
Multi-Layer Anomaly Detection in Complex 

Dynamic Critical Systems  

Tommaso Zoppi 

Department of Mathematics and Informatics 

University of Florence 

Viale Morgagni 65, Florence, Italy 

tommaso.zoppi@unifi.it 

 

 
Abstract— Revealing anomalies to support error detection in 

complex systems is a promising approach when traditional 

detection mechanisms (i.e., based on event logs, probes and 

heartbeats) are considered inadequate or not applicable:  

anomalies in data usually suggest significant, and also critical, 

actionable information in a wide variety of application domains. 

The  detection  capability  of  such  complex  system  can  be  

enhanced  observing different layers and indicators to achieve 

richer information that describe the system status. The paper 

describes the context and the state of the art in association with 

the current research direction of the author with the aim to 

highlight the challenges and the future works that the student 

aims to perform in the next years.   

Keywords—anomaly detection, error detection, monitoring, 

fault injection, SOA, Secure! 

I. INTRODUCTION 

Large-scale software systems as for example Service 
Oriented Architectures (SOAs) or cyber-physical 
infrastructures in general are composed of several different 
components, software layers and services. These systems are 
characterized by a dynamic and evolutionary behavior, which 
leads to changes in part of the system, as well as their services 
and connections. Recent trends show the increasing 
introduction in these systems of safety-critical requirements, 
as for example in crisis management systems where rescue 
personnel on-the-field is remotely guided [1]. To deploy 
monitoring solutions of the system and its services to timely 
detect failures we must consider the complexity of software 
and of the dynamic and evolutionary behavior of the whole 
system, make the definition and instrumentation of a 
monitoring solution an open challenge [2]. 

The complexity of the code, the management and the 
evolution of their services, make these systems exposed to 
residual software faults. The activation of that faults can result 
in failures and services downtime which ultimately may lead to 
huge safety violations, financial losses and consumer 
dissatisfaction, so it is very important to continuously check 
the services’ status. The dynamic and evolutionary 
characteristics of these systems call for monitoring solutions 
which are as much independent as possible from the services 
running on the application layer, in order to not: i) require 
information on the services, ii) need to instrument the services 

with monitoring probes, iii) be forced to reconfigure the 
monitor each time services are updated, added or removed. 

In this paper we focus on anomaly detection, which refers 
to the problem of finding patterns in data that do not conform 
to the expected trend. Such patterns are changes in the 
observed indicators characterizing the behavior of the system 
caused by specific and non-random factors i.e., pattern 
changes can be due to a system overload, or to the activation 
of faults. Anomaly detectors may be able to infer the status of 
a service without directly observing it, but observing the 
"surroundings", or rather the lower abstraction levels we chose 
to instrument. This has been proven relevant and useful for 
dynamic software and systems which are subject to frequent 
changes or when the instrumentation with probes of the target 
services is not allowed (e.g. the source code is not available) 
or unfeasible.  

The paper is organized as follows. Section II presents the 
background and related work, Section III highlights our 
research contribution, the structure of the examined 
framework and the related open challenges while in Section 
IV we describe a case study in which we applied our anomaly 
detector. Finally, Section V summarizes some key aspects and 
defines the future works. 

II. BACKGROUND AND RELATED WORK 

Several approaches can be identified in the state of the art 
for anomaly detection in complex systems. For example, in [3]  
the authors summarize some useful techniques – especially 
based on statistical and clustering algorithms – aimed to reveal 
anomalies in distributed wireless sensor networks, while in [4] 
the authors describe how this approach is useful for intrusion 
detection purposes in cloud systems. Anyway, all the anomaly 
detection techniques need information on the system behavior, 
obtained by monitoring the system during its operational life. 
This technology is widely used in many kinds of software: 
Web services and SOA monitoring is executed in parallel with 
the normal executing processes without interrupting them.  

Regarding our purposes, it is also interesting to highlight 
some recent works related to the observation of different 
specific abstraction levels of a complex system. In [5] we can 
observe that the authors tried to summarize what abstraction 
levels can be monitored in a generic cloud system, depending 
on the characteristics of that system (SaaS, PaaS, IaaS). The 
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work in [6] focus the attention on a configurable detection 
framework aimed to reveal anomalies in the Operating System 
(OS) behavior: the detector is based on online statistical 
analysis techniques, and it is designed for systems that operate 
under variable and non-stationary conditions. The framework 
is evaluated in order to detect the activation of software faults 
in a distributed system for Air Traffic Management (ATM).  

To remark the utility and the wider applicability of this 
approach we can see that also in different application contexts, 
like the optimization of business processes [7], different 
abstraction layers can be observed to reach different goals 
based on the granularity of the patterns that we can use for 
recognize specific situations.   

As abovementioned, monitoring a system gives the 
opportunity to understand the behaviour of the observed 
components when a specific activity was executed. However, 
since we are interested in detecting anomalies due to software 
errors, we need to understand how those components react 
when an error is activated in the system. One way to support 
and speedup that “error observation” consists in deliberately 
insert the chosen fault in the monitored system, with the aim to 
observe its reaction: this is a well-known process that is called 
fault injection [8]. With this technique, we become able to 
observe the reaction of the system when a fault is injected at 
specific abstraction level as defined in the fault library.  

III. CONTRIBUTION AND CHALLENGES 

The novelty of our approach consists in shifting the 
observation perspective from the services at the application 
layer to the underlying layers; currently we are considering the 
middleware or Application Server (AS hereafter) and the 
Operating System (OS hereafter). Updating the requirements 
in this way allows to: i) get monitored data from different (but 
not independent) abstraction levels; ii) observe systems in 
which Off-The-Shelf components are running at the 
application layer and, mainly, iii) build a monitoring structure 
with an high level of flexibility with respect to the services 
that are executed at the application layer.  

All these characteristics make this solution very suitable in 
contexts like SOAs, in which a lot of different services are 
executed on a set of server machines that can also share the 
lower abstraction levels, as well as distribute FileSystem, or 
cloud environments. 

A. The Framework 

As described before, the anomaly detector needs a 
monitoring structure that retrieves data from the target system. 
As we can see in Fig. 1, the retrieved data is separately 
processed by different instances of the detection algorithm, 
whose results are collected and weighted by the voting 
function. Once an anomaly is found in the examined 
observation set, an alarm is thrown to a module (the operating 
center) that is in charge to perform the appropriate actions to 
face up the suspicious situation. These modules – monitor, 
detector and operating center – are the main components of a 
framework that could be installed on all the systems that needs 
of an additional control of their behavior. Suppose you have a 
server farm in which the malfunction of one machine 

influences the entire system. Installing the framework on the 
servers could help to detect malfunctions on each machine, 
protecting the other servers from its imminent failure. 

An important role is played from the tuning process of all 
parameters that characterizes that framework: depending on 
the context, some OS and AS attributes are more relevant than 
others, and the reaction policies must be calibrated based on 
the requirements of the target system. During the setup phase 
of the framework, an observation of the behavior of the 
system must be performed to define i) the set of monitored 
attributes, ii) the detection function parameters and iii) the 
choice of the reaction strategies implemented in the operating 
center. This framework is designed to work independently 
with respect to the applications or the services that are running 
in the target system, with a lot of advantages in terms of 
adaptability and wider applicability. Anyway this generality 
leads us to some difficulties mainly related to the choice of the 
parameters to observe or the type of detection function to use. 
We must conclude that a tuning phase is requested in each 
installation of the framework, to tailor the parameters on the 
specific system to improve the effectiveness of the system.  

B. Performance Improving Challenges 

The main challenges related to this approach are essentially 
linked to i) study the context with the aim to discover the most 
frequent (or dangerous) errors that can affect the target 
system, and ii) understand which set of indicators - coming 
both from the OS and the AS - is more useful than others to 
perform the detection of the anomalies produced by those 
errors. This utility is strongly affected by the choice of the 
fault model (defined with the support of the studies at i)), 
which summarizes the types of errors we want to detect: i.e., 
monitor the HTTP traffic is probably less useful than tracing 
RAM usage if you want to recognize a memory overload. The 
fault model must be built according both to the vulnerabilities 
of the system and the likelihood of the faults that can affect 
the context; we can think about errors due to hardware faults, 
human mistakes, external/internal attackers, software bugs. 

Once the set of monitored attributes is defined, the data is 
processed by the detection algorithm. This algorithm has to 
work in a dynamic context, in which a lot of different 
applications can be used; because of this, all the techniques 
that are built to work in semi-static scenario (i.e., some types 
of algorithm based on pattern recognition) do not fit with our 
context. As we shall see in the next section, for our first 
experiments we chose a statistical detection strategy that rise 
alerts when an observation is out of an expected range built 
dynamically depending on the last collected observations and 

 
 

Fig. 1. Main components of the monitoring framework 



not from some static data or patterns. All the parameters of the 
chosen algorithm, in addition to the monitored attributes, need 
to be tuned to guarantee the maximum efficiency of the 
anomaly detection process. Fault injection experiments should 
be conducted with the aim to collect a lot of data series that 
can be used as input values of a parameter optimization 
process that we can summarize as follows.  

Let f : <Ma, Ap, V> → fd be a function that builds 
detection functions based on three input sets where Ma 
represents the set of monitored indicators, Ap denotes the set 
of parameters of the detection algorithm and V points to the 
voting strategy. The output is a function fd : Oi → Ar that 
takes an observation (Oi) at the time instant i of the entire set 
of the monitored indicators and signals an anomaly rate value 
– Ar– that indicates if an anomaly is suspected for this specific 
input. Using the data collected with the abovementioned 
experiments, our objective is to find the fd function - or rather, 
the triple <Ma, Ap, V> - that minimizes the number of false 
alarms raised by the process (both false positives/negatives). 
As we can see, this process cannot have a unique resulting 
function for all systems in which the framework is going to 
work because the f function inputs, especially Ma and Ap, are 
strongly influenced by the context. 

Last, every system must implement the primitives that 
allow the operating center to react in a crisis situation, to take 
back the system in a proper (not anomalous) state when the 
detector signals an alteration from the expected behavior.  

IV. THE SECURE! CASE STUDY 

The Secure! Framework, which is being developed in the 
context of the Secure! Project [10], is a novel Decision 
Support System (DSS) for crisis and emergency management. 
It exploits information retrieved from a large quantity and 
several types of sensors, including crowd sensing, in order to 
detect critical situations and perform the corresponding 
reaction. Users will have the opportunity to interact with the 
Secure! framework using their mobile devices to provide and 
receive information about real events or dangerous situations 
in which they could be involved. Secure! should also be able 
to detect critical situations before they happen analyzing real 
events provided by the social media and correlating them with 
historical data and events incoming from other sources.  

A. The Secure! Framework 

The system is organized as a SOA structure and basically 
divided into four distinct levels each of them comprises 
logical components and services based on the input data 
coming from different sources (social media, web sites, 
mobile devices …). Starting from the bottom level, data are 
received, collected, homogenized, correlated and aggregated 
in order to produce the Secure! situation.  

The services running on the Secure! system have different  
ownerships and authorships, and may incur in frequent 
updates and removal, or even new services may be introduced 
(i.e., addition of another input processing technique), together 
with modification to their orchestration. Thus, while 
instrumenting with probes and monitoring each service is 
unfeasible, the opportunity to observe the underlying layers 

(AS and OS) is offered and a more accurate detection of errors 
become available thanks to the combined usage of AS and OS 
monitoring. We can also notice that the services are running 
on a heterogeneous set of virtual machines that have the same 
type of OS and AS, although with different settings and 
computational ability. However, all of these machines share 
the requirement to process the data in a proper way, because 
of the criticality of the tasks needed in this DSS. 

B. Anomaly detection solution for the Secure! system 

Because of this necessity to carefully control the behavior 
of each virtual node, we install a basic version of the 
framework on the machines, in which a prototype of Secure! 
was already running. Due to the dynamicity of the Secure! 
scenario, we chose a statistical detection algorithm (Statistical 
Prediction and Safety Margin, SPS [11]) that every time the 
monitor collects information about the value of a set of 
indicators, executes a prediction calculation aimed to identify 
an interval in which each of the observed values must fall. 
Following the structure in Fig 1, if the observed value is out of 
this range, an anomaly is suspected for such indicator and a 
notification is thrown to the voting module. The voter 
executes a simple sum of the notifications that come from the 
instantiation of SPS for each indicator, and raises an alarm to 
the operating center if a static threshold value is reached.  

Another important element we must define in order to 
adapt the anomaly detection process to the scenario is the set 
of faults that could involve the system under observation (e.g. 
external attacks, software bugs …). Our main interest in this 
study was to understand the impact that software bugs (e.g., 
programmer errors) located in the source code of the 
applications might have on the entire node. In [9] the authors, 
after examined some real case studies, summarized the most 
frequent software bugs that can affect a code; this collection of 
results perfectly fits with our requests because of the 
generality of the listed faults, so we adapted it as our fault 
model.  

C. Assessment of the Anomaly Detection Solution 

Once defined the fault model, a testbed [12] was built in 
order to conduct assessment experiments based on fault 
injection aimed to collect a huge amount of data related to the 
behavior of the indicators when a fault is activated in the 
Secure! prototype. As described in [12], the monitor is able to 
collect data related to 50 different indicators, coming both 
from OS and AS. With an analysis of the data collected with 
the support of the testbed we were able to reduce this starting 
set applying the SPS algorithm to the experiment traces. The 
aim is to tune the parameters (essentially 6, as shown in [11]) 
of the statistical detection algorithm with a kind of supervised 
learning process based both on the traces and on the 
information about the faults we injected in each experiment. 

The output of that process is an fd function that was 
tailored to the Secure! prototype from such tuning process in 
which the Ma set is composed from 20 AS indicators and 9 
OS ones, Ap is a set of 29 sextuples (that represents the more 
performing instantiation of SPS for a specific single indicator) 
and V is a simple sum function.  



D. Implementation of the Testbed 

In Fig. 2 we depict the structure of our testbed. In the 
bottom we can notice the modules owned by the target system, 
that is a virtual node equipped with Linux CentOS 6 and 
Apache Tomcat 7.0.40 as middleware layer above which a 
prototype of the Secure! system is running. Probes were 
installed with the aim to retrieve data from OS and AS and 
send them to the system monitor, which is located in another 
machine that we use to run experiments. On this machine a 
storage module called DataLogger is invoked by the monitor 
once the experiment is finished in order to aggregate, filter 
and finally store the collected data into a MySQL database. 

Experiments were conducted with the support of two 
modules: the Workload Generator, that builds an XML 
workload file based on configurable user settings, and a Fault 
Injector, that is able to perform a compile-time injection of the 
faults summarized in [9] giving the possibility to dynamically 
activate a subset of them depending on the experiment needs. 
The injector, that is actually available on our company for 
research purposes, is able to process any Java source in order 
to identify all the possible injection points and change the 
chosen parts of the code in which a fault is going to inject. 

Each experiment is conducted in the following way: first 
we decide the fault set that we want to activate, then a 
workload is built and executed on the target system, in which 
a modified version of the Secure! system is running. During 
this process, probes retrieve data both from OS and AS and 
send it to the experiment machine through system pipe; data is 
collected, aggregated and stored in a database at the end of the 
execution of the chosen workload. 

V. CONCLUSIONS AND FUTURE WORKS 

The installation and the utilization of a first version of our 
framework in a context like Secure! gave us the opportunity to 
test our idea in a real context with critical requirements. 
Results of the efficiency of the implementation described in 
section IV.B are currently in a finalization and summarization 
phase, and will be presented soon to the community.  

Just to give a brief idea of these outcomes, we observed 
that in a lot of cases the activation of the faults defined in [9] 
do not have effects that significantly change the trend of the 
observed variables. To limit this problem, we tried to update 
the parameters of the detection algorithm to obtain a higher 
sensibility and detect also the little variations. This approach 
gave us a higher number of false alarms, so further analysis 
aimed to find a sensitiveness tradeoff are under investigation. 

Future works we want to perform are aimed to understand 
the potential, the limits and the range of applicability of this 
cross-level anomaly detection: what are the most fitting 
detection algorithms, the metrics that notify fewer false alarms, 
the abstraction levels that give more accurate information than 
others and especially the evaluation of the effective support 
that this techniques give to the safety of the systems in exam.  
These studies will be also useful in order to automatize as best 
as we can the installation and tuning process of our framework, 
to deploy a tool that can be installed on a wide set of systems 
with default settings and high personalization capabilities.  

 To improve the effectiveness of the anomaly detection 
framework we also have to investigate different types of 
critical systems to understand all the possible relationships 
between them: for example, if an indicator (related to memory 
utilization, CPU consumption …) is useful in a lot of examined 
systems or if a voting strategy have very good performances in 
terms of effectiveness optimization of the detection process, 
probably might be included in the base setup of the framework.  
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