex multithreaded programs.

This article addresses this new problem area and proposes a novel usage of data-mining
techniques for defect localization in multithreaded shared-memory programs. Our approach is
designed to detect a wider range of defects that affect parallel execution rather than just race
conditions. In particular, we employ data mining on dynamic call graphs from a multithreaded
object-oriented application to detect anomalies in program behavior. We compare the structure of
the call graphs and the call frequencies from correct and incorrect program executions to isolate the
methods that potentially contain defects. This procedure is motivated by our previous studies with
single-threaded programs [12] where a similar approach has outperformed established techniques
such as SOBER [13] and Tarantula [14, 15] with its extensions [16]. In this article we also discuss
the effectiveness of different call-graph representations of multithreaded programs for call-graph
mining. The article introduces a new graph representation with edge annotations that is robust
in situations with varying thread schedules. This does away with the need for virtual machines
that control thread schedules. Our approach thus requires less complex infrastructure support. In
addition, our representation remains compact by summarizing redundant graph parts; this approach
reduces overhead and improves the accuracy of the analysis. For instance, this holds in cases
where multiple threads perform recursive calls, or in cases where similar work is done in parallel
by replicated tasks. Contrary to race detectors that produce many warnings (most of which are
false positives) in some arbitrary order, our technique determines a ranking of methods ordered by
defect probability. Our controlled experiments with various types of applications show that call-
graph mining finds defects in multithreaded programs. An upper bound of several hundred program
executions suffices to pinpoint the defects. In addition, our approach has identified a previously
unknown and undocumented defect in an open-source tool. The article extends our previous work
on similar techniques for sequential software [17] and multithreaded programs [18] and presents
additional details. We also discuss long-term directions of this fruitful field.

The article is organized as follows: Section 2 discusses related work. Section 3 explains the
principles of call-graph-based defect localization and contrasts representations for multithreaded
program call graphs. Section 4 introduces our approach to mine these graphs and use the results
for defect localization. Section 5 shows a detailed example. Section 6 evaluates our approach and
compares our technique with other approaches. Section 7 discusses long-term visions for research
in data mining for defect localization in parallel programs. Section 8 provides a conclusion.
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2. RELATED WORK

Defect identification techniques are typically classified into static and dynamic approaches. For both
classes, we review previous work related to multithreaded programs as well as sequential programs.

2.1. Techniques for Defect Localization in Multithreaded Programs

Tools employing static analysis, such as RacerX by Engler and Ashcraft [4] or ESC/Java by
Flanagan et al. [5], investigate the source code without execution. While they do not require program
execution, a serious drawback is that they can produce a large number of false-positive warnings and
may require significant manual code annotations to reduce this number.

Dynamic race detectors such as Eraser by Savage at al. [9] instrument programs and analyze
runtime behavior of the memory access of each thread. Dynamic approaches can influence a
program under test and change its timing, which can make a race condition disappear. This effect,
known as the probe effect [19], needs to be avoided by effective debugging tools.

A problem of dynamic race detectors is that a race might manifest itself only when certain
thread schedules occur. As scheduling is done by the operating system, developers have limited
influence on reproducing a race. Addressing this problem, ConTest by Farchi et al. [2] executes
a multithreaded Java program several times and influences thread schedules by inserting certain
statements (e.g., sleep()) into a program. Chess, developed by Musuvathi et al. [6] for C#, has
an additional refinement: a modified thread scheduler exhaustively tries out every possible thread
interleaving. To reduce the search space, thread interrupts are only allowed at particular locations.
On top of that, a delta-debugging strategy [20] might be used to automatically locate a defect.
However, Tzoref et al. [10] have shown that approaches building on varying thread interleavings
and delta debugging do not scale well for large software projects.

Hybrid race detectors such as the one by O’Callahan and Choi [7] and implementations such
as the IBM MulticoreSDK by Qi et al. [8] combine different dynamic techniques to improve
race detection. The MulticoreSDK also incorporates results from static analysis by identifying
memory objects that can safely be excluded from further consideration. We compare results with
our approach in Section 6.6.

In contrast to our approach, all of the tools mentioned in this section focus on finding
synchronization errors due to wrong usage of parallel constructs. This is a subset of the errors
that we can detect with our approach.

2.2. Techniques for Defect Localization in Sequential Programs

FindBugs [21] is a static code-analysis tool developed by Ayewah et al. It statically checks
Java code for certain patterns of defect-prone artifacts. Although it supports a limited number of
defect-prone multithreading-related behavior, it was originally not designed to detect multithreading
defects. FindBugs complements our approach, as it can be used at an earlier stage of the
development process (i.e., during coding rather than during testing). It has successfully been
employed in a large-scale industrial setting [22]. However, FindBugs does not actually execute a
program and often produces a large number of false positive warnings [23]. We compare its results
with our approach in Section 6.6.

Dallmeier et al. [24] present a dynamic fault identification technique, but do not investigate
multithreaded programs. In essence, it compares method sequence sets instead of statement
coverage or call graphs. The authors demonstrate that the temporal order of calls is more promising
to analyze than statement coverage only. More concretely, they compare object-specific sequences of
incoming and outgoing object calls, using a sliding-window approach. Then they derive a ranking at
the granularity level of classes, based on the information for which objects the statement sequences
differ most between correct and failing executions. The extension of this technique for parallel
programs is missing and non-trivial.

Tarantula by Jones et al. [14, 15] is a dynamic technique using tracing and visualization. To locate
defects, it utilizes a ranking of basic blocks (sequences of statements without any branches in the
control flow) which are executed more often in failing program executions. Though this technique
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is rather simple, it produces accurate defect-location results in the single-threaded case. However,
it does not take into account how often a statement is executed within one program execution,
so certain defects might be missed. The tool was neither designed nor has it been evaluated with
multithreaded programs. Spectrum-based fault localization techniques as employed in this tool are
more generally described by Abreu et al. [16], though with a focus on sequential programs. A
statistical approach similar to Tarantula was also implemented in [13]. All these approaches require
significant improvements to work with parallel programs and thus are not directly comparable with
the data-mining approach in our multithreaded scenarios.

3. USING DYNAMIC CALL GRAPHS AS A BASIS FOR DEFECT DATA MINING

This section explains how call graphs can provide a basis for defect data mining. Explorative studies
with sequential applications have shown that there is great potential, but also the need for extensions
of representations of program executions in parallel scenarios. After a discussion of trade-offs for
various call-graph representations in parallel scenarios, we present our representation and show
why it is beneficial in comparison to the potential alternatives. We also explain how our technique
generates the call graphs that are used to mine our multithreaded applications for defects.

3.1. Explorative Studies of Graph-Mining in Sequential Programs

For sequential software, Liu et al. [25] and Di Fatta et al. [26] have proposed graph-mining
techniques for defect localization, working on call graphs that represent program execution traces.
The techniques assume that a collection of test cases is available, and that it is possible to decide
if a program is executed correctly or not. Both approaches deal with occasional bugs, i.e., defects
that lead to both correct and failing executions. As they do not consider multithreaded programs,
this behavior depends on the input data, but it could be caused by varying thread interleavings, too.
Furthermore, they focus on non-crashing bugs.

A detailed survey of call-graph-mining-based defect localization is presented in [27]. The core
idea of most approaches is to mine for patterns in the call graphs that are characteristic for incorrect
executions. Thereafter, they calculate its defect probability for each method. The call graphs may
become huge, so it is necessary to work on a compact representation. In [17] we observe that the
representations in [25, 26, 28] loose the information how many method calls an edge represents
in the call graph. In [17], we therefore extend the graphs with edge weights representing call
frequencies. We also demonstrate in [17] that data-mining analyses based on such graphs detect
defects that other approaches cannot deal with. In [12], call-graph-mining-based techniques have
outperformed established techniques we have discussed in the related work [13, 14, 15, 16] on the
dataset from [17].

Other recent approaches introduce call graphs with several granularity levels, instead of one at the
level of methods, such as the basic-block level used by Cheng et al. [28]. It facilitates more detailed
defect localizations.

All these sequential techniques cannot be applied to multithreaded software right away. One
reason is that they do not have call-graph representations working on multithreaded programs.
Thus, two extensions are necessary: (1) Find an appropriate graph representation for multithreaded
programs, and (2) adapt the mining scheme to work on the new graph representation. We address
both issues in our article.

3.2. Dynamic Call Graphs for Multithreaded Programs

All call graphs are tracked during the runtime of an application. As there are several possibilities
to represent call graphs for multithreaded programs, we discuss their advantages and disadvantages
before we make a choice.

Unreduced call-graph representations contain the most detailed information on which thread
calls which methods (see Figure 1(a)). Our approach requires call graphs at the granularity level of
methods, i.e., nodes refer to methods and edges to method calls. In the multithreaded case, every
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Figure 1. Example graphs illustrating alternative choices for call-graph representations.

method can be executed several times in more than one thread. Therefore, in unreduced call graphs,
nodes are initially labeled with a prefix consisting of the respective thread ID and method name.
Figure 1(a) illustrates an example of such a call graph, which shows all method calls of one program
execution.

Reduced call-graph representations, by contrast, make the graph more compact. Figure 1(b)
shows an example of such a representation, which is the reduced version of the call graph in
Figure 1(a). Our approach employs this more concise totally reduced graph representation without
thread IDs. Each method is uniquely represented by exactly one node that does not depend on a
thread. We introduce edge weights as in [17] to summarize call frequencies: Every edge weight
captures the total number of calls between the methods represented by the two connected nodes.

For the detailed call-graph representation, there are several tradeoffs to consider. In particular, we
discuss the effects of temporal relationships, graph size, thread identification, and replicated tasks.

Including accurate temporal relationships in the graph representation may cause too much
overhead. For the localization of defects in multithreaded software, it is natural to encode temporal
information in call graphs, e.g., to tackle race conditions. The call graphs such as the one in
Figure 1(a) do not encode any order of execution of the different threads and methods. One straight-
forward approach to include such information uses temporal edges, as done by Liu et al. [25].
The problem with this idea, however, is that the overhead to obtain such information can be large
and would require sophisticated tracing techniques. Furthermore, such overhead may significantly
influence program behavior – possibly making a failure disappear. In addition, increasing the amount
of information in the call graph makes the graph mining process more difficult and time-consuming.
We therefore employ a more lightweight approach without temporal information encoded in the
graphs, as explained in Section 3.3.

Call graphs directly derived from program executions – such as the one in Figure 1(a) – become
very large in practice. Even for a small program, the number of method calls can become so
large that data-mining algorithms will not scale. Therefore, a compact representation is required.
Figure 1(c) represents the total reduction of Figure 1(a), merging all nodes with the same node
label. This reduction encodes some of the information that was previously contained in the graph
structure in the edge weights.
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Thread IDs differ between program executions. Figure 1(c) illustrates a call-graph representation
that contains the thread IDs in the node labels. This is awkward, as threads are allocated dynamically
by the runtime environment or the operating system. Therefore, various correct executions could
lead to threads with different IDs for the same method call, even for a program using the same
parameters and input data. We therefore would not be able to compare several program executions
based on the node labels. Omitting this information from the graph in Figure 1(c) would directly
result in the graph shown in Figure 1(e).

The effects of replicated tasks and varying thread interleavings must be addressed as well. Graphs
such as the ones in Figures 1(c), (d) and (e) suffer from two problems: (1) They might contain a high
degree of redundancy that does not help finding defects. For example, a program using thread pools
could have a large number of threads with similar calls due to the execution of replicated tasks
(and therefore similar method calls). This typically produces a call graph with several identical
and large subtrees, where the information meaningful for defect localization is not evident. (2) The
call frequencies (i.e., the edge weights) might not be useful for defect localization either. Different
execution schedules of the same program can lead to graphs with widely differing edge weights. This
effect can disturb data-mining analyses, as such differences do not have to bear any relationship to
infections. To illustrate, consider method a in Figure 1(c) as the run()method that calls the worker
task method b, which in turn takes work from a task pool. Occasionally, thread 1 and thread 2 would
both call method b twice, as in Figure 1(c). In other cases as in Figure 1(d), depending on the
schedules, thread 1 could call method b three times, while thread 2 would only call it once or vice
versa.

3.3. Our Graph Representation

To avoid the pitfalls illustrated in the discussion so far, our approach employs a graph representation
that avoids repeated substructures. We merge all nodes that refer to the same method into one single
node. This approach leads to the graph representation presented in Figure 1(b). Our representation
is robust in the sense that different schedules do not influence the graph structure. The reason
is that methods executed in different threads are mapped to the same nodes. The downside of
this representation is that graph structures from different executions rarely differ. Consequently,
a structural analysis of the call graphs as in other approaches (e.g., [25, 26]) is less promising. To
compensate this effect, we encode additional information in the edge weights. This addition has
turned out to be helpful for discovering defective program behavior [17].

To generate call graphs for multithreaded applications, we employ AspectJ [29] and use it to
weave tracing functionality into a program. AspectJ has been shown to be well-suited for program-
trace generation and infection detection in multithreaded programs [30]. AspectJ introduces
additional overhead and execution slowdowns; we observed a typical increase in execution time
between 50% and 100% for the programs used in our evaluation (see Section 6).

4. LOCATING DEFECTS IN MULTICORE APPLICATIONS

In this section, we present a defect-localization procedure that presents developers with a ranking of
defective methods, ordered by the probability of defects. Software developers can use this ranking
to inspect method code, starting with the highest-ranked method. We present an overview of the
defect-localization approach, followed by more details on our data-mining-based technique.

4.1. Overview

Algorithm 1 describes our general methodology for defect localization. The algorithm starts with a
set T of traces obtained from program executions. A trace is an unreduced call graph where every
method invocation leads to a new edge and a new node (see Figure 1(a)).

We employ a test oracle to decide whether a program execution is correct or not (Line 3 in
Algorithm 1). Such oracles are specific for the examined program, and their purpose is to decide if
a certain execution yields any observable problems (i.e., a failure). An observable problem can be a

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



DATA MINING FOR DEFECTS IN MULTICORE APPLICATIONS 7

wrong output or other erroneous behavior such as a deadlock. In this article, we assume that some
kind of test oracle is available. In practice, many available testing benchmarks include test oracles.

Algorithm 1 Overview of call-graph-based defect localization.

Input: a set of program traces tj ∈ T
Output: a method ranking based on each method’s defect probability P (mi)

1: G = ∅ // initialize a set of reduced graphs
2: for all traces tj ∈ T do
3: check if tj was a correct execution and assign a class ∈ {correct , failing} to tj
4: G = G ∪ {reduce(tj)}
5: end for
6: calculate P (mi) for all Methods mi in G

Using the oracle, our algorithm assigns a class (correct or failing) to every trace tj ∈ T . The
algorithm then reduces every tj to obtain a new call graph, which is assigned to the class of either
correct or failing executions. Based on these graphs, the last step calculates for every method mi

its defect probability. This probability is used to rank potentially defective methods. The ranking is
finally presented to the software developer.

4.2. Calculating Defect Probabilities

We now describe how to calculate the defect probability of a method (Line 6 in Algorithm 1)
using data-mining techniques. The goal is to find out which methods in the call graph of a program
discriminate best between correct and failing executions. We analyze the edge weights of the call
graphs to derive such probabilities. Then we create a feature table containing all edges as columns
and all program executions (represented by their reduced call graphs) as rows (see Table I).

For illustration, consider the example in Table I. The first column corresponds to the edge from
method a to method b, the second column to the edge from a to c, the third column to the edge
from b to d and the fourth column represents an edge from b to e. The last column contains the class
(correct or failing). The rows correspond to reduced call graphs g1, ..., gn ∈ G, which are derived
from program executions. If a certain edge is not contained in a call graph, the respective cell is 0,
i.e., there is no such method call. For example, no graph of failing executions has edge b→ e.

a→ b a→ c b→ d b→ e C
g1 1 1 3 254 correct
g2 1 1 3 12 correct
g3 1 2 30 0 failing
g4 1 2 30 0 failing
g5 1 9 3 721 correct
g6 1 1 3 54 correct
g7 1 2 30 0 failing

GainRatio 0.00 0.68 1.00 1.00
InfoGain 0.00 0.99 0.99 0.99

Table I. Example of a feature table.

We analyze the edge weights of tables such as Table I with a feature-selection algorithm that
calculates the strength of discrimination of each column, i.e., of each graph edge. The particular
output is the information-gain-ratio measure (GainRatio, see Definition 1) for each column, which
we obtain with the Weka machine-learning suite [31]. These numbers indicate which of the edges
have the greatest decisive power to clearly classify a program run as correct or incorrect.

Definition 1 (Information-Gain Ratio, GainRatio). Let D be a table as in Table I. Each row
g1, ..., gn represents a program execution. C is one distinguished column in D that maps each
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execution to the class in {correct , failing}. DC is the domain of C, and DC=i denotes the set of rows
that belong to the i-th class (i ∈ DC). Let A denote any other column different from C. We assume
that the domain of A consists of numerical values. The information-gain ratio (GainRatio) [32] is a
measure based on information gain (InfoGain) and entropy (Info [32]). The GainRatio measures
the discriminativeness of an attribute A when values v ∈ A partition the dataset D. The partitioning
is done in a way that the GainRatio of A is maximized. This requires a discretization of A’s values
into n intervals (see, e.g., [33] for more information on the discretization), where DA is the domain
of the discrete intervals of A (n = |DA|). DA∈j is the set of rows of D that belong to the j-th interval
of A (j ∈ DA).

Info(D) := −
∑
i∈DC

|DC=i|
|D|

· log2(
|DC=i|
|D|

)

InfoGain(A,D) := Info(D)−
∑
j∈DA

|DA∈j |
|D|

· Info(DA∈j)

SplitInfo(A,D) := −
∑
j∈DA

|DA∈j |
|D|

· log2(
|DA∈j |
|D|

)

GainRatio(A,D) :=
InfoGain(A,D)

SplitInfo(A,D)

The GainRatio measure is frequently used in data analysis, in particular in decision-tree
induction [32]. The upper bound of the GainRatio is 1. In this case an attribute discriminates
perfectly between classes. At 0, the lower bound of GainRatio, an attribute has no influence on
class discrimination.

Let us reconsider the execution of a program as in Table I to clarify how the GainRatio measure
locates defective methods.

Example 1. In Table I, suppose that method b contains a defect that (1) affects b’s invocations
of other methods and (2) affects the value of a global variable that is read in another method a.
Suppose that methods are invoked as follows:

a→ b: In each execution of the program, method a invokes method b once.
a→ c: method a always invokes method c at least once. In addition, method c is called in a loop which

has a condition affected by the values derived in method b. In failing executions, the loop
terminates after exactly one iteration. In correct executions in turn, the loop is not executed,
or it terminates after two or more iterations. So exactly two calls of method c can be used as
a predictor for failing executions.

b→ d: When method b calls method d, the number of calls is ten times higher in failing executions,
due to the defect in method b.

b→ e: The defect in method b causes method e not to be invoked at all in failing executions. In correct
executions in turn, the number of invocations varies.

The GainRatio value of each column is shown in the bottom rows of Table I and can be interpreted
as follows: Columns b→ d and b→ e have the highest value and thus point to a defect in b, because
b is the caller (i.e., on the left side of the arrow). Column a→ c’s value has a significantly increased
GainRatio, as a reads infected values caused by method b. Column a→ b is the only one with
GainRatio = 0 and presumably no defect.

The InfoGain values are less appropriate for defect localization, even though this measure is
widely used for data mining. This is due to two reasons:

1. As the table shows, columns a→ c, b→ d and b→ e all have the same value, which
makes a distinction more difficult. The column a→ c whose methods do not contain a
defect is not ranked lower than the other two columns. The explanation is that GainRatio
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normalizes the InfoGain value by SplitInfo, which is the entropy of the discretization of
the attribute into intervals. In our case, a→ c has three intervals leading to the maximum
GainRatio: [1, 1.5), [1.5, 5.5), [5.5, 9], referring to correct , failing , correct , respectively. (The
interval borders are chosen as the midpoint between the highest value from the lower interval
and the lowest value from the higher interval, e.g., 1.5 is between 1 and 2.) This discretization
allows to correctly identify the failing case (i.e., value 2; 2 ∈ [1.5, 5.5)). The higher number
of intervals of a→ c (three instead of two for all other columns) leads to a higher SplitInfo.
Consequently, GainRatio is lower and reports a lower defect probability for column a→ c
than InfoGain.

2. The maximum value of InfoGain can only be 1 if the distribution of classes in C is equal. In
this example in turn, the ratio of correct to failing executions is 4 : 3. In skewed distributions
of C, the InfoGain can be misleadingly low, say, 0.47 (this refers to a ratio of 1 : 9), even
if an attribute can perfectly tell classes apart. InfoGain is therefore less suited for software
development scenarios, as values might be misleading, and defective programs typically do
not have an equal probability of correct and failing executions.

Besides GainRatio, we could have chosen from a number of other feature-selection algorithms.
Our previous work (see Section 3.1), however, shows that algorithms based on entropy are more
appropriate and locate defects well.

So far, we have derived defect probabilities for every column in the table, i.e., for edges. However,
we are interested in defect probabilities for methods. As a method can call several other methods, we
assign every column to the calling method. More specifically, we calculate the method probability
P (mi) as the maximum of the gain-ratio values of the columns assigned to method mi. We use the
maximum because it refers to the most suspicious invocation of a method. Other invocations are
less important, as they might not be related to a defect. However, the information which specific
invocation within method mi is most suspicious (the column with the highest probability) can
be important for a software developer to find and fix the defect. This information is additionally
reported by our tool.

5. A DETAILED EXAMPLE

We illustrate a typical defect and the process of identifying its location with our approach. The
following example utilizes excerpts from the GarageManager program [34] that we use in our later
evaluation.

The defect. The calculation of the taskNumber variable can produce a negative value, which
is read in method GoToWork() (see Listing 1) to calculate its modulo-8 value. This value is
then passed into a switch-case block. This block, however, expects values between 0 and 7.
Negative values can result when Java calculates the modulo operation on a negative number. There
are two positions where a developer can choose to modify the code to fix the bug: (1) The switch-
case block, by adding negative cases or a default case; (2) The parts of the source code where
taskNumber is calculated (method SetTaskToWorker()).

From the defect to an infection. Figure 2 illustrates the reduced call-graph representation for
a case when the GarageManager program fails. As mentioned in Section 3.2, nodes represent
program methods and the edge weights capture the total call frequency. For example in the execution
depicted in Figure 2, the main method calls the GiveTasksToWorkers method once; note that
our representation abstracts from the particular thread ID.

In detail, this call graph reveals that executing run() generates additional threads. In particular,
there are four “worker” threads each calling methods WaitForManager(), GoToWork() and
PrintCard() and one “manager” thread calling the remaining methods. In WorkingOn()
(a defective method), the program state becomes infected: Three threads evaluate their switch
statement to 0, 1 and 7, but the fourth thread has a negative value, thus causing the thread not
to call any further methods (these details of the example execution cannot be seen in the graph, only
the effects on the control structure are visible, i.e., the call of methods).
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1 sw i t ch ( taskNumber % 8) {
2 case 0 : WorkingOn ( ” C l e a n i n g ” , 1 0 0 0 ) ;
3 break ;
4 / / o m i t t i n g s i m i l a r c a s e s 1 t o 5 . . .
5 case 6 : WorkingOn ( ” Working on b r e a k s ” , 2 2 0 0 ) ;
6 break ;
7 case 7 : WorkingOn ( ” F i x i n g e n g i n e s ” , 2 4 0 0 ) ;
8 break ;
9 }

Listing 1: Method void GoToWork() of the GarageManager program (excerpt).

main

GetParametersFromUser

 1

TakeWorkersFromAgency

 1

GiveTasksToWorkers

 1

OpenOutputFile

 1

AdjustBugProbability

 1

run

GetWorkersNames

 1

PrintWorkersNames

 1

SetTaskToWorker

 4

5

WaitForManager

 4

GoToWork

 4

PrintCard

 4

ManagerArrived

 1

PrintOutput

 3574

AllWorkersFinished

 3574

IsManagerArrived

 41

WorkingOn

 3

fixGears

 1

changingTires

 1

workOnBreaks

 1

WorkerFinishedTask

 3

Figure 2. Call graph from a failing GarageManager execution.

From an infection to a failure. The aforementioned infection causes the fourth thread not
to call WorkerFinishedTask(). This method decreases a variable of the global status
object. This object is queried by AllWorkersFinished() in method run() (see Listing 2).
AllWorkersFinished() will never be true, as status will always indicate that only three
out of four “worker” threads have finished their tasks. This causes an infinite loop in run(). We
manually stopped the loop after 3,574 iterations. In other words, the infection has caused a deadlock,
an observable program behavior that is a failure.

Locating the defect. In our experiments, our approach has found the three methods
GoToWork(), WorkingOn() and run() (ordered by increasing ranking position) to have the
highest defect probabilities. Thus, the defect was pinpointed directly. The high defect probability
for WorkingOn() is due to a follow-up infection, as it is always called from GoToWork(). The
run() method has a high defect probability as well, caused by the huge number of method calls
in the infinite loop, compared to correct executions. Both methods are inherently connected to the
same defect.

6. EXPERIMENTAL EVALUATION AND COMPARISION

We present detailed experimental results to validate our approach and show that it works in practice
on real programs. This section describes the benchmark programs and their defects, the experimental
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1 synchronized ( s t a t u s ) {
2 System . o u t . p r i n t l n ( ” Manager a r r i v e d ! ” ) ;
3 s t a t u s . ManagerArr ived ( ) ;
4 }
5 boolean t a s k s N o t F i n i s h e d = true , p r i n t e d O u t p u t = f a l s e ;
6 whi le ( t a s k s N o t F i n i s h e d ) {
7 p r i n t e d O u t p u t = P r i n t O u t p u t ( p r i n t e d O u t p u t ) ;
8 synchronized ( s t a t u s ) {
9 i f ( s t a t u s . A l l W o r k e r s F i n i s h e d ( ) )

10 t a s k s N o t F i n i s h e d = f a l s e ;
11 e l s e
12 y i e l d ( ) ;
13 }
14 }

Listing 2: Method void run() (excerpt).

setting and the metrics used to interpret the results. Finally, we compare our method to related
techniques.

6.1. Benchmark Programs and Defects

Our benchmark contains a range of different multithreaded programs. The benchmark covers a
broad range of tasks, from basic sorting algorithms and various client-server settings to memory
allocators, which are fundamental constructs in many programs [35]. All benchmark programs are
written in Java. Our bug detection tool is developed for Java programs and is based on AspectJ,
which requires Java programs to work.

Most of the benchmark programs have been used in previous studies [34]. We have slightly
modified some of the applications; for example, in the GarageManager application, we replaced
various text output statements with methods that contain code simulating the assignment of
work to different tasks. Furthermore, we have included in our benchmark two typical client-
server applications from the open-source community, which represent an important class of real
applications.

Table II lists all programs, their size in terms of methods, and their normalized lines of code
(LOC)†.

Program #M LOC #T Source Description
AllocationVector (Test) 6 133 2 [34] Allocation of memory
GarageManager 30 282 4 [34] Simulation of a garage
Liveness (BugGen) 8 120 100 [34] Client-server simulation
MergeSort 11 201 4 [34] Recursive sorting implementation
ThreadTest 12 101 50 [34] CPU benchmark (random divisions)
Tornado 122 632 100 [36] HTTP Server
Weblech 88 802 10 [37] Website download/mirror tool

Table II. Multithreaded benchmark programs (#M/#T is the number of methods/threads).

Table III shows additional details on the complexity of the programs, including statistics on nested
block depth of methods, depth of inheritance tree, and method cyclomatic complexity [38]. All
programs have about the same inheritance depth. In programs with a high cyclomatic complexity,

†We always use the sum of non-blank and non-comment LOC inside method bodies.
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12 FRANK EICHINGER ET AL.

humans tend to have a much more difficult time finding bugs, which is why they are good for
assessing debugging tools.

Method Nested Max. Depth of Method
Block Depth Inheritance Cyclomatic Complexity

Program avg. max. Tree avg. max.
AllocationVector (Test) 2.75 5 2 5.00 14
GarageManager 1.71 5 2 2.97 11
Liveness (BugGen) 1.91 5 2 2.73 8
MergeSort 1.60 3 2 3.33 8
ThreadTest 1.79 4 3 2.21 6
Tornado 1.42 5 3 1.73 12
Weblech 1.59 7 2 2.22 15

Table III. Additional complexity statistics of the multithreaded benchmark programs.

For evaluation purposes, all benchmark programs have intentionally seeded defects that are
known and documented. All defects are representatives of common multithreaded programming
errors. The defects cover a broad range of error patterns, such as atomicity violations/race
conditions, on one or several correlated variables, deadlocks, but also other kinds of programming
errors, e.g., originating from non-parallel constructs that may influence parallel program behavior.

6.2. Defect Patterns

Based on the classification of Farchi et al. [2], we categorize our defect pattern in the following list
and show code outlines to illustrate some of the most important defects.

(1) AllocationVector; defect pattern: “two-stage access”. Two steps of finding and allocating
blocks for memory access are not executed atomically, even though the individual steps
are synchronized. Thus, two threads might allocate the same memory and cause incorrect
interference. In the code excerpt, this can happen in Line 3 – another thread could get the
same information from the getFreeBlockIndex() function at a certain point in time before
markAsAllocatedBlock() is called.

1 f o r ( i n t i = 0 ; i < r e s u l t B u f . l e n g t h ; i ++) {
2 r e s u l t B u f [ i ] = v e c t o r . g e t F r e e B l o c k I n d e x ( ) ;
3 / / e v e r y t h i n g can happen here . . .
4 i f ( r e s u l t B u f [ i ] != −1) {
5 v e c t o r . markAsAl loca t edBlock ( r e s u l t B u f [ i ] ) ;
6 }
7 }

Listing 3: Excerpt of the AllocationVector program illustrating a “two-stage access” defect.

(2) GarageManager; defect pattern: “blocking critical section”. The defect itself is a
combination of an incorrectly calculated value due to a forgotten switch case. When this situation
occurs, no task is assigned to a particular thread, while a global variable is treated as if work had
been assigned. Thus, fewer threads than the number of threads recorded as active are active. This
causes the program to deadlock. The GarageManager defect pattern has been discussed in Section 5.

(3) Liveness; defect pattern: similar to the “orphaned thread” pattern. When the maximum
number of clients is reached, the next requesting client is added to a stack. Although this data
structure and a global counter are synchronized, it can happen that the server becomes available
while the client is added to the stack (i.e., the server becomes available immediately after the if
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condition has been checked in Line 8). In this case, the client will never resume and will not finish
its task.

1 synchronized ( a c t u a l U s e r s ) {
2 i f ( a c t u a l U s e r s . g e t ( ) < maxAllowedUsers ) {
3 a c t u a l U s e r s . i n c ( ) ;
4 a c c e s s G r a n t e d = t rue ;
5 }
6 }
7 / / . . .
8 i f ( ! a c c e s s G r a n t e d ) {
9 / / a c c e s s G r a n t e d migh t change !

10 synchronized ( s u s p e n d e d C l i e n t s ) {
11 s u s p e n d e d C l i e n t s . add ( t h i s ) ;
12 }
13 t h i s . s u spend ( ) ;
14 }

Listing 4: Excerpt of the Liveness program illustrating an “orphaned thread” defect.

(4) MergeSort; defect pattern: “two-stage access”. Although methods working on global thread
counters are synchronized, the variables themselves are not, which might lead to atomicity
violations. In particular, threads ask how many subthreads they are allowed to generate. When two
threads apply at the same time, more threads than allowed are generated. This can lead to situations
where parts of the data are not sorted. In particular, the AvailableThreadsState() could
change immediately after the check of the switch condition in Line 1.

1 sw i t ch ( A v a i l a b l e T h r e a d s S t a t e ( ) ) {
2 case 1 :
3 l e f t S o n . s t a r t ( ) ;
4 D e c r e a s e T h r e a d C o u n t e r ( ) ;
5 r i g h t S o n . S o r t i n g ( ) ;
6 / / . . .
7 }

Listing 5: Excerpt of the MergeSort program illustrating a “two-stage access” defect.

(5) ThreadTest; defect pattern: “blocking critical section”. The generation of new threads and
checking a global variable for the maximum number of threads currently available is not done
correctly in case of exceptions, which occur randomly in ThreadTest, due to divisions by zero.
This leads to a deadlock when all threads encounter this situation. We classify an execution as
failing when at least one thread encounters this problem, due to reduced performance. In the code
excerpt, the thread terminates without having called finalizeWork(). This can happen when
an exception is triggered in Line 3. This causes the control flow to bypass the execution of Line 4
and resume execution at Line 6. In this case, the thread will not work on further tasks.

(6) Tornado; defect pattern: “no lock”. Synchronization statements are removed in one method
(Lines 2 and 6). This leads to a race condition and ultimately, in the context of Tornado, to
unanswered HTTP requests.
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1 t r y {
2 f o r ( i n t i = 0 ; i < ITERATE ; ++ i )
3 r e s u l t = i / ( i n t ) ( Math . random ( ) ∗ f a c t o r ) ;
4 f i n a l i z e W o r k ( ) ;
5 } ca tch ( j a v a . l a n g . A r i t h m e t i c E x c e p t i o n e ) {
6 / / . . .
7 }

Listing 6: Excerpt of the ThreadTest program illustrating a “blocking critical section” defect.

1 p u b l i c vo id d i s p a t c h ( S oc ke t s o c k e t ) {
2 / / s y n c h r o n i z e d ( t a s k P o o l ) { / / l i n e removed
3 t a s k P o o l . add ( s o c k e t ) ;
4 t a s k P o o l . n o t i f y ( ) ;
5 i n c r e m e n t B u s y T h r e a d s ( ) ;
6 / / } / / l i n e removed
7 }

Listing 7: Excerpt of the Tornado program illustrating a “no lock” defect.

(7) Weblech; defect pattern: “no lock”. Removed synchronization statements as in Tornado,
resulting in Web pages that are not downloaded.

Regarding the Weblech program, we have two versions: Weblech.orig and Weblech.inj. In
Weblech.inj, we have introduced a defect in method run() by removing all synchronized
statements (Listing 8 shows an excerpt of this method with one such statement), aiming to simulate
a typical programming error. During our experiments, we realized that the original non-injected
version (Weblech.orig) led to failures in very rare cases as well. The failure occurred in only 5 out of
5,000 executions; we used a sample of the correct executions in the experiments. Thus, Weblech.inj
contains the original defect besides the injected ones. With our tool, we were able to locate the real
defect by investigating two methods only. The result is that two global unsynchronized variables
(downloadsInProgress and running) are modified in run() (Lines 6 and 10 in the code
excerpt), occasionally causing race conditions. To fix the defect in order to produce a defect-free
reference, we added the volatile keyword to the variable declaration in the class header.

1 whi le ( ( q u e u e S i z e ( ) > 0 | | d o w n l o a d s I n P r o g r e s s > 0)
2 && q u i t == f a l s e ) {
3 / / . . .
4 synchronized ( queue ) {
5 nextURL = queue . ge tNex t InQueue ( ) ;
6 d o w n l o a d s I n P r o g r e s s ++;
7 }
8 / / . . .
9 }

10 runn ing −−;

Listing 8: Excerpt of the void weblech.spider.run() method in the Weblech program
illustrating a “no lock” defect.
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6.3. Experimental Setting

Number of executions. Our defect-localization technique requires that we execute every program
several times and that we ensure that there are sufficiently many examples for correct and
failing executions. This is necessary since we focus on occasional bugs (see Section 3.1), i.e.,
failures whose occurrence depends on input data, random components or non-deterministic thread
interleavings. Furthermore, we aim to achieve stable results, i.e., analyzing more executions would
not lead to significant changes. We used this criterion to determine the number of executions
required, in addition to obtaining enough correct and failing cases. Table IV in Section 6.5 will
summarize the number of correct and failing executions for each benchmark program.

Varying execution traces. In order to obtain different execution traces from the same program,
we rely on the original test cases that are provided in the benchmark suite. MergeSort, for
instance, comes with a generator creating random arrays as input data. Some programs have an
internal random component as part of the program logic, i.e., they automatically lead to varying
executions. GarageManager, for instance, simulates varying processes in a garage. Other programs
produce different executions due to different thread interleavings that can lead to observable failures
occasionally. For the two open-source programs, we constructed typical test cases ourselves; for the
Tornado Web server, we start a number of scripts simultaneously downloading files from the server.
For Weblech, we download a number of files from a (defect-free) Web server.

Test oracles. We use individual test oracles that come with every benchmark program. For the
two open-source programs, we compose test oracles that automatically compare the actual output
of a program to the expected one. For example, we compare the files downloaded with Weblech to
the original ones.

Testing environment. We run all experiments on a standard HP workstation with an AMD
Athlon 64 X2 dual-core processor 4800+. We employed a standard Sun Java 6 virtual machine
on Microsoft Windows XP. In the evaluation, our graph graph representation exhibits another
advantage: As the graph structure is independent of the particular scheduling and number of threads
(which are modeled as edge weights), the call graphs would have the same structure on different
machines, provided that tests use the same inputs and the control flow follows the same paths.

6.4. Accuracy Measures for Defect-Localization Results

First of all, the locations of the actual defects are known, so the report of a method containing a
defect can be directly compared to the known location to see if this is true or not. If there is more
than one location which can be altered to fix a defect, we refer to the position of the first of such
methods in the ranking. For cases as in Weblech.orig where the defect can be fixed outside a method
body (e.g., in the class header), one can still identify methods that can be altered to fix the erroneous
behavior.

Our experiments produce ordered lists of methods. To evaluate the accuracy of the results, we
report the position of the defective method in such a list. This ranking position corresponds to the
number of methods a software developer has to inspect in order to find the defect. If two or more
methods have the same defect probability, we use a second static ranking criterion: We sort the
methods with the same defect probability by decreasing LOC size. Previous research has shown
that the LOC size frequently positively correlates with the defect probability of a method being
defective [39]. In order to estimate the effort to find a defect, we compare the ranking position with
the total number of methods in a program. In addition to the ranking, our tool also provides more
fine-grained information, such as the suspected call within a method.

Another quality criterion is the comparison of our method with the expected value for manual
defect localization; in the manual approach, one would expect to find the defect after reviewing
about half of the program methods.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



16 FRANK EICHINGER ET AL.

As method sizes can vary significantly, it is sometimes more appropriate to consider the LOC
rather than only the number of methods involved. Our tool therefore shows the percentage of LOC
to review as an addition to the ranking position. This percentage is calculated as the ratio of methods
that has to be considered in the program, i.e., the sum of LOC of all methods that have a ranking
position lower than or equal to the position reported in the table, divided by the total LOC (see
Table II).

The scoring method used to measure the accuracy of defect localization in this paper follows
related work in this area. It has originally been suggested by Renieris and Reiss [40]. Since then, this
method has been adopted in many studies, e.g., in [13, 14, 26, 41]. It has its advantages compared
to methods relying on the precision/recall scheme (e.g., [25, 28]), which stem from the fact that it
does not only measure whether a defect is successfully located or not, but also how expensive it is
to locate a defect.

6.5. Experimental Results

We present evaluation results in Table IV, which illustrate for each benchmark program how
effective our method has been to find a defective method and how much code reading could be saved
during the code inspections to locate the defect. Columns (1) and (2) show the number of program
executions as explained in Section 6.3. Column (3) shows the ranking position for the method that
contains a previously implanted defect, as produced by our debugging technique. Column (4) shows
the maximum lines of code that a developer would have to review in the worst case to locate the
defect. Column (5) in turn shows the actual lines of code that need to be reviewed to locate the bug.
Column (6) shows the corresponding reduction of lines of code to review, i.e., the fraction of lines
that a developer does not have to inspect if he or she uses our technique.

In all five out of eight programs, the defective method is ranked first. It has a low rank only in
one program (Tornado). This is because this program is complex and has more methods than the
others. However, the quantitative comparison shows that the reduction of code to review is in the
same range as with the other programs.
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AllocationVector 383 117 1 133 23 17.3% 82.7%
GarageManager 74 26 1 282 40 14.2% 85.8%
Liveness 149 53 1 120 53 44.2% 55.8%
MergeSort 668 332 1 201 52 25.9% 74.1%
ThreadTest 207 193 1 101 19 18.8% 81.2%
Tornado 362 8 14 632 147 23.3% 76.7%
Weblech.orig 494 5 2 802 187 23.3% 76.7%
Weblech.inj 985 15 5 802 175 21.8% 78.2%

Table IV. Defect-localization results.

Considering averages, the methods containing the seeded defects rank at position 3.3. Looking at
Table II, one program consists of 45.6 methods on average (counting Weblech twice). Taking this
information into account, investigating 3.3 methods on average corresponds to 7.1% of all methods
(or equivalently, 23.6% of the code) a developer has to review maximally to find the defects. This
is low. In other words, a developer has to consider less than a quarter of the source code of our
programs in order to find a defect in the worst case. This reduces the percentage of methods (code)
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to review by a factor of seven (code: more than by half) when compared to an average expected
amount of 50% of methods (code) to review. Note that these all values are obtained without any prior
knowledge of the code, which might further narrow down the locations to be inspected. Furthermore,
these are worst-case maximum values, for two reasons: (1) Usually not all lines of a method need
to be inspected, in particular due to information reported additionally by our tool which call within
a method is the most suspicious one. (2) The methods ranked frequently at the top are good hints
for a defect, even if the defective method itself is in some lower ranks. This heuristic is based on
our experience that non-defective methods ranked at the top are often in the vicinity of the defective
method, i.e., they might be invoked from the defective method.

Figure 3 provides an illustration of the percentage of located defects versus the percentage of
source code that does not need to be examined for all programs in the evaluation. This graphing
technique is commonly used (e.g., in [13, 14, 26, 41]) to visualize the effectiveness of a defect-
localization technique. In our case, it shows that we can skip the inspection of 50% of the code and
still find 100% of the defects. If we skip inspecting 70%, we would still find more than 80% of the
defects. This is a significant gain in programmer productivity.
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Figure 3. The percentage of defects located in the entire benchmark while skipping inspection of a certain

percentage of source code.

6.6. Result Comparisons with Related Work

We now compare our approach with two techniques from related work that are comparable in that
they can produce lists of defective methods.

Our experiments with the IBM MulticoreSDK [8] applied to all programs used in our evaluation
(see Section 6) reveal that it is not able to find any of the defects. From the eight benchmark
programs, the MulticoreSDK incorrectly classified seven of them as defect-free. For the last one, it
incorrectly generated a false-positive warning.

We applied FindBugs [21] to all programs in our benchmark. FindBugs did not directly report
any of the defects. At the same time, FindBugs produces false-positive warnings: On average, there
are 5.8 warnings per program that on average affect 4.5 different methods. The warnings refer to the
correct method names in just four out of eight programs. Further, the warnings are not prioritized, so
a developer would have to inspect the entire code of all methods with warnings. In each of the four
programs, inspection amounts to 47.5%, 36.8%, 29.2% and 29.2% of the source code, respectively.
If FindBugs was improved by a method ranking technique, such as inspecting larger methods first
(as in this article), then developers could save time finding the respective defects and reduce the
amount of reviewed code to 14.2%, 25.9%, 25.4% and 25.4%, respectively. In contrast, inspecting
up to 25.9% of the source code with our technique finds seven out of the eight defects (see the last
column in Table IV). These results are better than FindBugs. Compared to our approach, FindBugs
does not offer the developer any hint on finding the remaining four defects, as they are not reported
at all.
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7. LONG-TERM DIRECTIONS FOR DATA MINING FOR PARALLEL APPLICATION
DEFECTS

Motivated by the promising results presented in this article, we outline long-term directions for the
emerging field of data-mining-based defect localization. In general, we believe that parallel program
debugging with data-mining techniques has the potential to become a larger research area in its own
right.

The technique in this article exploits control-flow information in a program execution. Adding
information about the data flow can increase the defect-localization accuracy. Cheng et al. [28] have
identified that current call-graph-based defect-localization techniques are agnostic to defects that
influence the data flow. This observation also applies to our study. Our own work on sequential
programs [42] demonstrates that introducing data-flow information into call graphs is beneficial;
defects can be located that have a greater influence on data flow than on control flow. We are
currently working on an extension of our call-graph representation for multithreaded programs to
include information from the data flow. This approach will make race detection more accurate. This
is because unsynchronized threads incorrectly alter data and affect the values in the data flow in
typical race situations.

Debugging techniques such as the one presented in this article execute a multithreaded program
several times. In general, the specific thread interleavings that occur during execution are non-
deterministic and are influenced by the operating-system scheduler, so we might require large
numbers of executions to observe failures in rare interleavings. Additional control over thread
schedules can improve our effectiveness in several ways. Firstly, executing thread schedules that are
more likely to make defects manifest themselves (e.g., a race condition) can help reduce the number
of repeated executions of a program. Secondly, thread schedules of correct and failing executions
can be mutated using operators as in evolutionary algorithms [43] to search for similar behavior that
leads to correct or failing executions. This approach directs the search to more promising locations
in a large search space. Thirdly, program configurations for failing executions and their associated
thread schedules can be employed for regression testing. In practice, regression tests are especially
helpful when programmers add new functionality to a program but need to ensure that the existing
features still work. Quality assurance can become more efficient if developers can reuse test cases
consisting of failing program configurations and reproduce the exact thread interleaving that has
caused an error to manifest itself. Based on insights from [6, 44] we are currently extending our
data-mining technique in this direction.

Section 3.2 has discussed various representations of call graphs for multithreaded programs.
Due to a number of issues related to multithreaded executions, we have opted for and deployed
a relatively simple total-reduction graph representation. However, we believe that alternatives with
more sophisticated graph representations are worth being investigated. This is motivated by our
experiments with single-threaded programs [17], where graphs more sophisticated than the totally
reduced ones have given way to a defect localization that is more precise. Graph representations can,
for instance, include additional information on thread IDs as well as information on the temporal
order of methods executed, similarly to [25, 26] for the single-threaded case. A possible solution
we see for the problem of indeterministic thread IDs (see Section 3.2) is the introduction of thread
classes. Each of these classes stands for a source-code context, i.e., a position in the source code
where new threads are created. As an example, one class could stand for GUI-related threads and
one for database-access-related threads. Further information to enhance the expressiveness of call
graphs could be information on locks on certain objects. This information could be included as an
annotation of nodes or edges.

Call graphs with information additional to the one contained in the total-reduction graphs require
new and more elaborate analysis techniques. In [17] we have presented a technique for single-
threaded programs that relies on frequent subgraph mining [45]. There, we first aim at finding
subgraph structures that occur more frequently in failing executions before we apply a technique
similar to the one described in Section 4. Finally, we combine two kinds of evidence. We plan to
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extend the technique in [17] for multithreaded programs to identify suspicious structures in call
graphs with more detailed annotations.

8. CONCLUSION

Debugging multithreaded software is difficult, and developers depend on effective tools for quality
assurance. This article shows that data mining on call graphs is an effective approach to detect
a wide range of errors that affect parallel program behavior. Such errors include race conditions,
deadlocks and errors originating from the wrong usage of non-parallel language constructs. An
additional advantage of our proposal is that this wide range of errors can be detected with one
single technique. Our evaluations show that developers can skip the inspection of at least 50% of
the code and still find 100% of the defects. On average only 7.1% of all program methods have to
be investigated to find a defect. Significant effort can thus be saved during defect localization in
multithreaded programs.
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27. Eichinger F, Böhm K. Software-Bug Localization with Graph Mining. Managing and Mining Graph Data,
Advances in Database Systems, vol. 40, Aggarwal CC, Wang H (eds.). chap. 17, Springer, 2010; 515–546, doi:
10.1007/978-1-4419-6045-0 17.

28. Cheng H, Lo D, Zhou Y, Wang X, Yan X. Identifying Bug Signatures Using Discriminative Graph Mining.
Proceedings of the 18th International Symposium on Software Testing and Analysis (ISSTA), 2009, doi:10.1145/
1572272.1572290.

29. Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold WG. An Overview of AspectJ. Proceedings of the
15th European Conference on Object-Oriented Programming (ECOOP), 2001, doi:10.1007/3-540-45337-7 18.

30. Copty S, Ur S. Multi-threaded Testing with AOP Is Easy, and It Finds Bugs! Proceedings of the 11th International
Euro-Par Conference, 2005, doi:10.1007/11549468 81.

31. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA Data Mining Software: An Update.
SIGKDD Explorations Newsletter 2009; 11(1):10–18, doi:10.1145/1656274.1656278.

32. Quinlan JR. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., 1993.
33. Elomaa T, Rousu J. Efficient Multisplitting on Numerical Data. Proceedings of the 1st European Symposium on

Principles of Data Mining and Knowledge Discovery (PKDD), 1997, doi:10.1007/3-540-63223-9 117.
34. Eytani Y, Ur S. Compiling a Benchmark of Documented Multi-Threaded Bugs. Proceedings of the 18th

International Parallel and Distributed Processing Symposium (IPDPS), 2004, doi:10.1109/IPDPS.2004.1303339.
35. Berger ED, McKinley KS, Blumofe RD, Wilson PR. Hoard: A Scalable Memory Allocator for Multithreaded

Applications. SIGPLAN Notices 2000; 35(11):117–128, doi:10.1145/356989.357000.
36. Tornado HTTP Server, software available at http://tornado.sourceforge.net/.
37. WebLech URL Spider, software available at http://weblech.sourceforge.net/.
38. McCabe TJ. A Complexity Measure. IEEE Transactions on Software Engineering 1976; SE-2(4):308–320, doi:

10.1109/TSE.1976.233837.
39. Nagappan N, Ball T, Zeller A. Mining Metrics to Predict Component Failures. Proceedings of the 28th International

Conference on Software Engineering (ICSE), 2006, doi:10.1145/1134285.1134349.
40. Renieres M, Reiss S. Fault Localization with Nearest Neighbor Queries. Proceedings of the 18th IEEE/ACM

International Conference on Automated Software Engineering (ASE), 2003, doi:10.1109/ASE.2003.1240292.
41. Cleve H, Zeller A. Locating Causes of Program Failures. Proceedings of the 27th International Conference on

Software Engineering (ICSE), 2005, doi:10.1145/1062455.1062522.
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