107 research outputs found

    Control plane optimization in Software Defined Networking and task allocation for Fog Computing

    Get PDF
    As the next generation of mobile wireless standard, the fifth generation (5G) of cellular/wireless network has drawn worldwide attention during the past few years. Due to its promise of higher performance over the legacy 4G network, an increasing number of IT companies and institutes have started to form partnerships and create 5G products. Emerging techniques such as Software Defined Networking and Mobile Edge Computing are also envisioned as key enabling technologies to augment 5G competence. However, as popular and promising as it is, 5G technology still faces several intrinsic challenges such as (i) the strict requirements in terms of end-to-end delays, (ii) the required reliability in the control plane and (iii) the minimization of the energy consumption. To cope with these daunting issues, we provide the following main contributions. As first contribution, we address the problem of the optimal placement of SDN controllers. Specifically, we give a detailed analysis of the impact that controller placement imposes on the reactivity of SDN control plane, due to the consistency protocols adopted to manage the data structures that are shared across different controllers. We compute the Pareto frontier, showing all the possible tradeoffs achievable between the inter-controller delays and the switch-to-controller latencies. We define two data-ownership models and formulate the controller placement problem with the goal of minimizing the reaction time of control plane, as perceived by a switch. We propose two evolutionary algorithms, namely Evo-Place and Best-Reactivity, to compute the Pareto frontier and the controller placement minimizing the reaction time, respectively. Experimental results show that Evo-Place outperforms its random counterpart, and Best-Reactivity can achieve a relative error of <= 30% with respect to the optimal algorithm by only sampling less than 10% of the whole solution space. As second contribution, we propose a stateful SDN approach to improve the scalability of traffic classification in SDN networks. In particular, we leverage the OpenState extension to OpenFlow to deploy state machines inside the switch and minimize the number of packets redirected to the traffic classifier. We experimentally compare two approaches, namely Simple Count-Down (SCD) and Compact Count-Down (CCD), to scale the traffic classifier and minimize the flow table occupancy. As third contribution, we propose an approach to improve the reliability of SDN controllers. We implement BeCheck, which is a software framework to detect ``misbehaving'' controllers. BeCheck resides transparently between the control plane and data plane, and monitors the exchanged OpenFlow traffic messages. We implement three policies to detect misbehaving controllers and forward the intercepted messages. BeCheck along with the different policies are validated in a real test-bed. As fourth contribution, we investigate a mobile gaming scenario in the context of fog computing, denoted as Integrated Mobile Gaming (IMG) scenario. We partition mobile games into individual tasks and cognitively offload them either to the cloud or the neighbor mobile devices, so as to achieve minimal energy consumption. We formulate the IMG model as an ILP problem and propose a heuristic named Task Allocation with Minimal Energy cost (TAME). Experimental results show that TAME approaches the optimal solutions while outperforming two other state-of-the-art task offloading algorithms

    Next-Generation SDN and Fog Computing: A New Paradigm for SDN-Based Edge Computing

    Get PDF
    In the last few years, we have been able to see how terms like Mobile Edge Computing, Cloudlets, and Fog computing have arisen as concepts that reach a level of popularity to express computing towards network Edge. Shifting some processing tasks from the Cloud to the Edge brings challenges to the table that might have been non-considered before in next-generation Software-Defined Networking (SDN). Efficient routing mechanisms, Edge Computing, and SDN applications are challenging to deploy as controllers are expected to have different distributions. In particular, with the advances of SDN and the P4 language, there are new opportunities and challenges that next-generation SDN has for Fog computing. The development of new pipelines along with the progress regarding control-to-data plane programming protocols can also promote data and control plane function offloading. We propose a new mechanism of deploying SDN control planes both locally and remotely to attend different challenges. We encourage researchers to develop new ways to functionally deploying Fog and Cloud control planes that let cross-layer planes interact by deploying specific control and data plane applications. With our proposal, the control and data plane distribution can provide a lower response time for locally deployed applications (local control plane). Besides, it can still be beneficial for a centralized and remotely placed control plane, for applications such as path computation within the same network and between separated networks (remote control plane)

    A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

    Full text link
    With traditional networking, users can configure control plane protocols to match the specific network configuration, but without the ability to fundamentally change the underlying algorithms. With SDN, the users may provide their own control plane, that can control network devices through their data plane APIs. Programmable data planes allow users to define their own data plane algorithms for network devices including appropriate data plane APIs which may be leveraged by user-defined SDN control. Thus, programmable data planes and SDN offer great flexibility for network customization, be it for specialized, commercial appliances, e.g., in 5G or data center networks, or for rapid prototyping in industrial and academic research. Programming protocol-independent packet processors (P4) has emerged as the currently most widespread abstraction, programming language, and concept for data plane programming. It is developed and standardized by an open community and it is supported by various software and hardware platforms. In this paper, we survey the literature from 2015 to 2020 on data plane programming with P4. Our survey covers 497 references of which 367 are scientific publications. We organize our work into two parts. In the first part, we give an overview of data plane programming models, the programming language, architectures, compilers, targets, and data plane APIs. We also consider research efforts to advance P4 technology. In the second part, we analyze a large body of literature considering P4-based applied research. We categorize 241 research papers into different application domains, summarize their contributions, and extract prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on 2021-01-2

    The future roadmap of in-vehicle network processing: a HW-centric (R-)evolution

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The automotive industry is undergoing a deep revolution. With the race towards autonomous driving, the amount of technologies, sensors and actuators that need to be integrated in the vehicle increases exponentially. This imposes new great challenges in the vehicle electric/electronic (E/E) architecture and, especially, in the In-Vehicle Network (IVN). In this work, we analyze the evolution of IVNs, and focus on the main network processing platform integrated in them: the Gateway (GW). We derive the requirements of Network Processing Platforms that need to be fulfilled by future GW controllers focusing on two perspectives: functional requirements and structural requirements. Functional requirements refer to the functionalities that need to be delivered by these network processing platforms. Structural requirements refer to design aspects which ensure the feasibility, usability and future evolution of the design. By focusing on the Network Processing architecture, we review the available options in the state of the art, both in industry and academia. We evaluate the strengths and weaknesses of each architecture in terms of the coverage provided for the functional and structural requirements. In our analysis, we detect a gap in this area: there is currently no architecture fulfilling all the requirements of future automotive GW controllers. In light of the available network processing architectures and the current technology landscape, we identify Hardware (HW) accelerators and custom processor design as a key differentiation factor which boosts the devices performance. From our perspective, this points to a need - and a research opportunity - to explore network processing architectures with a strong HW focus, unleashing the potential of next-generation network processors and supporting the demanding requirements of future autonomous and connected vehicles.Peer ReviewedPostprint (published version

    Rethinking Software Network Data Planes in the Era of Microservices

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    4MIDable: Flexible Network Offloading For Security VNFs

    Get PDF
    The ever-growing volume of network traffic and widening adoption of Internet protocols to underpin common communication processes augments the importance of network security. In order to enforce network security policies, network managers adopt a widening set of middleboxes and network appliances to improve traffic monitoring and processing capabilities. The resource requirements to support network security appliances are constantly increasing, making efficiency of these systems an essential aspect. The move toward Software-Defined Networking and programmable data planes offers a mean to offload traffic processing functionalities to within the network itself. To this end, we present the 4MIDable framework: a platform that facilitates the integration of existing middleboxes and monitoring appliances with an SDN (P4) network infrastructure. We also present P4Protect, a 4MIDable agent that protects the network from control plane DoS attacks with negligible impact on control plane latency, and P4ID (P4-Enhanced Intrusion Detection), a 4MIDable agent that offers stateful processing and feedback to unmodified Intrusion Detection System middleboxes and reduces traffic processing by over 80% without affecting threat detection rates

    Traffic Optimization in Data Center and Software-Defined Programmable Networks

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    The Road to BOFUSS: The Basic OpenFlow User-space Software Switch

    Get PDF
    Software switches are pivotal in the Software-Defined Networking (SDN) paradigm, particularly in the early phases of development, deployment and testing. Currently, the most popular one is Open vSwitch (OVS), leveraged in many production-based environments. However, due to its kernel-based nature, OVS is typically complex to modify when additional features or adaptation is required. To this regard, a simpler user-space is key to perform these modifications. In this article, we present a rich overview of BOFUSS, the basic OpenFlow user-space software switch. BOFUSS has been widely used in the research community for diverse reasons, but it lacked a proper reference document. For this purpose, we describe the switch, its history, architecture, uses cases and evaluation, together with a survey of works that leverage this switch. The main goal is to provide a comprehensive overview of the switch and its characteristics. Although the original BOFUSS is not expected to surpass the high performance of OVS, it is a useful complementary artifact that provides some OpenFlow features missing in OVS and it can be easily modified for extended functionality. Moreover, enhancements provided by the BEBA project brought the performance from BOFUSS close to OVS. In any case, this paper sheds light to researchers looking for the trade-offs between performance and customization of BOFUSS.Comment: 24 pages, 7 figures; submitted to Telecommunications Systems journa
    corecore