
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Electrical & Computer Engineering Faculty 
Publications Electrical & Computer Engineering 

2022 

"MystifY": A Proactive Moving-Target Defense for a Resilient SDN "MystifY": A Proactive Moving-Target Defense for a Resilient SDN 

Controller in Software Defined CPS Controller in Software Defined CPS 

Mohamed Azab 

Mohamed Samir 

Effat Samir 
Old Dominion University, efath002@odu.edu 

Follow this and additional works at: https://digitalcommons.odu.edu/ece_fac_pubs 

 Part of the Electrical and Computer Engineering Commons, Information Security Commons, and the 

Theory and Algorithms Commons 

Original Publication Citation Original Publication Citation 
Azab, M., Samir, M., & Samir, E. (2022). “MystifY”: A proactive moving-target defense for a resilient SDN 
controller in software defined CPS. Computer Communications, 189, 205-220. https://doi.org/10.1016/
j.comcom.2022.03.019 

This Article is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital 
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Faculty Publications by an 
authorized administrator of ODU Digital Commons. For more information, please contact 
digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_fac_pubs
https://digitalcommons.odu.edu/ece_fac_pubs
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_fac_pubs?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.comcom.2022.03.019
https://doi.org/10.1016/j.comcom.2022.03.019
mailto:digitalcommons@odu.edu


Computer Communications 189 (2022) 205–220

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

‘‘MystifY’’: A proactive Moving-Target Defense for a resilient SDN controller
in Software Defined CPS
Mohamed Azab a,∗, Mohamed Samir b, Effat Samir c

a The Department of Computer and Information Sciences, Virginia Military institute, Lexington, VA, USA
b The Arab Academy for Science, Technology and Maritime Transport (AAST-MT), Alexandria, Egypt
c The Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA

A R T I C L E I N F O

Keywords:
CPC
SDN
CPP
MTD
Smart grid
Network security

A B S T R A C T

The recent devastating mission Cyber–Physical System (CPS) attacks, failures, and the desperate need to scale
and to dynamically adapt to changes, revolutionized traditional CPS to what we name as Software Defined
CPS (SD-CPS). SD-CPS embraces the concept of Software Defined (SD) everything where CPS infrastructure is
more elastic, dynamically adaptable and online-programmable. However, in SD-CPS, the threat became more
immanent, as the long-been physically-protected assets are now programmatically accessible to cyber attackers.
In SD-CPSs, a network failure hinders the entire functionality of the system. In this paper, we present MystifY, a
spatiotemporal runtime diversification for Moving-Target Defense (MTD) to secure the SD-CPS infrastructure. In
this paper, we relied on Smart Grid networks as crucial SD-CPS application to evaluate our presented solution.
MystifY’s MTD relies on a set of pillars to ensure the SDN controller resiliency against failures and attacks.
The 1st pillar is a grid-aware algorithm that optimally allocates the most suitable controller–deployment
location in large-scale grids. The 2nd pillar is a special diversifier that dynamically relocates the controller
between heterogeneously configured hosts to avoid host-based attacks. The 3rd pillar is a temporal diversifier
that dynamically detours controller–workload between multiple controllers to enhance their reliability and to
detect and avoid controller intrusions. Our experimental results showed the efficiency and effectiveness of the
presented approach.

1. Introduction

The ubiquitous computing and smart-everything revolution are
trends aiming to embed computational capabilities into physical com-
ponents mainly to make our lives easier, safer, and more reliable.
However, the incremental development of such innovations are relying
on conventional technologies, which were not designed to support such
cyber–physical interaction.

The recent overwhelming attack-waves targeting smart mission crit-
ical infrastructure assets [1–3] across the globe showed how vulnerable
they can be against highly motivated adversaries. With the desperate
need to scale, and to dynamically adapt Cyber–Physical Systems (CPSs),
designers started to embrace the Software Defined (SD) everything
concept to present a more evolved version of CPS.

We coined the term Software Defined CPS (SD-CPS) to describe
such an evolution of the new systems that offer more elasticity and
adaptability by enabling online re-programmability of its components.
Such adaptation ability, and the enhanced awareness, gave SD-CPS the
advantage over conventional CPS systems when it comes to reliable
operation.
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(E. Samir).

However, relying on programmable software components to control
the infrastructure of the CPS opened the door for new classes of threats
and attacks [4–6]. Such attacks were never considered in the static old
fashion infrastructure equipment. As for any smart system, the network
infrastructure is the main backbone supporting the system’s operation.
Therefore, in this paper, we present a novel solution to improve the
Software Defined Network (SDN) security in SDN-enabled Smart Grids
as one of the mission critical SD-CPS applications.

The SDN controller is a centralized component that maintains a full
control of the entire network. Being fully aware of the network details,
enabled such a controller to dynamically adjust the attached SDN
programmable switches, on the packet level, towards the best interest
of the entire network. Such design structure gave the SDNs a high level
of adaptability, reliable operation, and much better Quality of Service
(QoS) assurances. However, such centralized control is a major single
point-of-failure. Given the critical value of SDN controllers, its failure
became a devastating event that cripples the entire network operation
and the application relying on it. When it comes to mission critical
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CPS applications like Smart Grids, an SDN controller failure can lead
to catastrophic situation.

Researchers addressed this problem by replicating and optimizing
the location-selection of the SDN controller(s). Such attempts lead to
what is known as the Controller Placement Problem (CPP), which was
first introduced by Heller et al. in 2012, as a k-median, or NP-hard
problem [7]. The main goal for Heller’s study was to determine the
number of needed controller(s), and the optimal placements for these
controller(s) in a large-scale network.

The controller security problem that we focus on is the static initial
placeman and its impact on controller security to enable runtime
assurances that such controller(s) will keep operational as expected in
presence of attacks. In this paper, we present MystifY, a novel grid-
aware proactive Moving-Target Defense (MTD) mechanism that applies
spatiotemporal runtime diversification to secure the SDN controller(s)
in SD-CPS network.

In space, we rely on a lightweight virtualization technology to en-
able SDN controller(s) live-migration between some preconfigured and
optimally selected placements to avoid host-based attacks and failures.
In time, we present a novel distributed SDN proxy module to enable
dynamic workload detouring between diversified replicas to avoid un-
expected controller intrusions. Further, with multi-controller feedback
on each incoming switch message, we implemented a lightweight Intru-
sion Detection System (IDS) module, to detect misbehaving controllers.
This module will automatically remove misbehaving controllers (until
replaced) from the active controller pool.

The multidimensional changes enabled by MystifY, massively com-
plicate controller traceability. Further, enabling multi-controller man-
agement of same switch traffic increases the network resilience not
only against attacks but also against intentional/unintentional failures.
Throughout this paper, SDN-enabled Smart Grid is used as a demonstra-
tive example for a crucial SD-CPS application. However, the presented
approach can be easily applied to other mission critical large-scale
SD-CPS applications.

The proposed framework of MystifY relies on three main pillars,
which are; (1) The AllocatoR Module, (2) The Migrator Module, and
(3) The Proxy Module. Each one plays an essential role in protecting
the SDN controller(s) in Smart Grid networks. To ensure appropriate
time stamping for some of the supporting ideas, a skeleton architecture
of a basic idea of two of the early designed pillars were published for
time stamping [8,9]. In this paper, we present a comprehensive novel
defense framework with detailed designs and in-depth evaluations for
the proposed SDN controller resilience mechanism in the context of a
mission critical application like smart grids.

With real-time monitoring and analysis of the active Smart Grid
traffic and the insights provided by MystifY’s Smart grid-aware IDS
module, MystifY builds the migration strategy for the SDN controller(s)
to satisfy the targeted objectives, best serve the grid needs, and ensures
safe and reliable network operations. MystifY’s analysis of the grid
distribution and workload, will guide the process towards selecting the
best targets for migration, and the best relocation points. The migration
module will customize the migration process to best serve the network
and the smart grid needs.

The contributions of this paper can be summarized as follows:

1. Present a grid-operation and performance aware, multi-objective
CPP solution for mobile controller placement in SDN-enabled
Smart Grids.

2. Enable a dynamic controller/workload migration inducing mul-
tidimensional spatiotemporal MTD for the SDN controller(s).

3. Enable a multi-controller management of same switch traffic to
enhance the network resiliency against attacks and failures.

4. Integrate MystifY with a novel SDN-enabled Grid simulator for
grid-aware evaluations.

The rest of this paper is organized as follows: Section 2, briefly
describes the key concept beyond CPS network security and other
MTD mechanisms. Section 3, presents MystifY threat model. Section 4,
explains MystifY framework architecture in details. Section 5, presents
our simulation studies and the analysis results. Finally, Section 6,
concludes by summarizing our contributions and future work.

2. Literature review

2.1. MTD technique

The main goal of MTD technique in CPS systems works by enabling
frequent dynamic movement between multiple configuration points in
the cyber domain. It is emerged as a solution that breaks the static
nature of CPS systems introducing programmed heterogeneous changes
in its operation. Therefore, MTD solutions were presented discussing
various techniques that can be classified based on what to change and
how to change it. Fig. 1 gives a quick overview of these points.

To summarize, within the context of Smart Grids, or in general CPS
systems, the attack surface includes:

[1] Network platform, such as the forwarding links and routing
nodes [10,11].

[2] Endpoint data, such as the IP address, MAC address, port, and
protocol [12–14].

[3] Platform environment, such as the operating system, software
application, and some runtime environment parameters
[15–17].

The MTD application strategies include:

[1] Game-theoretic strategies, to model the interaction between the
system defender and the attacker [18–20].

[2] System state randomizations strategies, the basic idea is to
randomly and continuously change the system configuration
or parameters to make the systems inaccessible for attackers,
such as IP address randomizations and IP hopping techniques
[21–23].

[3] Strategy formulation based on analytical model building, this
method uses machine learning, deep learning, and neural net-
works algorithms to accurately percept the network status
[24–26].

[4] Software diversification strategies, this technique dynamically
changes the software instruction codes itself to create multiple
execution tasks, while ensuring the software functional equiva-
lence [27–29].

[5] Virtualization-based strategies, it has presented as a technol-
ogy to virtualize the hardware-based systems and shuffle the
endpoint control and application layer [30,31].

The next subsection highlights the literature review discussing dif-
ferent MTD solutions presented to secure CPSs.

2.2. Related work

Coupling SDN and CPS noted as an area of great interest to develop
advanced communication architectures. Recently, Software Defined
Networking inspired systems designers to develop more economical,
reliable, secure CPS systems and applications especially in the Smart
Grid [32–34].

Aswin. C. Pappa et al. [35] introduced the use of MTD strategy
in power grid SCADA environments to mitigate attacks, leverage the
network with end-to-end IP hopping techniques. Aswin designed his
MTD system architecture on Iowa’s state PowerCyber testbed to study
the delay and throughput characteristic in a realistic environment. He
analyzed the proposed solution on two types of attacks; the address
range exhaustion attack, and the traffic analysis attack.
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Fig. 1. MTD technique classification.

Jue Tian et al. [36] discussed the use of a hidden MTD approach
to mitigate False Data Injection (FDI) attacks in Smart Grid networks.
He developed a novel algorithm to compute the needed parameter
perturbations to the transmission lines of a Distributed Flexible AC
Transmission System (D-FACTS) under the AC and DC power flow
scenarios. Further, Jue analyzed a class of False Data Injection at-
tacks in traditional MTD systems and proposed an enhanced approach
that strategically deploy D-FACTS systems and preclude the attacks.
Moreover, he relied on IEEE 14-Bus system to conduct the simulation
analysis and compare the completeness and stealthiness of the proposed
approach.

Abdullah Aydeger et al. [37] introduced an SDN-based MTD mech-
anism to protect the networks against DDoS crossfire attacks. The
proposed MTD mechanism relied on routing the traffic on congested
links during the attack time. This approach consists of two main defense
mechanisms. First, the ‘‘proactive stage’’ which obfuscate the links
during the potential link-map creation of the attackers making it harder
to launch attacks. Second, the ‘‘active stage’’ which detect and mitigate
during the attacks. For his experimental work, such mitigation and
detection techniques are implemented using Mininet [38] emulator and
Floodlight SDN controller [39].

J. B. Hong et al. [40] deployed a new MTD mechanism to frequently
change the attack surface in SDN-enabled networks. Jin realized his
proposed to optimally reconfigure the network topology system by
exploiting the SDN functionality. He introduced a new Shuffle As-
signment Problem (SAP) to enhance network security. In addition, he
proposed the Shuffle-based online MTD mechanism to select an optimal
countermeasure against detected attacks using the topological distance
metric.

J. Steinbergeret al. [41] investigated the effectiveness of MTD in the
high-speed SDN-enabled networks to limit the effects caused by large
scale cyber-attacks. Jessica presented a DDoS defense solution that
combines the use of Software Defined Everything (SDx) and MTD. The
MTD system is implemented using ONOS, a carrier-grade SDN network
operating system [42]. However, it relied on different Border Gateway
Protocol (BGP) routes to reshape the network and some IP-hopping
strategies to setup a honeypot during the attack time.

Tao Hu et al. [43] proposed a Reliable and Load balance-aware
Multi-Controller Deployment (RLMD) strategy to enhance the SDN-
enabled networks reliability. Tao introduced an SDN controller place-
ment clustering algorithm to deploy a reliable SDN controller(s) based
on the path quality and weighing the node efficiency. Additionally, he
introduced a Multiple Domain Partition (MDP) algorithm to connect the
network switches with these controllers according to the controller-load
balancing rate and the node attractability.

P. Kampanakis et al. [44] investigated the coupling between MTD
and SDN in details. He discussed the potential countermeasures attacks
that could take to circumvent them, and the overhead of implementing

MTD in SDN networks. However, he evaluated the performance using
one traditional of Cisco’s platform kit [45].

Nathan et al. [46] explored the application of moving-target de-
fenses in the context of real-time systems and enterprise-computing
applications such as power grids. He relied on the randomization-based
techniques as a promising class of defense that offer low overhead
and high protection against both data-only attacks and control-flow
hijacking. In addition, He discussed the worst case execution time and
average case execution time without sacrificing entropy, and how to
deploy a protected mixed-criticality workloads.

Bradley et al. [47] discussed the implementation of mixed time and
event-triggered architecture to maintain safety and availability in CPS
systems. He presented such approach based on the ARINC 653 archi-
tecture to provide a reliable and predictable operation upon normal
condition, and reconfiguration and rapid detection upon attacks. In
addition, He leveraged an Advanced Emergency Braking System (AEBS)
and a hardware-in-the-loop testbed as a case study to evaluate the
effectiveness of the proposed approach.

Bradley et al. [48] discussed the new attack vectors in autonomous
vehicles CPS systems and its challenges again, especially the compo-
sition of much amount of legacy software, third party applications,
and remote Application Programming Interfaces (APIs). He presented
the implementation of instruction set randomization (ISR), and address
space randomization (ASR) to protect against code injection and code
reuse attacks in CPS systems. He considered the problem of code
reuse attacks, detecting code injections, and fast reconfigurations that
maintain the stability and safety of autonomous vehicle controller(s).
Based on ASR, and ISR, the presented approach prevents attackers
from grabbing enough information necessary to code reuse attacks and
perform code injections.

Jairoet al. [49] proposed an MTD strategy for multi-vehicle systems
to protect against cyber-attacks. He characterized the trade-off between
the performance degradation and impact mitigation. Additionally, he
illustrates the viability of the strategy in two applications, (1) vehicular
platooning, (2) Unmanned Aerial Vehicle (UAV) formation. Moreover,
he introduced different types of MTD mechanisms to cover more gen-
eral control systems framework, at both the sensors units and the
controller(s) level.

Samir et al. [50] proposed SD-CPC as an SDN Controller Placement
Camouflage (CPC) based on the game theory for MTD. It relied on
the Zero-Sum game to model stochastic game between an attacker
and the system defender. In addition, SD-CPC considers the network
vulnerabilities, evaluates the risk level in real-time using Bayesian
Attack Graph (BAG), to contentiously change the controller(s) place-
ment. SD-CPC is mainly applied at the SDN Application layer. SD-CPC
presents a top-level application development in the SDN architecture
model. In SD-CPC, the Zero-Sum game presents the security/defense
solution, and the BAG analysis presents the security risk assessment
process. Regardless of the different network used and the different
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results, MystifY uses a real-time feedback from our embedded IDS to
monitor the network state and guide the migration process. SD-CPC
used heuristic calculations based on the stochastic game theory and
some BAG analysis to assess the security level of the network nodes.
Hence, MystifY’s replication and migration modules, provides accurate
and optimized migrations. The migration decision occurs based on live
indicators not just assumptions based on historical calculations.

Samir et al. [51] discussed the need of addressing CPP challenge in
Smart Grids. It did not present any security solution for this challenge.
It just simulated the grid and analyzed the tradeoff between CPP metric
to select to optimal secure location later on. In addition, it did not
present on any MTD technique, unlike MystifY which mainly enables
a dynamic controller/workload migration inducing multidimensional
spatiotemporal MTD for the SDN controller(s).

It is worth noting that none of the presented research works man-
aged to address the SDN controller resiliency in SD-CPS applications.
The SDN controller is a single point-of-failure which makes it a very
motivating target for attacks. In this paper, MystifY is presented as a
novel approach that enables transformative manipulations of the SDN
controller operation to secure the network infrastructure of the SD-CPS
application. The unique features offered by MystifY were individually
presented in previous research leaving many doors open for attacks and
failures. However, based on the best of our knowledge, none of the
presented systems managed to comprehensively present this unique set
of features on one framework.

3. Threat model

Researchers noted that SDN controller is a major single point-
of-failure with massive impact on the network operation and stabil-
ity. Given the contemporary oblivious defense mechanisms to secure
such critical component, attackers would be very motivated to target
such controllers to either take control of the network, or the SD-CPS
application using it.

The controller is the main component in SDN networks. It handles
all control commands, traffic signaling, and policies. Compromised
controllers can grant attackers the ability to break system policies,
manipulate system information, and perform severe malicious actions.
In its basic essence, an SDN controller is a programmed server software
running on a host somewhere in the network. Attackers can target
such valuable asset directly (through that programmed platform), or
indirectly (through the main host machine vulnerability) and control
the entire network.

In this paper, we assume that resourceful attackers may try to defeat
the system access control; on the host level, the attacker is capable of
initiating a wide range of zero-day attacks to disrupt the hosting server
of the SDN controller. Additionally, he can allocate the placement of
such hosting server, scan it for possible weaknesses, and initiate attacks
to cripple the enclosed applications as well.

Therefore, we consider that such powerful attackers would be care-
ful enough not to be detected by any defense tool. For that, they will
waste a considerable amount of time to find the hosting servers, and to
decide which class of attacks can be exploited to cripple them. Further,
we assume that attackers may gain access to one or more controllers
and manage to manipulate their behavior. Finally, we assume that the
attackers has no control of any of MystifY’s modules to help them in
controlling the exact placement of the SDN controller(s).

4. MystifY framework description

The main goal of MystifY MTD framework is to ensure a resilient
SDN controller operation for the SDN-enabled power grids even in
presence of potential attacks. The proposed framework applies a real-
time spatiotemporal diversification to frequently change the location of
the running SDN controller(s), confusing the attackers. As mentioned

in Section 3, the target is to protect the running controller from at-
tackers exploiting either host vulnerabilities or controller programming
vulnerabilities.

MystifY is supported by three interrelated pillars enabling it to
induce some real-time changes to the controller operational configu-
ration.

The first pillar is the ‘‘AllocatoR’’ module, a grid aware controller
placement mechanism that carefully selects the optimal location for the
SDN controller and the optimal alternative locations for MystifY to use.
The ‘‘AllocatoR’’ module applies a complicated algorithm that considers
the various runtime changing grid needs to fill the controller hopping
list for the second and third pillars to operate on.

The second pillar is an evolutionary version of a Proactive Attack-
and-Failure Resilience (PAFR) [8]; a live migration module. MystifY
customizes and manages PAFR to enable controller live migration be-
tween a set of predetermined heterogeneously configured and allocated
locations to complicate controller tractability and to avoid host-based
attacks.

The third pillar is an evolutionary version of ‘‘Repoxy’’ [9]; a smart
SDN proxy. MystifY adapts, customizes, and enhances Repoxy’s ability
to work with multiple controllers, enabling multiple controller man-
agement of same switch, dynamic workload migration, and controller
misbehavior detection.

In this paper, Smart Grid is considered a case study for an SD-CPS
crucial application. We integrated MystifY with a customized version of
PYGRID [32]; a novel SDN-enabled Smart Grid simulator to investigate
the effectiveness and efficiency of the proposed system. Fig. 2 illustrates
the main components participating in the construction and evaluation
of MystifY framework.

In the following sections, we will describe the MystifY managed
handling of the module set towards a resilient SDN controller operation.

4.1. The allocatoR module

The ‘‘AllocatoR’’ module is considered as the first mastermind pil-
lar in MystifY. It represents a grid-aware module relying on node
placement and clustering algorithms. The ‘‘AllocatoR’’ module offers
a solution for the Controller Placement Problem (CPP) in SD-CPS
environment, determining the required number of SDN controller(s)
and their optimal locations within the targeted network topology.

In the ‘‘AllocatoR’’ module, we exploit four latency metrics intro-
duced in [7,52,53] to solve the CPP problem. Various research studies
introduced the average and worst case latencies as the most important
metrics that influence the network performance significantly. As a
consequence, in this paper, we managed to evaluate the performance
metric for the average and worst latency metrics between both the
‘‘nodes-to-controller’’ and ‘‘controllers-to-controllers’’.

In MystifY, the ‘‘Host Selector’’ module relies on the calculated
‘‘nodes-to-controller’’ latencies to select a list of controller migration
locations for MystifY to operate on. In addition, the ‘‘Shuffler’’ mod-
ule relies on the real-time feedback information from the ‘‘Alloca-
toR’’ module to orchestrate the workload migration pattern. This in-
formation depends on the calculated latency metrics between each
‘‘controller-to-controller’’.

A. Controllers selection calculations
Generally, clustering algorithms rely on different resilience and

performance metrics to achieve the optimal placement results. In SD-
Smart Grid networks, the SDN network can be described as network
graph G(N,E);

N = set of nodes n = {1, 2, 3,……, 𝑛}.
E = set of edges between n nodes.
Therefore, the AllocatoR’s main goal is to allocate the optimal place-
ment S′ such that |S′| = c, where c is the number of SDN controller(s)
connected to the network at any of S′ location.

∙ Latency metrics between ‘‘nodes-to-controller’’:
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Fig. 2. Mystify main system components.

𝐿𝑎𝑣𝑔(𝑆′): The average distance between SDN controller(s) nodes and
other nodes connected to it, is calculated based on the following
equation;

𝐿𝑎𝑣𝑔(𝑆′) = 1
𝑛
∑

𝑣∈𝑉
min
(𝑠∈𝑆′)

𝑑(𝑣, 𝑠) (1)

𝑑(𝑣, 𝑠): The shortest path from node v to node s, v 𝜖 𝑁 and s 𝜖 N.
𝐿𝑤𝑐

(

𝑆′) ∶ The worst latency or the distance between SDN controller(s)
nodes and other nodes connected to it, is calculated based on the
following equation;

𝐿𝑤𝑐
(

𝑆′) = max
(𝑣∈𝑉 )

min
(𝑠∈𝑆′)

𝑑 (𝑣, 𝑠) (2)

∙ Latency metrics between ‘‘controller-to-controller’’:
𝐿𝑎𝑣𝑔𝑐𝑐

(

𝑆′) ∶The average distance between the SDN controller(s) them-
selves, is calculated based on the following equation;

𝐿𝑎𝑣𝑔𝑐𝑐
(

𝑆′) = 1
𝑘

∑

𝑐𝑖 ,𝑐𝑗∈𝑆′
𝑑
(

𝑐𝑖, 𝑐𝑗
)

(3)

𝑑
(

𝑐𝑖, 𝑐𝑗
)

∶ The shortest path between controller 𝑐𝑖 and controller 𝑐𝑗 ,
as 𝑐𝑖, 𝑐𝑗 𝜖𝑆′.
𝐿𝑤𝑐𝑐

(

𝑆′) ∶ The worst latency or distance between the SDN con-
troller(s) themselves, is calculated based on the following equation;

𝐿𝑤𝑐𝑐 (𝑆′) = max
(𝑐𝑖 ,𝑐𝑗∈𝑆′)

𝑑(𝑐𝑖, 𝑐𝑗 ) (4)

The following Algorithms 1 and Algorithm 2 demonstrate the ap-
plied CPP operation and the latency calculations in real-time under
normal condition and in presence of attacks.

4.2. The migrator module, MystifY-managed PAFR

MystifY adopts and customizes PAFR migrator to enable the con-
troller mobility between hosts. MystifY-managed PAFR relies on
‘‘Docker’’ [54,55], Linux containers virtualization technology to encap-
sulate the SDN controller along with its applications. Encapsulating
the controller and its applications enables MystifY to easily instanti-
ate controllers remotely on any location on the grid from a cashed
image without losing the network state. Enabling such feature mas-
sively reduces the downtime due failures and enables easy network
re-programmability for more elastic response to unexpected events.

Using Linux containers enables MystifY to exploit the intrinsic
resource isolation offered by the technology to isolate the running con-
trollers from the underlying host to limit host-based attacks. There are
many other container Linux-based technologies that are available, such

as ‘‘LXC’’ [56] and ‘‘OpenVZ’’ [57]. However, we managed to select
‘‘Docker’’ due to its flexibility, cost-effectiveness with fast deployment.

Before migration, we assume that the controller and all the running
applications are encapsulated in one of the MystifY managed ‘‘Docker’’
containers. Mystify migrator module relies on ‘‘RunC’’ [58] as an
integrated export tool to allow the container files to run independently
from the Docker-management demon service. Running the container in
such way, enabled MystifY to execute the container in an unprivileged
mode in the user space for easier management, migration, replication,
and resurrection.

The migration process involves two main processes; a checkpoint
of the running container with the enclosed controller that would result
in a controller stop, and a restore processes. The restore process re-
instantiate the container to the exact same state at check point in a
new location.

To enable live checkpointing, MystifY relies on ‘‘CRIU’’ tool [59] to
briefly freeze the live container to enable snapshotting the container
memory and any open files. The dumped snapshots are saved with a
unique time stamp for restoration.

(A) Live checkpointing/restore and host-to-host migration
Researchers noted that SDN controller stores the network state in

the controller internal memory to ensure high response rate. Keep-
ing such vital information locally complicated network state sharing
or external cloning in case of failure. The recent advances in SDN
controllers tried to enable controller state sharing through external
shared storages, by manipulating the way it is saved by customizing its
source code [60]. However, such attempts limit the controller response
massively and open the doors for contentions.

To avoid controller customization MystifY uses the encapsulated
controller state and ‘‘CRIU’’ to dump the container memory into per-
sistent set of shareable files only at the migration time with no impact
on the controller operation.

MystifY migrator module manages ‘‘CRIU’’ to briefly halt the live
(container) ‘‘RunC’’ process and its sub-processes (controller and/or
applications); and save all used files and the allocated memory space to
a share location. This location will be shared between both the source
host and the destination host. As shown in Fig. 3, we will use these files
later to restore the container to the required state.

In this paper, MystifY adopts PAFR migrator to enable the con-
troller mobility between hosts and easily instantiate controllers from
a cashed image. Such migration must be done without losing the appli-
cation layer connection and the infrastructure network state. Therefore,
some SDN controllers’ instances must maintain same application access
and system state information to fulfill the requirements of the SDN
controller application and ensure state synchronization in Mystify’
framework.
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To achieve these goals, and to make sure that all the data is
persistent and available to all the SDN containers’ images, we bind the
Docker volumes to a location on each container’s disk. These volumes
are mounted on a remote repository to host PYGRID IDS application
(an example for a security application to protect the SDN controllers
running at the infrastructure layer, this application will be explained in
Section 5.1). Hence the application folder is simultaneously available
for all the SDN instances. In addition, such volumes will host the
encapsulated controller state and ‘‘CRIU’’ dump memory to maintain
system state synchronization.

(B) The restoration process
To lunch a new controller or to re-instantiate a checkpointed one,

we need to have access to two sets of files, the memory dump and
the offline container image incase or re-instantiation. The memory

dump are than 20 MB which enables a very fast instantiation, quick
recovery, and easy container migration. Whilst, the offline container
image files are large, about 500MB in average in our experiments
with OpenDayLight [61], POX [62], or Floodlight [39] SDN controllers.
Fortunately, those files are transferred offline with no impact on the
migration process.

MystifY uses a remote shared repository for all the controller images
used by the system accessible to all potential heterogeneous hosting
locations. Diversifying the hosting locations and their configuration
limits the attacker capabilities for attack reply or exploiting/financing
the same weakness between hosting servers. MystifY only transfers the
memory dump image between hosts at the time of migration. Using
shared repositories to host the base image ready containers, massively
lessens the time required to transfer all the files between hosts in
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Fig. 3. MystifY detailed system architecture.

case of failure or live migration. The entire process is summarized in
Fig. 3.

MystifY can apply random or preprogrammed checkpoints, or upon
certain event triggers. This process starts by halting the container,
exporting its memory contents into set of files on the shared location,
marked with a unique timestamp. To ensure the consistency of the
network status, MystifY usually uses the most recent image for recov-
ery. However, archiving old images can be very useful for the forensic
analysis after any unexpected failure/ attacks.

Our experiments resulted an approximate downtime of ‘‘∼0.15’’
seconds during the unavailability-of- SDN controller service. This time
can be negligible as is assumed to be a network congestion by all
attached switches. In OpenFlow protocol [63], controllers have to
react to the incoming echo messages from attached switches as a sign
of aliveness. Any intubation in such responses would result in the
switches to terminate the connection. During our experiments, the
migration procedure completed before the echo messages times out. In
addition, all attached switches did not report any controller connection
interruptions during the entire migration procedure.

The experiments of testing the effect of migrating a running SDN
controller between two preconfigured hosts were run 7 times, and
the average downtime due to migration process was about ‘‘∼0.15’’
seconds. The actual approximate values were; td1 = {0.12965}, td2
= {0.16548}, td3 = {0.14042}, td4 = {0.15822}, td5 = {0.15063}, td6
= {0.13478}, td7 = {0.15718}, where ‘‘td’’ is the migration downtime
at each test. It is the time that the controller service was unavailable to
the network testbed. This time was measured during the period when
any of the network switches was unable to reach the SDN controller on
TCP port ‘‘6653’’.

The migration process starts by checkpointing the container, killing
the process on the source location, initiating an ARP update to change
the IP/MAC assignment of the source server’s network interface to
match the new one, updating the network address translation tables,
and finally restoring the encapsulated controller files to the destination
location.

4.3. The proxy module, MystifY-managed Repoxy

MystifY adopts and customizes our novel SDN proxy, ‘‘Repoxy’’ [9],
to enable multiple controller management of same switch. Further,
MystifY elevates proxy’s feature to enable detecting misbehaving SDN
controllers. In this paper, MystifY’s proxy is a distributed abstraction
layer isolating the active controllers from the underlying switches.
Such isolation enabled seamless controller host switching when MystifY
used the migrator module to migrate the active controller between
heterogeneous hosts for spatial diversity induction.

In this section, we will illustrate how MystifY manages and cus-
tomizes ‘‘Repoxy’’ to enable dynamic workload migration between
replicated controllers for enhanced resilience. With such replication,
MystifY realizes the temporal diversification of running controllers
for MTD and enhances the controller resilience against intrusions as
illustrated latter.

Additionally, MystifY-managed proxy to enable dynamic alternation
of the management role between the running controllers by migrating
the workload between these controller replicas based on the shuffling
module feedback as described in subsection D. MystifY’s proxy ensures
the consistency of the network state between replicated controllers.
Further, MystifY’s proxy, uses an offline database and a customized
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rehearsal module to maintain an archived copy of controller switch in-
teraction enabling offline state synchronization between newly ported
controllers. Such added feature enables a dynamic porting and depar-
ture of SDN controllers from the active controller pool based on the
network state.

At each packet arrival, the ‘‘Voter’’ module (described in next sub-
section) selects the most appropriate controller to serve the network,
and manage its distributed switches. The operational details of each
module are illustrated later in next subsections.
(A) Protocol messages

The OpenFlow protocol is the communication protocol widely used
to define the switch controller interaction. In this paper, we built Mys-
tifY to work mainly with OpenFlow protocol. Other protocol support
can be included in the future. The SDN controller main rule is to define
the flow entries in the attached switches. The specification classify the
network packets between switches and SDN controller to three main
types, controller-to-switches, symmetric, and asynchronous.

The first is the most important type, the controller-to-switches
packets. In these packets, controllers manipulate the attached switches
with a packet and expects a ‘‘Reply’’ packet as a response with the same
Xid. The Xid is a unique identifier sued for packet identification by the
SDN controllers and switches.

The second type is the asynchronous packet. These packets are sent
spontaneously by the switches when requesting for controller guidance.

The third is the symmetric packets. It describes the kind of packets
sent periodically or on the beginning of a controller/switch attachment
(such as the ‘‘Hello’’ messages).

(B) MystifY-managed Repoxy
MystifY’s proxy intercepts the switch packets, processes them through

all connected controllers, and resends the response from the selected
controller while discarding the rest after validation. This process in-
volved three main players, the Flow-Manager (FM), ArbitratoR (AR),
and the Global-Manager (GM), as shown in Fig. 2. The FM collects the
incoming packets, passes it to the AR. The AR organizes the packets
from the different sources whether it arrives from a switch or one of
the controllers. The AR sends the packet to the GM for validation and
voting.

∙ The Flow-Manager (FM) module
The FM module handles the connections and data exchange between

the proxy’s attached switches and the replicated controllers. As we
are relying OpenFlow packets, the FM uses TCP connections for data
exchange. Upon a new switch connection, the FM assigns it a unique
connection ID as a unique network address managed by the proxy.
This module is also responsible for the connection state management.
It reports to the AR any switch detachments or disconnections. In addi-
tion, it handles the packet re-fabrication to maintain switch/controller
expectation. Incoming packets should be coming from the expected
party. As mentioned before, the proxy is a seamless layer, then all
switches treat MystifY’s proxy as a unique managing controller.

∙ The ArbitratoR (AR) module
The AR module’s main task is to handle incoming packet flow from

the FM module. Upon reception of a new packet, the AR module adds it
to the GM’s input queue pipeline. The AR module also handles packet
buffering and correction as discussed latter by the end of this section.

∙ The Global-Manager (GM) module
The GM module is an elastic component built for innovation. The

GM module encompasses many sub-modules that operate on the incom-
ing packets. The current implementation includes the ‘‘Voter’’ module,
which decides which controller’s feedback to be forwarded, and the
‘‘Rehearsal’’ module which handles the new controller porting. More
sub-modules can be easily ported to the GM module for extended
functionalities.

The GM module encompasses a secure database for the auditing and
forensic analysis. It stores short term logs for packet mismatch events

or any errors in the packet queue. The GM module uses packet arrival
time to detect mismatches. Upon packet arrival, the AR places it in the
queue for further processing, while packets in the waiting queue are
checked for timeouts.

(C) Organized replicated controller response
Given the fact that we are working with multiple controllers with

heterogeneous operational and location characteristics, their response
to the incoming packets would require explicit synchronization and
ordering. The ordering process uses the Xid as a guideline (a transaction
ID). The Xid is an identifier for all OpenFlow packets. Each controller
generates his own Xid field for all outgoing packets. Using more than
one controller world require the proxy to synchronize these values to
facilitate packet matching for further processing. The reply packets for
any switch request should contain the correct Xid value in the packets
header. Reply packets must match the Xid value of the request packets.
If a switch/controller receives a packet with an invalid/unexpected
Xid, it ends the connection immediately. Furthermore, for messages
that use the same identifier value for all packets in any message
sequence, MystifY’s proxy uses the packet types to synchronize all
Xid. It is a multistage process with multiple input/output queues. As
mentioned before, we have three main packet types, the controller-to-
switches, symmetric, and asynchronous. The last two types would not
result in a Xid synchronization issue. They are independent from any
other packets. MystifY’s proxy directly forwards these packets to the
destination with no change. Therefore, the first type is always our main
concern.

∙ Packet ordering
As we are working with multiple controllers, we need to synchronize

the packet transmission and the delivery schedule. We do not want one
controller to receive a reply for a message not yet sent by him. This can
occur if his clone running on a faster machine sent this message to the
switches before, and the reply was the switch’s response.

In this case, we consider the worst-case scenario that allow request
or reply packets of the same type to arrive spontaneously at any time.
The proxy waits for packet arrival, and then it scans the entire input
queue searching for a reply packet for this particular request. If found,
then it was sent as a response to a previous request. The proxy sends
this request packet to an output queue. If not found, then it is sent
directly to the switch with a copy staying in the output queue. Upon the
reception of a reply, it is stored in the input queue to be checked for a
matching request. If found, it is removed from the queue and forwarded
to the destination. If not, it waits for a match. The matching process is
illustrated in the next subsection.

∙ Xid Matching Process
The ordered requests and replies must be matched for further pro-

cessing. The proxy searches for matching request/reply packets based
on the type, then the proxy corrects the Xid accordingly to cause a
match.

Let us assume a ‘‘Barrier Request’’ packet is received after a ‘‘Feature
Request’’ packet. Then, a ‘‘Feature Reply’’ packet came followed by a
‘‘Barrier Reply’’ packet. As all these packets are there with no missing
packets, the proxy matches the replies, and corrects the Xid identifier of
such packets. After this packet ordering, the Xid-Synchronizer module
takes place. Then, a copy of any input request is stored in a local hash
table waiting for a matching reply, to modify its Xid identifier as the
input request Xid identifier waiting in that table.

∙ Packet Distribution
Once the matching process completes, the Xid-Synchronizer module

output queue should contain all the packets from all controllers and
switches. The wrapper module takes these packets, separates them by
based on the sender type, and send them to the appropriate destina-
tions.

(D) The voter and verifier modules ‘‘detecting misbehaviors’’
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At this stage of the implementation, the ‘‘Voter’’ module is built to
follow the FIFO concept where responses from the 1st responding con-
troller wins. Considering that, all controllers’ instances are clones from
each other, differences between these controllers’ state/configuration
can be declared as a misbehavior or anomaly situation.

Upon arrival of a new packet, the ‘‘Voter’’ module inspects the
incoming packet. All echo packets are handled by the proxy to maintain
switch controller aliveness status. Control request packets from con-
nected switches are forwarded to all attached replicas. The ‘‘Voter’’
module waits for at least two responses, and waits for the verifier
module to clear the response. The verifier module compares the re-
sponses searching for discrepancies as an indication of an intrusion.
If no discrepancies, the 1st responder feedback is sent to the requester
switch. The rest of the unchecked feedback is sent to the verifier module
to further search for potential misbehaving controllers then discarded
if no red flags are raised.

If any discrepancy is detected, the controller responsible, is to be
revoked from the pool and a report is to be sent to the administrator.
MystifY uses the shared repository to re-instantiate a new controller
to replace such misbehaving controller. The ‘‘Rehearsal’’ module will
bring that newly ported controller ‘‘up-to-speed’’ with the network
state, and then it will be allowed to connect to MystifY’s proxy and
act as a replica.

(E) The rehearsal module
This module handles the new controller porting process. Once a

new controller joins the network, MystifY needs to ensure a consistent
network state before allowing the controller to participate in network
management. This module is invoked rarely as it is much easier to
clone one of the running controllers. In this process, a containerized
controller is paused momentarily and the container is cloned with all
network state in memory.

In the case of all failed controller, or a desperate need for a fresh
controller introduction like the case of adding a new type of controllers,
the ‘‘Rehearsal’’ module is invoked. This module will allow the new
added controller to join the network in a passive mode. MystifY uses the
archived switch traffic communication to reply these messages to the
new controllers. In the current implementation, the ‘‘Reversal’’ module
is in a very early alpha release. Replying the switch feedback is not
a straightforward process. Further development will be conducting in
our sequel versions. For now, we use replicated controllers to increase
the controller pool adding more controllers to ensure safe and reliable
MystifY operation.

4.4. The shuffler module

This is a very critical component in the proposed framework. The
‘‘Shuffler’’ module is composed of two main components, the ‘‘Host
Selector’’ and the ‘‘Manipulator’’.

First, the ‘‘Host Selector’’ which selects the list of controller migra-
tion locations for MystifY migration module to operate on. The ‘‘Host
Selector’’ module follows the same protocol mainly to selects the mi-
grating locations based on the ‘‘nodes-to-controller’’ latency calculated
by the ‘‘AllocatoR’’. The goal is to minimize any added delays due
to migrations and to ensure the delay homogeneity for the workload
detouring.

Second, the ‘‘Manipulator’’ which is responsible for orchestrating
the workload migration pattern based on the real-time feedback from
the CPS application provisioned through the situation awareness mod-
ule.

The situation awareness module feeds the ‘‘Manipulator’’ module
with real-time feedback about the grid message priority. In the current
implementation, the situation awareness module is a simple program
allowing the system administrator to define the delay tolerance for
the communicating pairs within the network classified into a set of
categories. The components IP ‘‘identifier’’, class, and acceptable delay
are stored in a secure database accessible to the ‘‘Manipulator’’ module.

The system checks the incoming packet content header to determine the
category of the sending source. The ‘‘Manipulator’’ module the database
to access the list of preconfigured classified categories defining the
latency tolerance for the communicating smart grid equipment.

The situation awareness module dynamically adjusts this tolerance.
The current implementation uses a simple database-based classifica-
tion approach. In our sequel papers, we will use Machine Learning
algorithms to automatically categorize the incoming packets based on
the content. In the current implementation, upon the reception of
any ‘‘Packet-in’’ messages with a header showing the communicat-
ing host IP, the manipulator-module checks the IP against its local
database to determine the sender category and the allowable latency
tolerance. Each controller provided by the ‘‘AllocatoR’’ module comes
with a statistical information about the delay involved with its opera-
tion, ‘‘node-to-node’’ and ‘‘controller-to-controller’’. The ‘‘Manipulator’’
module priorities the feedback based on the ‘‘controller-to-controller’’
delay not to exceed the allowed delay tolerance by the transmitting
equipment class.

5. Simulation results and analysis

Smart Grid is one of the most crucial CPS application that relies on
gathering and acting on real-time information in large-scale networks
to serve millions of citizens every day. Therefore, we chose this network
to evaluate our proposed MystifY framework. For a comprehensive
evaluation, we deeply analyzed the system response from different
points-of-view, a performance-related ones, and a security-related ones.

1. Evaluate the downtime due to SDN controller migration.
2. Evaluate the down-time due to workload detouring.
3. The effect of optimal placements of SDN controller(s) within the

network.
4. Evaluate the attacker’s ability to trace the operational SDN

controller within the network.

5.1. Evaluating the controller migration impact on the grid operational
aspects

In order to evaluate the first two case perspectives, MystifY re-
lies on PYGRID framework to simulate an SDN-enabled Smart Grid.
PYGRID was introduced as a complete software development and as-
sessment framework for grid-aware software defined networking based
on Python [64]. Additionally, it uses various Python scripts to construct
grid traffic and routes between the emulated power components.

In this paper, our simulation scenarios are conducted using IEEE
24-Bus power system to demonstrate the effectiveness and potent of
the whole proposed MystifY solution. PYGRID simulator analogizes the
IEEE 24-Bus system into a total of twenty-four emulated virtual hosts.

Fig. 4 illustrates the overall system architecture porting of PAFR,
Repoxy, and PYGRID frameworks. It addition, it shows the repre-
sented twenty-four emulated virtual host, its connections, and the
detailed configuration of TCP/IP layers. Our simulation scenario uses
eight ‘‘Docker’’ stations to represent controller migration tier. Each
‘‘Docker’’ station hosts an SDN container with the following specifica-
tions; Ubuntu 14.04, Mininet 2.1.0, and POX 0.1.0 SDN controller.

Further, the new emulated IEEE 24-Bus network is splitted into four
areas, each area is managed by a single virtual switch. Therefore, Mys-
tifY’s proxy is the middle tier of the new architecture model detouring
workload between four SDN controllers and connecting them to the
infrastructure emulated hosts. MystifY’s proxy handler is configured to
listen on TCP port ‘‘6633’’ to accept the control data from down-layered
virtual switches.

(A) Evaluating the down-time due to SDN controller mobility
The main goal of this scenario is to demonstrate the migration down

time impact on the grid. In this scenario, we managed to migrate one
of the selected controllers ‘‘controller ID 3, 192.168.100.3’’ to ‘‘Docker’’
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Fig. 4. PYGRID simulation scenario.

Fig. 5. HMI for virtual switch 3 operational status.

station number ‘‘6’’. As shown in Fig. 4, for about ‘‘0.5 s’’, virtual switch
3 was operationally down. Once the migration process is completed,
MystifY managed to bring the controller online again and virtual switch
‘‘3’’ was a live again. Fig. 5 demonstrates the HMI interface for this
switch status during the migration process.

Additionally, Fig. 6 illustrates virtual switch ‘‘3’’ OpenFlow received
traffic during the experiment duration time. Fig. 7 represents the
stored power traffic in PYGRID SQL database in real-time. The resulted
PYGRID data matches IEEE 24-Bus standard specification data shown
Table 1. These data emphasize our contribution, MystifY managed to
bring a new SDN controller to the PYGRID network again in real time.

Then, PYGRID called the appropriate script and adopted the network
again to the standard specifications.

(B) Evaluate the down-time due to workload detouring

In order to compensate the down time due to controller live mi-
gration, we used the MystifY-managed proxy’s ability to detour the
workload between running controllers to avoid using the migrating
controller during migration time. Fig. 8, showed that with MystifY
integrated framework, we managed to achieve a zero downtime for
controller migration resulting in enhanced security with no impact on
the performance.

214

m 
s 
l/l 

I 

~ 
:r: 

r---------------------------------------------1 

' ' ' ' Docker 1 ~~,J<~r:.~ D_?;k tr}~ Docker 4 ~qc.Mc 2 Docjer 6 ~g~ls..e.r J Docker 8 

1.2 
1.0 
0.8 
0.6 
0.4 
0.2 
0.0 

-0.2 

- ~--:; ~--:; , [)--:; [)--:; ~ , ~ --
0 0 , D / Q O I 

~ ~ : ~ . ~ 
' ' 

-- ~ ---
·•·;••··· 

.-i 

LI) 
.-i 

Handler 

10.0.10.101,663\i 10.0.10~ 03,6633 

\ : ------ -----------------, ,.__ I I 

! 
I 

' 

i~, 
10.0.10.9 ... rn 

10.0.1 ~, 104:6633 

\ 
\ 

\ 
\ 
\ 
\ 

\ 
\ 
\ 
\ 

\ 

IEEE 24-Bus System 

···t ··· --~--- ·•···· • ··· ····· • ·· 

r-­
<.D 
.-i 

... . ... ...... .... .. ...... .. . . . . 

.-i 

00 
.-i 

LI) 

0) 
.-i 

Virtual switch 3 "off" sensor 
status during migration 

N 
.-i 
N 

CJ'! 
.-i 
N 

.-i 

N 
N 

,~.0.10.102.6633 
\ 
\ 
I 

oq 
N 
N 

N 

m 
N 

~ ' 0.10.18 



M. Azab, M. Samir and E. Samir Computer Communications 189 (2022) 205–220

Fig. 6. Virtual switch 3 control data traffic.

Fig. 7. HMI power traffic distribution.

Fig. 8. MystifY proxy module evaluation.

Table 1
EEE 24-Bus power data specifications.

Branch Power (MW) Branch Power (MW)

Bus 1–2 11.94 Bus 11–13 −86.15
Bus 1–3 −7.97 Bus 11–14 −171.77
Bus 1–5 60.03 Bus 12–13 −60.51
Bus 2–4 38.44 Bus 12–23 −227.70
Bus 2–6 48.50 Bus 13–23 −225.30
Bus 3–9 22.90 Bus 14–16 −367.55
Bus 3–24 −211.21 Bus 15–16 112.30
Bus 4–9 −36.15 Bus 15–21 −214.92
Bus 5–10 −11.71 Bus 15–24 215.54
Bus 6–10 −88.59 Bus 16–17 −322.68
Bus 7–8 115.00 Bus 16–19 115.08
Bus 8–9 −36.92 Bus 17–18 −186.94
Bus 8–10 −21.19 Bus 17–22 −139.09
Bus 9–11 −105.92 Bus 18–21 −60.29
Bus 9–12 −120.47 Bus 19–20 −33.17
Bus 10–11 −151.18 Bus 20–23 −97.29
Bus 10–12 −166.74 Bus 21–22 −156.46

Table 2
Sample data for three GSP nodes.

Substation Network Ref. ID Substation number Latitude Longitude

Aberthaw power station 245414 510 049 51.3882 −3.4026
Abham S.G.P. 136 306 004 50.4718 −3.7319
Alverdiscott S.G.P. 132 206 001 51.0059 −4.1371

5.2. Evaluate the effect of optimal placements of SDN controllers on the
network operational aspects

In this paper, we exploited the Western Power Distribution (WPD),
UK Grid Supply Points (GSP) network capacity map [65] to simulate a
simple real mini-grid network topology, as shown in Fig. 9. The selected
topology map is analogized as a forty-eight nodes representing all
substations. It is important to note that, we assumed the connections be-
tween these nodes according to the network capacity and coordinates.
Table 2 shows a sample data for three GSP nodes
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Fig. 9. UK GSP network capacity map.

Table 3
IEEE1646 standard service characteristics.

Speed Application Latency

Very high Streaming VT and CT samples <2 ms
High Event notification 2∼10 ms
Medium Non-critical information 10∼100 ms
Low External message delivery >100 ms

Further, in the energy industry, IEEE1646 international standard
[66] defines the standard communication delivery time and perfor-
mance requirements for the electric power substation automation
process. Table 3 presents the standard industrial measurements and
latency values for IEEE1646. Therefore, it is very important to get the
magnitude of the CPP solution results in relevance to such characteris-
tics, with help of the ‘‘Manipulator’’ module.

Consequently, in this paper, the ‘‘AllocatoR’’ Module is developed to
import our grid topology and compute the performance latency metrics.
Hence, it determines the best locations to host the SDN controller(s)
(optimal and alternative locations) according to the CPP calculations
results. In this phase, we rely on ‘‘Haversine’’ formula [67] to calculate
the geometric distances between the network nodes.

In addition, we managed to use the ‘‘random-to-optimal’’ ratio tech-
nique in order to determine the optimal number of SDN controller(s)
required to serve the network giving the best latency results. For
example, in case of an average latency between ‘‘nodes-to-controller’’,
as shown in Fig. 10(a), five distributed SDN controller(s) are enough
to serve the network needs, and there will be no much latency im-
provement when adding any other of SDN controller(s) to the network.
However, in case of ‘‘controller-to-controller’’, as shown in Fig. 10(b),
four distributed SDN controller(s) are enough to serve the network
needs in this case.

As a conclusion, the best number of K controllers are either four
or five in the studied grid. However, to avoid long simulation time, we
intended to use 𝐾 = 4 as the best number of controllers used by MystifY
modules. Table 4, shows the calculated latency values for each of the
studied metrics in case of selecting only four SDN controllers.

In this paper, we calculated the performance latency metrics by
determining the distances in ‘‘Km’’ between the selected controllers
and the surrounding nodes in the network grid. Knowing the direct
relation between the latency in ‘‘Sec’’ and the distance in ‘‘Km’’ between

Fig. 10(a). Random-to-optimal ratio for average latency ‘‘nodes-to-controller’’.

Fig. 10(b). Random-to-optimal ratio for worst latency ‘‘controller-to-controller’’.

Table 4
Calculated latencies for the selected controllers in the studied metrics (Km)

Metric Optimal selection Alt. 1 Alt. 2 Alt. 3 Alt. 4

Latency between ‘‘nodes-to-controller’’
Average latency 30.2603 30.6971 32.3708 34.1350 35.7861
Worst latency 71.4203 73.5955 75.1903 76.6583 97.0680
Latency between ‘‘controller-to-controller’’
Average latency 30.2603 30.6971 32.3708 34.1350 35.7861
Worst latency 200.7620 240.908 251.1744 297.2675 340.4054

the nodes, we could calculate the latency according to the used trans-
mission media. Therefore, we used the distance as a latency indicator
through the rest of the paper.

In order to evaluate the selection of the alternative locations for
each SDN controller at certain area, the Cumulative Distribution Func-
tion (CDF) studies are done for all applied CPP metrics. As shown in Fig.
11, the CDF demonstrates all the available placements for each selected
controller at certain area. The curves show that, all possible locations
for the selected controllers are placed at the lower end. In addition,
it demonstrates that how the selection of alternative placements far
from the optimal ones will influence the system’s performance and
increase the traffic latency. In case of ‘‘nodes-to-controller’’ latency, the
variation occurred within the CDF curves seems to be minuscule, as
depicted in Figs. 11(a), and 11(b). The reason beyond that, is due to
selecting alternative controllers relatively close to those selected in the
optimal case, resulting in slight variations in the latency values.

However, in case of the latency calculations in the other two metrics
for the ‘‘controller-to-controller’’ latency case, a significant change
occurs in the calculated CDF curves, as depicted in Figs. 11(c) and
11(d). The huge shift found in the CDF curves is due to the fact that the
distance between the selected controllers increased significantly after
excluding the selected ones from the pool, leading to a huge increase
in the calculated latencies between them.

In addition, In order to determine the alternative controller loca-
tions for runtime migration, we repeated the same calculations again
for the studied four metrics excluding the previously selected ones from
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Fig. 11(a). CDF vs. distance for ‘‘nodes-to-controller’’ average latency.

Fig. 11(b). CDF vs. distance for the ‘‘nodes-to-controller’’ worst latency.

Fig. 11(c). CDF vs. distance for the ‘‘controller-to-controller’’ average latency.

the potential selection pool. In order to expand the shuffler’s abilities,
we determined extra four alternative controllers for random shuffling.
Table 4, shows the calculated latencies for the selected extra alternative
controllers for each of the four studied latency metrics.

Despite the performance reduction occurred due to exploiting other
controllers aside the optimal ones, they will be exploited in the pro-
posed system. Further, it worth noting that there is a tradeoff between
the system’s performance and its security. Therefore, it is important to
use only controllers with the optimal locations from the perspective of
the studied metrics. The next section briefly demonstrates the system’s
security evaluation after applying shuffling technique between the
selected controllers is described briefly.

5.3. Evaluating the attacker’s ability to trace the active SDN controllers

Using the ‘‘AllocatoR’’ module selections, the ‘‘Shuffler’’ module
uses the selected alternative controllers to begin the shuffling effect.

Fig. 11(d). CDF vs. distance for ‘‘controller-to-controller’’ worst latency.

We anticipate that applying a random shuffling mechanism will in-
duce enough confusion for the attacker complicating the controller
operations to be traced.

Our assumption is that attackers will take a considerable amount
of time to allocate the SDN controller, search for vulnerabilities, and
to coordinate the attack tools targeting specific host or controller
vulnerability. The goal is to win the race by migrating the controllers
or the workload before discovering them by the attacker.

In this section, we defined a new term called the Exposure Factor
(EF) as an indicator for the system’s security. This factor reflects the
progress of the attacker exposing the system changes. We described the
EF term as the ratio between the simultaneous changes of the network’s
selected controller versus the discovered ones by the attacker.

In Section 3, we assumed that, after a while the attacker might
be able to access one or more controllers and manage to manipulate
their behavior. Furthermore, we argued that it might take MystifY, a
while to realize the controller misbehavior. As demonstrated before,
the ‘‘Shuffler’’ module selects random controllers from the controller’s
selection poll and start shuffling between them randomly. Therefore,
the system alternates between the network controllers at different time
stamps.

To determine the EF, From MystifY’s perspective, according to
the ‘‘AllocatoR’’ module selections (determined in Section 5.2), the
‘‘Shuffler’’ applies a random shuffling mechanism to use the selected al-
ternative controllers. To calculate/measure it, the alternation between
the selected controllers was tracked, logged, and accumulated during
the simulation.

The shuffler is triggered once we realize that the controller mis-
behavior/malfunction. For example, the experimental testbed in Sec-
tion 5.1, shows that switch 3 was down, and hence its connected live
controller was down. We managed to run this scenario randomly to
the 4 connected switches. In addition, a simple type of DoS attack
(explained in Ref. [8]) is applied to PYGRID emulated network (Mystify
down layer) to target any of these switches. Then, we monitored and
tracked the running controller during the simulation time. Therefore,
MystifY framework is able to detect the DoS attack, or any kind of
attack targets the host controller itself.

Fig. 12 shows the obtained EF change over time for each of the
studied metrics alone. Although, the ‘‘Shuffler’’ module selects random
controllers at each time stamp, the attacker could successfully predict
multiple controllers from them. However, the continuous shuffling
immures the attacker abilities to predict the selected controllers and
manipulate the system.

Moreover, we demonstrated that the system could be more compli-
cated and increase the attacker’s confusion, when the shuffling mecha-
nism becomes more system aware. Increasing its awareness can occur
by determining the possible metrics that could be used during sending
the data based on the maximum latency threshold. This means that,
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Fig. 12(a). EF over time targeting average latency metric for the ‘‘nodes-to-controller’’.

Fig. 12(b). EF over time targeting worst latency metric for the ‘‘nodes-to-controller’’.

Fig. 12(c). EF over time targeting average latency metric for the ‘‘controller-to-
controller’’.

based on the transmission latency threshold more than one metric could
be used. Therefore, MystifY’s ‘‘Shuffler’’ could have a multidimensional
shuffling mechanism. Therefore, the ‘‘Shuffler’’ module could select the
controllers from the averaged metrics instead of only one.

Fig. 13, demonstrates the EF after taking into consideration the
multi-objective metrics. We assumed that the data supposed to be
transmit, should maintain a latency value that does not exceed a ‘‘300
km’’ distance. Therefore, the system could select any controller(s) from
the selection poll for any of the studied four metrics. As a consequence,
the EF is significantly enhanced, as depicted in Fig. 12.

Fig. 12(d). EF over time targeting worst latency metric for ‘‘controller-and-controller’’.

Fig. 13. EF over time for multi-objective metrics mechanism.

6. Conclusions

In this paper, we presented MystifY, a novel Moving-Target Defense
(MTD) approach to secure the network infrastructure of mission critical
Software Defined Cyber–Physical System (SD-CPS). MystifY secures the
Software Defined Network (SDN) controller by inducing spatiotemporal
diversification to obscure the controller operation from the attacker
reach. In Space, MystifY enables a controller live migration to avoid
host-based attacks. In time, MystifY enables a multi-controller man-
agement of same network set to achieve runtime workload detouring
among multiple controllers, and control misbehavior detection. For
evaluations, we exploited Smart Grids as a case study for a crucial
application in CPS systems. We integrated MystifY with a novel SDN-
enabled Smart Grid simulator (PYGRID) to investigate the effectiveness
and efficiency of the proposed system. Our extensive results showed
the positive influence of MystifY, securing the SD-CPS network infras-
tructure with no impact on the SD-CPS performance. Our future work
includes employing Machine Learning algorithms to further enhance
the situation awareness of the MystifY components of the internals of
the targeted application.
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