181 research outputs found

    Towards conformant models of automated electric vehicles

    Get PDF
    Automated driving is one of the major tendencies in last decades, and it is presented as a reliable option to improve comfort during driving, including disable and elder in society and increasing persons safety in roads. This last topic produces the question how is it possible to verify planning and control algorithms for a reliable commercial use of this technology. The question can be answered from two perspective: experimental or formal methods, where the formal one is selected as the most robust between both. Hence, the current work presents a case study verification in automated driving for lane change and double lane change maneuvers, using as basis a trace conformance method presented in [1]. The verification method is performed in Dynacar as a precise multibody simulator tuned for a commercial Renault Twizy vehicle.H2020 UnCoVerCPS Project with grant number 643921

    D5.1 SHM digital twin requirements for residential, industrial buildings and bridges

    Get PDF
    This deliverable presents a report of the needs for structural control on buildings (initial imperfections, deflections at service, stability, rheology) and on bridges (vibrations, modal shapes, deflections, stresses) based on state-of-the-art image-based and sensor-based techniques. To this end, the deliverable identifies and describes strategies that encompass state-of-the-art instrumentation and control for infrastructures (SHM technologies).Objectius de Desenvolupament Sostenible::8 - Treball Decent i Creixement EconòmicObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraPreprin

    Upgrading the Power Grid Functionalities with Broadband Power Line Communications: Basis, Applications, Current Trends and Challenges

    Get PDF
    This article reviews the basis and the main aspects of the recent evolution of Broadband Power Line Communications (BB-PLC or, more commonly, BPL) technologies. The article starts describing the organizations and alliances involved in the development and evolution of BPL systems, as well as the standardization institutions working on PLC technologies. Then, a short description of the technical foundation of the recent proposed technologies and a comparison of the main specifications are presented; the regulatory activities related to the limits of emissions and immunity are also addressed. Finally, some representative applications of BPL and some selected use cases enabled by these technologies are summarized, together with the main challenges to be faced.This work was financially supported in part by the Basque Government under the grants IT1426-22, PRE_2021_1_0006, and PRE_2021_1_0051, and by the Spanish Government under the grants PID2021-124706OB-I00 and RTI2018-099162-B-I00 (MCIU/AEI/FEDER, UE, funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”)

    Lightweighting of double-decker buses

    Get PDF
    The bus industry is currently undergoing extensive transformation as cities around the world push for the rapid introduction of electric buses. Lightweighting of bus structures is identified by leading experts as one of the key technologies necessary to enable and assist this revolution in the industry. Alexander Dennis Ltd. (ADL) is the UK’s largest bus manufacturer and a worldwide leader in the construction of double-decker buses. ADL consider lightweighting to be one of the three main technological pillars of the company and have thus supported various ongoing research programmes with this EngD research programme funded in collaboration with WMG, University of Warwick. This thesis summarises the outcomes of the EngD programme, the primary objective revolving around the identification of innovative yet feasible lightweighting opportunities applicable to ADL double-decker buses. A systematic review of the state-of-the-art of bus lightweighting followed by a critical analysis of ADL bus structures led to initial feasibility studies of various lightweighting opportunities which in turn led to a lightweighting proposal. An innovative lightweight upper-deck structure design was conceived, developed and proposed to ADL. The holistic redesign of the system achieved a 42% weight reduction whilst also significantly lowering the bus centre of gravity hence enabling further lightweighting of other primary structures. The redesigned upper-deck structures necessitates the novel introduction into the bus industry of two key technologies necessary for its realisation; braided fibre reinforced polymer beam structures and coated polycarbonate glazing. A study on the feasibility of utilising fibre reinforced composites to manufacture cost-effective curved structural beams was carried out. A state-of-the-art review identified a composite manufacturing process consisting of a bladder-assisted consolidation of braided commingled thermoplastic preforms as ideally suited for the bus industry. Tooling was designed and machined to allow demonstrator beams to be manufactured using the proposed method. A finite-element methodology, that would enable the design of these composite beam structures, was proposed and verified though correlation of simulation performance data with data collected from three point bend tests carried out on test beam structures. Design guidelines including considerations of manufacturing volumes and costs were prepared for use by ADL. Investigations on the feasibility of polycarbonate glazing application within the bus industry identified gaps in the knowledge of lifetime performance of polycarbonate glazing exposed to bus industry specific conditions. A novel testing set-up was designed to assess the performance of commercially available coated polycarbonate glazing exposed to a harsh daily bus washing environments. Following the successful identification of a suitable coating system, a demonstrator manufacture programme was set-up. This led to the successful manufacture and planned installation on in-service buses of polycarbonate glazing panels achieving 57% component weight reduction when compared to the current laminated-glass glazing panel

    Software doping – Theory and detection

    Get PDF
    Software is doped if it contains a hidden functionality that is intentionally included by the manufacturer and is not in the interest of the user or society. This thesis complements this informal definition by a set of formal cleanness definitions that characterise the absence of software doping. These definitions reflect common expectations on clean software behaviour and are applicable to many types of software, from printers to cars to discriminatory AI systems. We use these definitions to propose white-box and black-box analysis techniques to detect software doping. In particular, we present a provably correct, model-based testing algorithm that is intertwined with a probabilistic-falsification-based test input selection technique. We identify and explain how to overcome the challenges that are specific to real-world software doping tests and analyses. The most prominent example of software doping in recent years is the Diesel Emissions Scandal. We demonstrate the strength of our cleanness definitions and analysis techniques by applying them to emission cleaning systems of diesel cars. All our car related research is unified in a Car Data Platform. The mobile app LolaDrives is one building block of this platform; it supports conducting real-driving emissions tests and provides feedback to the user in how far a trip satisfies driving conditions that are defined by official regulations.Software ist gedopt wenn sie eine versteckte Funktionalität enthält, die vom Hersteller beabsichtigt ist und deren Existenz nicht im Interesse des Benutzers oder der Gesellschaft ist. Die vorliegende Arbeit ergänzt diese nicht formale Definition um eine Menge von Cleanness-Definitionen, die die Abwesenheit von Software Doping charakterisieren. Diese Definitionen spiegeln allgemeine Erwartungen an "sauberes" Softwareverhalten wider und sie sind auf viele Arten von Software anwendbar, vom Drucker über Autos bis hin zu diskriminierenden KI-Systemen. Wir verwenden diese Definitionen um sowohl white-box, als auch black-box Analyseverfahren zur Verfügung zu stellen, die in der Lage sind Software Doping zu erkennen. Insbesondere stellen wir einen korrekt bewiesenen Algorithmus für modellbasierte Tests vor, der eng verflochten ist mit einer Test-Input-Generierung basierend auf einer Probabilistic-Falsification-Technik. Wir identifizieren Hürden hinsichtlich Software-Doping-Tests in der echten Welt und erklären, wie diese bewältigt werden können. Das bekannteste Beispiel für Software Doping in den letzten Jahren ist der Diesel-Abgasskandal. Wir demonstrieren die Fähigkeiten unserer Cleanness-Definitionen und Analyseverfahren, indem wir diese auf Abgasreinigungssystem von Dieselfahrzeugen anwenden. Unsere gesamte auto-basierte Forschung kommt in der Car Data Platform zusammen. Die mobile App LolaDrives ist eine Kernkomponente dieser Plattform; sie unterstützt bei der Durchführung von Abgasmessungen auf der Straße und gibt dem Fahrer Feedback inwiefern eine Fahrt den offiziellen Anforderungen der EU-Norm der Real-Driving Emissions entspricht

    Tradespace and Affordability – Phase 2

    Get PDF
    MOTIVATION AND CONTEXT: One of the key elements of the SERC’s research strategy is transforming the practice of systems engineering – “SE Transformation.” The Grand Challenge goal for SE Transformation is to transform the DoD community’s current systems engineering and management methods, processes, and tools (MPTs) and practices away from sequential, single stovepipe system, hardware-first, outside-in, document-driven, point-solution, acquisition-oriented approaches; and toward concurrent, portfolio and enterprise-oriented, hardware-software-human engineered, balanced outside-in and inside-out, model-driven, set-based, full life cycle approaches.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046).This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046)
    • …
    corecore