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ABSTRACT The automotive industry is undergoing a deep revolution. With the race towards autonomous
driving, the amount of technologies, sensors and actuators that need to be integrated in the vehicle increases
exponentially. This imposes new great challenges in the vehicle electric/electronic (E/E) architecture and,
especially, in the In-Vehicle Network (IVN). In this work, we analyze the evolution of IVNs, and focus on
the main network processing platform integrated in them: the Gateway (GW). We derive the requirements
of Network Processing Platforms that need to be fulfilled by future GW controllers focusing on two
perspectives: functional requirements and structural requirements. Functional requirements refer to the
functionalities that need to be delivered by these network processing platforms. Structural requirements
refer to design aspects which ensure the feasibility, usability and future evolution of the design. By focusing
on the Network Processing architecture, we review the available options in the state of the art, both in
industry and academia. We evaluate the strengths and weaknesses of each architecture in terms of the
coverage provided for the functional and structural requirements. In our analysis, we detect a gap in this
area: there is currently no architecture fulfilling all the requirements of future automotive GW controllers.
In light of the available network processing architectures and the current technology landscape, we identify
Hardware (HW) accelerators and custom processor design as a key differentiation factor which boosts
the devices performance. From our perspective, this points to a need - and a research opportunity - to
explore network processing architectures with a strongHW focus, unleashing the potential of next-generation
network processors and supporting the demanding requirements of future autonomous and connected
vehicles.

INDEX TERMS In-vehicle networks, gateway, network processing, HW accelerators, software defined
networking.

I. INTRODUCTION
According to exhaustive market and future trends analy-
sis done by consultancy experts [1], [2] there are at least
4 main mega-trends that shape the future of the Automotive
Industry: Autonomy, Connectivity, Electrification and Shar-
ing (ACES). These mega-trends are driven by social changes
and new technologies that enable the paradigm change. They
can be classified under two categories: enablers and moti-
vators. On one hand, Autonomous Driving (AD) and shared
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mobility are classified as motivators because they represent
the final vision of how mobility will be in the future. On the
other hand, Connectivity and Electrification are classified
as enablers because they represent the technology change
required to enable AD and Shared mobility. In the field of
AD there have been huge advances in the last years, and more
new and exciting advances are yet to come. Driving automa-
tion levels are regulated by the Society of Automotive Engi-
neers (SAE) in SAE J3016 [3] and go from Level 0 (driver
support features limited to providing warnings or momen-
tary assistance), to Level 5 (automated driving features that
can drive the vehicle under all conditions). Industry leading
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Original Equipment Manufacturers (OEMs) are working
towards the highest levels of autonomy which will enable
huge social changes when the highest level is achieved: the
possibility to get a ride in a car without driver (and without
driving license) will exist. This paradigm shift brings new
requirements to the automotive industry. Today, technologies
that were once only seen in data centers are being fully
integrated into vehicles.

Accordingly, the needs for processing power are increasing
incredibly quickly inside the vehicles. It is not only raw appli-
cation processing that is becoming more complex, but also
the exchange of information between the different processing
units, sensors and actuators in the vehicle. For instance, new
functionalities such as Autonomous Driving require real time
reaction to events, whichmeans that data needs to be collected
at the sensors, transmitted to the processing unit, processed
and sent to the corresponding actuator within a bounded (and
usually short) period of time. This means that the transmis-
sion of data through the network needs to be reliable and
deterministic which derives in new stringent requirements
in terms of network processing capabilities. This is why the
electronics architecture and the In-Vehicle Network (IVN) are
now in the center of attention [4]. In this work we focus on
the main component of the IVN: the gateway (GW). By def-
inition, a gateway is a device that connects heterogeneous
networks by translating from one communication protocol to
another. Traditionally, it was separated from the router, which
is in charge of delivering data within one single network, with
one network technology, typically Ethernet. However, the
trend in the recent years has been to combine both gatewaying
and routing functionalities within one device. Hereafter, when
we talk about a gateway device, we refer to a device capable
of both gatewaying and routing features. As the main compo-
nent of the In-Vehicle Network, the gateway is in charge of
network processing functionalities and is therefore affected
by all the new requirements concerning the IVN. Further-
more, the gateway can also be extended with application
processing functionalities, increasing its own complexity and
gaining even more importance within the vehicle electronics
architecture.

The semiconductor industry is also seeing significant
changes on its well-established design model. While at man-
ufacturing level the race towards smaller technologies which
lead to higher integration, lower production costs and higher
performance continues to be the norm, the revolution is hap-
pening in the design of the Integrated Circuits (ICs) itself.
Traditionally, big IC designers like Intel or Nvidia would
design the best general purpose compute platforms in the
market and companies in different industries would make
their designs based on these platforms. Competition and
differentiation between companies within a sector like the
automotive would be based on the design of functionalities
and capabilities reached with one platform, that could be the
same one used in a competitor’s product. However, now there
is an ongoing trend to change this model of operation: big
technology companies are starting to develop their own ICs

customized to their specific needs in order to generate a com-
petitive advantage. Tesla [5], Google [6], Amazon [7], Face-
book [8] and Apple [9] have already made this decision and
are ready to launch their products with their own customized
ICs. There is of course a great entry barrier in this approach,
but all the big companies that can afford it are shifting towards
this paradigm because of the customization opportunity that
can increase the performance of their products significantly.
This way, they can also prevent competitors from using the
same technology that they use, while bringing differentiation
as a competitive advantage. This decision not only provides
freedom for developing the hardware (HW) accelerators and
co-processors that each of them needs, but also eliminates
the dependence on IC designers both in economical aspects
and capabilities, and adds the (HW) chipset to the list of core
technologies for the company.

Observing the changes both in the automotive and the
semiconductor industry, we identify a trend where the design
of gateway controllers for in-vehicle network processing
becomes an essential part of the vehicle as a product.
In this work, we explore this trend and bring the following
contributions (C):
• C1. Requirements analysis of future In-Vehicle
Networks. We define the requirements for network
processing platforms derived from the integration of
new technologies and functionalities within IVNs.
We classify these requirements under two categories:
1) Functional Requirements (FR): those covering the
features that need to be supported by network processing
platforms from a functional perspective, 2) Structural
Requirements (SR): those related to the architectural
design that ensure the feasibility, usability, scalability
and future maintenance/evolution of the architecture.

• C2. Study of currently available network processing
platforms. We analyze the available platforms from the
architecture point of view, identifying their strengths
and, more importantly, the existing bottlenecks related to
the processing of the identified requirements (functional
and structural).

• C3. Identification of existing gaps and future trends.
We compare all the analyzed architectures and verify
to what extent they are able to cover the requirements
derived in C1. With this, we are able to identify current
gaps and relate them to the current trends observed both
in automotive and semiconductor industry, providing
insights and guidelines for future research opportunities.

The remainder of this paper is structured as follows.
In chapter II we provide relevant background information
related to the automotive electronics industry, with special
attention to IVN architecture evolution and challenges con-
cerning network processing units. In Section III we derive
the requirements of network processing platforms in order
to meet the demands of future vehicles. We consider both
functional and structural requirements of these network
processing platforms. In section IV we analyse currently
available network processing architectures, highlighting their
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advantages and disadvantages. We also analyse to which
extent each architecture fulfills or not the aforementioned
requirements. Then, we conclude the work in Section V
discussing the gap identified in the state of the art and
providing guidelines for future research directions. Finally,
in Section VI we provide a classification of the most relevant
research works discussed throughout this work.

II. AUTOMOTIVE ELECTRONICS INDUSTRY
The integration of technologies required in order to follow the
automotive mega-trends is intrinsically linked to the develop-
ment of new electric/ electronic (E/E) in-vehicle architectures
composed of several interconnected computing platforms.

The traditional automotive computing platform, which is
the Electronic Control Unit (ECU), was born in order to
provide simple control of one specific sensor/actuator. On a
first approach, for each electronic function in the car one
dedicated ECU with a very specific control task would be
incorporated. When new sensors or actuators were required,
new ECUs would also be incorporated. With the exponential
increase of electronic functions in the car this approach did
not make sense any more because the amount of ECUs and
their interconnections became impossible to handle.

Therefore, on a second iteration, ECUs started to group
sensors based on functionality or domains. This way, there
would be an ECU in charge for lights, another one for info-
tainment, another one for motion control, etc. This is a logical
distribution which permits to handle the different sensors and
actuators in groups, attending to the specific requirements
of each group. For instance, in terms of safety and security,
different requirements apply to the infotainment domain or to
the motion control domain. This architecture is the one used
in today’s vehicles, and is exposed in Fig. 1-a.

However, for most of the functionalities available in a
vehicle, there are sensors and actuators in different physical
places in the car, e.g. there are lights in the front and in the
back, the same for cameras, proximity sensors, etc. Due to
this, several different cables need to be routed across the
whole vehicle to interconnect all the sensors and actuators of
each domain, as seen in Fig. 1-a. This dissociation between
the logical/functional and physical distribution of sensors
within the IVN, is the main disadvantage of the domain
architecture, which becomes a relevant issue when moving
towards autonomous driving. This is because, once again, the
amount of sensors and actuators that need to be integrated
in the IVN is increasing, making the domain-based approach
not scalable from architecture and topology point of view.
Furthermore, the cabling cost associated becomes too high.

Now, on a third iteration, a new generation of ECUs, and
IVNs is needed in order to provide the required functionality.
This need has been already identified in the state of the art,
and there are several works about it. In [10] an overview of
current ECUs and IVN solutions is exposed together with
some insights into possible architectures for future IVNs.
In [11], authors review the different network protocols
used within vehicular networks and analyze the benefits of

Ethernet as a backbone interconnecting a central process-
ing unit with several distributed network processing nodes.
In [12] authors discuss the evolution of IVNs and focus on
analysing alternatives for the backbone of the network. In [13]
authors focus also on Ethernet as a backbone of the IVN
and propose an architecture and specific configuration for a
particular use case, which, similarly to the proposal in [10]
and [12], is also composed of a central node and several dis-
tributed nodes interconnected between them. In [14] authors
give an overview on how all the new functionalities can be
mapped to the IVN central processing unit, while providing
the required level of reliability and performance. They also
identify the current bottlenecks at software level in terms of
handling the required complexity.

As seen above, according to the works available in the
literature, one of the proposed architectures which seems to
fulfill the requirements of future vehicles encompasses both
centralized and distributed features. The reasoning for such
an architecture is that some centralized control is needed,
but fully centralized control is neither feasible nor scalable.
Therefore, defining zones within the architecture which have
their own ECU or zonal gateway controller, and are inter-
connected between them, provides the required flexibility,
performance and scalability for future vehicle architectures.
In this architecture, shown in Fig. 1-b, sensors and actuators
are connected to an ECU that is physically placed in the
same zone, reducing dramatically the cabling cost. ECUs
distribution changes from functionality or domain to physical
zone inside the vehicle, i.e. the distribution of computing
platforms is no longer logical, but physical, solving the scal-
ability problem identified in the domain architecture. This
new proposal is called ‘‘Zonal Architecture’’. This change
in the IVN from domain to zonal architecture is shown
in Fig. 1.

The zonal architecture helps in solving the limitations of
the domain-based architecture but, it brings new challenges
to overcome. Before, each ECUwas only in charge of sensors
and actuators of one domain, being able to handle its require-
ments without issues. Now, each ECU or zonal controller
needs to handle sensors and actuators of different domains,
which are placed in the same physical area. This involves
mixing traffic of different functionalities and with different
requirements.

With this paradigm shift, the computation platforms
become much more complex than a traditional ECU or
domain controller in terms of mixing heterogeneous and
cross-domain functionalities, distributed and synchronized
across several vehicle zones. Therefore, the design of these
computing platforms becomes of utmost importance in order
to incorporate the desired functionalities and technologies.
One of the challenges of future automotive network pro-
cessing platforms is to find the right balance between the
different requirements imposed by this heterogeneous set of
functionalities and technologies.

The resulting architecture can be leveraged from low-end
vehicles up to high-end vehicles by changing the performance
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FIGURE 1. Evolution of intra-vehicular networks.

of the included computation platforms. The integration of
High Performance Computers (HPCs) can be left for the
high-end vehicles where all the functionalities and best qual-
ity features are deployed, while in the low-end vehicles,
ECUs with dedicated HW accelerators can have enough
computation power to support the required functionalities
with the adequate level of performance. This solution pro-
vides important cost savings by reusing the same archi-
tecture and components for both low-end and high-end
vehicles, since both benefit from high production volume of
the shared components. At the same time, the most expensive
component (HPC) could be required only in the high-end
scenario where although volumes are lower, margins are
higher.

Observing trends and evolution in other computing plat-
forms like Micro-Controller Units (MCUs) based in the
Advanced Reduced instruction set Machines (ARM) archi-
tecture, which started as low end MCUs and are now taking
the data centres world [15], it does not seem unreasonable to
think or foresee that HPCs will be completely removed from
the vehicle architecture by including new custom HW accel-
erators in ECUswhen these reach the proper performance and
cost.

III. NETWORK PROCESSING PLATFORMS
REQUIREMENTS
As seen in the previous section, going towards future zonal
architectures, the Gateway (GW) controller becomes the cen-
tral piece of the In-Vehicle Network in terms of network
processing. Therefore, we focus this work on the study of
Gateway platforms from different perspectives.

In this section, we identify the requirements that need to
be fulfilled by future automotive Gateway devices. These
requirements are classified into functional requirements and
structural requirements.

- Functional requirements relate to a functionality that must
be provided by the GW platform as part of the network
infrastructure in a vehicle.

- Structural requirements relate to design practices and
the viability of the architecture design towards a real Net-
work/System on Chip (NoC/SoC).

1) FUNCTIONAL REQUIREMENTS
• FR0. Generic Network Processing Management
As the main network processing device within
the IVN, the gateway must be able to perform generic
network processing management, common to other net-
work infrastructures. This includes the routing and for-
warding of frames at layer 2 or higher, packet processing
or frames priority management. Furthermore, given the
increase in the computation capabilities of IVN Gate-
ways, it is also expected to perform some application
layer tasks such as frame manipulation and transforma-
tion, or frames generation, shifting functionality from
the HPCs to the zonal GW controllers. This enables the
autonomy of the zonal gateway as a computing entity
that takes full control of the functions in a delimited
region (zone) of the vehicle, and enables the distributed
zonal architecture.

• FR1. Heterogeneous Networks Management
Linked with the aforementioned Connectivity
mega-trend, IVNs are evolving according to the new
requirements and technologies integrated into vehi-
cles. Nowadays, the heterogeneity of IVNs and how
to manage them is one of the biggest challenges to
overcome. Traditionally, the IVN was composed of
different buses: Controller Area Network (CAN) up
to 1 Mbps [16], Local Interconnect Network (LIN) up
to 19.2 kbps [17], FlexRay (10 Mbps) [18], Media Ori-
ented System Transport (MOST) up to 150 Mbps [19],
and more recently also CAN with Flexible Datarate
(CAN-FD) and CAN-XL up to 10 Mbps [20], [21].
Although Ethernet is becoming more and more used
for IVNs, (since few years ago and 100Base-T1S and
1000Base-T1S are already adopted), this heterogeneity
will continue to exist in the following years due to two
main factors [22]:

– Backwards compatibility is a requirement in the
automotive industry. Sensors and actuators that are
in the market today use legacy buses such as CAN,
LIN, FlexRay and MOST as an interface and will
continue to do so in the near future. Introduction of
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new technologies will be gradual so coexistence of
legacy and new technologies is mandatory.

– There is currently no alternative that can cover
all the use cases of IVNs. Requirements for a
subsystem that is using LIN protocol differ enor-
mously from requirements for a subsystem that is
using Ethernet. Nowadays, the universal bus that
covers high-speed to low-speed, with wide band-
width (BW) and fault detection mechanisms at rea-
sonable cost, does not exist.

Although the new Ethernet-based technology 10Base-
T1S aims at replacing other technologies like CAN-XL
and FlexRay in the range of up to 10Mbps, this is
a trend still in development phase today. The rea-
soning behind this trend is to harmonize the network
as an Ethernet-centric solution and reduce thus com-
plexity in gateways in terms of handling heteroge-
neous network protocols. Anyhow, whatever technology
transition in automotive occurs gradually through
integration steps that take considerable time due
to the long standardization, validation and adoption
process.
Therefore, in future automotive platforms there is a need
to efficiently handle this heterogeneity and, as in existing
architectures, the component that enables the translation
between different protocols, is the Gateway. The current
solution used to handle the translation from the differ-
ent automotive protocols to Ethernet is the IEEE1722
encapsulation [23]. This standard provides a common
frame format to embed frames of different protocols into
Ethernet frames.
Apart from the need for a strategy to translate between
network protocols, there is also the challenge of effi-
ciently handling the required QoS for all of them. As a
reference, Table 1, gives an overview of the requirements
in terms of BW and latency of different applications
classified in domains together with the technologies
involved in each of them. In this regard, having a back-
bone that operates at a higher rate than the other proto-
cols in the network allows to allocate the requirements
of each protocol and ensure that the worst case latency
is guaranteed across the network for all of them, as well
as ensuring the throughput of each gateway withstands
the aggregated BW of its ports. However, the QoS of
this backbone must take into account the needs of all
the sensors and actuators present in the network in order
to satisfy these requirements. The topics of QoS and
determinism for Ethernet networks are discussed later
in this section, in FR4.
There are also several works in the literature try-
ing to provide solutions to handle different network
protocols. In [24], authors present a software (SW)
based solution for the management of this hetero-
geneity of networking technologies within automotive
gateways. In [25], authors deal with the diversity of
communication protocols in a different environment

TABLE 1. BW and latency requirements of different domain applications.

(generic embedded applications) and propose a virtual-
ization model for the management of this heterogeneity.

• FR2. Safety and Security
Safety has always been an intrinsic requirement within
the automotive industry. Due to the fact that people’s
safety is at stake, the system must be absolutely safe.
With the vehicle electrification, strict measures need
to be taken with regards to safety. Electrical and elec-
tronics systems must be intensely tested in order to
cover all possible cases and detect potential issues, and
also life tests must be performed in order to guarantee
the absence of failures. With the increased complex-
ity of systems, failure modes may also increase and
even be almost impossible to cover. It is under these
conditions when safety becomes even more important
and the safety concept turns a key aspect of the initial
design.
Making systems which are safe by design turns out to
be the best option in order to comply with the required
safety standards that apply when going to higher levels
of autonomy. Another important aspect is the logging
feature, that allows to have visibility of what is going on
in the network and to perform the correct diagnosis [26].
Next, we describe the available standards regarding
safety related requirements in automotive:
- ISO 26262 [27]: Road vehicles — Functional safety.
This is the first specific standard for Functional safety
with regards to vehicles, published by the International
Organization for Standardization (ISO), and is based on
IEC 61508 from International Electrotechnical Commis-
sion (IEC) [28]. The standard describes different levels
according to safety classification, called ASIL (Auto-
motive Safety Integrity Level), going from ASIL-A
to ASIL-D, being ASIL-D the highest level of safety
described in this standard.
- ISO 21448 [29]: Going towards higher levels of
autonomy, ISO 26262 becomes insufficient to cover
new use cases like Software Over The Air updates
(SOTA), autonomous driving, unintended behavior, etc.
Therefore, new standards trying to cover the gap are
being currently developed. SOTIF standard (Safety Of
The Intended Functionality) specifies how to consider
known/unknown use cases and how to identify limita-
tions of countermeasures. It introduces verification and
validation concepts.
- UL4600 [30]: Standard for Safety for the Evaluation of
Autonomous Products. It covers the safety requirements
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for fully Autonomous Vehicle (AV) operation, where
there is no human driver/supervisor.
In line with the definition of these standards and
the increasing complexity introduced by AD, some of
the world’s major mobility stakeholders are working
together and have created ‘‘The Autonomous’’ associa-
tion [31], in order to shape the future of safe autonomous
vehicles. Within this working group, an overview of
the autonomous vehicle governance ecosystem with
guidelines for decision makers has been published [32].
According to this, the industry is putting great effort in
advancing towards functional safety systems.
There are already some companies which are providing
a functional safety assessment of their products tar-
geting the autonomous driving industry, like TTTEch
Auto, with their MotionWise platform [33], NXP with
their Safe Assure program for the S32G processor [34]
or Renesas with their Functional Safety support for
automotive [35].
Regarding security in IVNs, the complete architec-
ture is secured via 4 layers of security deployment:
secure (external) interfaces, secure GW (internal com-
munication), secure network and secure processing [36].
The focus of this work is on GW architectures, therefore
the security layer that is further analysed as a require-
ment is layer 2: Secure Gateway. The basis of securing
GWs relies on network domain division and firewall
rules that are applied to determine which communica-
tions between domains are allowed. The deployment
of this layer of security is nowadays done via SW
solutions following the Evita Project [37] pillars. Data
encryption/decryption like Media Access Control Secu-
rity (MACSec) [38] is supported by the Hardware Secu-
rity Module (HSM). Other security functions demanded
in automotive gateways are firewall functionalities such
as IPTABLES [39] and Network Intrusion Detection
Systems (NIDS) like SNORT [40] or SURICATA [41].
All of these solutions focus on providing rules to deter-
mine how the system should react when a specific
kind of traffic is present in the network. The resolu-
tion can be to allow or not allow the traffic, but also
to log some frames or to generate system alerts. They
do not only set rules considering frame’s header, but
also by inspecting the data contained in the payload.
The flexibility required in defining these rules is very
high, and there is a need of having run time update
capabilities so that the system can adapt the rules accord-
ing to previously seen traffic and learn from it, e.g.
in the case of NIDS upgrades against new cyber-security
attacks.
Nowadays, the implementation of these secure approach
is completely SW-based, and represents a significant
overload in Gateway Central Processing Units (CPUs).
There are some works on the literature about the chal-
lenges of integrating safety and security in IVNs [42].

TABLE 2. Expected future sensors needed for ADAS features.

• FR3. Throughput and Performance
With the new technologies integrated within IVNs,
especially the sensors required for autonomous driving
(cameras, radar, etc.), the amount of data that needs to
be exchanged in the network increases exponentially.
Actually, it is not only the amount of data but also
the speed at which it needs to be delivered across the
network that increases dramatically. Today, most flows
within a vehicle require less than 1 Gbit/s throughput.
However, in order to enable future use cases, this is
expected to increase to the range of someGbit/s per flow,
as analysed by authors in [11]. Table 2 shows an esti-
mation of sensors that will be integrated into vehicles in
order to enable autonomous driving features, the amount
of sensors of each type and the BW consumed by each
of them according to [43], [44].
When several Gbit/s flows need to be handled at the
same point, the network processing devices must be able
to process at much higher data rates, in order to avoid
becoming a bottleneck. Therefore, it is a requirement
for network processing devices to provide multi Gbit/s
throughput. At the same time, lower data rate flows will
continue to exist in the network [45], as also seen in
Tables 1 and 2. This means that the network processing
device must be able to handle a variety of throughput
rates and smartly provide the Quality of Service (QoS)
required by each of them.
Once again we see how IVN require a combination of
technologies with different purposes. Thus, the chal-
lenge is on how to combine all of them at the right level
of performance, rather than at providing one single item
with maximum quality.

• FR4. Quality of Service: Determinism
Future IVN gateways must provide deterministic and
reliable transmission of packets with the right QoS.
We consider the future IVN architecture depicted in
Fig. 1-b with Ethernet as a backbone of the network.
In such network, the capability to provide reliable per-
formance for distributed applications depends on the
determinism of the communication through this back-
bone. For instance, an application that collects informa-
tion from sensors in the four zones and generates an
action that also needs to be deployed in the four zones
requires guarantees in terms of end to end transport
latency, e.g. synchronization of lights.
In terms of determinism, the IEEE group on Time Sen-
sitive Networking (TSN) has been developing a set of
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standards that set the ground for deterministic and reli-
able Ethernet networks. Given the fact that TSN covers a
broad range of applications, different profiles are being
defined for the different use cases.
In the specific case of automotive, the P802.1DG [45]
profile is currently under development [46]. As stated
in the P802.1DG web page, ‘‘This standard speci-
fies profiles for secure, highly reliable, deterministic
latency, automotive in-vehicle bridged IEEE 802.3 Eth-
ernet networks based on IEEE 802.1 Time-Sensitive
Networking (TSN) standards and IEEE 802.1 Security
standards’’. As of today, P802.1DG considers that the
required TSN standards to be applicable in automotive
IVNs, are the ones listed below.
- 802.1AS [47] (base profile, required): The time syn-
chronization standard coming from Audio Video Bridg-
ing (AVB) standards, provides time synchronization
across the network. It relies on the generalized Preci-
sion Time Protocol (gPTP) to exchange synchronization
messages. This is the basis of operation for other TSN
standards that provide enhancements of traffic manage-
ment in a synchronized network.
- 802.1Qci [48] (base profile, required): Per Stream Fil-
tering and Policing standard describes the mechanisms
to define traffic flows and which characteristics shall
be used in order to filter and classify them. Within
IVNs, this is of great importance given the fact that it
is necessary to define critical flows like brake system or
steering column and guarantee there are no interference
of traffic going back and forth to these subsystems as the
consequences can be highly critical.
-802.1Qav [49] (base profile, required): Forwarding and
Queuing Enhancements for time-sensitive streams stan-
dard describes the Credit Based Shaper (CBS) algorithm
used to limit the BW consumption of certain TSN flows.
- 802.1CB [50] (extended profile, required): Frame
Replication and Elimination for Reliability standard
describes the strategy to comply functional safety
requirements based on physical redundancy already
available in the network. Basically, critical defined flows
are replicated via alternate paths in order to guarantee
the arrival of information even if one path is suddenly
interrupted.
The required functions to generate frame replicates, and
also to detect them on reception side are defined. Diag-
nosability obtained out of the replicates detected can be
very powerful not only for status of physical links but
also for network congestion.
- 802.1Qbv [51] (extended profile, optional): Enhance-
ments for scheduled traffic standard describes the sys-
tem architecture and method for the Time Aware
Shaper (TAS) of TSN flows.
- 802.1Qbu [52] (extended profile, optional): Frame
preemption standard describes the system mechanisms
required in order to provide frame preemption capabili-
ties. This mechanism distinguishes between express and

preemptable frames, where express frames are allowed
to interrupt the transmission of preemptable frames,
reducing significantly the worst case bounded latency of
highly critical or express flows.
- 802.1Qch [53] (extended profile, optional): Cyclic
Queueing and Forwarding standard introduces a double
buffering strategy, which allows bridges to synchronize
transmissions in a cyclic manner. In each cycle, one of
the buffers is in transmission mode and the other is in
reception mode.
This way, the maximum delay of frames between two
nodes is bounded to one cycle, assuming that one cycle
is enough to empty the transmission buffer. Likewise,
maximum latency across the network can be bounded
with the cycle time and number of hops between nodes.
- 802.1Qcr [54] (extended profile, optional): Asyn-
chronous Traffic Shaping (ATS) standard describes
a methodology to provide reduced latency and high
QoS without the need of time awareness [55], [56].
The concept is based on Urgency Based Scheduler
and the implementation of a token based algorithm to
assign transmission windows. According to some recent
research works, ATS can be very useful in combination
with CBS when handling egress queues [57].
Nowadays, the state of the art is focused on how to
optimally integrate all the required TSN functionali-
ties into IVNs providing high performance at minimum
cost. In [58], authors evaluate a specific traffic manage-
ment scheme that enables the integration of event-driven
traffic for IVNs. There are already several solutions
available in the market incorporating some of the TSN
standards, and with a roadmap to be able to pro-
vide most of them. Examples of this are the Multi
TSN switch Intellectual Property Core (IPCore) from
SoC-e [59], TSN IPCores from Fraunhofer [60] or
TTTech TSN solutions [61]. One of the biggest chal-
lenges is the management of all the configuration
options and how to be able to automatically reconfig-
ure the network. For this purpose, Software Defined
Networking (SDN) technology, seems a reasonable
option that can provide the required flexibility and per-
formance. Currently, there are several research works
exploring this direction [62]. Authors in [63] review
TSN related research works and identify research trends
in this area.

• FR5. Quality of Service: Latency
According to AVNU [64] and IEEE802.1DG/D1.4 [45],
current IVNs require a network latency around 500 µs
to 1 ms across the different hops in the network.
At the same time, the new use cases to be covered
by future vehicles (autonomous driving, connectivity)
require more sensors integrated in the vehicle (e.g.
cameras, lidar, etc.). This leads to an increase in BW
usage (fromMbits or 1Gigabit to multi Gigabit Ethernet
links), which makes latency requirements difficult to
meet under high load situations. The goal for each of
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the nodes or hops is to introduce the minimum latency
possible in the data plane, becoming practically trans-
parent, with almost no penalty in frames processing.
This way the latency in the network would be mainly
caused by the intrinsic traffic conflicts and availabil-
ity of connection paths, that can be handled through
correct traffic scheduling and management. Considering
that traffic related to Autonomous Driving features will
require high bandwidth and low latency at the same time
(see Tables 1 and 2), there is a need for strategies on
how to police this traffic in order to be able to meet such
requirement. Just to give an idea of the magnitude we
are talking about, the maximum latency for cut-through
forwarding in a gateway should be kept below few µs.
This is a hard requirement, that remarks the need for high
performance and low latency computation platforms.
In order to handle the different latency requirements
across different flows, the Data Distribution Ser-
vice (DDS) technology appears as a good fit. DDS pro-
vides means to define, at application layer, some flow
attributes such as deadline, latency budget or priority.
With this, network processing platforms get the required
information to make decisions in case of conflicts. There
are several works on the state of the art studying the
integration of DDS in automotive networks, both for
Ethernet [65] and FlexRay [66]. Being a high level
application, DDS needs to be combined with lower level
strategies in order to guarantee the required QoS in real
time. For this purpose, the combination of TSN andDDS
is an interesting field, which is currently being explored
in industrial networks [67], [68]. However, the suitabil-
ity of DDS and TSN combined together for IVNs is still
an open area which, from author’s perspective, could
enable the stringent requirements in terms of latency of
IVN processing platforms. This is explored by authors
in [69]. The most similar alternative to DDS currently
available in automotive is the Service Oriented Mid-
dlewarE over IP (SOME/IP) technology [70]. However,
SOME/IP does not provide timing guarantees, which is
why DDS emerges as a good candidate to fulfill the time
determinism requirement.

• FR6. Run-Time Reconfiguration
Software Defined Networking (SDN) techniques
emerged back in 2000 with the idea of network pro-
grammability, based on the separation of control and
data planes. This separation allowed networks to become
scalable and easily updateable, decoupling network
behavioral configuration fromHWdevices. In the begin-
ning, SDN was introduced in big IT networks like data
centres or enterprises. In these fields, it has been very
successful and allowed the advancement of network
configuration techniques exponentially.
OpenFlow is one of the first and most widely extended
technologies enabling Software Defined Networking.
It emerged from a research project at StanfordUniversity
back in 2008 [71], and was presented as a tool for

researchers to be able to run experiments easily over
networks. The concept evolved to become a standard in
today’s networks configuration for packets switching in
large networks.
Nowadays, the option of migrating SDN technologies
to IVNs is becoming more and more close to reality.
The evolution of IVNs makes them very similar to
big IT infrastructures, but with harder latency, safety
and security requirements. The flexibility provided by
SDN, especially in the control plane, makes it the per-
fect candidate for network configuration orchestration.
Moreover, with the integration of TSN, the amount of
configuration parameters that need to be handled, and
the frequency with which those may change, make the
need for SDN solutions integrated within IVNs more
evident.
In [72] an analysis of why SDN technology is inter-
esting for the automotive industry and some applica-
ble use cases are exposed. There are also works in
the literature exploring the benefits of using SDN in
IVNs [73], [74]. In [75] authors propose the use of SDN
in automotive CAN-based networks while [76] proposes
an SDN architecture for ethernet-based automotive net-
works. Authors in [77], [78] explore the integration of
TSN with SDN and propose different strategies for this
combination.
Apart from TSN, safety and security are also functional-
ities that require high configuration capabilities, even at
run time. The capability of changing the rules operating
in the GW according to traffic events, the result of a
diagnostic function or via an instruction in the control
plane, needs to be present in future gateway platforms,
e.g. update of new attack patterns in the NIDS or new
filtering rules on the firewall.
Again, SDN plays an important role in the deployment
of this strategy, by providing the requiredmechanisms to
perform such configuration updates. There are several
works in the literature regarding the combination of
SDN with safety and security mechanisms for automo-
tive applications. In [79] authors propose an SDN-based
strategy for fast fail over routes in the data plane. In [80]
an SDN controller for safety applications is proposed
and in [81] a fault-tolerant dynamic scheduling for TSN
networks is introduced. Authors in [82] propose a safety-
critical SDN-based dynamic reconfiguration strategy for
aeronautical systems.
Run-time reconfiguration is also needed to enable a
dynamic Service oriented Architecture (SoA). A ser-
vice is understood as a discrete unit of functionality
that can be accessed remotely and updated indepen-
dently, and applications are built by combining services.
By enabling the possibility to shift some service or appli-
cation from one zonal controller to another at run-time,
new strategies towards network fault-tolerance emerge.
For instance, in case of failure in one zonal controller,
another one could take over the functionality keeping
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the vehicle fully functional. At application level, a dis-
tributed SoA enables new functionalities like sharing
services or applications between the vehicle and user
smart-phones as explored in [83], or the interaction with
the infrastructure for autonomous driving, as proposed
in [84].
Overall, we see how run-time reconfiguration is a key
requirement, and an enabler of many of the functionali-
ties and technologies to be integrated in future IVNs.

• FR7. Application-related and In-line Processing
Another new possibility that comes with the zonal archi-
tecture, is the capability to process application layer
functionalities in the zonal gateway controllers.
On one side, this enables to offload the HPC from this
processing and to balance the load with the zonal gate-
way controllers available in the network.
On the other side, it also reduces the overall latency
in the application processing, since some functionalities
could be resolved locally, e.g. diagnostic of a light in one
zone and the corrective action associated to its status,
which could save time not only on the transmission
towards the HPC, but also on the translation between
network protocols (in-line processing). Furthermore,
having application processing capabilities in the zonal
controllers, combined with the aforementioned recon-
figuration requirement (FR6), enables the reallocation
of functions across nodes, which can be used in case
of failures or for load-balancing purposes. Eventually,
zonal controllers could process all the functionalities
required in the vehicle, removing the need for the HPC,
enabling a fully distributed architecture.

2) STRUCTURAL REQUIREMENTS
• SR0. Scalable
In order to ensure the feasibility of a future IC design, the
architecture of the network processing platform must be
able to extend its capabilities without major redesigns,
i.e. the system architecture must be fully scalable. For
example, the introduction of new input/output portsmust
come at no design cost. Furthermore, the introduction
of new processing features must be feasible within the
definition of the architecture, as long as these features
are related to the previously defined FRs.

• SR1. Flexible
When considering the datapath architecture, a high
degree of flexibility is needed in order to support all
the functional requirements at minimum cost. There-
fore, the capability of the architecture of adapting to the
required processing, or of accommodating it seamlessly,
is an important requirement to ensure the viability of the
IC development.

• SR2. Configurable
The processing required in an IVN is composed of a
wide variety of functionalities, ranging from the man-
agement of different protocols in different ports, to

different TSN algorithms or safety features, as seen
above. Hosting every possible functionality within a
single chip would be a great waste of HW resources,
and not even feasible since worst cases depend on each
specific use case. Over-provisioning the chipset in this
way is not an option since in most of the cases only
a subset of the functionalities will be requested. This
results in the need for highly configurable devices and
architectures that permit to select the capabilities and
functional features in place in order to optimize each
deployment. This configuration is not only related to the
functional run-time configuration listed in the functional
requirements. It relates to the configuration options
available in the architecture that allow for creating a
range of products, from high-end to low-end segments,
by selecting the required modules and the amount of
each of them, based on the same architecture.

• SR3. Stateful
An important aspect of IVNs is to be able to react to
events based on observed data patterns. This enables
capabilities such as detecting attacks or failures in the
network. This means that network processing devices
need to be aware of past events and therefore, the device
needs to be stateful. This fact involves the need for
memory elements in order to store certain information
that occurred in the past and that will be considered in the
present or in the future. An analysis of why statefulness
is needed in network processing architectures is given
in [85], reinforcing the need for this requirement.

• SR4. Compact HW
The cost of area in silicon is an important metric for
manufacturable ICs. Therefore, it is also an important
metric of the architectures that are candidates to be the
basis of future real chipset devices for automotive GWs.

• SR5. Reasonable Complexity
The proposed solution shall be able to decrease the level
of complexity versus other alternatives. For example,
it is well-known that multi-core CPU solutions are get-
ting more and more complex in terms of implementation
and maintenance, and even debugging in development
phase. However, having several cores for processing
can definitely be beneficial in terms of performance.
Therefore, there is a need for new solutions that allow to
reduce the complexity of the existing solutions, such as
the multicore architecture. This requirement emphasizes
the easiness to program in terms of engineering effort
and time, aimed at being realistically implementable
and integrated in the future fast-paced development of
automotive products. Another driver for this reduction
of complexity by design is the reuse optimization.

These are the six main structural requirements selected.
Other relevant parameters, like for instance low power con-
sumption, are not evaluated due to the general lack of infor-
mation available in the literature to run this benchmark.
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FIGURE 2. MCU-based architecture block diagram.

IV. ANALYSIS OF NETWORK PROCESSING
ARCHITECTURES
In this section, an analysis of the main architectures available
in the state of the art for Gateway devices is performed.
We highlight the main characteristics of each of them, focus-
ing on their specific goals, advantages and disadvantages.
Furthermore, we relate the capabilities of the presented archi-
tectures to the requirements introduced in the previous sec-
tions and expose whether they are fulfilled or not.

A. MCU BASED GATEWAY CONTROLLER
Traditional Automotive GWs used to be implemented by
means of a CPU that performs the routing, switching and
tunneling [86] of messages between sensors/actuators and
the main compute platform in the vehicle, covering all
the required protocols for automotive applications. Fig. 2
depicts this architecture, where the gateway is essentially
programmed on an MCU.

In this architecture, the CPU is the only processing device
and is supported by dedicated memory as well as peripheral
clusters and interfaces. These handle the physical layer and
provide means to exchange information between the physical
layer and the SW running in the CPU.

In this section A, we deal with general purpose proces-
sors that can be programmed in SW to perform networking
functions, without any specific HW support for it. We start
with AUTOSAR, which is the main SW architecture used in
today’s vehicles, both for application and network processing.
Then we analyse the SW architecture of Open vSwitch and
the Linux Data Plane Development Kit (DPDK), as some
of the major SW-based tools used for network processing
in general, although not particularly in automotive. Finally,
we also review different configurations regarding CPU cores
within a network processor, focusing on themany-/multi-core
architecture.

1) AUTOSAR SW ARCHITECTURE
The standard SW architecture used nowadays in the design
of vehicle Electronic Control Units is the AUTOmotive Soft-
ware ARchitecture (AUTOSAR) [87], whose architecture
is shown in Fig. 3. AUTOSAR provides a framework to
develop ECUs that are compliant with automotive regulations
and that provides the main traditional functional require-
ments of IVNs. There are two major versions of AUTOSAR:
Classic and Adaptive. AUTOSAR Classic was the first ver-
sion and was designed according to the needs of the tradi-
tional E/E architecture. When new requirements in terms of

Service-oriented Architecture, SW updates, and flexibility in
general emerged, it evolved into AUTOSAR Adaptive.

Regarding network processing, Fig. 3 highlights the sup-
port for different network protocols within the AUTOSAR
communications software stack. On the lower level differ-
ent drivers are available for the different protocols, which
are then abstracted in the communication HW abstraction
layer, and finally handled in the Protocol Data Unit Router
(PDU Router). The PDU Router exchanges communication
messages with the upper layer (Runtime Environment) which
interacts with the Application Layer. As an example, authors
in [88], propose a software stack for the management of
internal and external communications of the vehicle based
on the AUTOSAR Classic architecture. There are several
examples of automotive specific MCUs in the market which
implement the AUTOSAR Classic software stack, e.g. NXP
MPC574xB-C-G.

However, when going to high BW usage and high commu-
nication speeds, the software solution is on one side loading
the CPU significantly, and on the other side not able to
guarantee neither timing requirements nor Quality of Service.
Due to this, the functional requirements of throughput, deter-
minism and latency are not met (FR3, FR4, FR5).

Related to the SDN concept previously introduced, the
Software Defined Vehicle (SDV) appears. The focus is on a
SW defined distribution of application level functionalities,
following the Autosar architecture, which would allow to
fully reuse the SW on different HW platforms. One example
is the proposal made by ElectroKnox Corporation with their
Gateway SGW1000, offering domain controller and smart
central GW solutions targeting SDVs based on the Xilinx
Zynq R© Platform [89]. Their focus is on high-computing
products that allow OEMs to adapt the changing vehicle
network topology to meet the future needs of SDVs, with-
out requiring HW changes. The focus of this solution is
completely software-centric, leveraging the capabilities pro-
vided by the CPU integrated in the Xilinx Zynq SoC, with a
very close low level interface to the different HW interfaces
(CAN, LIN, FlexRay, Ethernet, etc) and performing all the
required processing in the SoC CPU, at software level.

Another company that is currently working on the defi-
nition of SDVs is Ethernovia [90]. Ethernovia is focusing
on the virtualization of Ethernet communications in order
to enable the Software Defined Vehicle. These examples
are a first step that highlights the trend towards software
defined solutions within the automotive industry following
a completely software-centric approach. However, they are
not focusing on the lower level execution of those tasks and
exchange of information, and therefore are not always able
to meet the stringent real time and deterministic constrains
imposed by future IVNs.

2) OPEN vSwitch
Following the SDN paradigm, Open vSwitch appeared in
2009 as an open source solution to orchestrate large scale
networks [91]. In essence, it is a software switch running
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FIGURE 3. AUTOSAR SW architecture.

in Linux (both kernel and user space) that provides the capa-
bility to distribute the configuration and network telemetry
across networks. Following the open source approach and
aiming for standard compatibility, it makes use of open source
configuration protocols such asNetFlow fromCISCOor Link
Aggregation Control Protocol (LACP).

Open vSwitch is targeted to large scale environments,
providing support for network virtualization and simplifying
the management and supervision of the network. Recently,
there are several efforts about porting Open vSwitch to HW
platforms, trying to offload some of the switch features in
order to improve the performance and reduce the software
complexity [92]. Additionally, Open vSwitch also incorpo-
rates some support for QoS features such as traffic policing
and shaping. However, these are not oriented to provide real
time determinism of packets transmission nor follow any of
the TSN standards.

As of today, there is no intersection between the goals of
Open vSwitch (large scale networks) and the needs of IVNs,
since these are not large scale. However, as seen before, many
technologies originally designed for Data Centers applica-
tions are now being integrated into vehicles, and some of
the concepts behind Open vSwitch can also be of interest
for IVNs. For instance, the concepts of software defined
configuration and network telemetry are some of the new
needs of IVNs, as derived in the requirements section (FR6).

3) DPDK
On an effort for providing a common strategy for packet pro-
cessing in general, the Data Plane Development Kit (DPDK)
emerged in 2010. Originally developed by Intel, DPDK has
evolved into an open source project hosted by the Linux
foundation. DPDK is a set of software libraries and drivers,
running in userspace, that accelerates packet-processing
workloads running on all major CPU architectures. Essen-
tially, it provides a ‘‘bridge’’ for packets to skip the OS
kernel space, allowing to process them in user space faster.
DPDK was traditionally a full software solution, however in
the recent years it has been extended to support combination
with HW extensions and Smart Network Interface Cards,

combining the advantages of HW acceleration and SW based
programming [93]. Recently, DPDK has evolved to support
TSN features, such as IEEE802.1Qbv and IEEE802.1Qav.

In [94], [95], authors propose an Environment for
Generic Intra-vehicular Network Experiments (EnGINE)
based on the use of Commercial Off-The-Shelf HW solutions
with DPDK. The framework provides the capability of
defining and executing network experiments in an easy way,
as well as to collect, process and represent the experimen-
tal results. Being a fully SW oriented solution, real time
performance is not optimized. However, the configurability,
flexibility and scalability provided by this framework are also
required in IVNS, which we keep in mind throughout this
work.

4) MANY-/MULTI-CORE ARCHITECTURE
With the increase in complexity of GW controllers, handling
all the processing in a single core CPU becomes too complex
and results in inefficient performance.

Therefore, the natural evolution of the single CPU core
architecture appears: the many-core architecture. Here, the
‘‘divide and conquer’’ principle applies, splitting the process-
ing tasks into several processing cores which can execute
tasks in parallel. In this architecture, the challenge is in how
the split of processing tasks between cores is done.

One approach is to make a functional division, assigning
each core to specific tasks. Authors in [96] make a proposal
in this direction, defining a 3-core gateway controller. In their
proposal one core is in charge of receiving and forwarding
packets to the other two cores, while the other two man-
age the egress stage of their associated ports independently,
as depicted in Fig. 4. This way frames are only stored in the

FIGURE 4. Many-core architecture with functional distribution per cores.
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FIGURE 5. Multi-core architecture with mesh network on chip.

egress queue of the core assigned to a specific port, reducing
the amount of frames to be stored in one single core. This
is a simple approach which reduces the complexity of the
processing performed in each of the cores. However, the
resources usage will depend on the traffic patterns flowing
through the system, which can result in one core being satu-
rated while another one is free.

In order to improve the resources usability problem, pro-
cessing tasks can be split among the different processing
cores regardless of functionality. This means that in run-time
different tasks are sent for processing to different cores on-
demand, taking into account the processing load of each core,
aiming at an even distribution of the processing load. In this
architecture, known as Multi-core, all CPU cores are inter-
connected through a mesh Network on Chip that allows for
fast routing of packets within the chip, and that provides also
in/out connectivity for the processor, as depicted in Fig. 5.
One industrial example of this architecture is the Epiphany
multicore processor from Adapteva [97].

Authors in [98] perform an analysis of Worst Case
Response Time (WCRT) of message processing in a
multi-core gateway processor. They evaluate the WCRT with
2 cores and 4 cores, and find out via experiments that the
WCRT for the two-cores implementation is below 1ms, and
the WCRT for the four-cores reduces to < 300 µs. In their
analysis they also see that the 4-cores eliminates almost com-
pletely interferences between processing nodes in their use
case, meaning that further cores would not bring a significant
reduction in WCRT. This is related to the nature of network
processing itself, which can be parallelized only up to a cer-
tain limit. Considering the real time requirement applicable in
IVN gateways (FR5) where the end to end delay is bounded
between 500 µs and 1 ms, we can derive that the multi-core
architecture may not be able to meet this requirement. With a
WCRT around 300 µs per hop, after two hops the end to end
latency could be compromised depending on the application.

5) IDENTIFIED BOTTLENECKS
• Bottleneck 0: Lack of real time performance: To some
extent, CPUs do not provide by design the required
real time performance that allows to meet the stringent
latency and throughput requirements imposed by the
new use cases identified in future IVNs (FR3 and FR5
not met).

FIGURE 6. HW-offloading architecture block diagram.

• Bottleneck 1: Lack of determinism: additionally, they
are not capable of providing the time determinism that
is required in order to enable reliable and safe networks
(FR2 and FR4 not met).

B. NETWORK PROCESSORS WITH HW-BASED NETWORK
OFFLOADING CAPABILITIES
In order to overcome the previously mentioned bottlenecks
0 and 1, the option to combine software cores with some
specific HW peripherals or accelerators emerged. The main
idea is to accelerate specific functions that are identified
as repetitive and time/resources consuming with a specific
HW implementation for that functionality, offloading thus
the CPU. This architecture is depicted in Fig. 6. As seen in the
figure, the main processing device is still the CPU, however,
it is now supported by specific HW accelerators which can
be related to networking or other functionalities. There are
several studies on the benefits of such an architecture and
how to identify good candidates for HW acceleration, such
as the Accelerometer study from Facebook [99], a framework
for discovering Non-Conventional Inline Accelerators from
IBM (NOVIA) [100] or EVITA project for embedded security
functions with the HSM [101]. Networking in particular, is an
area with great potential for HW acceleration because of
its intrinsic characteristics. On one side, the requirements
for high performance, high BW, reliability and QoS state
the need for a HW implementation. On the other side, the
layered structure defined by OSI model that is followed in all
network protocols, establishes similarities in the processing
required by most networking functionalities, allowing for the
definition of custom HW that accelerates certain functions.

Network Interface Cards (NICs) emerged as an extension
to general purpose CPUs for network purposes, with the
main goal of increasing the device throughput capabilities
(FR3). Today, they have evolved into SmartNICs, which are
not only a simple interface extension, but also a processing
extension for networking functionalities. SmartNICs allow to
offload some network related processing tasks resulting in
a smarter combination of HW and SW than the first NICs.
In [102] authors analyse the performance of application spe-
cific instruction-set routers in NoC.

Big companies have also realised about the opportunity
that SDN combined with HW brings to the networking world,
and have started to deploy their custom solutions.

Azure Accelerated Networking (AccelNet) is the pro-
posal from Microsoft [103] developed within the Catapult
project [104]. AccelNet relies on the off-load of networking
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features to dedicated HW co-processors in SmartNICs in
order to free CPUs of repetitive processing, gaining perfor-
mance for application processing. AccelNet covers only the
parsing and de-parsing engines of packet processing, but does
nothing on application layers.

SDNet [105] is the proposal fromXilinx, aiming at exploit-
ing the capabilities of SDN combined with their prototyping
platforms: Field Programmable Gate Arrays (FPGAs), SoC
or Multi-Processor SoC (MPSoC). However, SDNet solution
is too wide to be precise and therefore, does not get to
automate the full process of going from high level description
to HW generation. There is the possibility of creating IP
cores from a SDNet definition, but building a full system
interconnecting several IP cores is not possible.

The proposal from Intel is the COnfigurable network Pro-
tocol Accelerator (COPA) framework [106] which provides a
customizable framework that integrates communication with
computation on an FPGA platform.

The advantages of HW implementations for switching pur-
poses in Automotive Gateways are discussed in [107], and
several proposals of HW co-processors for isolated specific
tasks like [108], [109] expose the advantages of HW-SW
co-design applied to Automotive Gateways. In [110] authors
propose a flexible gateway platform based on the extension of
the CPU processing via specific FPGA network accelerators
for the different required protocols in automotive. In [111]
authors discuss the benefits of SmartNICs for automotive
applications. Reconfiguration and security aspects of IVNs
supported by HW accelerators are also discussed in [112]
and [113]. This need and opportunity has also been iden-
tified in the industry, and there are several processing plat-
forms following this architecture: NXP S32G [114], Infineon
Aurix TC4x [115], Broadcom BCM88480 [116], Marvell
88Q5050 [117], Xilinx SN1000, NVIDIA Data Processing
Unit (DPU), Intel Infrastructure Processing Unit (IPU), NXP
Bluebox [118], TTTech Arion IP [119].

Next, we analyse some of the most relevant industrial
products for network processing following this architec-
ture. We focus on two different kinds of products: net-
working chipsets provided by IC companies, and IPCores
ready to integrate in an FPGA platform or in a new
Application-Specific Integrated Circuit (ASIC) design.

1) BROADCOM BCM88480 PACKET PROCESSOR
One of the most recent products for Ethernet switching from
Broadcom is the BCM88480 [116]. It is a SoC oriented to
high-performance switching purposes with some support of
HW engines for specific functionalities. Fig. 7 shows a high
level block diagram of the main functional blocks included
in this device for packet processing. As seen in the figure, the
Network Interface delivers incoming packets to the ingress
pipeline, where a Packet Processor (PP) performs Lookup
operations to identify what processing needs to be done to the
packet and makes the corresponding header modifications.
The Lookup operations are supported by a specific HWaccel-
erator. Then a Traffic Manager (TM) handles the schedule of

FIGURE 7. BCM88480 packet processor high level architecture.

FIGURE 8. NXP S32G high level architecture.

packets storing them in external memory while they are not
eligible for transmission.

The scheduling is configurable and can support differ-
ent TSN standards with a software-based implementation,
thus satisfying FR4. Then another packet processor delivers
packets to the egress pipeline through the switching fabric.
The egress pipeline performs again packet processing and
traffic management according to the system configuration.
The device is also supported by a HW engine for statistics
purposes, providing monitoring capabilities. The device is
fully focused on network switching, without any application
processing capabilities considered (FR7 not met). As we can
see, this proposal follows a conservative approach in terms
of HW offloading with very few functionalities supported
by HW accelerators, providing most of the required func-
tionalities in software, therefore penalizing in the previously
mentioned limitations.

2) NXP AUTOMOTIVE PROCESSOR WITH NETWORK
ACCELERATION
NXPS32G family is one of the most complete examples of
this architecture in the state of the art targeting the automotive
industry. As an example, the block diagram of S32G is shown
in Fig. 8. As seen in the figure, the CPU system is supported
by several accelerator modules focusing on the functionalities
required in IVNs such as security features and heterogeneous
network management, thus fulfilling FR1 and FR2. In this
case, application processing can be integrated in the system
CPU, fulfilling FR7.
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The network acceleration module is composed of a Low
Latency Communication Engine (LLCE) supporting automo-
tive related networks, and a Packet Forwarding Engine (PFE)
supporting Ethernet Networks. Deep diving in the descrip-
tion of the PFE [120], we identify the specific features sup-
ported in HW. PFE permits to offload the Cyclic Redundancy
Check (CRC) operations both in transmission and recep-
tion, as well as some L2 switching functions such as Media
Access Control / Virtual Local Area Network (MAC/VLAN)
lookup, header modification of address/port based on the
lookup result and fast forwarding. It also supports traffic clas-
sification into managed/unmanaged/reserved based on user
configuration, which is then used to perform ingress policy
algorithms like Weighted Random Early Drop (WRED)
to avoid congestion. On the egress it supports HW based
scheduling algorithms such as round robin or strict prior-
ity, and it also supports the Credit Based Shaper algorithm
included in TSN standards [49].

Other functionalities claimed by the PFE are supported
via drivers that run in the host CPU kernel space, such as a
flexible parser/router that allows for handling frames header
with custom definitions and not only MAC/VLAN fields,
or more advanced classification algorithms, such as Intrusion
Detection and Protection Systems. When dealing with pro-
tocol tunneling (e.g. CAN to Ethernet), PFE interacts with
LLCE, offloading the protocol management.

Going to the details of LLCE [121], we see that it is an
MCU with 4 cores that handles the Automotive Networks.
The LLCE manages the automotive-related network process-
ing without intervention of the host CPU, but being an MCU
itself, the ‘‘acceleration’’ comes from task isolation and HW
redundancy, but does not rely on dedicated HW for this
purpose. As we can see, S32G combines the HW offloading
architecture with the previously discussed many-core archi-
tecture, which splits processing based on functionality.

In spite of being one of the most complete solutions
available in the market, there are some key features still
missing in NXP Network Acceleration, such as the support
for further TSN standards (FR4), or the offloading of the
current firmware based functionalities to the HW core in
order to improve performance (FR5). Finally, the broad set
of functionalities covered by this solution is achieved by
using many MCU cores, which apart from the performance
limitations previously mentioned, introduce a non-negligible
silicon cost and complexity (SR5 not met). It is understood
by authors that this solution provides the resources required
for design exploration, however seems quite oversized for a
final product, compromising the requirement for a compact
HW solution (SR4 not met).

3) INFINEON AURIX TC4
Recently, Infineon announced their new Aurix TC4x pro-
cessor family targeting automotive processors with a strong
focus in HW network acceleration. Although today there is
little information publicly available, we can infer the key
features of this proposal from their website [115].

As shown in Fig. 9, TC4x provides HW accelerators for
CAN and Ethernet networks, covering also the protocol tun-
neling in HWwith the Data Routing Engine (DRE) and CAN
Routing Engine (CRE) accelerators.With this, it moves a step
forward from the SG32 processor from NXP, providing pure
HW acceleration for protocols tunneling (FR1 and FR5 met).
Similarly to SG32, application processing can be hosted in
the system CPU (FR7 met).

Aurix TC4x also claims TSN support which, given that
is not specified in the new proposal, we assume it is the
same as the previous generation, providing support for IEEE
802.1Qav and IEEE802.1Qbv in HW, similarly to SG32 from
NXP. IEEE802.1AS is also supported, however in this case
the deployment is in SW (FR4 met). On the safety and
security aspect, it includes a new Cyber Security Real-Time
Module (CSRM) which consists on a CPU with HW support
for encryption features, and a new Cyber Security Satellite
which provides parallel HW accelerators to support the safety
applications and provide freedom of interference (FR2 met).

The support of further TSN standards to be compliant
with IEEE802.1DG seems to be excluded from this proposal,
and the capabilities and configuration options of the HW
accelerators, specially the ones related to traffic filtering and
safety features, are not clear with the available information.

4) MARVELL 88Q5050
Marvell is another important player in the network processing
industry who is also providing solutions for the automotive
sector. Their 88Q5050 is a SoC for Automotive Ethernet
switching purposes, with a strong focus in providing the
security and TSN functionalities required within IVNs (FR2
and FR4met). However, this product deals only with Ethernet
networks (FR1 not met).

The block diagram of the 88Q5050 device is shown in
Fig. 10. As seen in the figure, it is composed of a CPU with a
number of HW support modules that accelerate the network
processing. TSN features such as Qbv and Qav are provided

FIGURE 9. Aurix TC4x high level architecture.

FIGURE 10. Marvell 88Q5050 high level architecture.
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by a HW accelerator, as well as some filtering capabilities
such as Ingress AVB Policy and Rate Limiting. The 88Q5050
also provides a fast switching fabric to support frames routing
without the intervention of the CPU when it is not necessary,
and a Ternary Content Addressable Memory (TCAM) to
offload lookup operations (FR5 met).

The device has a strong focus on security aspects, and
hence provides Trusted Boot technology and Deep Packet
Inspection features. Fast system configuration and fast boot
times are claimed as one of the main features of the device.
However it seems from the available information that most
of this functionalities are provided in the CPU core with a
software implementation, and that little tasks are actually
offloaded to the HW support module.

5) TTTech ARION IP EVALUATION PLATFORM
TTTech is one of the most active promoters of HW-based
TSN solutions for network processing, in the form of IPCores
to be integrated in the customer system. One of their most
recent products is the Arion IP evaluation platform [119],
which demonstrates their Ethernet Switch IP Technology.
At the core of this product there is the Edge IP solution [122],
which consists on a library of IPCores that provide the switch-
ing capabilities. Application processing is not provided by the
IPCores (FR7 not met).

The support for TSN is one of the most complete in the
market, including time synchronization (IEEE802.1AS), traf-
fic scheduling (IEEE802.1Qbv and IEEE802.1Qav), frame
preemption (IEEE802.1Qbu and IEEE802.3br), traffic fil-
tering and policing (IEEE802.1Qci) and frames replica-
tion and elimination for reliability (IEEE802.1CB), fulfilling
thus FR4. Even though it is a HW-oriented architecture,
there is still some software support for the IPCores. Which
specific functionalities are deployed in software and which
are fully supported in HW is not clear from the available
information. Being an IPCore based solution, the option
to integrate new HW-supported functionalities is always
available, extending the capabilities of the IPCores pro-
vided. However, this requires a full custom design and is
limited by the available interfaces in the IPCores. Finally,
in terms of usability, the solution is relatively simple since
the IPCores are self-contained (SR5 met). However, this is
also limiting the flexibility in terms of configuration options
(SR2 not met).

6) SoC-e AVB/AUTOMOTIVE ETHERNET SWITCH IP-CORE
SoC-e provides FPGA-based Networking IP Cores and
System-on-Modules. Targeting the automotive industry, they
have an AVB/Automotive Ethernet Switch IP-Core and a
Multi-Port TSN-Switch IPCore, with a wide selection of TSN
functionalities, fulfilling FR4.

Even though this product is targeted to the automotive
industry, only Ethernet is supported (FR1 not met).

In spite of being an IPCore solution, which part of the
implementation is supported in HW and which part is sup-
ported in SW is not clear from the available information, since

one of the requirements for the instantiation of this IPCore is
to use a platform with an integrated CPU. The proposal is
fully focused on the switching functionality (FR7 not met).

7) FRAUNHOFER TSN IPCores
Fraunhofer also provides several IPCores oriented to pro-
viding TSN support in FPGA or ASIC based designs. They
offer a TSN switch core [123] and two TSN end-points
(one switched and another one not switched) [124]. Sim-
ilarly to TTTech, their coverage of TSN technologies is
quite broad, fulfilling thus FR4. They provide HW-based
switching enabling low-latency transmission of frames
(FR5 met). However, some functionalities are still supported
in SW, specially on the TSN processing.

8) IDENTIFIED BOTTLENECKS
Considering the available options in the state of the art,
we identify several bottlenecks that prevent this architecture
from being the best one for an automotive GW SoC:
• Bottleneck 2: Important HW cost: the main draw-
back of the HW offloading architecture is the cost
increase in terms of HW associated to it, fact that
needs to be properly justified and paid off through
functional and performance gains. Furthermore, in the
available solutions, offload engines are usually indepen-
dent and disconnected, requiring a new HW module for
each functionality instead of providing a configurable
HW that can solve several networking functionalities
(SR4 not met). Overall, we observe a certain discon-
nection in the datapath processing stages, or a lack of
a smooth path to some extent.

• Bottleneck 3: Limited configurability: related to the
previous item, offload peripherals usually provide few
configuration options, which limits its usability and
future extensions. When the peripheral is an FPGA,
configurability is of course provided, however a custom
HW design must be developed (SR2 not met). Usually,
this shortcoming is overcome via SW-based implemen-
tations, providing in SW the functionalities that are
missing in the HW offloading solution. However, with
this approach, the bottlenecks identified in the previous
architecture apply, and the benefits of the offloading
architectures are not applicable for such features.

C. PROTOCOL INDEPENDENT SWITCH ARCHITECTURE
(PISA)
In order to overcome bottlenecks 3 and 4, a new concept
emerged following the SDN paradigm, which is the Protocol
Independent Switch Architecture (PISA) that enables pro-
grammable data planes. The idea behind PISA architecture is
to provide a common HW that enables processing of different
network protocols (from Layer 2 and above, focused only
on Ethernet communications) and that can be reconfigured
to perform different processing tasks. Together with it, the
Programming Protocol-independent Packet Processors (P4)
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FIGURE 11. Protocol independent switch architecture block diagram.

language appeared, providing the capabilities to program
such a configurable device in an easy and flexible way [125].

There is an extensive collection of works dealing with P4 in
the state of the art, some of them focusing on the description
of P4 packet processors [126], surveys of P4 potential appli-
cations [127]–[129] performance analysis [130] or exten-
sions to support heterogeneous dataplanes [131] as well as
the definition of an abstract model for programmable data
planes [132]. The capabilities to exploit application layer
processing are explored by authors in [133], enabling the
fulfillment of FR7.

The basic architecture of a P4 programmable switch,
named Portable Switch Architecture (PSA) [134] is depicted
in Fig. 11. It is composed of an ingress stage and an egress
stage connected by packet buffers.

Both ingress and egress are composed of a parser and
deparser, with a control stage based on a pipeline of several
Match & Action (M&A) stages in between. The idea behind
this architecture is that all header processing required in
networking can be resolved with a series of match & action
stages that can be software-defined, giving the flexibility of
defining the protocol processing via software. Many of the
implementations of P4 definitions are deployed in software in
a regular CPU core. When exploring HW implementations,
FPGAs have been identified as a suitable candidate for the
prototyping of this architecture since they provide the flexib-
lity required at system prototyping stages. Some frameworks
are available for this purpose such as P4-FPGA [135].

The advantages of the flexibility provided by this approach
have been also identified by the industry, and we can already
see commercial solutions enabling P4 programmability like
Tofino 1/2/3 ICs from Barefoot and Intel [136], Capri from
Pensando Systems [137] or NFP4000 fromNetronome [138].
Some of these solutions integrate the PISA pipeline via soft-
ware and some of them implement it in hardware, trying
to optimize the performance and taking advantage of the
reconfigurable match and action concept.

Next, we analyse different implementations or variations
of the PISA architecture. First we analyse the currently
available options for implementing the Match and Action
processing stages, that are at the core of PISA architecture.
Then, we review two industrial products based on the PISA
architecture: Intel Tofino and Netronome NFP4000. Finally
we also analyse two different proposals for PISA architecture
coming from Academia: the first one is a heterogeneous

FIGURE 12. Reconfigurable match tables architectures block diagram.

FIGURE 13. Disaggregated reconfigurable match tables architectures
block diagram.

architecture combining a CPU with a Graphics Processing
Unit (GPU), and the second one presents a folded pipeline
architecture which, although conceived before PISA archi-
tecture itself, introduces interesting concepts that are very
relevant and up to date in PISA architecture.

1) MATCH AND ACTION ARCHITECTURES
The most popular architecture for the M&A stages
is the Reconfigurable Match-Action tables (RMT)
architecture [139], depicted in Fig. 12. RMT is composed of a
pipeline of several stages of M&A tables, where each of them
has its dedicated access to memory and allows for perform-
ing the required packet processing sequentially. Regarding
flexibility, although RMT allows to ‘‘extend’’ Match tables to
different stages when there are not enough table entries in one
stage, in that case action units are wasted, and it is not possible
to skip stages when they are not needed, penalizing with the
full pipeline latency all frames, regardless of how simple
their required processing may be. These issues have been
addressed by the disaggregated RMT (dRMT) architecture
introduced in [140], whose architecture is depicted in Fig. 13.
dRMT replaces the M&A stages with run-to-completion
processors that can be assigned M&A tasks in any order.
In addition, memory is not individually assigned to individual
stages/processors, but shared across all of them and accessed
via a crossbar switch. This way, packets will only traverse as
many stages as required by each of them, and can be assigned
to several processors in parallel when the M&A operations
are independent, reducing latency for simple processing.

Another limitation of RMT architecture is the lack of state
awareness, i.e. RMT is stateless. This has been identified
in the state of the art, and there are available solutions like
the proposal from authors in FlowBlaze [141]. Mainly, the
proposal is to enable the introduction of stateful elements in
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FIGURE 14. FlowBlaze architecture block diagram.

the PISA pipeline, as depicted in Fig. 14. Therefore, com-
bining stateless and stateful elements, the P4 flexibility can
be kept and enhanced with statefulness, enabling the update
of the processing itself depending on the identified states.
These states are determined by the received traffic, therefore,
this solution permits to update the processing according to
traffic patterns and events detected. The main drawback is
the additional HW resources and latency introduced for the
sake of statefulness. Another proposal to extend the PISA
pipeline with statefulness is introduced by authors in [85].
In this case, the proposal is to reuse the PISA data plane as it
is, and to extend the architecture with a Stateful Data Plane
which enables state awareness, as depicted in Fig. 16.

In this case, there is no extra latency added to the data plane
processing, since the state is processed in parallel.

PSA provides several packet paths that somehow permit
to overcome the rigidity of the fixed M&A pipeline archi-
tecture (either RMT or dRMT). For recursive processing,
the recirculate path depicted in Fig. 11 allows for sending
packets to the ingress stage after going through the egress
stage if required. However, this recirculation presents several
shortcomings, as identified in [142]. First, forwarding of a
packet to several ports is not allowed, hence a packet is either
forwarded to egress ports or to the ingress again, but not to
both in parallel. Second, when re-sending packets to ingress
the pipeline cannot accept new ingress frames since parallel
processing is not supported in PSA, increasing the latency.

To overcome the limitations in parallel forwarding the
clone egress to egress or resubmit paths are included, per-
mitting to make copies of frames which can be processed

FIGURE 15. Packet processor architecture for network function
virtualization.

FIGURE 16. Extension of PISA architecture with stateful data plane.

again and finally forwarded where required. However, this
approach is, again, penalizing in latency. Another alternative
trying to somehow overcome the rigidity of the fast-forward
pipelining has been proposed by authors in [143]. The main
idea is to interconnect the M&A stages of different pipelines
in a matrix, allowing for redefining the path followed by
packets in a programmatic way, supporting network func-
tion virtualization (NFV). The architecture corresponding
to this proposal is depicted in Fig. 15. This alternative per-
mits to virtually define different paths combining pipeline
resources allowing for better configurability, more complex
processing and to perform parallel processing to some extent.
However, in this proposal the resources allocation is not
done in run-time and therefore may result in an inefficient
use of the resources available in the system. Furthermore,
recirculate paths are not considered in the proposal, shar-
ing the limitations stated above with the other architectures
presented. From our perspective, the flexibility provided by
P4 programmability allows for defining the required net-
work processing with a SW-based approach. However, the
deployment in the architecture presents critical limitations
when it comes to processing that cannot be solved with fast-
forward M&A stages and imposes hard penalties to over-
come these limitations, resulting in inefficient performance
and/or HW resources usability, as pointed out by authors
in [144], [145].

2) INTEL TOFINO
One example of industrial processor following this architec-
ture is Tofino fromBarefoot, and its evolved versions Tofino 2
and Tofino 3 from Intel [136]. The Tofino Native Archi-
tecture (TNA) based on the PSA architecture is depicted in
Fig. 17. In this case, the interconnection between ingress and

FIGURE 17. Tofino native architecture block diagram.
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egress stage is a bit more complex than simple buffers, allow-
ing interconnection with the CPU to perform any processing
that cannot be resolved within the M&A stages. A packet
generator is also included in TNA allowing to inject traffic in
the network coming from the CPU. Regarding the Match &
Action stages, Tofino uses the RMT architecture described
above, inheriting its limitations.

The recirculate path of PSA is also present in Tofino, allow-
ing to perform recursive processing, although with the previ-
ously mentioned limitations. The packet generator is also in
charge of handling the recirculated frames and re-injecting
them in the pipeline.

3) NETRONOME NETWORK FLOW PROCESSOR
Another industrial processor that provides support for
PISA-based programmable data planes is the Network Flow
Processor (NFP) from Netronome [138]. NFP is a SmartNIC
with a PISA-based offload engine for flexible packet pro-
cessing. The architecture of Netronome NFP is depicted in
Fig. 18. As seen in the figure, frames coming in the processor
are first directed to a Packet Processor Core (PPC) island,
which consists of an MCU supported by HW accelerators to
perform small packet modifications and forward the traffic.

After this initial processing, the distributed switch fabric
permits to send the header and metadata of a frame to a Flow
Processing Core (FPC) island, while the payload is stored in
one of the available memory units. Each FPC island is com-
posed of a number of FPCs, which are custom 32-bit cores
where P4 instructions can be executed to perform the required
packet processing. On completion, the distributed switch fab-
ric recovers the payload of the frame from the memory and
delivers the recomposed frame either to the host CPU via
PCIe interface, or to the egress PPC for direct transmission.
As we can see from the architecture, Netronome NFP mixes
several of the previously described architectures. On one
side it follows a many-core architecture with functionality
distribution, allocating different functionalities to different
cores, however it also provides multiple cores for each of the
functionalities, in the so-called islands. Furthermore, it also
provides HW offloading in some of the cores with specific
HWaccelerators such as cryptography functionalities, as seen
in Fig. 18.

Authors in [146] analyse NFP-4000 SmartNIC limitations.
They focus on identifying which are the limitations of the
PISA architecture as an offload accelerator from a holistic
perspective, accounting for the time to offload frames. With
this approach, they are able to provide realistic insights on
the performance of this architecture. Their study highlights
the negative impact in latency of the PISA pipeline depth,
finding that for more than 5 M&A stages, both latency and
throughput are affected significantly.

This suggests that, although PISA architecture is poten-
tially flexible and could allow complex processing to be
performed through an unlimited number of cascade stages,
in practice this is limited. In other words, there is a finite
(and not very high) number of stages that can be pipelined

FIGURE 18. Netronome network flow processor high level architecture.

without affecting the device metrics. A solution to this short-
coming could be to reuse the pipeline stages via recirculate
paths. However, they also identify a limitation related to the
recirculate paths, where custom metadata cannot be recir-
culated with frames, restricting the deployment of complex
algorithms. Finally, they also analyze the impact of perform-
ing basic cryptography functions, such as Cyclic Redundancy
Check (CRC), and find out that performing more than 10 of
these operations results in a noticeable latency increase,
affecting the capabilities to fulfill the safety requirements of
Gateway controllers.

From our understanding, the specific numerical findings
of [146] are dependent on the particular use cases run on the
NFP-4000 as well as the NFP-4000 device itself. However,
they give a good grasp of what a PISA-based network pro-
cessor can achieve and which are the limitations. In this par-
ticular case, the PISA pipeline is deployed in software, so it
seems reasonable to think that a HW implementation would
push the identified limits to bigger thresholds. However, due
to the previouslymentioned architectural limitations the same
problems would be found in a larger scale.

4) CPU-GPU HETEROGENEOUS ARCHITECTURE
On an effort to scale the performance of P4-based data planes,
authors in [147] propose an heterogeneous architecture based
on the combination of a CPU with a Graphics Processing
Unit (GPU). Their main goal is to exploit the high perfor-
mance parallel computation offered by GPUs and propose a
toolchain to deploy P4 programs to the CPU-GPU architec-
ture. Mainly, the Match & Action Tables are implemented
in the GPU, while parser/deparser functionalities are run in
the CPU. They also present latency hiding techniques to
overcome the problem of data transmission between the CPU
and the GPU by pipelining the execution of several Match &
Action stages over different frames.

This proposal potentially scales the performance of PISA
architecture by betting on an aggressive acceleration of the
offloaded processing, achieving a throughput of hundreds of
Gbps. However, it inherits the previously mentioned limita-
tions of the fast-forward pipelining architecture and comes
at an important HW cost and power consumption due to the
GPU integration.
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FIGURE 19. Folded pipeline network processor architecture.

5) FOLDED PIPELINE NETWORK PROCESSOR
ARCHITECTURE
Targeting the rigidity problems of fast-forward pipeline archi-
tectures for network processing, authors in [148] propose a
Folded Pipeline Network Processor Architecture, which is
depicted in Fig. 19. Prior to the appearance of P4 and PISA,
this work defined ‘‘Mini-Pipelines’’ which can be understood
as the M&A stages of the network processor.

The HW defined for theMini-Pipelines was focused on the
processing of Multi Protocol Label Switching for Ethernet
frames, and the number of available Mini-Pipelines was set
to 4 for the evaluated use cases.

One interesting contribution of this work is the ability to
‘‘recirculate’’ frames when they need to traverse more than
one Mini-Pipeline, allowing to adjust the data-path to the
processing required by each frame, removing thus the rigidity
of the fast-forward pipelines and improving the usability of
the available HW resources.

6) IDENTIFIED BOTTLENECKS
Considering the presented analysis of this architecture and
the previous findings in the state of the art, we identify several
bottlenecks that prevent it from being the optimal architecture
for an automotive GW SoC:
• Bottleneck 4: Only Ethernet oriented. The architec-
ture does not provide the heterogeneity required in auto-
motive devices (FR1 not met).

• Bottleneck 5: Stateless. The architecture does not allow
to adapt the data plane configuration to events or traffic
patterns detected during run time (SR3 not met in gen-
eral, solved in FlowBlaze and Stateful Data Plane only).

• Bottleneck 6: Limited scalability. Pipeline depth
affects all frames equally (except in dRMT and folded
pipeline architectures), imposing a strong penalty to
frames that do not require complex processing (SR0 not
met). In practice the number of stages also affects the
capabilities of the offload engine, reducing its growth
capabilities.

• Bottleneck 7: Limited flexibility. Once the pipeline
is defined, there are very few options to overcome the
rigidity of the architecture (recirculate paths in folded
pipeline, matrix interconnection in NFV processor) and

FIGURE 20. VEGa architecture block diagram.

are not sufficient to provide/increase the required func-
tionalities in terms of safety or determinism (SR1, FR2
and FR4 not met).

• Bottleneck 8: Non-optimum usability of HW
resources: In this architecture the pipeline depth has to
be over-dimensioned in order to cope with worst case
processing requirements. Furthermore, extra latency is
introduced when aiming at reusing the resources via
recirculate paths since the whole pipeline needs to be
traversed in every loop (SR4 not met in general, solved
only in the folded pipeline architecture).

D. VEHICULAR GATEWAY ARCHITECTURE (VEGa)
A different approach is followed in the Vehicular Gate-
way Architecture (VEGa) proposed by authors in [107].
The VEGa architecture is focused in providing a low-latency
switching platform for IVNs (FR5 met), targeting the het-
erogeneity of protocols present in these networks (FR2 met).
However, the maximum throughput for which it is designed
is 1Gbps, which is below the throughput requirements we
foresee for future IVNs (FR3 not met). Being focused only
on the switching functionality, application processing is not
considered (FR7 not met). The high level architecture of
VEGa is depicted in Fig. 20. As shown in the figure, VEGa
also separates the ingress and egress stage with an intercon-
nection fabric similarly to the PISA architecture. However,
inside those stages the architecture is different, completely
customized for the specific use case considered by authors.

On the ingress or reception path, there is dedicated logic
for the processing of Ethernet frames, with some custom
extensions for the processing of FlexRay or CAN frames.
Afterwards an scheduler organises the traffic depending on
the result of the header extraction phase. On the egress or
transmission path, there is dedicated logic for queue control
and traffic scheduling, handling the delivery of frames to
the egress ports. Although not explicitly stated by authors
in [107], it is our understanding that such a stage would
be suitable to allocate TSN scheduling algorithms, fulfilling
FR4, modifying the custom scheduler logic. Finally, the sim-
plicity of this architecture allows to reach the required level
of performance at a reasonable HW cost (SR4 met).

1) IDENTIFIED BOTTLENECKS
There are some limitations that prevent VEGa from fulfill-
ing all the previously gathered requirements, some of them
already identified in previously presented architectures:
• Bottleneck 3: Limited configurability. Although some
options for Ethernet header processing are offered, the
configurability required in a future GW platforms goes
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TABLE 3. Network processing architectures analysis - summary.

beyond that, including more than one option for pro-
tocols. Moreover, the extension/modification of proto-
cols as well as the configuration of frames processing
and manipulation rules are required, and not provided
(SR2 not met).

• Bottleneck 7: Limited flexibility. VEGa focuses in
processing only Ethernet frames headers, with specific
support for CAN and FlexRay, but using a very spe-
cific HW design. Further protocol modifications would
probably require a major redesign of the custom logic
(SR1 not met).

• Bottleneck 9: No run-time reconfiguration: VEGa
does not provide means to change the configura-
tion while running, and therefore does not allow to
adapt the system to the incoming traffic, failing to
meet FR6.

E. SUMMARY
As seen along this section, all of the analysed architectures
for network processing have some advantages and disad-
vantages. Together they provide the different requirements
needed for an IVN computing platform. However, none of
them is able to fulfill the whole list of requirements.

A summary of the coverage of these requirements by
each of the architectures is exposed in Table 3. Note that,
to simplify the table, we mark features as provided when a
reasonable set of the sub-features discussed for each section

is provided, e.g. for TSN support, we mark S32G and Aurix
TC4 as ‘‘supported’’ since they provide some of the most
typical TSN features, although not all of them as detailed in
the previous sections.

When requirements are not applicable, we mark them
as ∼, e.g. TSN support within MCU-based multi-core archi-
tecture will depend on the software running, which could be
AUTOSAR (not supported today) or DPDK (supported).

Looking at the table, we see that the different groups
of architectures tend to be more effective at fulfilling
either the functional or structural requirements. For example,
MCU-based architectures provide most of the structural
requirements but struggle to meet some of the most demand-
ing functional requirements, especially the ones related to
Quality of Service (FR3, FR4, FR5), even whenmany-/multi-
core architectures are used.

On the other side, architectures targeting the automotive
use case such as the industrial examples of the HW-offload
architecture, or VEGa, provide almost all the functional
requirements but fail at many of the structural requirements,
especially at flexibility, scalability, HW cost and complexity
(SR0, SR1, SR4, SR5).

PISA architecture is somewhere in between, trying to
provide more functionality and performance keeping key
structural aspects (configurability in this case, SR2), and
in exchange sacrifice other structural requirements such as
scalability and HW cost (SR0, SR4).
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Some of the structural requirements can be fulfilled with
the PISA modifications analyzed (statefulness with Flow-
Blaze, flexibility with dRMT, etc.) but still scalability and
resources consumption issues persist.

This behavior corresponds to the typical compromise
between general-purpose and customized platforms where
functional and structural requirements push the architecture
design in different directions. However, from authors per-
spective, this is precisely what needs to change in order to
advance towards the network processing platforms of the
future, as we discuss in the next section.

V. CONCLUSION
In this work, we provide an in depth analysis of state of the
art and future challenges of automotive network processing
devices. We start by analysing the trends within the automo-
tive industry, the changes in the vehicular E/E architecture
(from function-based to domain-based to zonal-based) and
how they affect the IVN.

We derive a set of requirements that need to be fulfilled
by future IVN processing platforms in order to successfully
satisfy the future industry demands. We look at requirements
from two perspectives: (i) functional requirements that cor-
respond to the functionalities or features that need to be sup-
ported byGateway controllers and (ii) structural requirements
that correspond to design and architecture aspects that ensure
the viability of the Gateway as a product.

Apart from collecting the list of requirements, we discuss
the reasoning behind each of them, as well as the available
technologies that can be key enablers, even if they have not
been used in automotive industry yet. With this, we aim at
providing a comprehensive understanding of the automotive
in-vehicle networking use case as well as the technologies
involved today, or in the future.

Second, we review the main state of the art architectures
for network processing, looking at their internal architecture
details. We analyse examples available as industrial products
in the state of the art and also provide the most recent find-
ings in the literature regarding network or packet process-
ing architectures. In this review we show how each of the
architectures complies (or not) with the previously inferred
requirements and highlight the main bottlenecks of each of
them.

Finally, we provide a summary of this analysis in Table 3
as a survey and a taxonomy of related research works in
Section VI. From our analysis, we are able to extract the
following conclusions:

• Current solutions do not solve the problem
completely.
As we have seen, none of the solutions currently avail-
able provides both functional and structural require-
ments at the same time.
This results in limitations on what can be achieved
in a GW chipset for a vehicular network, restricting

performance and functionality or flexibility and scala-
bility of the products.

• High performance solutions are missing.
As an outcome of this analysis, we see that there is
a lack of high performance solutions combining both
functional and structural requirements. Based on the
analysis shown before, we can depict the landscape of
available network processing solutions and map them in
a 2D graphic, as done in Fig. 21. On the X axis we have
the functional requirements and on the Y axis we have
the structural requirements.
As seen before, the state of the art moves between
MCU-based solutions on the mid-left side of the graph,
and custom HW solutions which reside on the lower
right side of the graph. In between, PISA-based or
HW-offloading solutions fill the mid and left areas of
the landscape.
However, there are no solutions residing on the top
right side of the graph, which points to a lack of high
performance solutions able to provide the maximum of
both functional and structural requirements, which are
needed to meet the demands of future vehicles.

• Functional and Structural requirements need to
grow together.
The only way to achieve a successful solution for
future automotive in-vehicle network processing is to
maintain a balance between functional and structural
requirements.
From our perspective, by analysing very carefully the
functionalities that need to be integrated in the solution
and prioritizing structural aspects at the same level as
functional, the sweet spot between these two dimensions
could be defined.

• Hardware accelerators can be an enabler of this
paradigm.
We identify HW-based system architectures as the
right paradigm that will enable this high performance
solutions, especially for autonomous driving related
functions where time determinism quite often becomes a
hard real-time requirement as consequence of functional
safety implications.
Given that best performance is achieved with HW sup-
port, and performance requirements will do nothing but
increase, it is our understanding that the work resides on
how to provide these HW capabilities maintaining the
structural aspects at a reasonable level for the applica-
tion. This combined with the aforementioned function-
ality analysis can be the best roadmap towards the future
of network processing solutions.

To conclude, we find an interesting research opportunity
that emerges from the revolution that is currently undergoing
both in automotive and semiconductor industry. We expect
this work to contribute to the evolution of the current land-
scape, where we see a gap pointing to a lack of high perfor-
mance solutions for automotive network processing. We also
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FIGURE 21. Network processing architectures analysis - landscape overview.

identify HW-centric architectures as an enabler for these
future solutions.

With this, we hope that this analysis can bring some
insights and encourage further works on this direction in the
community, and that we can see a solution filling the gap in
the near future.

VI. TAXONOMY OF RELATED WORK
For completeness, in this section we present a taxonomy of
the main research papers discussed throughout this work.
This taxonomy is split between works related to automotive
electronics industry (Fig. 22) and works related to HW accel-
eration (Fig. 23).

Fig. 22 starts with In-Vehicle Network architectures, their
foundations and evolution, together with experiments and
frameworks. Then it continues with the wide variety of

technologies that are of interest for IVNs as previously
analyzed in this work: management of heterogeneous net-
works, safety and security, Time Sensitive Networking, Data
Distribution Services, Software Defined Networking, Pro-
grammable Data Plane and the interactions of two or more
of these technologies within IVNs.

Fig. 23 goes from methods to identify HW acceleration
opportunities to HW acceleration use cases in IVNs and
performance evaluation of HW offloading architectures.

This classification, together with our discussion about
requirements and architectures analysis, provides a complete
and thorough overview of network processing platforms for
future IVNs. With this taxonomy, we aim at facilitating the
task of gaining broad knowledge in the topic both for experts
and newcomers, softening the learning curve and accelerating
research on the matter.
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FIGURE 22. Taxonomy of related work on automotive electronics industry.
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FIGURE 23. Taxonomy of related work on HW acceleration for IVNs.
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