
1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2429128, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Robustness-Driven Resilience Evaluation of
Self-Adaptive Software Systems

Javier Cámara, Rogério de Lemos, Nuno Laranjeiro, Rafael Ventura, and Marco Vieira

Abstract—An increasingly important requirement for certain classes of software-intensive systems is the ability to self-adapt their
structure and behavior at run-time when reacting to changes that may occur to the system, its environment, or its goals. A major
challenge related to self-adaptive software systems is the ability to provide assurances of their resilience when facing changes. Since
in these systems, the components that act as controllers of a target system incorporate highly complex software, there is the need
to analyze the impact that controller failures might have on the services delivered by the system. In this paper, we present a novel
approach for evaluating the resilience of self-adaptive software systems by applying robustness testing techniques to the controller
to uncover failures that can affect system resilience. The approach for evaluating resilience, which is based on probabilistic model
checking, quantifies the probability of satisfaction of system properties when the target system is subject to controller failures. The
feasibility of the proposed approach is evaluated in the context of an industrial middleware system used to monitor and manage highly
populated networks of devices, which was implemented using the Rainbow framework for architecture-based self-adaptation.

Index Terms—resilience evaluation, self-adaptive systems, robustness testing techniques, probabilistic model checking.

F

1 INTRODUCTION

W HAT distinguishes a self-adaptive software system from
any other system is its ability to continuously deliver

its services despite changes that may occur in the system, its
environment or its goals. A key component that enables self-
adaptive systems to handle changes at run-time is a controller
that relies on a feedback loop for managing adaptations [1].
Controllers execute actions via effectors on the target system
(i.e., the subsystem managed by the controller), based on
information monitored by probes. In the context of complex
software systems, these controllers usually consist of four
distinct operational stages, namely, Monitor, Analyze, Plan
and Execute (MAPE-K [2]) which implement the traditional
sense-plan-act architectures.

Although major advances have been made in this area,
existing approaches do not systematically address the need
to determine if a self-adaptive system is resilient (i.e., if it can
deliver a service that can justifiably be trusted when facing
changes [3]), resulting in a lack of widespread adoption.

There is a variety of changes that can have a negative impact
on the resilience of a self-adaptive system, including changes
in its execution environment (e.g., resource availability) and
in the system itself (e.g., faults). Previous work has explored
the influence on resilience of a limited subset of system
changes, such as failure in the execution of adaptive actions via
effectors, or in components of the target system [8]. However,
a key subset of undesirable behaviors that remain to be studied
in the context of resilience are those that manifest in the

• J. Cámara is with the Institute for Software Research, Carnegie Mellon
University, USA. E-mail: jcmoreno@cs.cmu.edu

• N. Laranjeiro, R. Ventura, and M. Vieira are with the Department of
Informatics Engineering, University of Coimbra, Portugal.
E-mail: {ventura, cnl, mvieira}@dei.uc.pt

• R. de Lemos is with the School of Computing, University of Kent, UK, and
CISUC, University of Coimbra, Portugal. E-mail: r.delemos@kent.ac.uk

controller (e.g., flaws in adaptation logic, or failures caused
by invalid probe inputs). Controllers are prone to misbehave
due to their complexity, and can potentially have a significant
impact on the resilience of the overall system due to the
importance of their function.

This paper proposes a novel approach for systematically
evaluating the resilience of self-adaptive systems that embody
the MAPE-K model by focusing on the impact that controller
failures, caused by malformed inputs from probes, have upon
the target system. The approach comprises two phases:

1) Identifying controller failures by injecting invalid inputs at
the controller’s interface (i.e., probes) during the different
operational stages of the MAPE-K loop. This phase of
the approach is based on a novel technique for robustness
testing of MAPE-K-based controllers [5].

2) Quantifying the impact that the identified controller failures
have upon the resilience of the target system. Information
about the behavior of the target system during different
executions is collected in the form of execution traces.
These traces replicate controller failure conditions (i.e.,
environment conditions and input mutations) identified in
(1), and are aggregated into a model based on Discrete-
Time Markov Chains (DTMCs). We quantify resilience by
model checking resilience properties formalized as PCTL
formulae [6] on the synthesized DTMC-based models.

Resilience measures obtained provide valuable insight that
can allow developers to improve system resilience. This can
be achieved by explicitly considering in the adaptation logic
known situations that lead to controller failure.

Previous work about resilience evaluation of self-adaptive
systems [7], [8] dealt with different sources of change that
can impact resilience, such as the environment, or the target
system itself. Moreover, the frameworks for resilience evalua-
tion on which these approaches relied were limited to non-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30709844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2429128, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

conventional operational profiles or NCOPs (i.e., situations
in which the system experiences an anomaly and requires
adaptation). In contrast, the novelty of the approach presented
in this paper is dealing with malformed input at the interface
between controller and target system (e.g., probes), as a major
source of change that can impact resilience. Moreover, the
resilience evaluation framework that supports the approach has
been extended by:
• Covering the conventional operational profile (COP) case

in which the system operates without the need to adapt.
In this situation, controller failures can cause unintended
adaptations that might deviate the system from the COP,
having a negative impact on resilience. This demands a
formalization of resilience properties that differs from the
NCOP case (Section 4.2), and a different experimental
procedure (Section 4.2.2).

• Refining the NCOP case into two different subcases for
the planning and execution stages of MAPE-K, which
requires different procedures when evaluating resilience in
the context of controller failures (Section 4.2.2).
The feasibility of the proposed approach is evaluated in

the context of an industrial middleware system developed at
Critical Software1 for monitoring renewable energy production
plants. We have chosen to use a controller developed using
Rainbow for performing the evaluation because its structure
facilitates access to the internal components, and the logs
Rainbow produces are suitable for analyzing the effects of the
robustness tests upon the controller [9]. Our results confirm
that the stateful nature of the controller heavily influences
the resilience of the system, justifying the need to consider
it as a first-order element in robustness testing and resilience
evaluation.

The rest of this paper is structured as follows. Section 2
provides some background on self-adaptive systems and re-
lated work. Section 3 introduces the case study used for
illustrating our approach. Section 4 describes our approach
for evaluating the resilience of self-adaptive systems based
on robustness testing of the controller. Section 5 presents
results. Section 6 discusses limitations of the approach. Finally,
Section 7 concludes the paper and indicates future work.

2 BACKGROUND AND RELATED WORK

Over the past few years, run-time management of increasingly
complex software-intensive systems has become a central
concern in Software Engineering [11], [12]. A major issue in
this area is related to achieving conformance to functional and
non-functional requirements in a dependable and cost-effective
manner, while changes may affect the system, its environment,
and system goals.

One of the proposals addressing this concern was IBM’s
Autonomic Computing initiative [2], which has introduced a
layer implementing what is known as the MAPE-K control
loop to Monitor, Analyze, Plan, and Execute adaptation (with
a Knowledge Base acting as a cornerstone of the process) for
managing a target system. Some successful approaches that

1. http://www.criticalsoftware.com/

rely on this closed-loop control paradigm exploit architectural
models for reasoning about the target system under manage-
ment [9], [13]. In particular, Rainbow [9] provides a reusable
framework that can be applied to a wide range of systems
via customization. Section 5.1 overviews Rainbow, which has
been used to build the controller used to validate our approach.

Contributions supporting the provision of assurances in self-
adaptive systems rely on the analysis of non-functional prop-
erties, and are based either on modeling or direct measurement
of an existing system. Concerning direct measurement, Epifani
et al. [14] present a framework to keep models alive by feeding
them with run-time data that updates their internal parameters.
The framework uses DTMCs and Queuing Networks to reason
about reliability and performance. Calinescu et al. [15], extend
and combine [14] and [16] for defining a framework for the
development of adaptive service-based systems. QoS require-
ments expressed as probabilistic temporal logic formulas are
used to enforce optimal system configurations. Our approach
focuses on quantitative analysis using measurements, and does
not assume the existence of DTMCs describing system com-
ponents. Moreover, while most proposals deal with estimates
of the future system behavior for optimizing its operation,
our approach focuses on evaluating levels of confidence with
respect to the self-adaptive capabilities of the system.

A less restricted notion of operational profile, compared to
the one presented in this paper is introduced by Schmeck et
al. in [17], where the notion of acceptance space is analogous
to the COP, consisting in the set of states in which the system
is operating without experiencing any disturbances.

Preliminary work considers only environment stimulation
as source of change [7], leaving out changes that are internal
to the system, which are dealt with in the present paper
by exploiting failures that may affect the controller. In a
more recent work, an architecture-based approach evaluates
by comparison the adaptation mechanisms of a self-adaptive
software system [8]. Although these approaches quantitatively
measure resilience of the self-adaptive system when facing
internal and external changes to the system, they only cover
NCOPs (induced by changes in the environment or the target
system, e.g., injected faults). The approach presented in this
paper extends the aforementioned approaches by incorporating
an experimental profile for the system’s COP. Moreover, the
NCOP case is refined into two experimental profiles according
to the stages in which the controller can be while in a NCOP
(i.e., planning, execution).

Another area related to resilience evaluation is resilience
benchmarking, which encompasses techniques from previ-
ous efforts in performance benchmarking [18], dependabil-
ity benchmarking [19], and security benchmarking [20]. A
resilience benchmark is specified following the same basic
approach of other types of benchmark, but comprising a
changeload (which includes, but is not limited to, faults), as
well as resilience metrics [8] [21]. Some of the works on
assessment and evaluation of resilience in computer systems
presented in [22] are of particular interest:

The authors of [23] describe the state-of-the-art on assessing
and comparing the performance, dependability, and security

1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2429128, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

attributes of systems following standardizing procedures (i.e.,
benchmarks). This paper contributes a theoretic definition of
the components needed to build a resilience benchmark, e.g.,
metrics, workloads, and perturbation-loads. Perturbation-loads
are particularly relevant and, in the context of our work, can
be seen as the robustness tests performed.

The work in [24] considers performance degradation as
a potential symptom of system instability, which in turn is
seen as a resilience issue. The idea consists of: (i) defining a
resilience metric that can be derived from security, reliability
or performance aspects; (ii) model the system states and
associated events using Markov chains; and (iii) use the
outputs of the tests to calculate the resilience metric based
on the model. The work presented is in a very early stage
and focuses only on the characterization of performance as a
resilience indicator.

The work in [25] characterises robustness as a resilience
attribute and surveys techniques and tools for robustness test-
ing in different domains. The chapter proposes the adaptation
of the modeling approach presented in [24] to the context of
robustness testing. However, the work presented is mostly a
review of the state-of-the-art and the proposed approach for
resilience modeling and analysis is merely theoretical.

Robustness testing allows the characterisation of the be-
haviour of a system or component in the presence of ex-
ceptional input conditions. This technique aims at providing
feedback about the stimuli that may trigger internal errors in
the system under test, helping developers to fix problems that
might otherwise go unnoticed.

Ballista [27] uses a set of tests that combine acceptable and
exceptional values on calls to kernel functions of operating
systems. The parameter values used in each invocation are
randomly extracted from a set of predefined tests, and for
each parameter, a set of values of a certain data type is
associated. Each operating system is classified in terms of its
robustness according to a predefined scale that distinguishes
several failure modes (the CRASH scale [27]).

MAFALDA (Microkernel Assessment by Fault injection
AnaLysis and Design Aid) [28] is a tool that enables the
characterisation of the behaviour of microkernels in the pres-
ence of faults. Fault injection is performed at two levels: in
the parameters of system calls and in the memory segments
holding the target microkernel. However, only the former is
relevant when the goal is robustness testing.

In previous work, we defined an approach to assess the be-
havior of web services accessed via tampered SOAP messages
[29]. The approach consists of a set of robustness tests based
on invalid web services call parameters. Web services are
classified according to failures observed during the execution
of the tests using an adaptation of the CRASH scale [27].

The abovementioned works implement robustness testing
approaches that do not consider the state of the system under
test. In [30] the impact of state on robustness testing of a
safety-critical operating system (OS) is investigated by in-
cluding the OS state in test cases definition. Although system-
specific, results show that the state can play an important role,
being able to cover more cases than traditional approaches.

An approach for robustness testing of stateful Web services
is presented in [31]. A test case generation method is proposed
using unusual values and replacement of operation names.

In this paper, in addition to a more matured robustness
testing technique that considers the state of the system being
tested, we use the technique with the goal of triggering failures
in internal system components (in our case, the self-adaptive
system controller). These robustness-related failures are then
used with the goal of understanding the impact on the overall
resilience of the target system, which strongly differs from
classic robustness testing approaches, in which the robustness
testing results are typically used to characterize a given system
(and not used to assess another system) [27]. Moreover, the
fact that controllers are stateful components whose behavior
relies on an internal representation of the target system for its
control, justifies an approach that considers these distinctive
characteristics of the controller as first-order elements.

3 CASE STUDY

To illustrate our approach, we use the Data Acquisition and
Control Service (DCAS) from Critical Software [32] as a case
study. DCAS is a middleware that provides a reusable infras-
tructure to manage the monitoring of information captured by
large networks of sensors that are positioned in devices (e.g.,
wind towers, solar panels) in renewable energy production
plants. The middleware is designed to integrate with Critical’s
Energy Management System (csEMS)2, a platform that aims
at providing high scalability, flexibility and customization in
energy plant control centers.

The basic building blocks in DCAS systems (Figure 13) are:

Application

Server

Database

Server

Processor

Node

Processor

Node

Device

Device

Device

Device

Fig. 1. Architecture of a DCAS-based system

- Devices are equipped with one or more sensors to obtain
data from the application domain (e.g., wind towers, solar
panels). Each one of these sensors has an associated data
stream from which data can be read. There may be different
types of devices connected to the network, each type with its
particular characteristics (e.g., protocols, type of data, etc.).
Each type of device has an associated device profile specifying
the data polling rate and the expected value ranges for the data.
- Database server stores the data collected from devices.
- Processor nodes pull data from the devices at a given
rate (configured in the device profile), and dispatch this
data to the database server. Each processor node includes
a set of processes called Data Requester Processor Pollers
(DRPPs) responsible for retrieving data from the devices.
The communication between the DRPPs and the devices is

2. http://solutions.criticalsoftware.com/products services/csems/
3. The component-and-connector diagram follows the style of the ACME

architectural description language.

1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2429128, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

synchronous, so the DRPP remains blocked until the device
responds to a request for data or a timeout expires. Note that
this constitutes the main performance bottleneck of DCAS
when devices connected to a processor node fail to respond
in a timely manner.
- Application server is connected to the database server to
obtain data, which can be presented to the operators of the
system or processed automatically by application software.
Since DCAS is application-agnostic, the application server will
not be discussed in the remainder of this document.

The main objective of DCAS is collecting data from the
connected devices at a rate as close as possible to the one
configured in their device profiles, while making an efficient
use of the computational resources in the processor nodes.
Specifically, the primary concern in DCAS is providing service
while maintaining acceptable levels of performance, measured
in terms of processed data requests per second (rps) inserted
in the database. The secondary concern is optimizing the
computational cost of operating the system, measured in terms
of active DRPPs in the processor nodes.

DCAS contains adaptation mechanisms aimed at maintain-
ing its performance under different loads, responding to failing
devices, increased number of devices, and changing data rates:
- Rescheduling aims at avoiding performance degradation
caused by devices that fail to respond in a timely manner
when polled. It consists in decreasing the priority of the data
streams associated with the failing devices, so that they are
polled less often (thus reducing the average time that DRPPs
remain blocked waiting for device data).
- Scale up aims at improving system performance by exploit-
ing as much as possible the resources (CPU and memory)
of the processor nodes by (de)activating additional DRPPs
as required. If the size of a request queue associated with
a particular processor node remains consistently close to
zero, scale up considers that there are active DRPPs that are
not necessary and starts deactivating them (one at a time).
Otherwise, if the queue size increases consistently, scale up
tries to increase performance by activating more DRPPs.

DCAS has been chosen to evaluate our approach since: (i) it
is a real system with a level of complexity representative of an
industrial-scale software system, (ii) it has a well-defined set of
objectives that enable the evaluation of resilience with respect
to their fulfillment, and (iii) its implementation is available
and amenable to evaluation in the context of a variety of
changeload scenarios. Note that in its original version, DCAS
is a legacy system that provides limited adaptation capabilities.
However, in this paper we consider a MAPE-K-based version
of DCAS that was re-engineered using Rainbow.

4 APPROACH

Our proposal for evaluating the resilience of a self-adaptive
software system considers the model depicted in Figure 2.
The environment consists of all non-controllable elements
that determine the operating conditions of the system (e.g.,
hardware, network, physical context, etc.). We distinguish
two main subsystems in the self-adaptive system: a target
system, which is the subsystem to be controlled and which

may affect or be affected by its environment, and a controller
that manages the target system, driving adaptation whenever
it is required. The controller carries out its function by: (i)
monitoring the target system and environment through probes
that provide information about the value of relevant variables,
(ii) deciding whether the current state of those variables
demands adaptation, and if so, (iii) applying control actions
via effectors.

Self-Adaptive Software System

Controller

Environment
Non-controllable software, hardware, network, physical context

Target System
Effectors

Adapt

Probes
Monitor

MonitorAffect

M
on

ito
r

Probes

Inputs Outputs

Fig. 2. Self-adaptive software system

Our approach for evaluating robustness-driven resilience is
intended to be used by the developer of the system just before
its deployment, since the process often involves putting the
system through adverse conditions which are not appropriate
when the system is in production. The approach consists of
two phases, as shown in Figure 3 4:

a. Static Analysis

1. Controller Robustness

Testing

2. System Resilience

Evaluation

a. Criteria Definition

b. Dynamic Analysis

Metrics

Evaluation of System
Resilience

c. Scoring / Ranking

Execution Data

c. Filtering

Changeload

Environmental
Changeload

Mutation
Rules

System
Goals

Selection
Criteria

System
Implementation

Robustness Tests

 b. Dynamic Analysis

Controller Failures

Fig. 3. Overview of the approach

1) Controller Robustness Testing. In this phase, probe in-
put (both from the target system and the environment)
is modified to uncover potential controller failures. This
phase is divided into: (a) Static Analysis, in which the
engineer identifies the elements required to build the ro-
bustness test cases; (b) Dynamic Analysis, during which
controller robustness is tested. Uncovered controller failures
are categorized according to a failure mode classification;
and (c) Filtering, in which robustness test cases that did
not uncover any failures in the controller are filtered out.
The output of filtering is a changeload including only the
scenarios that were not discarded.

2) System Resilience Evaluation. In this phase, the resilience
of the system is evaluated according to the identified
changeload. This phase is divided into: (a) Criteria Defini-
tion, where resilience metrics are defined according to the
system goals (i.e., requirements); (b) Dynamic Analysis , in
which the system is stimulated according to the specification

4. Steps decorated with a gear in the figure are fully automatic, whereas
steps decorated with the designer require input from the user.

1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2429128, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

of every scenario included in the changeload, and system
execution traces are collected according to the metrics;
and (c) Scoring/Ranking, where the collected information
is processed and used to assess and rank the impact of
the different controller failures in resilience. Every set of
execution traces is aggregated into a probabilistic response
model of the system. These models are used as input to a
probabilistic model-checker, which quantifies the probabil-
ities of satisfaction of the formalized resilience properties.
Note that the first phase of our approach is intended as

a single-run filter to identify scenarios that cause controller
failures. In contrast, the second phase subjects the system to
many runs of every scenario identified in the first phase to
produce the probabilistic models for resilience evaluation.

In the following, we describe in more detail the key phases
of our approach.

4.1 Controller Robustness Testing
The procedure for testing the robustness of the controller
includes the following steps: (i) robustness tests used for
stimulating the interface of the controller, (ii) controller failure
mode classification, (iii) changeload model used to stimulate
the system during resilience evaluation, and (iv) a description
of the robustness testing procedure. These steps will be de-
tailed in the subsequent subsections.

4.1.1 Robustness Tests
The basis of the proposed procedure for evaluating the robust-
ness of controllers for self-adaptive software systems relies
on stimulating the probes that monitor both the target system
and its environment (see Figure 2). For evaluating how robust
the controller is, the probes’ inputs into the controller are
modified according to a comprehensive set of mutation rules.
It is important to emphasize that we do not have a priori
knowledge about the target fault model of the controller. Our
mutation rules follow a fault model that has been shown to be
relevant for the validation of input in the context of robustness
testing [27], [28], [29].

Moreover, since the inputs of these probes may affect
the different stages of a MAPE-K control loop, the testing
procedure needs to consider the controller as stateful. Although
we abstract away from the application (target system) during
the robustness testing of the controller, we actually use the
application to drive the tests (see Section 4.1.4 for details).

Mutation Rules. The robustness test cases are automati-
cally generated by applying predefined mutation rules to the
messages sent by probes. The basic input supplied by probes
to the controller requires three elements, although additional
elements may exist depending on the case: (i) an identifier of
the variable being monitored, (ii) the value for the variable,
and (iii) a timestamp that provides a temporal context for
the variable being monitored. For example, in the case of
Rainbow, the input received by the controller consists of
simple messages encoded as text strings with the format:

[timestamp] variable_name : variable_value

Based on this general description of probe inputs, we
propose a set of rules (Table 1) for mutating the input from

Type Rule Name Description

M
es

sa
ge

MsgNull Replace by null value
MsgEmpty Replace by empty string
MsgPredefined Replace by predefined string
MsgNonPrintable Replace by string with non-printable characters
MsgAddNonPrintable Add non-printable characters to the string
MsgOverflow Add characters to overflow max string size

Ti
m

es
ta

m
p

TSEmpty Replace by empty timestamp
TSRemove Remove timestamp from response
TSInvalidFormat Replace by timestamp with invalid format
TSDateMaxRange Replace date in timestamp by maximum valid
TSDateMinRange Replace date in timestamp by minimum valid
TSDateMaxRangePlusOne Replace timestamp date by maximum valid +1
TSDateMinRangeMinusOne Replace timestamp date by minimum valid -1
TSDateAdd100 Add 100 years to date in timestamp
TSDateSubtract100 Subtract 100 years from date in timestamp
TSInvalidDate Replace date in timestamp by invalid date

V
ar

.N
am

e VNRemove Remove variable name
VNSwap Replace by other variable name of same type
VNSwapType Replace by variable name of different type
VNInvalidFormat Replace by variable name with invalid format
VNNotExist Replace by non-existing variable name

V
ar

.V
al

ue

VVRemove Remove variable value
VVInvalidFormat Replace value by one with invalid format

Number
VVNumAbsoluteMinusOne Replace by -1
VVNumAbsoluteOne Replace by 1
VVNumAbsoluteZero Replace by 0
VVNumAddOne Add 1
VVNumSubtractOne Subtract 1
VVNumMax Replace by maximum number valid for type
VVNumMin Replace by minimum number valid for type
VVNumMaxPlusOne Replace by maximum valid type value +1
VVNumMinMinusOne Replace by minimum valid type value -1
VVNumMaxRange Replace by maximum valid variable value
VVNumMinRange Replace by minimum valid variable value
VVNumMaxRangePlusOne Replace by maximum valid variable value +1
VVNumMinRangeMinusOne Replace by minimum valid variable value- 1

Boolean
VVBoolPredefined Replace by predefined value

TABLE 1
Mutation rules for probes

the probes [27], [28], [29]. The mutation rules target limit
conditions that frequently represent difficult validation aspects,
which are typically the source of robustness problems [27],
[28], [29]. As an example, in [27] NULL and invalid pointer
values were found to be quite common causes of failures.
In our case, we consider faults that may be caused by the
presence of some elements in the input, such as:
• Null and empty values (e.g., null string, empty string).
• Valid values with special characteristics (e.g., non-printable

characters in strings, dates by the end of the millennium).
• Invalid values with special characteristics (e.g., invalid dates

using different formats).
• Valid values equal to the maximum/minimum representative

of the domain.
• Values exceeding the maximum/minimum valid domain

values (e.g., maximum value valid for the parameter plus
one).

• Values that cause data type overflow (e.g., string beyond
max size, duplicate list elements, maximum number valid
for numeric type plus one).
In our approach, the values used for the parameters in

mutation rules are static, and as such, we do not account for
variance. This reduces the number of test cases, facilitating the
developer’s task (it would be impossible to consider all input
possibilities and combinations). In practice, we have a library
of rules that define the possible parameters, along with the
mutations. Previous experience suggests that this simple setup
is enough to trigger problematic behaviors in many systems

1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2429128, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

[29], [35]. Although the analysis of variable values may be
useful in disclosing other failures, the focus of this paper is
not about the actual application of robustness testing technique
to uncover failures, but on the development of an approach for
evaluating the resilience of self-adaptive systems that relies on
the outcome of applying robustness testing principles.
Probe Categories. The effect of applying mutation rules on
the input received from the probes may manifest in different
ways (or not manifest at all) in the controller, depending
on its internal state. This results from the stateful nature
of the controller, which may use different inputs and in a
different way, depending on its operational stage (i.e., analysis,
planning, or execution).

Table 2 shows different probe categories, according to their
use in the different operational stages of the controller. Dif-
ferent robustness issues may arise in the controller, depending
on the particular stage and probe in which a mutation rule is
applied. The same probe may belong to different categories
and be used during different stages in the controller. We
currently consider a coarse-grained notion of controller state
that corresponds to each of the operational stages of the
controller. As a simplification, we assume each stage to be
stateless. This enables the evaluation of resilience considering
the stateful nature of MAPE-K controllers, even in cases in
which we do not have access to the internals of the different
stages. However, future work will consider a finer-grained
notion of state, considering other elements (e.g., control flow
of adaptation logic in the controller execution stage) as part
of controller state.

4.1.2 Controller Failure Modes

The robustness of a controller for a self-adaptive system can
be classified according to a modified version of the CRASH
scale [27], which distinguishes the following failure modes:
(1) Catastrophic: the whole controller crashes or becomes
corrupted (this might include the OS or machine on which
the controller is running). No output is produced; (2) Restart:
the controller execution hangs and may not issue any output
commands, or send always the same command, within the
worst case execution time of the adaptation cycle. The con-
troller needs to be externally re-booted; (3) Abort: abnormal
behavior by the controller occurs due to a run-time exception
raised inside the controller; (4) Silent: the controller fails to
acknowledge an error, for instance by signalling an exception,
which causes the controller to continue operating improperly;
(5) Hindering: the controller returns an incorrect error code,
which may hinder error recovery.

Different from the original CRASH scale [27], our tailored
version includes a specific adaptation which is related to time
(2).

4.1.3 Changeload Model

This section describes the proposed changeload model
(adapted from [21]) and presents the definition of its fun-
damental concepts:

Definition 1 (Change Type): A change type is a tuple
(src,m, A) that characterises a change, where: src identifies
the source probe type mutated, m identifies the mutation rule

applied, and A = 〈a1, . . . , an〉 (possibly empty) is a vector of
attributes holding information about the mutation rule.

Example 1: In DCAS, consider the change “Set an invalid
timestamp date on a queue size probe (type QueueSizeProbeT)”.
A possible change type definition for this would be:

invalidDateQSP CT= (QueueSizeProbeT, TSInvalidDate, 〈date〉)

Definition 2 (Change): Given a set of change types CT , a
change is a tuple (ct, srcinst,VA, ti, d) that corresponds to an
instantiation of a change type, where: ct = (src,m, A) ∈ CT
determines the change type to be instanced as a change,
srcinst is the probe instance that is the source of change,
VA = 〈vA1, . . . , vAn〉 is a vector of attribute values instantiating
the attributes in A, ti ∈ R+

0 is the time instant in which the
change is triggered, and d ∈ R+ is the change duration.

Example 2: If we consider the change type described in
Example 1, a possible instantiation could be:

(invalidDateQSP CT,QueueSizeProbe1, 〈′2/29/1985′〉, 10, 2)

The systematic identification and classification of change
types is fundamental to support the definition of change
scenarios, which is discussed in the next paragraphs.

The main concept in our changeload model is that of a
scenario. A scenario is a postulated sequence of events that
captures the state of the system and its environment, system
goals 5, and changes affecting all the aforementioned elements.
It is defined in terms of state (target system and environment)
and changes applied to that state.

Definition 3 (Scenario): A scenario is a tuple (wl, oc,C)
where: wl represents the workload, that is, the amount of
work assigned to the system (not necessarily static), oc are
the operational conditions of the system, and C is a set of
changes applied to controller input.

Based on the definition above, a change scenario is one
which includes a non-empty set of changes (C , ∅).

Definition 4 (Changeload): Set of change scenarios.

4.1.4 Robustness Testing Procedure
Robustness testing focuses on the controller’s input delivered
by probes. Therefore, a complete robustness experiment must
include a comprehensive set of robustness tests including on
the information provided by each of the input probes used
during each of the different operational stages of the controller.
The procedure for robustness testing consists of three steps:

Static Analysis. This step is carried out manually by the
engineer, and consists in identifying: (i) the conditions of the
environment required to drive the controller through its dif-
ferent operational stages (environmental changeload)6; (ii) the
set of probes used during each controller stage; and (iii) the
set of mutation rules applicable to each of the probe inputs
used in the different controller stages.

Example 3: Consider a setup of a DCAS system that
processes a constant workload which includes 100 devices
with a sample rate of 1 second each:

5. However, in our approach we assume a changeload model that does not
consider changes in system goals.

6. These conditions can be identified based on the engineer’s domain
knowledge, the analysis of similar systems, or through a systematic analysis
of the possible changes in the environment and their impact on the controller’s
behavior [8].

1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2429128, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

Probe Category Controller Stage Input Usage DCAS Example
Analysis The controller analyzes the current state of the

target system for detecting anomalies, and triggering
adaptation if needed.

Anomaly detection. RPSProbeT. Used to detect if performance level is low (rps
below minimum threshold).

Planning The controller determines if any adaptation plans
can be applied to the target system, and selects the
best alternative.

Adaptation plan selection. ElapsedTimeProbeT. Used to determine if the problem is caused
because devices are failing to respond in a timely manner.

Execution The controller executes the selected course of action. Control action selection. QueueSizeStatusT. Used to determine whether queues in pro-
cessor nodes are growing or shrinking.

TABLE 2
Probe categories

• Environment conditions. With a constant workload, the con-
ditions of the environment required to drive the controller
through its different operational stages in DCAS are related
to the time that it takes for devices to respond to data
requests. Driving the controller through its planning and
execution stages involves artificially inducing a 2-second
delay to 25% of device responses. In this case, this in-
formation has been determined experimentally during prior
deployments of DCAS in the field [32].

• Probes used and applicable mutation rules. Inspecting the
implementation of the target system, the different sets of
probe types used in each of the controller’s operational
stages are identified. For each of the identified probes, we
determine which of the mutation rules are applicable to
generate the robustness test cases.

Probe Type Applicable
mutation
rules

Analysis Planning Execution

RPSProbeT 30 x x
QueueSizeProbeT 31 x x x
QueueStatusProbeT 29 x
ActivePollersProbeT 31 x
ElapsedTimeProbeT 31 x x

TABLE 3
DCAS probes and applicable mutation rules

Table 3 displays the results of this identification process
in DCAS. Each applicable mutation rule yields a different
robustness test case for each controller stage in which the
probe is used. In this case, we have a total of 275 robustness
tests to carry out for assessing the robustness of the controller
(30 rules * 2 stages for RPSProbeT + 31 rules * 3 stages for
QueueSizeProbeT + 29 rules * 1 stage for QueueStatusProbeT + 31
rules * 1 stage for ActivePollersProbeT + 31 rules * 2 stages for
ElapsedTimeProbeT).

Dynamic Analysis. During this step, the controller’s robust-
ness is tested according to the test cases identified in the
previous step. Figure 4 shows that this step includes several
subsets of tests, each one focusing on one probe. For each
probe (which, at run-time is continually delivering information
to the controller), we run a robustness test that applies a single
change to each probe data sample. Note that although we
apply a single change to a data sample produced by a probe,
the same change is applied to all subsequent samples received
within the time period defined by the duration of the change
(see Definition 2).

Each robustness test focuses on a single mutation rule type,
and is executed once in every controller operational stage to
maximize the chances of disclosing more robustness problems.
In each test, we must drive the system from an initial state to
a target state by stimulating it according to a change scenario

t1 – Rampup (changeload execution)
t2 – Fault injection (while still on the target state. What is the
limit for fault injection if there is no state transition? Number
of faults, time,?)
t3 - Keep time (time to reach the end of a cycle (may not be
reached, will need to be fit in the failure modes)
t4 – Observation period

Target state: The initial state for
testing
Target state: The state we want to
drive the system to start testing
Final state: Should be the end-of-
cycle state, but is eventually unknown
state in the diagram is related to the
state of the experiment – in our case
we can only observer in which stage
the controller is

Keep
time

Observation period

Change
period

Ramp-up
period

 Probe 3Probe 0 Probe 1 Probe 2 Probe n
 Time

Complete set of tests

Change 0 Change 1 Change 2 Change m

it is not a black-box, it is grey-box;
the final state is the end of the cycle, end of execution and we can observe the consequences;
several faults of a single type
single fault versus multiple faults of the same type
determine the number of faults through experimentation (representativeness), period should be based
on the controller response time or cycle – length of the experiment
(worst case execution time from the srategy)

Initial
state

Target
state

Final
state

Fig. 4. Robustness testing procedure

during a ramp-up period (Figure 4). This target state is the
one in which the system must be to start testing, and can
correspond to the entry point to any of the three controller
stages. With the controller in the target stage, we can start
applying the changes (of the same type7) for a change period
during which the controller is on the target stage for the test.
This period of time should be adjusted to the time required
to transition from the target controller stage for the test to the
next stage.

After this probe mutation period, there is a keep time
required for the system to reach a final state that marks the
end of the current test (and corresponds to the completion
of the controller’s execution stage). At most, the keep time
should be set to the worst case execution duration found in the
specification of the adaptation to be executed. The observation
period (change+keep time periods) is used to register any
deviations from expected controller behavior.

Filtering. Consists in reducing the number of test cases by
discarding the robustness tests that did not meet the selection
criteria (i.e., that did not uncover failures in the controller).
Note that the selection criteria can be tailored to different

situations (e.g., by selecting tests that uncovered controller
failures only in a constrained set of categories of our adapted
CRASH scale).

In our study, we identify controller failures via inspection

7. We could have considered combinations of different types of change
during this period, instead of a single type. However, the number of combi-
nations can become quite large and we chose to follow the usual procedure
in robustness testing. Even using a single type of change, we were able to
uncover a considerable number of controller failures during the evaluation of
the approach (see Section 5).

1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2429128, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

of the execution logs produced by Rainbow. Silent failures
correspond to incorrect updates of property values in the ar-
chitecture models that are not acknowledged by the controller
(e.g., updating the a response time property with a negative
value). Due to the subtle nature of some of these failures,
log inspection is carried out manually to discriminate silent
failures from fault masking, for example. Fault masking can
occur in Rainbow during pre-filtering of the input received
from probes. This is carried out by gauge components con-
nected to the controller, which are in charge of updating the
architecture model.

4.2 System Resilience Evaluation
In the previous subsection we described controller robustness
testing, aimed at obtaining a changeload that induces failures
in the controller. In this subsection, we: (i) introduce some
general concepts related to resilience evaluation, as well as
the kind of resilience properties that we deal with and their
formalization, and (ii) describe the procedure followed for
resilience evaluation of the system in the presence of failures
in the controller.

4.2.1 Resilience Properties
A resilient system is one that delivers a service that can
justifiably be trusted when facing changes [3]. In the context of
self-adaptive systems, changes (which can occur in the system
itself, its environment, or goals) can induce anomalies in the
system at run-time, changing its current operational profile.
Specifically, within a self-adaptive system we may distinguish
between a conventional operational profile (COP) that corre-
sponds to the region of the state-space in which the system
is operating without experiencing any anomalies, and non-
conventional operational profiles (NCOPs), associated with
changes that induce anomalies in the system and correspond to
regions of the state-space in which the system is experiencing
a particular anomaly. When the self-adaptive system enters a
NCOP, this typically triggers adaptation mechanisms whose
purpose is driving the system back into its COP by perform-
ing some actions on the system to correct the experienced
anomaly. The system behavior in different operational profiles
is represented in our approach by means of DTMCs built
over relevant variables monitored during execution, and are
obtained via synthesis from system traces8 [7].

For evaluating the resilience of a self-adaptive system, two
cases need to be considered according to its operational profile:
(i) when there is a change while the system is in its COP,
resilience can be assessed by quantifying the probability of
not transitioning into a NCOP within a certain time interval,
and (ii) when the system is already in a NCOP, resilience can
be assessed by quantifying the probability of returning into
the COP within a certain time interval.

To express resilience properties about the system, we use
PCTL [6], which is a temporal logic language that can be used
to express system properties that are domain-dependent. Fur-
thermore, to ease the formulation of probabilistic properties,
we use property specification patterns that describe generalized
recurring properties in probabilistic temporal logics. Since we

8. See Appendix A for DTMC-based definitions of operational profiles.

PCTL Formulation Description
P≥1[G(Φ1 ⇒ P./p(F≤tΦ2))] Probabilistic Response. After state for-

mula Φ1 holds, state formula Φ2 must
become true within time bound t, with a
probability bound ./ p.

P≥1[G(Φ1 ⇒ P./p(¬Φ2U≤tΦ3))] Probabilistic Constrained Response. Af-
ter state formula Φ1 holds, state formula
Φ3 must become true, without Φ2 ever
holding, within time bound t, with a prob-
ability bound ./ p.

TABLE 4
Probabilistic response specification patterns

are interested in how the system responds to changes, we
focus on properties that can be instanced by using probabilistic
response patterns [34], adapted to PCTL syntax (see Table 4).9

These patterns include a premise Φ1 that represents the initial
conditions after a change in the system or its environment
occurs. They also include a subformula enclosed by the
probabilisic operator P./p(.), representing the response to that
change expected from the system (with a probability bound p
and a time bound t).

Example 4: In DCAS, we are interested in assessing how
the system reacts to low responsiveness in some of the devices
connected to the system. Let rps be the variable associated
with performance (defined as the number of items inserted in
the database per second), and numActivePollers be the variable
associated with operating cost (defined as the number of active
pollers in the system). We can then define the following
predicates:

rpsViolation = rps < MIN RPS
hiCost = numActivePollers ≥ MAX POLLERS

where MIN RPS is a threshold that establishes the minimum ac-
ceptable performance of the system, and MAX POLLERS determines
a maximum acceptable number of active pollers. Let us also
express a predicate associated with the COP in DCAS as
dcasCOP = ¬rpsViolation ∧ ¬hiCost . Based on these predicates, we
may instantiate the following PCTL properties, making use of
the probabilistic response pattern included in Table 4:

P1: P≥1[G(dcasCOP⇒ P≤0.2(F≤100
rpsViolation))]

P2: P≥1[G(rpsViolation⇒ P≥0.9(F≤100¬ rpsViolation))]
P1 deals with the first resilience evaluation case described

above (COP), and reads as: “When operating with acceptable
performance and cost, the probability of performance dropping
below MIN RPS within 100 seconds is less or equal to 0.2”. In
contrast, P2 deals with the second evaluation case (NCOP),
and reads as: “When performance falls below threshold MIN RPS ,

the probability of raising performance again above MIN RPS

within 100 seconds is greater or equal to 0.9”. Note that the
probabilistic response patterns, as well as the predicates used
for the specification of the properties can be more general
or specific, depending on the particular aspect of the system
resilience that we want to study (e.g., use of ¬ rpsViolation
instead of dcasCOP in P2).

4.2.2 Resilience Evaluation Procedure
System resilience evaluation consists in exercising the target

9. Although this paper focuses on probabilistic response patterns to express
resilience properties, nothing prevents the use of the proposed approach with
other patterns to study different classes of system properties.

1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2429128, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

A. Conventional Operational Profile (Analysis)
Run 0

(baseline)

Run 1 Run 2 Run 3 Run n

time

measurement interval

keep
time

check
time

steady
state

condition

stop

condition

steady
state
time

time to
adapt

start of
adaptation

probe mutation period (analysis)

B1. Non-Conventional Operational Profile (Planning)
Run 0

(baseline)

Run 1 Run 2 Run 3 Run n

time

measurement interval

environment
stimulation

time to
react

time to
adapt

keep
time

check
time

steady
state

condition

adaptation

trigger

condition

stop

condition

steady
state
time

start of

adaptation

probe mutation

period (planning)

B2. Non-Conventional Operational Profile (Execution)
Run 0

(baseline)

Run 1 Run 2 Run 3 Run n

time

measurement interval

environment
stimulation

time to
react

time to
adapt

keep
time

check
time

steady
state

condition

adaptation

trigger

condition

stop

condition

steady
state
time

start of

adaptation

probe mutation

period (execution)

Guaranteed condition / event Uncertain condition / event

Fig. 5. Dynamic analysis: COP (top) and NCOP (bottom)

system (and its environment) using the identified changeload
to assess the resilience of the system in the presence of
the controller failures identified during robustness testing. It
includes the following steps:
Criteria Definition. The definition of resilience incorporates
the fulfillment of system goals. Hence, the criteria for as-
sessment (i.e., the metrics) must be defined according to the
system’s goals, since we want to understand how effective
the system is at satisfying them in the presence of controller
failures. In DCAS, the system needs to maximize performance
while maintaining a low operation cost. These requirements
are reflected on the resilience properties (formally expressed
in the PCTL formulas shown in Table 6).

Dynamic Analysis. The analysis can be divided into two
cases (see Figure 5), which establishes the profile of the
resilience experiments. This partition is made according to
the target system’s operational conditions. The assessment of
every operational case (NCOP or COP) includes a set of test
runs, where Run 0 is a baseline run that includes no probe
mutations. This baseline run is used later as a reference to
understand the impact of the filtered probe mutations (i.e.,

mutations that resulted in controller failures, as observed in
the previous phase) in the overall system resilience. The
self-adaptive system state must be explicitly restored in the
beginning of each run so that the effects of the tests do not
accumulate across different runs.

Figure 5.A reflects the case where we assess the target
system when there is no need for adaptation (i.e., the system is
running in a conventional operational profile). Figure 5.B1 and
5.B2 represent the case where the goal is to assess the target
system when it is running in a non-conventional operational
profile (i.e., adaptation is required).

Regarding the conventional operational profile case (Fig-
ure 5.A), the following steps are carried out. The target system
must reach a steady state condition (steady state time). After
this condition is met, we apply probe mutations using the
filtered changeload mentioned earlier, which may result in
triggering adaptation or not. Note that adaptation may be
triggered as a consequence of the probe mutations, and not
due to the state of the target system. If triggered, we stop
applying mutations and observe the system behavior during
the adaptation process (i.e., during time to adapt) and after
adaptation is concluded for a given amount of time (keep
time in Figure 5.A). A period used to let the system stabilize
again finishes the execution of the system (i.e., check time).
If adaptation does not start during a test, probe mutation
continues until the stop condition is met.

The non-conventional operational profile case requires trig-
gering adaptation. We consider two subcases that differ in the
probe mutation period, which is carried out when the controller
is in two distinct stages: planning and execution, which are
shown, respectively, in Figure 5.B1 and 5.B2. In subcase B1,
probes are mutated immediately after the adaptation trigger
condition is met and until adaptation starts. The remaining
periods serve the same purpose as in Figure 5.A. If adaptation
does not start (e.g., as a consequence of probe mutation), mu-
tation continues until the stop condition is met. In subcase B2,
probe mutation begins after adaptation starts and is executed
during the time required to adapt until the keep time is reached.

Scoring/Ranking. Finally, the collected data (execution
traces) is used to rank the impact on resilience of the different
controller failures, considering the criteria previously defined.
In practice, the set of traces collected during the execution
of each change scenario is aggregated into a probabilistic
response model of the system. These models are used as input
to a probabilistic model-checker, along with the resilience
properties obtained from system goals. As an outcome, re-
silience can be evaluated using the quantified value of the
probability of satisfaction for the resilience properties obtained
from the model-checker.

5 EVALUATION

In this section, we assess the validity of our approach by
testing the robustness of a DCAS controller developed using
Rainbow (i.e., a tailored version of Rainbow’s master con-
troller) and evaluating the resilience of the implementation of
the DCAS system described in Section 3.

1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2429128, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

In the following, we first provide a brief overview of
Rainbow, followed by a description of the setup employed
for our evaluation, and results.

5.1 The Rainbow Framework
The focus of this paper is on a controller built using Rain-
bow [9], an architecture-based platform for self-adaptation.
This platform provides a substantial base infrastructure that
can be customized, and has the following distinctive features:
an explicit architecture model of the target system, a collection
of adaptation strategies, and utility preferences to guide the
adaptation process.

The Rainbow framework includes mechanisms for (see
Figure 6): monitoring a target system and its environment (the
observations are used to update the architecture model of the
target system and its environment), detecting opportunities for
improving the system’s quality of services (QoS), deciding the
best course of adaptation based on the state of the system, and
effecting the most appropriate changes. Rainbow’s component-
and-connector architecture model of the target system is one
of the main elements supporting self-adaptation. It is used to
reflect monitored target system and environment information,
and to reason about appropriate adaptation mechanisms for a
particular situation.

The main components of the framework are:
• Architecture Evaluator: evaluates the model to ensure that

the system is operating without experiencing any anomalies
(e.g., violation of an invariant). If an anomaly is detected,
adaptation is triggered.

• Adaptation Manager: chooses a suitable strategy based on
the current system and environment state (reflected in the
architecture model).

• Strategy Executor: executes the strategy chosen by the
adaptation manager via system-level effectors.

• Model Manager: updates the architecture model using the
information collected from the system and its environment
via probes.

System
Layer

Architecture Layer

Target SystemTarget System

Translation
Infrastructure

Adaptation
Manager

Model Manager

Strategy
Executor

System API ProbesEffectors

Architecture
Evaluator

(Analyze)

(Plan)

(Execute)

(Analyze, Plan, Execute)

Fig. 6. The Rainbow framework

5.2 Setup
We deployed a Rainbow-based controller and DCAS across
four machines (Figure 7): dcas-db acts as the backend database

running on Oracle 10.2.0, dcas-main acts as a processor node,
running DCAS, and dcas-devs is used to simulate the response
of network devices from which DCAS retrieves information.
The controller (Rainbow’s master) is deployed in dcas-master.
All machines have an Intel core i3 processor, 1GB of RAM, and
run Windows XP Pro SP3 (DCAS runs as a Windows service).

dcas-maindcas-db dcas-devs

dcas-master

Fig. 7. DCAS experimental setup

To build the changeload for our evaluation, we identified
the: (i) workload and operating conditions for change scenarios
characteristic of a typical deployment of a DCAS system
in production, (ii) set of probes used during the analysis,
planning, and execution stages of the controller (Table 3), and
(iii) set of changes to be applied on our set of probes, which
was determined by identifying the applicable mutation rules
for each probe (Table 3).

Concening the workload and operating conditions employed
in our study, they have been scaled down to a duration of
5 minutes (300s), which is enough to: (i) drive the con-
troller through its different operational stages and apply the
robustness tests, and (ii) collect enough data to synthesize
the probabilistic models required to quantify the system’s
resilience. The workload employed in all scenarios includes
100 data streams with a sample rate of 1 second. We carried
out two types of evaluation: (i) COP, which uses the regular
workload and normal operating conditions (no unresponsive
devices) throughout the entire duration of the experiment
(300s), and (ii) NCOP, in which the controller is driven
towards triggering adaptation to improve performance, and that
conforms to the following pattern: (a) 50s of normal activity
to let the system achieve a steady state; (b) 200s during which
we induce low responsiveness in devices (adding a 2-second
delay in the response time of 25% of the data streams); and
(c) 50s of normal activity.

5.3 Results
In this subsection, we present the results of: (i) controller
robustness testing, and (ii) system resilience evaluation in the
presence of controller failures.

5.3.1 Controller Robustness Testing
Each change scenario of the changeload results from com-
bining the workload and operating conditions with a change
related to an applicable mutation rule. For each mutation
rule, we generate one scenario per probe per controller stage.
Overall, we run 275 robustness tests (the number of tests run
is justified in Example 3, and each test was repeated 3 times
to confirm the results).

Table 5 details the results obtained. When mutating the
inputs from the probes, the columns in the table show the
number of silent (S) and abort (A) failures related to the stage
of the controller, and the probes associated to that stage. To
begin with, 152 out of the 275 conducted tests uncovered

1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2429128, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

Failures (A=Abort, S=Silent)
Analysis Planning Execution

RPS QueueSize ElapsedTime RPS QueueSize ElapsedTime ActivePollers QueueSize QueueStatus
Mutation Rule A S A S A S A S A S A S A S A S A S
MsgNull 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MsgEmpty 1 1 1 1 1 1 1 1 1
MsgPredefined 1 1 1 1 1 1 1 1 1
MsgNonPrintable 1 1 1 1 1 1 1 1 1
MsgAddNonPrintable 1 1 1 1 1 1 1 1 1
TSEmpty 1 1 1 1 1 1 1 1 1
TSRemove 1 1 1 1 1 1 1 1 1
VNRemove 1 1 1 1 1 1 1 1 1
VNSwap 1 1 1 1 1 1
VNInvalidFormat 1 1 1 1 1 1 1 1 1
VNNotExist 1 1 1 1 1 1 1 1 1
VVRemove 1 1 1 1 1 1 1 1 1
VVInvalidFormat 1 1 1 1 1 1 1 1 1
VVNumAbsoluteMinusOne 1 1 1 1 1 1 1 1
VVNumMax 1 1
VVNumMin 1 1 1 1 1 1 1 1
VVNumMaxPlusOne 1 1 1 1 1 1 1 1
VVNumMinMinusOne 1 1
VVNumMinRangeMinusOne 1 1 1 1 1 1 1 1
TOTAL/PROBE 1 18 1 16 1 17 1 18 1 17 17 1 17 1 17 1 13
TOTAL/STAGE A: 3, S: 51 A: 4, S: 69 A: 2, S: 40

TABLE 5
Experimental results for controller robustness testing

robustness issues (55%). Moreover, no catastrophic, restart, or
hindering failures were identified during the tests10. Regard-
ing abort failures, only tests related to the mutation MsgNull
uncovered a single failure per probe and in all controller
stages. This failure is consistent with the same unhandled
java.lang.NullPointerException raised during the parsing of probe
response using a regular expression matcher.

Silent failures are by far the most frequent failure type
discovered during the tests. Mutations that affect the overall
probe response message, as well as the variable name and
value (first, third, and fourth groups in Table 5, respectively)
present the highest concentration of silent failures. In contrast,
silent failures that concern timestamps occurred only in cases
in which such element is removed (mutations TSEmpty and
TSRemove). A detailed analysis showed that this is a conse-
quence of the way in which Rainbow’s controller processes
inputs from the probes. Messages are parsed in such a way that
only the presence of a timestamp in the message is assessed,
but its value is not checked syntactically nor semantically.
However, this does not prevent the correct update of values in
the architectural model of the system inside of the controller
in spite of incorrect timestamps in probe input. Moreover, all
the observed silent failures correspond to incorrect updates of
values in the architectural model, which are not acknowledged
by the controller in any way. It is worth mentioning that silent
failures discovered in the different controller stages are
different. For example, we observed that in some situations,
properties in the architecture model are updated with the
null value in tests conducted during the analysis stage. In
contrast, in the planning and execution stages the value of
the architecture property stops being updated when the same
mutation rule is applied on the same probe. This can lead to
completely different behaviors of the controller that can affect
the target system in different ways.

10. Despite this, these failure modes portray relevant behaviors that might
be uncovered when testing other controllers.

5.3.2 System Resilience Evaluation
In line with the system’s objectives of maintaining an ac-
ceptable performance level while keeping down the cost of
running the system, we study the resilience of the system
in the presence of the different controller failures observed
during controller robustness testing. To achieve our goal, we
built a set of probabilistic models from all the scenarios that
uncovered controller failures using a time frame [0, 150], a
time sampling parameter (as described in Appendix A) of
τ = 1s, and quantization parameters for performance and cost
ηrps = 10 and ηnumActivePollers = 1, respectively. Each model
is synthesized from data obtained from 30 different runs of
the same scenario (i.e., including the 2 baseline models, our
study required (2+152)*30=4680 runs). Using these models,
we quantify the levels of system resilience11 (Table 6) while
the system is in:

Conventional Operational Profile. The system is operating
steadily with good levels of performance and within cost, so
adaptation is not required and the controller is in its analysis
stage. We analyze resilience in terms of whether controller
failures induce the target system to deviate from its COP (e.g.,
by triggering unnecessary adaptations). Deviation from the
system’s COP can be either in terms of performance or cost.
We quantify: (P1) the probability of performance level falling
below the MIN RPS threshold by 100s (1-P(F≤100rpsViolation)),
and (P2) the probability of the number of active pollers
raising above the acceptable limit MAX POLLERS by 100s (1-
P(F≤100hiCost)). Probability values displayed in the Table 6
for P1 and P2 are complementary, so that higher values
indicate better resilience.

Non-Conventional Operational Profile. Associated with
anomaly rpsViolation. The system is underperforming, so adap-
tation has been triggered and the controller is in its planning or

11. Specifically, we show the results obtained from applying the probabilis-
tic quantifier P(.) to system response according to the probabilistic response
pattern displayed in Table 4. Implicit premises are dcasCOP for the COP
section, and rpsViolation for the NCOP section.

1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2429128, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

Quantified Probabilities (%)
Conventional Operational Profile Non-Conventional Operational Profile rpsViolation

P1: 1 - P(F≤100rpsViolation), BL=100 P1′: P(F≤100¬rpsViolation), BL=100
P2: 1 - P(F≤100hiCost), BL=100 P2: 1 - P(F≤100hiCost), BL=100

Analysis Planning Execution
RPS QueueSize ElapsedTime RPS QueueSize ElapsedTime NumPollers QueueSize QueueStatus

Mutation Rule P1 P2 P1 P2 P1 P2 P1′ P2 P1′ P2 P1′ P2 P1′ P2 P1′ P2 P1′ P2
MsgNull 100 100 90 100 81 100 99 11 10 100 20 100 93 90 97 71 89 11
MsgEmpty 90 100 81 100 90 100 93 9 20 100 19 100 99 100 81 100 90 10
MsgPredefined 90 100 81 100 71 100 100 9 18 100 19 100 98 91 100 71 100 0
MsgNonPrintable 90 100 81 100 90 100 100 22 29 100 37 100 100 89 84 91 100 0
MsgAddNonPrintable 100 100 90 100 100 100 96 9 40 100 28 100 93 100 90 91 100 0
TSEmpty 90 100 100 100 60 100 99 29 20 100 20 100 99 90 99 91 100 0
TSRemove 100 100 90 100 100 100 89 10 22 100 10 100 100 100 69 80 100 0
VNRemove 80 100 80 100 90 100 98 9 30 100 20 100 100 91 97 90 100 0
VNSwap - - - - 100 100 - - 0 100 30 100 100 70 84 61 100 12
VNInvalidFormat 90 100 71 100 100 100 99 9 46 100 29 100 100 91 98 100 100 0
VNNotExist 90 100 81 100 100 100 96 39 19 100 29 100 99 71 100 91 100 0
VVRemove 100 100 90 100 90 100 83 20 19 100 30 100 100 90 80 80 100 0
VVInvalidFormat 90 100 81 100 100 100 100 10 9 100 30 100 99 81 80 70 90 18
VVNumAbsoluteMinusOne 90 100 90 100 81 100 87 10 29 100 29 100 95 100 90 91 - -
VVNumMax 100 100 - - - - 100 19 - - - - - - - - - -
VVNumMin 81 100 90 100 100 100 100 12 9 100 50 100 100 100 100 90 - -
VVNumMaxPlusOne 81 100 90 100 100 100 99 10 29 100 50 100 99 81 95 100 - -
VVNumMinMinusOne 75 100 - - - - 99 9 - - - - - - - - - -
VVNumMinRangeMinusOne 100 100 90 100 100 100 100 29 19 100 29 100 100 81 94 100 - -

TABLE 6
Experimental results for system resilience evaluation

execution stage. We analyze resilience in terms of whether the
system can return to its COP by a given deadline. We quantify:
(P1′) the probability of the performance level raising above the
MIN RPS threshold by 100s (P(F≤100¬rpsViolation)), and (P2),
as defined above. Higher values of both P1′ and P2 indicate
better resilience.

Note that, the values labelled as BL in each section header
indicate the baseline value for the probability (i.e., the value
obtained when no mutations are performed on the probes).

Table 6 displays predominantly high values, which indicate
a high level of system resilience to controller failures. If
we focus on the system’s COP, failures occurring in the
controller during the analysis stage have a moderate effect
on performance (P1 between 80-90% in all probes) and no
effect on cost (P2=100% in all cases).

In contrast, if we focus in the NCOP part of the table, the
values in performance-related property P1′ plummet in the
presence of failures caused by mutations in QueueSizeProbeT
(10-46%) and ElapsedTimeProbeT (10-50%) during the planning
stage. This lack of performance is encompassed by low levels
of active pollers, as indicated by the corresponding values
of cost-related property P2. Although the remaining mutation
cases (RPSProbeT and NumPollersProbeT) in the planning stage
still maintain high performance levels (P1′ between 83-100%),
the values in P2 are affected, falling down to levels as low
as 9% for RPSProbeT with mutation VNRemove. These figures
show that two failures in the same category may have
very different impacts on resilience. This is consistent with
the fact that different probes provide information to update
different properties of the architecture model that may be
employed by the controller in disparate ways. Finally, the
values in the execution stage indicate that performance and
cost are only moderately affected in QueueSizeProbeT (ranges
between 69-100% and 61-100% for P1′ and P2, respectively).
However, performance levels in QueueStatusProbeT are always
very high (P1′, 89-100%), at the expense of remarkable drops
in the values of P2 (0-18%) due to high poller activation.

Finally, two failures in the same category may have
very different impacts on resilience, depending on the
operational stage of the controller. For example, failures in-
duced in the controller by mutations in QueueSizeProbeT in the
planning stage indicate a remarkable impact in performance
P1′, compared to the execution stage.

6 LIMITATIONS

Robustness testing is used at the interface of a system, and it
essentially consists of providing invalid inputs with the goal of
disclosing problems (by observing the output). In the case of
our approach, we do not simply observe failures in the system
where the fault is introduced. We inject mutations at one point
(i.e., the interface of the controller), and observe their influence
in another system (composed by the controller and the system
being managed, i.e., the target system). The approach also
considers the presence of a MAPE-K control loop (it perceives
the controller as stateful), and as such, it is tailored to consider
that the controller might be in different stages (which represent
different states). Furthermore, the robustness tests are used to
quantify resilience, since we are collecting resilience metrics
from a robustness evaluation procedure. All of these are
key aspects that make our approach diverge from the classic
robustness testing scenarios to fit the specificities of self-
adaptive systems. To the best of our knowledge, there is no
other approach in the literature with these characteristics that
could be used as a reference for comparative purposes.

Our approach constitutes a first step in exploring the impact
on system resilience of controller failures, and is currently
limited in a number of ways, as discussed next.

First, the work is limited to a subset of undesirable behaviors
in adaptive systems, dealing only with controller failure cases
resulting from malformed inputs. This leaves out other causes
of controller misbehavior, such as flaws in the adaptation logic.
Some of these cases (e.g., failure in executing adaptive actions
in the target system) were explored in [8].

1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2429128, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

Secondly, our tests are limited to a set of change scenarios
(environment conditions and invalid input values). This restric-
tion stems from the fact that the number of potential changes,
and their combinations, is really large (especially for complex
systems) and may become hard to deal with (this is an issue
pervasive to many testing techniques in which not all inputs or
code paths of a program can be tested). In practice, there is no
guarantee about the representativeness of change scenarios, for
which we have to rely on expert knowledge or field data about
similar systems. In our case, we relied on DCAS engineers
to identify potentially anomalous situations that have a high
probability of occurrence and/or relevant impact in the system
(e.g., environment conditions that trigger adaptation in NCOP).

Thirdly, robustness evaluation in the current form of the
approach only considers failures that manifest in a single cycle,
leaving out failures that manifest over a series of decisions
the controller makes (e.g., inducing oscillations in controlled
target system properties, etc.).

In addition to these limitations, the current approach sim-
plifies the meaning of controller state, which is perceived
only as its current operational stage, abstracting away from
the execution history and information that determines the
controller state, such as the information in the architectural
model of the system, or the state of execution logic.

Finally, although the system considered for evaluation is a
production system, the controller is not a production version.

7 CONCLUSIONS

In this paper, we have presented a novel approach for evalu-
ating the resilience of self-adaptive software systems, based
on the stateful robustness testing of a controller. This has
been achieved by defining how the controller’s interface should
be tested according to the target system’s changeload and
the operational stage of the controller. Results for controller
robustness testing were characterized using an adapted version
of the CRASH scale, and resilience evaluation was carried out
using a quantitative approach based on probabilistic model-
checking. The approach was validated in the context of the
Rainbow framework for architecture-based self-adaptation and
the Data Acquisition and Control Service (DCAS) case study.

Concerning controller robustness testing, and although it
has been demonstrated that Rainbow’s master controller is
fairly robust [32], experimental results have shown that
our approach has been able to uncover a relevant set
of robustness issues in the controller. In this case, the
identified pattern of robustness issues at the different stages
of the controller differs only to a limited extent. This can
be attributed to the particular architecture of Rainbow, which
uses its model manager as a safeguard for the logic in the
rest of the components used in the different controller stages.
However, the results align with previous research, which has
shown that robustness testing may disclose a small number of
different issues, despite of their potentially high relevance to
the system being tested [35].

Despite the similarity in the failure patterns detected at the
different controller stages, experimental results show ample
variations in resilience values associated to similar controller

failure patterns, depending on the controller stage and the
probe type being mutated. This indicates that, even if two fail-
ures are in the same category, they may have very different
impacts on resilience, depending on the operational stage
of the controller. These observations confirm the working
hypothesis that the stateful nature of the controller heavily
influences the resilience of the system depending on its
operational stage. This justifies the need to consider the
operational stage of the controller as a primary element during
the robustness testing and resilience evaluation processes.
Finally, the target system is more resilient to controller failures
in its COP than in NCOPs. This is expected since the COP
does not demand adaptation (thus the controller does not need
to send commands to the target system), in contrast with
NCOPs. Our results show that under COP, controller failures
do not cause sending of wrong commands to the target system.

We aim at continuing the groundwork setup by this paper
by: (i) extending the approach to support faults that might span
across different controller stages, (ii) extending the approach
to support a fine-grained notion of internal controller state,
which is currently abstracted only as its operational stage in
the MAPE-K loop, (iii) employing different controllers and
additional case studies for assessing the generality of our
findings, and (iv) extending sources of potential controller
robustness issues beyond probe input mutations.

APPENDIX A
PROBABILISTIC MODELS

We model system behavior using DTMCs obtained by mon-
itoring of a set of relevant variables during system execution
(characterized by a collection of n real-valued random vari-
ables X = {x1, . . . , xn}). Sampling in time and space these
variables results in their quantization and time-discretization,
s.t. ∀xi∈{1,...,n}. Let [αi, βi] be the range of xi, with αi, βi ∈ R,
and ηi ∈ R

+ be its quantization parameter. Then, xi takes its
values in the set: [R]xi = {r : R | r = kηi, k ∈ Z, αi ≤ r ≤ βi }.

Variables in X define a state-space [Rn]X = [R]x1×. . .×[R]xn .
We assume a time discretization parameter τ ∈ R+ associ-

ated to the sampling period established for the observation of
variables, determining the transition time in DTMCs.

Definition 5 (Conventional Operational Profile): Let A be
the set of possible anomalies that the system can experience.
The COP of a system is the region of the state space C = {s :
[Rn]X | ∀α ∈ A • s 2 α} where no anomalies hold.

Definition 6 (Non-conventional Operational Profile): A
NCOP associated with anomaly α ∈ A, is the region of the
state space N = {s : [Rn]X | s |= α} where the anomaly holds.

Definition 7 (Boundary): of an operational profile P is de-
fined as: bd(P) = {sP : P | ∃s - sP • s ∈ S \P}.

Definition 8 (Trajectory): A trajectory is a finite sequence
of transitions π = s1 - . . . - sm.

For any trajectory of the system π, we define its duration
as duration(π) = mτ. A state s′ ∈ S is reachable from a state
s in time t (denoted as s

t
. s′) if there exists a trajectory

π = s - . . . - s′, s.t. duration(π) ≤ t.
In operational profile models, initial states are those where

the system enters the operational profile, and the state space
includes states reachable from initial states by a time bound t.

1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2429128, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

Definition 9 (Operational Profile Model): A model for an
operational profile P and a collection of variables X =

{x1, . . . , xn} during the time frame [0, t] is a DTMC MP
t built

over [Rn]X , s.t. its set of initial states is SM0 = bd(P), and its
set of states is SM = {s : S | ∃s0 ∈ SM0 • s0

t
. s}.

Operational profile models can be synthesized from traces
obtained via runtime system observation [7].

ACKNOWLEDGMENT

Co-financed by the Foundation for Science and Technology via project CMU-
PT/ELE/0030/2009 and by FEDER via the “Programa Operacional Factores de
Competitividade” of QREN with COMPETE ref.: FCOMP-01-0124-FEDER-
012983. Supported by the project iCIS - Intelligent Computing in the Internet
of Services (CENTRO-07-ST24 FEDER-002003), co-financed by QREN, in
the scope of the Mais Centro Program and European Union’s FEDER.

REFERENCES

[1] Y. Brun et al., “Engineering self-adaptive systems through feedback
loops,” in SEfSAS, ser. LNCS. Springer, 2009, vol. 5525.

[2] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, 2003.

[3] J.-C. Laprie, “From Dependability to Resilience,” in DSN. IEEE, 2008.
[4] J. Andersson et al., “Modeling dimensions of self-adaptive software

systems,” in SEfSAS, ser. LNCS, vol. 5525. Springer, 2009.
[5] J. Cámara et al., “Robustness Evaluation of Controllers in Self-Adaptive

Software Systems,” in LADC. IEEE, 2013.
[6] C. Baier and J. Katoen, Principles of Model Checking. MIT Press,

2008.
[7] J. Cámara and R. de Lemos, “Evaluation of Resilience in Self-Adaptive

Systems Using Probabilistic Model-Checking,” in SEAMS. IEEE, 2012.
[8] J. Cámara et al., “Architecture-Based Resilience Evaluation for Self-

Adaptive Systems,” Computing, 2013.
[9] D. Garlan et al., “Rainbow: Architecture-Based Self-Adaptation with

Reusable Infrastructure,” Computer, vol. 37, no. 10, 2004.
[10] M. Kwiatkowska et al., Stochastic model checking, ser. LNCS. Springer,

2007.
[11] B. H. Cheng et al., “SEfSAS,” ser. LNCS. Springer, 2009, ch. Software

Engineering for Self-Adaptive Systems: A Research Roadmap.
[12] R. de Lemos et al., “Software Engineering for Self-Adaptive Systems: A

Second Research Roadmap,” in Software Engineering for Self-Adaptive
Systems 2, ser. LNCS, no. 7475. Springer, 2013.

[13] P. Oreizy et al., “An architecture-based approach to self-adaptive soft-
ware,” IEEE Intell. Syst., vol. 14, 1999.

[14] I. Epifani et al., “Model Evolution by Run-Time Parameter Adaptation,”
in ICSE. IEEE, 2009.

[15] R. Calinescu et al., “Dynamic QoS Management and Optimization in
Service-Based Systems,” IEEE Trans. Software Eng., vol. 37, no. 3,
2011.

[16] R. Calinescu and M. Z. Kwiatkowska, “Using Quantitative Analysis to
Implement Autonomic IT Systems,” in ICSE, 2009.

[17] H. Schmeck et al., “Adaptivity and self-organization in organic comput-
ing systems,” ACM Trans. Auton. Adapt. Syst., vol. 5, no. 3, 2010.

[18] J. Gray, Benchmark Handbook: For Database and Transaction Process-
ing Systems. Morgan Kaufmann, 1992.

[19] K. Kanoun and L. Spainhower, Dependability Benchmarking for Com-
puter Systems. Wiley-IEEE Computer Society Pr, 2008.

[20] M. Vieira and H. Madeira, “Towards a security benchmark for database
management systems,” in DSN. IEEE, 2005.

[21] R. Almeida and M. Vieira, “Changeloads for resilience benchmarking of
self-adaptive systems: a risk-based approach,” in EDCC. IEEE, 2012.

[22] K. Wolter et al., Eds., Resilience Assessment and Evaluation of Com-
puting Systems. Springer, 2012.

[23] M. Vieira et al., “Resilience benchmarking,” in Resilience Assessment
and Evaluation of Computing Systems. Springer, 2012.

[24] A. Avritzer and A. Bondi, “Resilience assessment based on performance
testing,” in Resilience Assessment and Evaluation of Computing Systems.
Springer, 2012.

[25] Z. Micskei et al., “Robustness testing techniques and tools,” in Resilience
Assessment and Evaluation of Computing Systems. Springer, 2012.

[26] A. Mukherjee and D. Siewiorek, “Measuring software dependability by
robustness benchmarking,” IEEE Trans. Software Eng., vol. 23, no. 6,
1997.

[27] P. Koopman and J. DeVale, “Comparing the robustness of POSIX
operating systems,” in FTCS. IEEE CS, 1999.

[28] M. Rodrı́guez et al., “MAFALDA: microkernel assessment by fault
injection and design aid,” in EDCC, ser. LNCS, vol. 1667. Springer,
1999.

[29] M. Vieira, N. Laranjeiro, and H. Madeira, “Benchmarking the robustness
of web services,” in PRDC. IEEE, 2007.

[30] D. Cotroneo et al., “A case study on state-based robustness testing of an
operating system for the avionic domain,” in SAFECOMP, ser. LNCS.
Springer, 2011, vol. 6894.

[31] S. Salva and I. Rabhi, “Stateful web service robustness,” in ICIW. Iaria,
2010.

[32] J. Cámara et al., “Evolving an Adaptive Industrial Software System to
Use Architecture-based Self-Adaptation,” in SEAMS. IEEE, 2013.

[33] M. B. D. others, “Patterns in Property Specifications for Finite-State
Verification,” in ICSE, 1999.

[34] L. Grunske, “Specification Patterns for Probabilistic Quality Properties,”
in ICSE. ACM, 2008.

[35] N. Laranjeiro, M. Vieira, and H. Madeira, “Experimental robustness
evaluation of JMS middleware,” in SCC. IEEE, 2008.

Javier Cámara is a systems scientist at the
Insitute for Software Research, Carnegie Mel-
lon University. His research interests include:
software engineering for self-adaptive systems,
applied formal methods, and cyber-physical sys-
tems.

Rogério de Lemos is a senior lecturer in the
School of Computing at the University of Kent
since 1999, and a researcher at the Centre for
Informatics and Systems of the University of
Coimbra (CISUC). His research interests are on
software engineering for self-adaptive systems,
architecting dependable systems, software de-
velopment for safety-critical systems, and de-
pendability of bioinspired computing.

Nuno Laranjeiro is an assistant professor at the
University of Coimbra, Portugal. His research
focuses on robust software services as well as
experimental dependability evaluation, web ser-
vices interoperability, services security, and en-
terprise application integration. He is a member
of the IEEE Computer Society.

Rafael Ventura is a Research Intern at the De-
partment of Informatics Engineering, University
of Coimbra and Critical Software (Portugal). His
research interests include vulnerability detection
in service-based infrastructures.

Marco Vieira is an assistant professor at the
University of Coimbra, Portugal. His interests
include dependability and security benchmark-
ing, experimental dependability evaluation, fault
injection, software development processes, and
software quality assurance. Vieira received a
PhD in computer engineering from the University
of Coimbra. He is a member of the IEEE Com-
puter Society.

