5,759 research outputs found

    Big Data in Critical Infrastructures Security Monitoring: Challenges and Opportunities

    Full text link
    Critical Infrastructures (CIs), such as smart power grids, transport systems, and financial infrastructures, are more and more vulnerable to cyber threats, due to the adoption of commodity computing facilities. Despite the use of several monitoring tools, recent attacks have proven that current defensive mechanisms for CIs are not effective enough against most advanced threats. In this paper we explore the idea of a framework leveraging multiple data sources to improve protection capabilities of CIs. Challenges and opportunities are discussed along three main research directions: i) use of distinct and heterogeneous data sources, ii) monitoring with adaptive granularity, and iii) attack modeling and runtime combination of multiple data analysis techniques.Comment: EDCC-2014, BIG4CIP-201

    Exploring hypotheses in attitude control fault diagnosis

    Get PDF
    A system which analyzes telemetry and evaluates hypotheses to explain any anomalies that are observed is described. Results achieved from a sample set of failure cases are presented, followed by a brief discussion of the benefits derived from this approach

    Online Fault Classification in HPC Systems through Machine Learning

    Full text link
    As High-Performance Computing (HPC) systems strive towards the exascale goal, studies suggest that they will experience excessive failure rates. For this reason, detecting and classifying faults in HPC systems as they occur and initiating corrective actions before they can transform into failures will be essential for continued operation. In this paper, we propose a fault classification method for HPC systems based on machine learning that has been designed specifically to operate with live streamed data. We cast the problem and its solution within realistic operating constraints of online use. Our results show that almost perfect classification accuracy can be reached for different fault types with low computational overhead and minimal delay. We have based our study on a local dataset, which we make publicly available, that was acquired by injecting faults to an in-house experimental HPC system.Comment: Accepted for publication at the Euro-Par 2019 conferenc

    Robustness-Driven Resilience Evaluation of Self-Adaptive Software Systems

    Get PDF
    An increasingly important requirement for certain classes of software-intensive systems is the ability to self-adapt their structure and behavior at run-time when reacting to changes that may occur to the system, its environment, or its goals. A major challenge related to self-adaptive software systems is the ability to provide assurances of their resilience when facing changes. Since in these systems, the components that act as controllers of a target system incorporate highly complex software, there is the need to analyze the impact that controller failures might have on the services delivered by the system. In this paper, we present a novel approach for evaluating the resilience of self-adaptive software systems by applying robustness testing techniques to the controller to uncover failures that can affect system resilience. The approach for evaluating resilience, which is based on probabilistic model checking, quantifies the probability of satisfaction of system properties when the target system is subject to controller failures. The feasibility of the proposed approach is evaluated in the context of an industrial middleware system used to monitor and manage highly populated networks of devices, which was implemented using the Rainbow framework for architecture-based self-adaptation

    Exploring Anomaly Detection in Systems of Systems

    Get PDF

    Multi-Layer Anomaly Detection in Complex Dynamic Critical Systems

    Get PDF
    • …
    corecore