
Multi-Layer Anomaly Detection in Complex

Dynamic Critical Systems

Tommaso Zoppi

Department of Mathematics and Informatics

University of Florence

Viale Morgagni 65, Florence, Italy

tommaso.zoppi@unifi.it

Abstract— Revealing anomalies to support error detection in

complex systems is a promising approach when traditional

detection mechanisms (i.e., based on event logs, probes and

heartbeats) are considered inadequate or not applicable:

anomalies in data usually suggest significant, and also critical,

actionable information in a wide variety of application domains.

The detection capability of such complex system can be

enhanced observing different layers and indicators to achieve

richer information that describe the system status. The paper

describes the context and the state of the art in association with

the current research direction of the author with the aim to

highlight the challenges and the future works that the student

aims to perform in the next years.

Keywords—anomaly detection, error detection, monitoring,

fault injection, SOA, Secure!

I. INTRODUCTION

Large-scale software systems as for example Service
Oriented Architectures (SOAs) or cyber-physical
infrastructures in general are composed of several different
components, software layers and services. These systems are
characterized by a dynamic and evolutionary behavior, which
leads to changes in part of the system, as well as their services
and connections. Recent trends show the increasing
introduction in these systems of safety-critical requirements,
as for example in crisis management systems where rescue
personnel on-the-field is remotely guided [1]. To deploy
monitoring solutions of the system and its services to timely
detect failures we must consider the complexity of software
and of the dynamic and evolutionary behavior of the whole
system, make the definition and instrumentation of a
monitoring solution an open challenge [2].

The complexity of the code, the management and the
evolution of their services, make these systems exposed to
residual software faults. The activation of that faults can result
in failures and services downtime which ultimately may lead to
huge safety violations, financial losses and consumer
dissatisfaction, so it is very important to continuously check
the services’ status. The dynamic and evolutionary
characteristics of these systems call for monitoring solutions
which are as much independent as possible from the services
running on the application layer, in order to not: i) require
information on the services, ii) need to instrument the services

with monitoring probes, iii) be forced to reconfigure the
monitor each time services are updated, added or removed.

In this paper we focus on anomaly detection, which refers
to the problem of finding patterns in data that do not conform
to the expected trend. Such patterns are changes in the
observed indicators characterizing the behavior of the system
caused by specific and non-random factors i.e., pattern
changes can be due to a system overload, or to the activation
of faults. Anomaly detectors may be able to infer the status of
a service without directly observing it, but observing the
"surroundings", or rather the lower abstraction levels we chose
to instrument. This has been proven relevant and useful for
dynamic software and systems which are subject to frequent
changes or when the instrumentation with probes of the target
services is not allowed (e.g. the source code is not available)
or unfeasible.

The paper is organized as follows. Section II presents the
background and related work, Section III highlights our
research contribution, the structure of the examined
framework and the related open challenges while in Section
IV we describe a case study in which we applied our anomaly
detector. Finally, Section V summarizes some key aspects and
defines the future works.

II. BACKGROUND AND RELATED WORK

Several approaches can be identified in the state of the art
for anomaly detection in complex systems. For example, in [3]
the authors summarize some useful techniques – especially
based on statistical and clustering algorithms – aimed to reveal
anomalies in distributed wireless sensor networks, while in [4]
the authors describe how this approach is useful for intrusion
detection purposes in cloud systems. Anyway, all the anomaly
detection techniques need information on the system behavior,
obtained by monitoring the system during its operational life.
This technology is widely used in many kinds of software:
Web services and SOA monitoring is executed in parallel with
the normal executing processes without interrupting them.

Regarding our purposes, it is also interesting to highlight
some recent works related to the observation of different
specific abstraction levels of a complex system. In [5] we can
observe that the authors tried to summarize what abstraction
levels can be monitored in a generic cloud system, depending
on the characteristics of that system (SaaS, PaaS, IaaS). The

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Florence Research

https://core.ac.uk/display/301570081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

work in [6] focus the attention on a configurable detection
framework aimed to reveal anomalies in the Operating System
(OS) behavior: the detector is based on online statistical
analysis techniques, and it is designed for systems that operate
under variable and non-stationary conditions. The framework
is evaluated in order to detect the activation of software faults
in a distributed system for Air Traffic Management (ATM).

To remark the utility and the wider applicability of this
approach we can see that also in different application contexts,
like the optimization of business processes [7], different
abstraction layers can be observed to reach different goals
based on the granularity of the patterns that we can use for
recognize specific situations.

As abovementioned, monitoring a system gives the
opportunity to understand the behaviour of the observed
components when a specific activity was executed. However,
since we are interested in detecting anomalies due to software
errors, we need to understand how those components react
when an error is activated in the system. One way to support
and speedup that “error observation” consists in deliberately
insert the chosen fault in the monitored system, with the aim to
observe its reaction: this is a well-known process that is called
fault injection [8]. With this technique, we become able to
observe the reaction of the system when a fault is injected at
specific abstraction level as defined in the fault library.

III. CONTRIBUTION AND CHALLENGES

The novelty of our approach consists in shifting the
observation perspective from the services at the application
layer to the underlying layers; currently we are considering the
middleware or Application Server (AS hereafter) and the
Operating System (OS hereafter). Updating the requirements
in this way allows to: i) get monitored data from different (but
not independent) abstraction levels; ii) observe systems in
which Off-The-Shelf components are running at the
application layer and, mainly, iii) build a monitoring structure
with an high level of flexibility with respect to the services
that are executed at the application layer.

All these characteristics make this solution very suitable in
contexts like SOAs, in which a lot of different services are
executed on a set of server machines that can also share the
lower abstraction levels, as well as distribute FileSystem, or
cloud environments.

A. The Framework

As described before, the anomaly detector needs a
monitoring structure that retrieves data from the target system.
As we can see in Fig. 1, the retrieved data is separately
processed by different instances of the detection algorithm,
whose results are collected and weighted by the voting
function. Once an anomaly is found in the examined
observation set, an alarm is thrown to a module (the operating
center) that is in charge to perform the appropriate actions to
face up the suspicious situation. These modules – monitor,
detector and operating center – are the main components of a
framework that could be installed on all the systems that needs
of an additional control of their behavior. Suppose you have a
server farm in which the malfunction of one machine

influences the entire system. Installing the framework on the
servers could help to detect malfunctions on each machine,
protecting the other servers from its imminent failure.

An important role is played from the tuning process of all
parameters that characterizes that framework: depending on
the context, some OS and AS attributes are more relevant than
others, and the reaction policies must be calibrated based on
the requirements of the target system. During the setup phase
of the framework, an observation of the behavior of the
system must be performed to define i) the set of monitored
attributes, ii) the detection function parameters and iii) the
choice of the reaction strategies implemented in the operating
center. This framework is designed to work independently
with respect to the applications or the services that are running
in the target system, with a lot of advantages in terms of
adaptability and wider applicability. Anyway this generality
leads us to some difficulties mainly related to the choice of the
parameters to observe or the type of detection function to use.
We must conclude that a tuning phase is requested in each
installation of the framework, to tailor the parameters on the
specific system to improve the effectiveness of the system.

B. Performance Improving Challenges

The main challenges related to this approach are essentially
linked to i) study the context with the aim to discover the most
frequent (or dangerous) errors that can affect the target
system, and ii) understand which set of indicators - coming
both from the OS and the AS - is more useful than others to
perform the detection of the anomalies produced by those
errors. This utility is strongly affected by the choice of the
fault model (defined with the support of the studies at i)),
which summarizes the types of errors we want to detect: i.e.,
monitor the HTTP traffic is probably less useful than tracing
RAM usage if you want to recognize a memory overload. The
fault model must be built according both to the vulnerabilities
of the system and the likelihood of the faults that can affect
the context; we can think about errors due to hardware faults,
human mistakes, external/internal attackers, software bugs.

Once the set of monitored attributes is defined, the data is
processed by the detection algorithm. This algorithm has to
work in a dynamic context, in which a lot of different
applications can be used; because of this, all the techniques
that are built to work in semi-static scenario (i.e., some types
of algorithm based on pattern recognition) do not fit with our
context. As we shall see in the next section, for our first
experiments we chose a statistical detection strategy that rise
alerts when an observation is out of an expected range built
dynamically depending on the last collected observations and

Fig. 1. Main components of the monitoring framework

not from some static data or patterns. All the parameters of the
chosen algorithm, in addition to the monitored attributes, need
to be tuned to guarantee the maximum efficiency of the
anomaly detection process. Fault injection experiments should
be conducted with the aim to collect a lot of data series that
can be used as input values of a parameter optimization
process that we can summarize as follows.

Let f : <Ma, Ap, V> → fd be a function that builds
detection functions based on three input sets where Ma
represents the set of monitored indicators, Ap denotes the set
of parameters of the detection algorithm and V points to the
voting strategy. The output is a function fd : Oi → Ar that
takes an observation (Oi) at the time instant i of the entire set
of the monitored indicators and signals an anomaly rate value
– Ar– that indicates if an anomaly is suspected for this specific
input. Using the data collected with the abovementioned
experiments, our objective is to find the fd function - or rather,
the triple <Ma, Ap, V> - that minimizes the number of false
alarms raised by the process (both false positives/negatives).
As we can see, this process cannot have a unique resulting
function for all systems in which the framework is going to
work because the f function inputs, especially Ma and Ap, are
strongly influenced by the context.

Last, every system must implement the primitives that
allow the operating center to react in a crisis situation, to take
back the system in a proper (not anomalous) state when the
detector signals an alteration from the expected behavior.

IV. THE SECURE! CASE STUDY

The Secure! Framework, which is being developed in the
context of the Secure! Project [10], is a novel Decision
Support System (DSS) for crisis and emergency management.
It exploits information retrieved from a large quantity and
several types of sensors, including crowd sensing, in order to
detect critical situations and perform the corresponding
reaction. Users will have the opportunity to interact with the
Secure! framework using their mobile devices to provide and
receive information about real events or dangerous situations
in which they could be involved. Secure! should also be able
to detect critical situations before they happen analyzing real
events provided by the social media and correlating them with
historical data and events incoming from other sources.

A. The Secure! Framework

The system is organized as a SOA structure and basically
divided into four distinct levels each of them comprises
logical components and services based on the input data
coming from different sources (social media, web sites,
mobile devices …). Starting from the bottom level, data are
received, collected, homogenized, correlated and aggregated
in order to produce the Secure! situation.

The services running on the Secure! system have different
ownerships and authorships, and may incur in frequent
updates and removal, or even new services may be introduced
(i.e., addition of another input processing technique), together
with modification to their orchestration. Thus, while
instrumenting with probes and monitoring each service is
unfeasible, the opportunity to observe the underlying layers

(AS and OS) is offered and a more accurate detection of errors
become available thanks to the combined usage of AS and OS
monitoring. We can also notice that the services are running
on a heterogeneous set of virtual machines that have the same
type of OS and AS, although with different settings and
computational ability. However, all of these machines share
the requirement to process the data in a proper way, because
of the criticality of the tasks needed in this DSS.

B. Anomaly detection solution for the Secure! system

Because of this necessity to carefully control the behavior
of each virtual node, we install a basic version of the
framework on the machines, in which a prototype of Secure!
was already running. Due to the dynamicity of the Secure!
scenario, we chose a statistical detection algorithm (Statistical
Prediction and Safety Margin, SPS [11]) that every time the
monitor collects information about the value of a set of
indicators, executes a prediction calculation aimed to identify
an interval in which each of the observed values must fall.
Following the structure in Fig 1, if the observed value is out of
this range, an anomaly is suspected for such indicator and a
notification is thrown to the voting module. The voter
executes a simple sum of the notifications that come from the
instantiation of SPS for each indicator, and raises an alarm to
the operating center if a static threshold value is reached.

Another important element we must define in order to
adapt the anomaly detection process to the scenario is the set
of faults that could involve the system under observation (e.g.
external attacks, software bugs …). Our main interest in this
study was to understand the impact that software bugs (e.g.,
programmer errors) located in the source code of the
applications might have on the entire node. In [9] the authors,
after examined some real case studies, summarized the most
frequent software bugs that can affect a code; this collection of
results perfectly fits with our requests because of the
generality of the listed faults, so we adapted it as our fault
model.

C. Assessment of the Anomaly Detection Solution

Once defined the fault model, a testbed [12] was built in
order to conduct assessment experiments based on fault
injection aimed to collect a huge amount of data related to the
behavior of the indicators when a fault is activated in the
Secure! prototype. As described in [12], the monitor is able to
collect data related to 50 different indicators, coming both
from OS and AS. With an analysis of the data collected with
the support of the testbed we were able to reduce this starting
set applying the SPS algorithm to the experiment traces. The
aim is to tune the parameters (essentially 6, as shown in [11])
of the statistical detection algorithm with a kind of supervised
learning process based both on the traces and on the
information about the faults we injected in each experiment.

The output of that process is an fd function that was
tailored to the Secure! prototype from such tuning process in
which the Ma set is composed from 20 AS indicators and 9
OS ones, Ap is a set of 29 sextuples (that represents the more
performing instantiation of SPS for a specific single indicator)
and V is a simple sum function.

D. Implementation of the Testbed

In Fig. 2 we depict the structure of our testbed. In the
bottom we can notice the modules owned by the target system,
that is a virtual node equipped with Linux CentOS 6 and
Apache Tomcat 7.0.40 as middleware layer above which a
prototype of the Secure! system is running. Probes were
installed with the aim to retrieve data from OS and AS and
send them to the system monitor, which is located in another
machine that we use to run experiments. On this machine a
storage module called DataLogger is invoked by the monitor
once the experiment is finished in order to aggregate, filter
and finally store the collected data into a MySQL database.

Experiments were conducted with the support of two
modules: the Workload Generator, that builds an XML
workload file based on configurable user settings, and a Fault
Injector, that is able to perform a compile-time injection of the
faults summarized in [9] giving the possibility to dynamically
activate a subset of them depending on the experiment needs.
The injector, that is actually available on our company for
research purposes, is able to process any Java source in order
to identify all the possible injection points and change the
chosen parts of the code in which a fault is going to inject.

Each experiment is conducted in the following way: first
we decide the fault set that we want to activate, then a
workload is built and executed on the target system, in which
a modified version of the Secure! system is running. During
this process, probes retrieve data both from OS and AS and
send it to the experiment machine through system pipe; data is
collected, aggregated and stored in a database at the end of the
execution of the chosen workload.

V. CONCLUSIONS AND FUTURE WORKS

The installation and the utilization of a first version of our
framework in a context like Secure! gave us the opportunity to
test our idea in a real context with critical requirements.
Results of the efficiency of the implementation described in
section IV.B are currently in a finalization and summarization
phase, and will be presented soon to the community.

Just to give a brief idea of these outcomes, we observed
that in a lot of cases the activation of the faults defined in [9]
do not have effects that significantly change the trend of the
observed variables. To limit this problem, we tried to update
the parameters of the detection algorithm to obtain a higher
sensibility and detect also the little variations. This approach
gave us a higher number of false alarms, so further analysis
aimed to find a sensitiveness tradeoff are under investigation.

Future works we want to perform are aimed to understand
the potential, the limits and the range of applicability of this
cross-level anomaly detection: what are the most fitting
detection algorithms, the metrics that notify fewer false alarms,
the abstraction levels that give more accurate information than
others and especially the evaluation of the effective support
that this techniques give to the safety of the systems in exam.
These studies will be also useful in order to automatize as best
as we can the installation and tuning process of our framework,
to deploy a tool that can be installed on a wide set of systems
with default settings and high personalization capabilities.

 To improve the effectiveness of the anomaly detection
framework we also have to investigate different types of
critical systems to understand all the possible relationships
between them: for example, if an indicator (related to memory
utilization, CPU consumption …) is useful in a lot of examined
systems or if a voting strategy have very good performances in
terms of effectiveness optimization of the detection process,
probably might be included in the base setup of the framework.

ACKNOWLEDGMENT

This work has been partially supported by the European
Project FP7-PEOPLE-2013-IRSES DEVASSES, the Regional
Project POR-CREO 2007-2013 Secure!, and the TENACE
PRIN Project (n. 20103P34XC) funded by the Italian Ministry
of Education, University and Research.

REFERENCES

[1] S. B. Eom, S. M. Lee, E.B. Kim, and C. Somarajan, "A survey of
decision support system applications," Journal of the Operational
Research Society, pp. 109-120, 1998.

[2] A. Bovenzi, F. Brancati, S. Russo, A. Bondavalli, “An OS-level
Framework for Anomaly Detection in Complex Software Systems”,
IEEE Transactions on Dependable and Secure Computing, (in press).

[3] Xie, Miao, et al. "Anomaly detection in wireless sensor networks: A
survey." Journal of Network and Comp. Applications 34.4 (2011): 1302-
1325.

[4] Modi, Chirag, et al. "A survey of intrusion detection techniques in
Cloud." Journal of Network and Comp. Applications 36.1 (2013): 42-57.

[5] Spring, Jonathan. "Monitoring cloud computing by layer, part 1."
Security & Privacy, IEEE 9.2 (2011): 66-68.

[6] A. Bovenzi, S. Russo, F. Brancati, A. Bondavalli, "Towards identifying
OS-level anomalies to detect application software failures," IEEE Int.
Workshop on Measurements and Networking (M&N), pp. 71-76, 2011.

[7] Schumm, David, Gregor Latuske, and Frank Leymann. "State
Propagation for Business Process Monitoring." Proceedings of the 19th
European Conference on. 2011.

[8] Hsueh, Mei-Chen, Timothy K. Tsai, and Ravishankar K. Iyer. "Fault
injection techniques and tools." Computer 30.4 (1997): 75-82.

[9] Duraes, Joao A., and Henrique S. Madeira. "Emulation of software
faults: a field data study and a practical approach. "Software
Engineering, IEEE Transactions on 32.11 (2006): 849-867.

[10] Secure! Project, http://secure.eng.it/.

[11] Bondavalli, Andrea, Francesco Brancati, and Andrea Ceccarelli. "Safe
estimation of time uncertainty of local clocks."Precision Clock
Synchronization for Measurement, Control and Communication, 2009.
ISPCS 2009. International Symposium on. IEEE, 2009.

[12] Ceccarelli, Andrea, et al. "A Testbed for Evaluating Anomaly Detection
Monitors Through Fault Injection." Object/Component/Service-Oriented
Real-Time Distributed Computing (ISORC), 2014 IEEE 17th
International Symposium on. IEEE, 2014.

Fig. 2. Implementation of the testbed [12]

http://secure.eng.it/

