902 research outputs found

    An Open Source and Open Hardware Deep Learning-Powered Visual Navigation Engine for Autonomous Nano-UAVs

    Get PDF
    Nano-size unmanned aerial vehicles (UAVs), with few centimeters of diameter and sub-10 Watts of total power budget, have so far been considered incapable of running sophisticated visual-based autonomous navigation software without external aid from base-stations, ad-hoc local positioning infrastructure, and powerful external computation servers. In this work, we present what is, to the best of our knowledge, the first 27g nano-UAV system able to run aboard an end-to-end, closed-loop visual pipeline for autonomous navigation based on a state-of-the-art deep-learning algorithm, built upon the open-source CrazyFlie 2.0 nano-quadrotor. Our visual navigation engine is enabled by the combination of an ultra-low power computing device (the GAP8 system-on-chip) with a novel methodology for the deployment of deep convolutional neural networks (CNNs). We enable onboard real-time execution of a state-of-the-art deep CNN at up to 18Hz. Field experiments demonstrate that the system's high responsiveness prevents collisions with unexpected dynamic obstacles up to a flight speed of 1.5m/s. In addition, we also demonstrate the capability of our visual navigation engine of fully autonomous indoor navigation on a 113m previously unseen path. To share our key findings with the embedded and robotics communities and foster further developments in autonomous nano-UAVs, we publicly release all our code, datasets, and trained networks

    Vehicle Teleoperation Interfaces

    Get PDF

    Efficient Optical flow and Stereo Vision for Velocity Estimation and Obstacle Avoidance on an Autonomous Pocket Drone

    Get PDF
    Miniature Micro Aerial Vehicles (MAV) are very suitable for flying in indoor environments, but autonomous navigation is challenging due to their strict hardware limitations. This paper presents a highly efficient computer vision algorithm called Edge-FS for the determination of velocity and depth. It runs at 20 Hz on a 4 g stereo camera with an embedded STM32F4 microprocessor (168 MHz, 192 kB) and uses feature histograms to calculate optical flow and stereo disparity. The stereo-based distance estimates are used to scale the optical flow in order to retrieve the drone's velocity. The velocity and depth measurements are used for fully autonomous flight of a 40 g pocket drone only relying on on-board sensors. The method allows the MAV to control its velocity and avoid obstacles
    • …
    corecore