480 research outputs found

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    MystifY : A Proactive Moving-Target Defense for a Resilient SDN Controller in Software Defined CPS

    Get PDF
    The recent devastating mission Cyber–Physical System (CPS) attacks, failures, and the desperate need to scale and to dynamically adapt to changes, revolutionized traditional CPS to what we name as Software Defined CPS (SD-CPS). SD-CPS embraces the concept of Software Defined (SD) everything where CPS infrastructure is more elastic, dynamically adaptable and online-programmable. However, in SD-CPS, the threat became more immanent, as the long-been physically-protected assets are now programmatically accessible to cyber attackers. In SD-CPSs, a network failure hinders the entire functionality of the system. In this paper, we present MystifY, a spatiotemporal runtime diversification for Moving-Target Defense (MTD) to secure the SD-CPS infrastructure. In this paper, we relied on Smart Grid networks as crucial SD-CPS application to evaluate our presented solution. MystifY’s MTD relies on a set of pillars to ensure the SDN controller resiliency against failures and attacks. The 1st pillar is a grid-aware algorithm that optimally allocates the most suitable controller–deployment location in large-scale grids. The 2nd pillar is a special diversifier that dynamically relocates the controller between heterogeneously configured hosts to avoid host-based attacks. The 3rd pillar is a temporal diversifier that dynamically detours controller–workload between multiple controllers to enhance their reliability and to detect and avoid controller intrusions. Our experimental results showed the efficiency and effectiveness of the presented approach

    MiniCPS: A toolkit for security research on CPS Networks

    Full text link
    In recent years, tremendous effort has been spent to modernizing communication infrastructure in Cyber-Physical Systems (CPS) such as Industrial Control Systems (ICS) and related Supervisory Control and Data Acquisition (SCADA) systems. While a great amount of research has been conducted on network security of office and home networks, recently the security of CPS and related systems has gained a lot of attention. Unfortunately, real-world CPS are often not open to security researchers, and as a result very few reference systems and topologies are available. In this work, we present MiniCPS, a CPS simulation toolbox intended to alleviate this problem. The goal of MiniCPS is to create an extensible, reproducible research environment targeted to communications and physical-layer interactions in CPS. MiniCPS builds on Mininet to provide lightweight real-time network emulation, and extends Mininet with tools to simulate typical CPS components such as programmable logic controllers, which use industrial protocols (Ethernet/IP, Modbus/TCP). In addition, MiniCPS defines a simple API to enable physical-layer interaction simulation. In this work, we demonstrate applications of MiniCPS in two example scenarios, and show how MiniCPS can be used to develop attacks and defenses that are directly applicable to real systems.Comment: 8 pages, 6 figures, 1 code listin

    Classifying resilience approaches for protecting smart grids against cyber threats

    Get PDF
    Smart grids (SG) draw the attention of cyber attackers due to their vulnerabilities, which are caused by the usage of heterogeneous communication technologies and their distributed nature. While preventing or detecting cyber attacks is a well-studied field of research, making SG more resilient against such threats is a challenging task. This paper provides a classification of the proposed cyber resilience methods against cyber attacks for SG. This classification includes a set of studies that propose cyber-resilient approaches to protect SG and related cyber-physical systems against unforeseen anomalies or deliberate attacks. Each study is briefly analyzed and is associated with the proper cyber resilience technique which is given by the National Institute of Standards and Technology in the Special Publication 800-160. These techniques are also linked to the different states of the typical resilience curve. Consequently, this paper highlights the most critical challenges for achieving cyber resilience, reveals significant cyber resilience aspects that have not been sufficiently considered yet and, finally, proposes scientific areas that should be further researched in order to enhance the cyber resilience of SG.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Funding for open access charge: Universidad de Málaga / CBUA

    Assessment of connectivity-based resilience to attacks against multiple nodes in SDNs

    Get PDF
    In Software Defined Networks (SDNs), the control plane of a network is decoupled from its data plane. For scalability and robustness, the logically centralized control plane is implemented by physically placing different controllers throughout the network. The determination of the number and placement of controllers is known as the Controller Placement Problem (CPP). In the regular (i.e., failure-free) state, the control plane must guarantee a given maximum delay between every switch and its primary controller and a given maximum delay between every pair of controllers. In general, these delay bounds allow multiple solutions and, so, other goals can be used to determine the best CPP solution. In this paper, we assess the connectivity-based resilience to malicious attacks against multiple network nodes of the CPP solutions obtained with three different aims: the regular state delay optimization without any concern about attacks, the regular state delay optimization taking into consideration the worst-case attacks and the resilience optimization to attacks against multiple nodes. We assess the CPP solutions considering attacks of targeted nature (when the attacker has complete knowledge of the data plane) and attacks of non-targeted nature (i.e., random and epidemic attacks). We present computational results providing an analysis of the CPP solutions to the different types of attacks. The main conclusion is that the connectivity-based resilience between the different CPP solutions strongly depends on the network topology, the regular state delay bounds and the type of attacks. Finally, we provide insights on how SDN operators can consider the conducted assessment when deciding the controller placements in their networks.publishe

    Towards cyber-resilient telecontrol commands using software-defined networking

    Get PDF
    Cybersecurity enhancement of power systems has become one of the main objectives of utility managers and regulatory agencies because of the increasing number of cyberattacks against critical infrastructures. In this paper, we investigate the application of software-defined networking for improving the cyber-resilience of power systems in the presence of cyberattacks using false telecontrol commands. It is first demonstrated that cyberattackers can use false telecontrol commands to separate a power plant from a power grid or trip a major transmission line. Next, it is shown that software-defined networking can significantly enhance the cyber-resilience of power systems in the presence of cyberattacks using false telecontrol commands compared to legacy communication networks. This is because the source, destination and protocol of telecontrol commands can be examined and verified in software-defined networking before communication packet forwarding actions take place. Moreover, primary and back-up routes of telecontrol commands can be pre-engineered in software-defined networking to counteract potential cyberattacks

    Self-healing and SDN: bridging the gap

    Get PDF
    Achieving high programmability has become an essential aim of network research due to the ever-increasing internet traffic. Software-Defined Network (SDN) is an emerging architecture aimed to address this need. However, maintaining accurate knowledge of the network after a failure is one of the largest challenges in the SDN. Motivated by this reality, this paper focuses on the use of self-healing properties to boost the SDN robustness. This approach, unlike traditional schemes, is not based on proactively configuring multiple (and memory-intensive) backup paths in each switch or performing a reactive and time-consuming routing computation at the controller level. Instead, the control paths are quickly recovered by local switch actions and subsequently optimized by global controller knowledge. Obtained results show that the proposed approach recovers the control topology effectively in terms of time and message load over a wide range of generated networks. Consequently, scalability issues of traditional fault recovery strategies are avoided.Postprint (published version

    Failure Analysis in Next-Generation Critical Cellular Communication Infrastructures

    Full text link
    The advent of communication technologies marks a transformative phase in critical infrastructure construction, where the meticulous analysis of failures becomes paramount in achieving the fundamental objectives of continuity, security, and availability. This survey enriches the discourse on failures, failure analysis, and countermeasures in the context of the next-generation critical communication infrastructures. Through an exhaustive examination of existing literature, we discern and categorize prominent research orientations with focuses on, namely resource depletion, security vulnerabilities, and system availability concerns. We also analyze constructive countermeasures tailored to address identified failure scenarios and their prevention. Furthermore, the survey emphasizes the imperative for standardization in addressing failures related to Artificial Intelligence (AI) within the ambit of the sixth-generation (6G) networks, accounting for the forward-looking perspective for the envisioned intelligence of 6G network architecture. By identifying new challenges and delineating future research directions, this survey can help guide stakeholders toward unexplored territories, fostering innovation and resilience in critical communication infrastructure development and failure prevention
    • …
    corecore