281 research outputs found

    Towards the knowledge-based design of universal influenza epitope ensemble vaccines

    Get PDF
    Motivation: Influenza A viral heterogeneity remains a significant threat due to unpredictable antigenic drift in seasonal influenza and antigenic shifts caused by the emergence of novel subtypes. Annual review of multivalent influenza vaccines targets strains of influenza A and B likely to be predominant in future influenza seasons. This does not induce broad, cross protective immunity against emergent subtypes. Better strategies are needed to prevent future pandemics. Cross-protection can be achieved by activating CD8+ and CD4+ T cells against highly-conserved regions of the influenza genome. We combine available experimental data with informatics-based immunological predictions to help design vaccines potentially able to induce cross-protective T-cells against multiple influenza subtypes. Results: To exemplify our approach we designed two epitope ensemble vaccines comprising highly-conserved and experimentally-verified immunogenic influenza A epitopes as putative non-seasonal influenza vaccines; one specifically targets the US population and the other is a universal vaccine. The USA-specific vaccine comprised 6 CD8+ T cell epitopes (GILGFVFTL, FMYSDFHFI, GMDPRMCSL, SVKEKDMTK, FYIQMCTEL, DTVNRTHQY) and 3 CD4+ epitopes (KGILGFVFTLTVPSE, EYIMKGVYINTALLN, ILGFVFTLTVPSERG). The universal vaccine comprised 8 CD8+ epitopes: (FMYSDFHFI, GILGFVFTL, ILRGSVAHK, FYIQMCTEL, ILKGKFQTA, YYLEKANKI, VSDGGPNLY, YSHGTGTGY) and the same 3 CD4+ epitopes. Our USA-specific vaccine has a population protection coverage (portion of the population potentially responsive to one or more component epitopes of the vaccine, PPC) of over 96% and 95% coverage of observed influenza subtypes. The universal vaccine has a PPC value of over 97% and 88% coverage of observed subtypes

    Computational assembly of a human Cytomegalovirus vaccine upon experimental epitope legacy

    Get PDF
    Background: Human Cytomegalovirus (HCMV) is a ubiquitous herpesvirus affecting approximately 90% of the world population. HCMV causes disease in immunologically naive and immunosuppressed patients. The prevention, diagnosis and therapy of HCMV infection are thus crucial to public health. The availability of effective prophylactic and therapeutic treatments remain a significant challenge and no vaccine is currently available. Here, we sought to define an epitope-based vaccine against HCMV, eliciting B and T cell responses, from experimentally defined HCMV-specific epitopes. Results: We selected 398 and 790 experimentally validated HCMV-specific B and T cell epitopes, respectively, from available epitope resources and apply a knowledge-based approach in combination with immunoinformatic predictions to ensemble a universal vaccine against HCMV. The T cell component consists of 6 CD8 and 6 CD4 T cell epitopes that are conserved among HCMV strains. All CD8 T cell epitopes were reported to induce cytotoxic activity, are derived from early expressed genes and are predicted to provide population protection coverage over 97%. The CD4 T cell epitopes are derived from HCMV structural proteins and provide a population protection coverage over 92%. The B cell component consists of just 3 B cell epitopes from the ectodomain of glycoproteins L and H that are highly flexible and exposed to the solvent. Conclusions: We have defined a multiantigenic epitope vaccine ensemble against the HCMV that should elicit T and B cell responses in the entire population. Importantly, although we arrived to this epitope ensemble with the help of computational predictions, the actual epitopes are not predicted but are known to be immunogenic

    In silico design of Mycobacterium tuberculosis epitope ensemble vaccines

    Get PDF
    Effective control of Mycobacterium tuberculosis is a global necessity. In 2015, tuberculosis (TB) caused more deaths than HIV. Considering the increasing prevalence of multi-drug resistant forms of M. tuberculosis, the need for effective TB vaccines becomes imperative. Currently, the only licensed TB vaccine is Bacillus Calmette-Guérin (BCG). Yet, BCG has many drawbacks limiting its efficacy and applicability. We applied advanced computational procedures to derive a universal TB vaccine and one targeting East Africa. Our approach selects an optimal set of highly conserved, experimentally validated epitopes, with high projected population coverage (PPC). Through rigorous data analysis, five different potential vaccine combinations were selected each with PPC above 80% for East Africa and above 90% for the World. Two potential vaccines only contained CD8+ epitopes, while the others included both CD4+ and CD8+ epitopes. Our prime vaccine candidate was a putative seven-epitope ensemble comprising: SRGWSLIKSVRLGNA, KPRIITLTMNPALDI, AAHKGLMNIALAISA, FPAGGSTGSL, MLLAVTVSL, QSSFYSDW and KMRCGAPRY, with a 97.4% global PPC and a 92.7% East African PPC

    In silico design of knowledge-based Plasmodium falciparum epitope ensemble vaccines

    Get PDF
    Malaria is a global health burden, and a major cause of mortality and morbidity in Africa. Here we designed a putative malaria epitope ensemble vaccine by selecting an optimal set of pathogen epitopes. From the IEDB database, 584 experimentally-verified CD8+ epitopes and 483 experimentally-verified CD4+ epitopes were collected; 89% of which were found in 8 proteins. Using the PVS server, highly conserved epitopes were identified from variability analysis of multiple alignments of Plasmodium falciparum protein sequences. The allele-dependent binding of epitopes was then assessed using IEDB analysis tools, from which the population protection coverage of single and combined epitopes was estimated. Ten conserved epitopes from four well-studied antigens were found to have a coverage of 97.9% of the world population: 7 CD8+ T cell epitopes (LLMDCSGSI, FLIFFDLFLV, LLACAGLAYK, TPYAGEPAPF, LLACAGLAY, SLKKNSRSL, and NEVVVKEEY) and 3 CD4+ T cell epitopes (MRKLAILSVSSFLFV, KSKYKLATSVLAGLL and GLAYKFVVPGAATPYE). The addition of four heteroclitic peptides − single point mutated epitopes − increased HLA binding affinity and raised the predicted world population coverage above 99%

    The nature and evolution of humoral immune responses to influenza virus

    Get PDF
    Influenza epidemics and pandemics have been and will be a major public health problem. In the course of life, everybody experiences several infections with influenza virus. However, these infections provide insufficient immunity against new infections since the virus constantly changes. How consecutive infections shape our repertoire of influenza virus-specific antibodies and how this affects the response to a newly encountered virus strain is poorly understood. In this thesis we used blood samples from young, adult and elderly individuals from the Lifelines cohort to study the antibody responses to 5 influenza virus strains which circulated between 1934 and 2009. We observed that very potent but highly virus strain-specific antibodies were highest against a virus strain encountered early in life for all age groups. Yet, other antibodies, less potent but also less specific for a certain virus strain, were highest against recently encountered strains. We could show that these latter antibodies, so far often overlooked, could provide partial protection against infection with a new virus strain. Our observations imply that influenza vaccines should be designed to induce broadly reactive antibodies, even if moderately potent, to protect against newly emerging influenza virus strains

    In silico prediction of cancer immunogens:current state of the art

    Get PDF
    Cancer kills 8 million annually worldwide. Although survival rates in prevalent cancers continue to increase, many cancers have no effective treatment, prompting the search for new and improved protocols. Immunotherapy is a new and exciting addition to the anti-cancer arsenal. The successful and accurate identification of aberrant host proteins acting as antigens for vaccination and immunotherapy is a key aspiration for both experimental and computational research. Here we describe key elements of in silico prediction, including databases of cancer antigens and bleeding-edge methodology for their prediction. We also highlight the role dendritic cell vaccines can play and how they can act as delivery mechanisms for epitope ensemble vaccines. Immunoinformatics can help streamline the discovery and utility of Cancer Immunogens

    In silico Design of an Epitope-Based Vaccine Ensemble for Chagas Disease

    Get PDF
    Trypanosoma cruzi infection causes Chagas disease, which affects 7 million people worldwide. Two drugs are available to treat it: benznidazole and nifurtimox. Although both are efficacious against the acute stage of the disease, this is usually asymptomatic and goes undiagnosed and untreated. Diagnosis is achieved at the chronic stage, when life-threatening heart and/or gut tissue disruptions occur in ∼30% of those chronically infected. By then, the drugs’ efficacy is reduced, but not their associated high toxicity. Given current deficiencies in diagnosis and treatment, a vaccine to prevent infection and/or the development of symptoms would be a breakthrough in the management of the disease. Current vaccine candidates are mostly based on the delivery of single antigens or a few different antigens. Nevertheless, due to the high biological complexity of the parasite, targeting as many antigens as possible would be desirable. In this regard, an epitope-based vaccine design could be a well-suited approach. With this aim, we have gone through publicly available databases to identify T. cruzi epitopes from several antigens. By means of a computer-aided strategy, we have prioritized a set of epitopes based on sequence conservation criteria, projected population coverage of Latin American population, and biological features of their antigens of origin. Fruit of this analysis, we provide a selection of CD8+ T cell, CD4+ T cell, and B cell epitopes that have <70% identity to human or human microbiome protein sequences and represent the basis toward the development of an epitope-based vaccine against T. cruzi

    Data-Driven Process Development for Virus-Like Particles - Implementation of Process Analytical Technology, Molecular Modeling, and Machine Learning

    Get PDF
    Im Laufe des 20. Jahrhunderts stieg die Lebenserwartung deutlich an. Aus medizinischer Sicht trugen vor allem die umfassende Verbesserung der Hygiene und die Einführung von Impfprogrammen zu diesem Erfolg bei. Impfstoffe waren die ersten biologischen Produkte, die systematisch als medizinische Präparate eingesetzt wurden, und ebneten damit den Weg zur modernen pharmazeutischen Biotechnologie. Nach Insulin und menschlichem Wachstumshormon war eines der frühesten biotechnologisch hergestellten pharmazeutischen Produkte ein rekombinanter Impfstoff, im Speziellen ein virusähnliches Partikel (virus-like particle, VLP) auf Basis von rekombinantem Hepatitis-B-Oberflächenantigen. VLPs beinhalten keine infektiösen viralen Nukleinsäuren und sie ähneln dem Virus, von dem sie abgeleitet sind, wodurch sie eine Immunantwort induzieren können. Obwohl dieser Hepatitis-B-Impfstoff gegenwärtig noch verwendet wird, ist die heutige Anwendung von VLPs sehr unterschiedlich, wie aus zahlreichen präklinischen und klinischen Studien hervorgeht. VLPs werden als mögliche Impfstoffe gegen Infektionskrankheiten, immunologische Erkrankungen oder Krebs untersucht. Ihre starke Immunogenität wird für die Präsentierung von fremdantigenen Epitopen auf den VLPs genutzt, was sie zu chimären VLPs (chimeric virus-like particles, cVLPs) macht. Als solche induzieren sie nachweislich Immunantworten gegen Krebszellen und überwinden die natürliche immunologische Selbsttoleranz gegenüber Krebsantigenen. Allerdings ist ihr hohes Potenzial mit Herausforderungen verbunden, beispielsweise im Zusammenhang mit ihrem molekularen Design und dem Produktionsprozess. Das Ziel des molekularen Designs ist die Entwicklung immunogener und stabiler VLP-Kandidaten. Der Prozess, um geeignete VLP-Kandidaten zu finden, ist jedoch typischerweise empirisch und bringt Herausforderungen wie eine geringe Löslichkeit nach der Expression in rekombinanten Wirten oder unzureichende VLP-Immunogenität mit sich. Dem VLP-Produktionsprozess mangelt es an maßgeschneiderten Aufreinigungsmethoden, was im Vergleich zu etablierten biopharmazeutischen Produkten, wie z.B. monoklonalen Antikörpern, zu einer geringeren Produktivität führt. Hinzu kommt, dass bei der VLP-Prozessierung VLP-spezifische Prozessschritte, wie z.B. die Zerlegung und Reassemblierung der Partikel, entworfen werden müssen. Die Bewältigung dieser Herausforderungen würde von datengestützten Ansätzen wie der prozessanalytischen Technologie (process analytical technology, PAT), der molekularen Modellierung und dem maschinellen Lernen profitieren. Diese würden das Prozess- und Produktverständnis verbessern, den experimentellen Aufwand reduzieren und eine effiziente Überwachung und Steuerung der Prozesse ermöglichen. Daher war es Ziel dieser Arbeit, Antworten auf mehrere dieser Herausforderungen zu finden, indem datengestützte Ansätze implementiert wurden, um die Entwicklung maßgeschneiderter Prozessschritte zu begleiten. Im ersten Teil dieser Arbeit werden VLPs und ihre Produktionsprozesse besprochen, die Vorteile der Implementierung von PAT beschreiben, die Herausforderungen im Zusammenhang mit ihrem molekularen Design beleuchtet und die Möglichkeiten der Anwendung des maschinellen Lernens bei der VLP-Entwicklung und -Prozessierung aufgezeigt. Der zweite Teil dieser Arbeit beschreibt fünf Studien, die darauf abzielen, Antworten auf einige der mit dem VLP-Design und der biotechnologischen Verfahrenstechnik verbundenen Herausforderungen zu finden. Die erste Studie (Kapitel 3) befasst sich mit einem besonderen VLP-spezifischen Prozessschritt. Für eine verbesserte Stabilität, Homogenität und Immunogenität müssen VLPs zerlegt und wieder reassembliert werden. Ausgehend von einer Hoch-pH-Lösung, die zerlegte VLPs enthält, wird die Reassemblierung durch die Erhöhung der Ionenstärke und die Senkung des pH-Wertes erreicht. Die meisten Prozesse im Labormaßstab nutzen die Dialyse für diesen Pufferaustausch, während die Querstromfiltration (cross-flow filtration, CFF) für den Pufferaustausch besser skalierbar ist, den Pufferverbrauch reduziert und die Ausbeute verbessert. Im Vergleich zur Dialyse erfordert die CFF mehr technisches Wissen und Kenntnisse über den VLP-Reassemblierungssfortschritt während des Prozesses. Eine umfassende Überwachungsstrategie wäre daher sehr vorteilhaft, um eine (Beinahe-) Echtzeit-Kontrolle des VLP-Reassemblierungsprozesses durch CFF zu implementieren. In dieser ersten Studie wird ein Aufbau zur Überwachung der VLP-Reassemblierung durch CFF mittels einer Online-Messschleife mit zwei verschiedenen spektroskopischen Sensoren beschrieben. Eine mögliche Kontrollstrategie für den VLP-Assemblierungsprozess wurde in der Überwachung der statischen und dynamischen Lichtstreuung gesehen. Das Maximum des statischen Streulichtsignals fiel mit der maximalen VLP-Konzentration zusammen. Diese Information ist sehr wertvoll, da nach diesem VLP-Konzentrationsmaximum eine Degradationsphase beobachtet wurde, die vermieden werden sollte, um Ausbeute und Reinheit der VLPs zu optimieren. Die Analyse der zweiten Ableitung der ultravioletten und sichtbaren (ultraviolet and visible, UV/Vis) Spektren erwies sich als praktikable orthogonale Methode zur Überwachung der VLP-Assemblierung, insbesondere mit dem sogenannten a/b-Verhältnis. Das a/b-Verhältnis, welches sich im Zeitverlauf der Prozesse änderte, beschreibt die Solvatisierung von Tyrosin. Die Beobachtung der Veränderung des a/b-Verhältnisses deckt sich mit der Tatsache, dass Tyrosin 132 nach der Assemblierung in einer hydrophoben Tasche eingebettet wird. Zusätzlich konnte ein Modell der Regression der partiellen kleinsten Quadrate (partial least squares), das auf den aufgezeichneten UV/Vis-Spektren basiert, die VLP-Konzentrationen abschätzen mit dem Potential, als (Beinahe-) Echtzeitmodell angewendet zu werden. Die etablierte Überwachungsstragie wurde genutzt um optimale Prozessbedingungen für drei chimäre hepatitis B core antigen (HBcAg)- Konstrukte zu ermitteln. Dies resultierte in unterschiedlichen Prozesszeiten, um die maximale VLP-Konzentration zu erreichen. Das cVLP mit dem stärksten negativen Zetapotential assemblierte am spätesten, wahrscheinlich aufgrund abstoßender elektrostatischer Kräfte. Es erfordert daher Puffer mit höheren Ionenstärken für die Reassemblierung. Die Bedeutung des Zetapotenzials für die VLP-Prozessierung war Teil der Motivation für die zweite Studie (Kapitel 4). Das Zetapotential und andere biophysikalische Parameter können nur gemessen werden, wenn Material experimentell in ausreichenden Mengen produziert wurde. Es wäre daher wünschenswert, diese Parameter vorherzusagen, um Ressourcen zu sparen. Es wurde bereits gezeigt, dass Oberflächeneigenschaften aus dreidimensionalen (3-D) Strukturen abgeleitet werden können. 3-D-Strukturen neuartiger Moleküle sind jedoch nicht verfügbar und ihre experimentelle Erzeugung ist langwierig und mühsam. Eine Alternative ist die rechnergestützte 3-D-Strukturerzeugung mit Template-Modellierung und Molekulardynamik-Simulationen (MD). Dieser in silico Arbeitsablauf erfordert üblicherweise signifikante Benutzerinteraktion, Expertenwissen, um die Simulationen zu designen und zu steuern, und viel Rechenleistung. Um diese Limitationen zu überwinden, wurde in dieser Studie ein robuster und automatisierter Arbeitsablauf zur Erzeugung von 3-D Strukturen etabliert. Der Arbeitsablauf ist datenabhängig, minimiert Benutzerinteraktion und reduziert die benötigte Rechenleistung. Die Eingabe in den entwickelten Arbeitsablauf war eine Aminosäuresequenz und eine Strukturvorlage. Die Vorlage wurde automatisch von einer Proteinstrukturdatenbank heruntergeladen, bereinigt und die Struktur wurde Homologie-modelliert, gefolgt von einer Energieminimierung. Eine datenabhängige dreistufige MD-Simulation verfeinerte die Struktur, wobei ein kontinuierlich zunehmender Bereich des Moleküls simuliert wurde, bis schließlich das gesamte Molekül frei simuliert wurde. Der dreistufige MD-Simulationsansatz lieferte hierbei einen großen Beitrag zur Reduktion der benötigten Rechenleistung, in dem strukturell besonders unsichere Bereiche des Moleküls zunächst gesondert simuliert wurden. Oft werden MD-Simulationen nach einer bestimmten Simulationszeit beendet. In dieser Studie beendete die entwickelte datenabhängige Simulationskontrolle die Simulationen, wenn ein Stabilitätsfenster (Window of Stability, WoS) von 2 ns erreicht wurde, definiert durch die Wurzel der mittleren quadratischen Abweichung (root mean square deviation, RMSD) der Atomkoordinaten. Dies stellte sicher, dass die Fluktuationen der MD-Simulation zwischen allen simulierten Konstrukten innerhalb des genannten WoS am Ende der Simulation vergleichbar waren. Der Arbeitsablauf führte zu angemessenen Simulationszeiten (6,6-37,5 h) und einer hohen Gesamtstrukturqualität für die drei chimären HBcAg-Dimere. Um die Anwendbarkeit der Methode zu demonstrieren, wurde eine Fallstudie durchgeführt, in der die in silico Oberflächenladung von HBcAg-Dimeren mit dem experimentellen Zeta-Potential ganzer Kapside korreliert wurde, was eine hohe lineare Korrelation zeigte. Die Extraktion der Oberflächenladung aus dem WoS war robuster als aus einem einzelnen Simulationsschnappschuss, was die Nützlichkeit des entwickelten Ansatzes unterstreicht. Die dritte Studie (Kapitel 5) befasst sich mit dem Problem, dass VLPs häufig mit Technologien prozessiert werden, die ursprünglich für kleinere Produkte entwickelt wurden. Dies führt oft zu Prozesslimitationen wie geringe Bindekapazitäten von Chromatographieharzen, die im downstream process verwendet werden. Daher wurde eine neue Aufreinigungsstrategie entwickelt, die drei verschiedene größenselektive Methoden integriert, da sie für die selektive Abtrennung von VLPs von Verunreinigungen vielversprechend erschienen. Die Methoden waren Fällung/Rücklösung, CFF und Größenausschlusschromatographie (size exclusion chromatography, SEC). Es wurden drei Verfahrensvarianten entwickelt und untersucht, wobei die beste aus Fällung, Waschen und Rücklösung auf einer CFF-Einheit, gefolgt von einer Reinigung durch eine multimodale SEC-Säule bestand. Dieses Verfahren zeigte die höchste Reinheit sowie eine hohe Ausbeute und Produktivität. Die entwickelten Verfahren waren den in der Literatur beschriebenen Verfahren vergleichbar oder überlegen. Die Überwachung und Fraktionierung des Permeatstroms ermöglichte es zudem, produkthaltige Fraktionen für das selektive Vereinigen zu identifizieren. Auf diese Weise können Produktkonzentration- und Reinheit eingestellt werden. Eines der Hauptprobleme beim Molekulardesign von cVLPs ist, dass die Kandidaten bei der Expression oft unlöslich sind. Der Prozess zur Identifizierung unlöslicher VLP-Konstrukte ist typischerweise empirisch und deshalb Zeit- und Ressourcenintensiv. Diese Herausforderung kann mit einem Modell bewältigt werden, welches die Löslichkeit von cVLPs vorhersagt. In Kapitel 6 wurde ein Soft Ensemble Vote Classifier (sEVC) als Werkzeug auf Basis von maschinellem Lernen zur Vorhersage der cVLP-Löslichkeit entwickelt, basierend auf 568 verschiedenen Aminosäuresequenzen und 91 verschiedenen Hydrophobizitäts-Skalen. Das Ensemble-Modell aggregiert die Vorhersage der einzelnen Klassifikatoren, bei denen es sich um einstufige Entscheidungsbäume handelt. Diese wurden jeweils mit einem Hydrophobizitäts-Merkmal auf der Grundlage einer Hydrophobizitäts-Skala trainiert. Stratifizierte Trainingssatzprobenahme und Merkmalsauswahl kamen der Modellbildung zugute. Die besten Modelle wiesen einen Matthew-Korrelationskoeffizienten (Matthew’s correlation coefficient, MCC) von >0,6 auf, der mit den statistischen Größen von Löslichkeitsmodellen aus der Literatur vergleichbar oder diesen überlegen ist. Zusätzlich ermöglichte die Merkmalsauswahl (feature selection) die Identifizierung charakteristischer Eigenschaften (features) des untersuchten cVLP-Löslichkeitsproblems, wobei die Bedeutung verschiedener Aminosäuren für die cVLP-Löslichkeit hervorgehoben wurde. Die Analyse legte nahe, dass Arginin eine wichtige Rolle bei der Rekrutierung von VLP-Untereinheiten während der Kapsidassemblierung spielen könnte. Die letzte Studie baute auf dem Modell und den Ergebnissen von Kapitel 6 auf, mit dem Ziel, die Vorhersageergebnisse zu optimieren und mehr versteckte Informationen aus den Daten zu extrahieren. In der vorherigen Studie wurde eine systematische Fehlklassifikation beobachtet. Dies wurde mit einem Optimierungsalgorithmus angegangen, der die Vorhersage des Modells anpasste, wenn diese systematischen Fehlklassifikationen im Trainingsdatensatz beobachtet wurden. Eine zweite Optimierungsstrategie synthetisierte und optimierte Hydrophobizitäts-Skalen spezifisch für das vorgestellte cVLP-Löslichkeitsproblem. Dabei wurde die Bedeutung von Tryptophan als möglicher Disruptor der Proteinfaltung anhand der Daten vorgeschlagen. Das beste Modell, das mit den entwickelten Optimierungsworkflows erstellt wurde, zeigte einen MCC von 0,77 (Korrektklassifikationsrate von 0,88) in Bezug auf das externe Test-Set. Schließlich wurde das sEVC-Framework in einer Fallstudie evaluiert, um Ammoniumsulfatkonzentrationen vorherzusagen, wie sie für die VLP-Fällung erforderlich sind (wie auch in Kapitel 5 angewandt). Daher wurde das Modell so umgestaltet, dass es als Regressionswerkzeug fungiert. Es wurde mit Daten der Ammoniumsulfat-induzierten Fällung von zehn cVLPs bewertet. Die lineare Regression zeigte eine vielversprechende Korrelation mit einem R² von 0,69. Zusammenfassend lässt sich sagen, dass sowohl von dem Standpunkt der Prozessentwicklung als auch von der computergestützen Entwicklung aus eine Reihe von Methoden entwickelt wurde, die den Weg zu einem VLP-Plattformprozess ebnen könnten. Die Integration von datengesteuerten Ansätzen wie PAT, 3-D-Strukturmodellierung und maschinelles Lernen kann sowohl der Effizienz als auch dem Verständnis der VLP-Prozessierung in der biopharmazeutischen Industrie zugutekommen

    Development of universal influenza vaccines targeting conserved viral proteins

    Get PDF
    Vaccination is still the most efficient way to prevent an infection with influenza viruses. Nevertheless, existing commercial vaccines face serious limitations such as availability during epidemic outbreaks and their efficacy. Existing seasonal influenza vaccines mostly induce antibody responses to the surface proteins of influenza viruses, which frequently change due to antigenic shift and or drift, thus allowing influenza viruses to avoid neutralizing antibodies. Hence, influenza vaccines need a yearly formulation to protect against new seasonal viruses. A broadly protective or universal influenza vaccine must induce effective humoral as well as cellular immunity against conserved influenza antigens, offer good protection against influenza pandemics, be safe, and have a fast production platform. Nanotechnology has great potential to improve vaccine delivery, immunogenicity, and host immune responses. As new strains of human epidemic influenza virus strains could originate from poultry and swine viruses, development of a new universal influenza vaccine will require the immune responses to be directed against viruses from different hosts. This review discusses how the new vaccine platforms and nanoparticles can be beneficial in the development of a broadly protective, universal influenza vaccine
    corecore