11 research outputs found

    Toward Continuous, Noninvasive Assessment of Ventricular Function and Hemodynamics: Wearable Ballistocardiography

    Full text link
    Ballistocardiography, the measurement of the reaction forces of the body to cardiac ejection of blood, is one of the few techniques available for unobtrusively assessing the mechanical aspects of cardiovascular health outside clinical settings. Recently, multiple experimental studies involving healthy subjects and subjects with various cardiovascular diseases have demonstrated that the ballistocardiogram (BCG) signal can be used to trend cardiac output, contractility, and beat-by-beat ventricular function for arrhythmias. The majority of these studies has been performed with "fixed" BCG instrumentation-such as weighing scales or chairs-rather than wearable measurements. Enabling wearable, and thus continuous, recording of BCG signals would greatly expand the capabilities of the technique; however, BCG signals measured using wearable devices are morphologically dissimilar to measurements from "fixed" instruments, precluding the analysis and interpretation techniques from one domain to be applied to the other. In particular, the time intervals between the electrocardiogram (ECG) and BCG-namely, the R-J interval, a surrogate for measuring contractility changes-are significantly different for the accelerometer compared to a "fixed" BCG measurement. This paper addresses this need for quantitatively normalizing wearable BCG measurement to "fixed" measurements with a systematic experimental approach. With these methods, the same analysis and interpretation techniques developed over the past decade for "fixed" BCG measurement can be successfully translated to wearable measurements

    Gyrocardiography: A New Non-invasive Monitoring Method for the Assessment of Cardiac Mechanics and the Estimation of Hemodynamic Variables

    Get PDF
    Gyrocardiography (GCG) is a new non-invasive technique for assessing heart motions by using a sensor of angular motion - gyroscope - attached to the skin of the chest. In this study, we conducted simultaneous recordings of electrocardiography (ECG), GCG, and echocardiography in a group of subjects consisting of nine healthy volunteer men. Annotation of underlying fiducial points in GCG is presented and compared to opening and closing points of heart valves measured by a pulse wave Doppler. Comparison between GCG and synchronized tissue Doppler imaging (TDI) data shows that the GCG signal is also capable of providing temporal information on the systolic and early diastolic peak velocities of the myocardium. Furthermore, time intervals from the ECG Q-wave to the maximum of the integrated GCG (angular displacement) signal and maximal myocardial strain curves obtained by 3D speckle tracking are correlated. We see GCG as a promising mechanical cardiac monitoring tool that enables quantification of beat-by-beat dynamics of systolic time intervals (STI) related to hemodynamic variables and myocardial contractility

    Enabling Wearable Hemodynamic Monitoring Using Multimodal Cardiomechanical Sensing Systems

    Get PDF
    Hemodynamic parameters such as blood pressure and stroke volume are instrumental to understanding the pathogenesis of cardiovascular disease. Unfortunately, the monitoring of these hemodynamic parameters is still limited to in-clinic measurements and cumbersome hardware precludes convenient, ubiquitous use. To address this burden, in this work, we explore seismocardiogram-based wearable multimodal sensing techniques to estimate blood pressure and stroke volume. First, the performance of a multimodal, wrist-worn device capable of obtaining noninvasive pulse transit time measurements is used to estimate blood pressure in an unsupervised, at-home setting. Second, the feasibility of this wrist-worn device is comprehensively evaluated in a diverse and medically underserved population over the course of several perturbations used to modulate blood pressure through different pathways. Finally, the ability of wearable signals—acquired from a custom chest-worn biosensor—to noninvasively quantify stroke volume in patients with congenital heart disease is examined in a hospital setting. Collectively, this work demonstrates the advancements necessary towards enabling noninvasive, longitudinal, and accurate measurements of these hemodynamic parameters in remote settings, which offers to improve health equity and disease monitoring in low-resource settings.Ph.D

    Multidimensional embedded MEMS motion detectors for wearable mechanocardiography and 4D medical imaging

    Get PDF
    Background: Cardiovascular diseases are the number one cause of death. Of these deaths, almost 80% are due to coronary artery disease (CAD) and cerebrovascular disease. Multidimensional microelectromechanical systems (MEMS) sensors allow measuring the mechanical movement of the heart muscle offering an entirely new and innovative solution to evaluate cardiac rhythm and function. Recent advances in miniaturized motion sensors present an exciting opportunity to study novel device-driven and functional motion detection systems in the areas of both cardiac monitoring and biomedical imaging, for example, in computed tomography (CT) and positron emission tomography (PET). Methods: This Ph.D. work describes a new cardiac motion detection paradigm and measurement technology based on multimodal measuring tools — by tracking the heart’s kinetic activity using micro-sized MEMS sensors — and novel computational approaches — by deploying signal processing and machine learning techniques—for detecting cardiac pathological disorders. In particular, this study focuses on the capability of joint gyrocardiography (GCG) and seismocardiography (SCG) techniques that constitute the mechanocardiography (MCG) concept representing the mechanical characteristics of the cardiac precordial surface vibrations. Results: Experimental analyses showed that integrating multisource sensory data resulted in precise estimation of heart rate with an accuracy of 99% (healthy, n=29), detection of heart arrhythmia (n=435) with an accuracy of 95-97%, ischemic disease indication with approximately 75% accuracy (n=22), as well as significantly improved quality of four-dimensional (4D) cardiac PET images by eliminating motion related inaccuracies using MEMS dual gating approach. Tissue Doppler imaging (TDI) analysis of GCG (healthy, n=9) showed promising results for measuring the cardiac timing intervals and myocardial deformation changes. Conclusion: The findings of this study demonstrate clinical potential of MEMS motion sensors in cardiology that may facilitate in time diagnosis of cardiac abnormalities. Multidimensional MCG can effectively contribute to detecting atrial fibrillation (AFib), myocardial infarction (MI), and CAD. Additionally, MEMS motion sensing improves the reliability and quality of cardiac PET imaging.Moniulotteisten sulautettujen MEMS-liiketunnistimien käyttö sydänkardiografiassa sekä lääketieteellisessä 4D-kuvantamisessa Tausta: Sydän- ja verisuonitaudit ovat yleisin kuolinsyy. Näistä kuolemantapauksista lähes 80% johtuu sepelvaltimotaudista (CAD) ja aivoverenkierron häiriöistä. Moniulotteiset mikroelektromekaaniset järjestelmät (MEMS) mahdollistavat sydänlihaksen mekaanisen liikkeen mittaamisen, mikä puolestaan tarjoaa täysin uudenlaisen ja innovatiivisen ratkaisun sydämen rytmin ja toiminnan arvioimiseksi. Viimeaikaiset teknologiset edistysaskeleet mahdollistavat uusien pienikokoisten liiketunnistusjärjestelmien käyttämisen sydämen toiminnan tutkimuksessa sekä lääketieteellisen kuvantamisen, kuten esimerkiksi tietokonetomografian (CT) ja positroniemissiotomografian (PET), tarkkuuden parantamisessa. Menetelmät: Tämä väitöskirjatyö esittelee uuden sydämen kineettisen toiminnan mittaustekniikan, joka pohjautuu MEMS-anturien käyttöön. Uudet laskennalliset lähestymistavat, jotka perustuvat signaalinkäsittelyyn ja koneoppimiseen, mahdollistavat sydämen patologisten häiriöiden havaitsemisen MEMS-antureista saatavista signaaleista. Tässä tutkimuksessa keskitytään erityisesti mekanokardiografiaan (MCG), joihin kuuluvat gyrokardiografia (GCG) ja seismokardiografia (SCG). Näiden tekniikoiden avulla voidaan mitata kardiorespiratorisen järjestelmän mekaanisia ominaisuuksia. Tulokset: Kokeelliset analyysit osoittivat, että integroimalla usean sensorin dataa voidaan mitata syketiheyttä 99% (terveillä n=29) tarkkuudella, havaita sydämen rytmihäiriöt (n=435) 95-97%, tarkkuudella, sekä havaita iskeeminen sairaus noin 75% tarkkuudella (n=22). Lisäksi MEMS-kaksoistahdistuksen avulla voidaan parantaa sydämen 4D PET-kuvan laatua, kun liikeepätarkkuudet voidaan eliminoida paremmin. Doppler-kuvantamisessa (TDI, Tissue Doppler Imaging) GCG-analyysi (terveillä, n=9) osoitti lupaavia tuloksia sydänsykkeen ajoituksen ja intervallien sekä sydänlihasmuutosten mittaamisessa. Päätelmä: Tämän tutkimuksen tulokset osoittavat, että kardiologisilla MEMS-liikeantureilla on kliinistä potentiaalia sydämen toiminnallisten poikkeavuuksien diagnostisoinnissa. Moniuloitteinen MCG voi edistää eteisvärinän (AFib), sydäninfarktin (MI) ja CAD:n havaitsemista. Lisäksi MEMS-liiketunnistus parantaa sydämen PET-kuvantamisen luotettavuutta ja laatua

    Wearable and Nearable Biosensors and Systems for Healthcare

    Get PDF
    Biosensors and systems in the form of wearables and “nearables” (i.e., everyday sensorized objects with transmitting capabilities such as smartphones) are rapidly evolving for use in healthcare. Unlike conventional approaches, these technologies can enable seamless or on-demand physiological monitoring, anytime and anywhere. Such monitoring can help transform healthcare from the current reactive, one-size-fits-all, hospital-centered approach into a future proactive, personalized, decentralized structure. Wearable and nearable biosensors and systems have been made possible through integrated innovations in sensor design, electronics, data transmission, power management, and signal processing. Although much progress has been made in this field, many open challenges for the scientific community remain, especially for those applications requiring high accuracy. This book contains the 12 papers that constituted a recent Special Issue of Sensors sharing the same title. The aim of the initiative was to provide a collection of state-of-the-art investigations on wearables and nearables, in order to stimulate technological advances and the use of the technology to benefit healthcare. The topics covered by the book offer both depth and breadth pertaining to wearable and nearable technology. They include new biosensors and data transmission techniques, studies on accelerometers, signal processing, and cardiovascular monitoring, clinical applications, and validation of commercial devices

    Translational Cell & Animal Research in Space 1965-2011

    Get PDF
    Translational Cell and Animal Research (TCAR). For nearly 50 years, the NASA Space Biology Program has funded, and Ames Research Center (ARC) has managed, a robust program of fundamental research including studies using a wide range of animal cells, tissues and organisms. Much of this research was conducted on spacecraft in microgravity environments including diverse platforms such as: Gemini Spacecraft, US Biosatellites, Apollo Command Modules, Skylabs, Russian Biosatellites, NASA Space Shuttles, NASA/Mir, and most recently, the International Space Station (ISS). During the Space Shuttle Era (19812011), the science of space biology took an enormous step forward with 45 missions that afforded researchers with new opportunities to conduct systematic and complex experiments aimed at a deeper understanding of how life adapts to the space environment. Beginning in the 1990s, the products of these experiments, comprised of research summaries and rare, unused biospecimens, were collected and catalogued within the ARC Life Sciences Data Archiving Office, a branch of NASAs Life Sciences Data Archive (LSDA) managed from the NASA Johnson Spaceflight Center
    corecore