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Abstract—Nano-size unmanned aerial vehicles (UAVs), with
few centimeters of diameter and sub-10 Watts of total power
budget, have so far been considered incapable of running so-
phisticated visual-based autonomous navigation software without
external aid from base-stations, ad-hoc local positioning infras-
tructure, and powerful external computation servers. In this
work, we present what is, to the best of our knowledge, the first
27 g nano-UAV system able to run aboard an end-to-end, closed-
loop visual pipeline for autonomous navigation based on a state-
of-the-art deep-learning algorithm, built upon the open-source
CrazyFlie 2.0 nano-quadrotor. Our visual navigation engine is
enabled by the combination of an ultra-low power computing
device (the GAP8 system-on-chip) with a novel methodology for
the deployment of deep convolutional neural networks (CNNs).
We enable onboard real-time execution of a state-of-the-art deep
CNN at up to 18 Hz. Field experiments demonstrate that the
system’s high responsiveness prevents collisions with unexpected
dynamic obstacles up to a flight speed of 1.5 m/s. In addition, we
also demonstrate the capability of our visual navigation engine of
fully autonomous indoor navigation on a 113 m previously unseen
path. To share our key findings with the embedded and robotics
communities and foster further developments in autonomous
nano-UAVs, we publicly release all our code, datasets, and trained
networks.

Index Terms—autonomous navigation, nano-size UAVs, deep
learning, CNN, heterogeneous computing, parallel ultra-low
power, bio-inspired

SUPPLEMENTARY MATERIAL

Supplementary video at: https://youtu.be/JKY03NV3C2s.
The project’s code, datasets and trained models are available
at: https://github.com/pulp-platform/pulp-dronet.

I. INTRODUCTION

Nowadays we are witnessing a proliferation of industrial
and research works in the field of autonomous small-size
unmanned aerial vehicles (UAVs) [1]–[8]. This considerable
effort can be easily explained by the potential applications
that would greatly benefit from intelligent miniature robots.
Many of these works, despite they refer to them self as
“autonomous”, are actually “automatic” but not independent
from some external ad-hoc signal/computation (e.g., GPS,
RFID signals, and ground-stations). We belive that achieving
full independence is the key condition to be truly autonomous.

Autonomous pocket-size drones can be particularly versatile
and useful, acting as sensor nodes that acquire information,
process and understand it, and use it to interact with the
environment and with each other. The “ultimate” will be
capable of autonomously navigating the environment and, at

Fig. 1: Our prototype deployed on the filed. It is based on the
Crazyflie 2.0 nano-quadrotor extended with our PULP-Shield.
The system can run the DroNet [9] CNN for autonomous
visual navigation up to 18 Hz using only onboard resources.

the same time, sensing, analyzing, and understanding it [10].
In the context of wireless sensor networks (WSNs), such a
miniaturized robotic-helpers can collect the data from a local
WSN and bridge them towards the external world. Moreover,
a swarm of such intelligent and ubiquitous nano-drones can
quickly build a remote sensing network in an emergency
context, where their small size enables inexpensive and fast de-
ployment on the field, as well as reaching location inaccessible
for human operators or standard-size drones. The tiny form-
factor of nano-drones (i.e., featuring only few centimeters
in diameter and few tens of grams in weight) is ideal both
for indoor applications where they should safely operate near
humans and for highly-populated urban areas, where they can
exploit complementary sense-act capabilities to interact with
the surroundings (e.g., smart-building, smart-cities, etc.).

To enable such ambitious scenarios many challenging prob-
lems must be addressed and solved. Nano-scale commercial
off-the-shelf (COTS) quadrotors still lack a meaningful level
of autonomy, contrary to their larger counterparts [9], [11],
[12], since their tiny power envelopes and limited payload
do not allow to host onboard adequate computing power

https://youtu.be/JKY03NV3C2s
https://github.com/pulp-platform/pulp-dronet


TABLE I: Rotorcraft UAVs taxonomy by vehicle class-size.

Vehicle Class � : Weight [cm:kg] Power [W] Onboard Device

std-size [9] ∼ 50 : ≥ 1 ≥ 100 Desktop

micro-size [14] ∼ 25 : ∼ 0.5 ∼ 50 Embedded

nano-size [2] ∼ 10 : ∼ 0.01 ∼ 5 MCU

pico-size [13] ∼ 2 : ≤ 0.001 ∼ 0.1 ULP

for sophisticated workloads. Of the total power available
on a UAV (listed in Table I for four classes of vehicles),
Wood et al. [13] estimate that only up to 5% is available for
onboard computation, and payloads of maximum ∼25% of the
total mass can be allotted to the electronics.

The traditional approach to autonomous navigation of a
UAV is the so-called localization-mapping-planning cycle,
which consists of estimating the robot motion using either
off-board (e.g., GPS) or onboard sensors (e.g., visual-inertial
sensors), building a local 3D map of the environment, and
planning a safe trajectory through it [12]. These methods, how-
ever, are very expensive for computationally-constrained plat-
forms. Recent results have shown that much lighter algorithms,
based on convolutional neural networks (CNNs), are sufficient
for enabling basic reactive navigation of small drones, even
without a map of the environment [9], [15]. However, their
computational and power needs are unfortunately still above
the allotted budget of current navigation engines of nano-
drones, which are based on simple, low-power microcontroller
units (MCUs).

In this work, we introduce several improvements over the
state of the art of nano-scale UAVs. First, we introduce the
design of a low-power visual navigation module, the PULP-
Shield, featuring the high-efficiency GreenWaves Technologies
GAP8 SoC, a ULP camera and Flash/DRAM memory, com-
patible with the CrazyFlie 2.0 nano-UAV. The full system is
shown in the field in Figure 1. We propose a methodology
for embedding the CNN-based DroNet [9] visual navigation
algorithm, originally deployed on standard-sized UAVs with
off-board computation, in a nano-UAV with fully onboard
computation. We demonstrate how this methodology yields
comparable quality-of-results (QoR) with respect to the base-
line, within a scalable power budget of 64 mW at 6 frames per
second (fps), up to 272 mW at 18 fps.

We prove in the field the efficacy of this methodology
by presenting a closed-loop fully functional demonstrator
in the supplementary video material, showing autonomous
navigation on i) a 113 m previously unseen indoor environment
and ii) collision robustness against the appearance of a sudden
obstacle at a distance of 2 m while flying at 1.5 m/s. To the
best of our knowledge, our design is the first to enable such
complex functionality in the field on a nano-UAV consuming
<100 mW for electronics. To foster further research on this
field, we release the PULP-Shield design and all code running
on GAP8, as well as datasets and trained networks, as publicly
available under liberal open-source licenses.

II. RELATED WORK

The traditional approach to the navigation of nano-drones
requires to offload the computation to a remote base-
station [1], [5], [7], demanding high-frequency video stream-

ing, which lowers reliability and imposes constraints on
maximum distance, introduces control latency and is poorly
scalable. On the other hand, COTS nano-size quadrotors, like
the Bitcraze Crazyflie 2.0 or the Walkera QR LadyBug, usually
make use of very simple computing devices such as single-
core microcontroller units (MCUs) like the ST Microelectron-
ics STM32F4 [1], [2], [8]. Autonomous flying capabilities
achievable on these platforms are, to the date, very limited.
In [2] the proposed obstacle avoidance functionality requires
favorable flight conditions (e.g., low flight speed of 0.3 m/s).
The solutions proposed in [3], [4] are limited to hovering
and do not reach the accuracy of computationally expensive
techniques leveraged by powerful standard-size UAVs. [8]
addresses only state estimation – a basic building block of
autonomous UAVs, but far from being the only required
functionality.

An emerging trend in the evolution of autonomous navi-
gation systems is the design and development of application-
specific integrated circuit (ASIC) addressing specific naviga-
tion tasks [16], [17]. ASICs deliver levels of performance
and energy efficiency for the specific tasks addressed that
cannot be achieved by typical nano-UAV computing platforms
for workloads such as visual odometry [16] or simultaneous
localization and mapping (SLAM) [17]. However, ASICs
only accelerate a part of the overall functionality, requiring
pairing with additional circuits for complementary onboard
computation as well as for interacting with the drone’s sensors.
Moreover, to date, systems based on these ASICs have not yet
been demonstrated on board a real-life flying nano-UAV.

In this work, we demonstrate a sophisticated visual naviga-
tion engine that is entirely based on a general-purpose parallel,
ultra-low power (PULP) computing platform, and works in
closed-loop in the field within the power envelope and payload
of nano-scale UAVs (∼0.2 W and ∼15 g, respectively).

III. IMPLEMENTATION

This section gives insight on DroNet, the key driving algo-
rithm used by our visual navigation engine, on the hardware
platform utilized in this work (the GAP8 SoC), and on how the
algorithm was modified to fit within the constrained hardware
platform while keeping the same original accuracy and the
performance.

A. The algorithm: DroNet

The key driver for our proposed autonomous visual navi-
gation engine is DroNet: an algorithm proposed initially by
Loquercio et al. [9] based on a convolutional neural network
(CNN) whose topology is inspired on ResNet [18]. The origi-
nal DroNet was deployed on top of a commercial standard-size
UAV streaming camera frames to an external laptop. DroNet is
trained to convert an unprocessed input image from a camera
into two high-level pieces of information: i) an estimation of
the probability of collision with an obstacle, which in turn can
be used to determine the forward target velocity of the UAV;
ii) the desired steering direction, following visual cues from
the camera such as the presence of obstacles, white lines on
the floor or in the street, etc.

Figure 2 reports the full topology of DroNet, which is
shared between the two steering and collision tasks up to the



Fig. 2: DroNet [9] CNN topology.

penultimate layer. To train the network1 two openly available
datasets were used – Udacity2, a dataset designed to train
self-driving cars, for the steering task, and the Zürich bicycle
dataset3 for the collision task.

At inference time, the steering direction θsteer and collision
Pcoll outputs of the network are connected to the UAV control,
influencing the target yaw rate ωyaw,target and the target
forward velocity vx,target through a simple low-pass filtering

1Following [9], the steering and collision tasks were associated to mean
squared error (MSE) and binary cross-entropy (BCE) losses, respectively. The
Adam optimizer was used, with starting learning rate of 1−3 and learning rate
decay per epoch equal to 1−5. We refer to Loquercio et al. [9] for further
details on the training methodology.

2https://www.udacity.com/self-driving-car
3http://rpg.ifi.uzh.ch/dronet.html

scheme:

vx,target[t] = α · vmax · (1− Pcoll[t]) (1)
+ (1− α) · vx,target[t− 1]

ωyaw,target[t] = β · θsteer[t] (2)
+ (1− β) · ωyaw,target[t− 1]

where the parameters have default values α = 0.3 and β =
0.5.

B. The platform: GAP8 SoC
While commercial off-the-shelf microcontrollers used in

the most common nano-UAV platforms have acceptable com-
puting capabilities of their own, these could not be enough
to achieve autonomous flight functionality, which requires
workloads in the order of 100 million – 10 billion operations
per second [9]. Moreover, these microcontrollers are typically
tasked with many computationally simple but highly critical
real-time tasks to estimate the current kinematic state of the
UAV, predict its motion and control the actuators. To avoid
tampering with this mechanism, we chose to execute our visual
navigation engine on a different platform than the central nano-
UAV microcontroller, acting as a specialized accelerator [19]
based on the GreenWaves Technologies GAP8 system-on-chip
(SoC).

Fig. 3: Architecture of the PULP-GAP8 embedded processor.

GAP8 is a commercial embedded application processor
based on the PULP open source architecture4 and the RISC-V
open ISA. Figure 3 shows the architecture of GAP8 in detail.
The GAP8 SoC is organized in two subsystems and power
domains, a fabric controller (FC) with one RISC-V core acting
as an on-SoC microcontroller and a cluster (CL) serving as
an accelerator with 8 parallel RISC-V cores. All the cores in
the system are identical and support the RV32IMC instruction
set with SIMD DSP extensions (e.g., fixed-point dot product)
to accelerate linear algebra and signal processing.

The FC is organized similarly to a microcontroller system,
featuring an internal clock generator, 512 kB of SRAM (L2
memory), a ROM for boot code, and an advanced I/O sub-
system (µDMA) that can be programmed to autonomously
move data between a wide set of I/O interfaces (including
SPI, UART, I2C, L3 HyperRAM) and the L2 memory without

4http://pulp-platform.org



Fig. 4: Batch-normalization layer folding methodology.

the core’s intervention. The CL is meant to be used to
accelerate parallel sections of the application code running
on GAP8. Its 8 RISC-V cores share a single shared cache
for instructions and a shared L1 scratchpad memory of 64 kB
for data; movement of data between the latter and the L2
is manually managed by the software running on the cluster
using an internal DMA controller. This enables us to achieve
maximum efficiency and utilization on typical parallel kernels
with regular, predictable access patterns for data while saving
the area overhead of a shared data cache.

C. Optimizations for embedded deployment

Deploying a CNN algorithm developed in a high-level
framework (such as TensorFlow in the case of DroNet) to
a low-power application processor such as GAP8 involves
several challenges, connected with the constraints imposed by
the limited available resources. First, the navigation algorithm
must be able to execute the main workload (∼ 41 million
of multiply-accumulate operations for one inference pass-
through of DroNet) at a frame rate sufficient to achieve
satisfactory closed-loop performance in control. Furthermore,
while the embedded processor typically uses a lower precision
to represent data and a lower resolution input camera, the
quality-of-results must remain similar to the one of the original
algorithm. These constraints impose significant modifications
to the original algorithm that in the case of DroNet can be
grouped in two main categories.

1) Dataset fine-tuning & network quantization: To improve
the generalization capabilities of the original DroNet [20] with
respect to the lower-quality images coming from the embedded
camera, we collected an extension for the collision dataset
using directly the camera available in the final platform: a
grayscale QVGA-resolution HiMax. We collected 1122 new
images for training and 228 for test/validation, which we
compounded with the openly available collision dataset. We
also replaced 3 × 3 pooling layers with 2 × 2 ones, which
yield the same overall functionality (i.e., the reduction of
the spatial size of feature maps in the CNN) while being
smaller and generally easier to implement as each input
pixel is projected to a single output one. Finally, to adapt
the network to execution on a low-power platform without
support for floating-point numbers, we switched to fixed-point
data representation. Specifically, by analyzing the dynamic
range of intermediate feature maps in the original DroNet,
we found that a precision of 2−11 and a range ±16 was
adequate to represent activation data after batch normalization
(BN) layers. Then, we replaced all activation ReLU layers
with quantization-aware equivalents [21] using a 16-bit Q5.11

fixed-point format. The entire network was retrained from
scratch using the same framework of the original DroNet.

2) Batch-norm folding: During training, batch-
normalization (BN) layers are essential to keep the dynamic
range of feature map activations in check (hence helping with
their quantization) and to regularize the learning process,
which achieves a far better results in terms of generalization
than an equivalent network, particularly for what concerns the
regression task of computing the desired steering. However,
during inference, the BN layers are linear and can be merged
with the preceding convolutional layer by folding it inside
its weights W and biases b. If γ, β, σ, and µ are the
normalization parameters, then:

BN
(
W ? x+ b

)
= γ/σ · (W ? x+ b− µ) + β

= (γ/σ ·W) ? x+
(
β + γ/σ (b− µ)

)
.
= W′ ? x+ b′ (3)

In DroNet, the input of each RES block is normalized in
the main branch, but non-normalized in the by-pass branch,
making the direct application of Equation 3 more difficult, as it
is not possible to directly apply it to the convolution preceding
those operations. Therefore, we proceeded as follows: for each
RES block, we first apply the folding “as if” the input of the
entire RES block was normalized by using Equation 3. This
means that each BN is folded into the previous convolution
layer, e.g., for RES block 1, in the initial convolutional layer
of DroNet and in the first one of the main branch. Second,
we apply inverse folding on the by-pass convolutional layer,
to counteract the folding of BNs on its inputs:

BN−1
(
W′ ? x+ b′

) .
= W′′ ? x+ b′′ (4)

W′′ .= σ/γ ·W′

b′′
.
= b′ +

∑
ic

(
µ ·
∑
fs

W′
)
−
∑
ic

(
β · σ/γ ·

∑
fs

W′
)

where
∑

ic and
∑

fs indicate marginalization along the
input channels dimension and along the filter’s spatial di-
mensions, respectively. We apply this operation sequentially
to each RES block as exemplified in Figure 4. After this
operation, the BN layers can be effectively removed from
the network as other layers absorb their effects. Finally, the
new weights and bias values can be quantized according to
their range requirements. In the final DroNet deployment, we
quantize weights for all layers at Q2.14, except for the first
bypass layer, which uses Q9.7.

IV. THE PULP-SHIELD

Our visual navigation engine is embodied, on its hardware
side, in the so-called PULP-Shield: a lightweight, modular
and configurable printed circuit board (PCB) with a highly
optimized layout. We designed the PULP-Shield to be compat-
ible/pluggable to the Crazyflie 2.0 (CF) nano-quadrotor5. The
CF has been chosen due to its reduced size (i.e., 27 g of weight
and 10 cm of diameter), its open-source and open-hardware
philosophy, and the availability of extra payload (up to 15 g).

5https://www.bitcraze.io/crazyflie-2



Fig. 5: Interaction between the PULP-Shield and the CrazyFlie 2.0 nano-drone.

The PULP-shield features a PULP-based GAP8 SoC, two Cy-
press HyperBus Memories6 enabling flexible configuration and
an ultra-low-power gray-scale HiMax7 QVGA CMOS image
sensor that communicates via the parallel camera interface
(PCI) protocol. On the two BGA memory slots we mounted a
64 Mbit HyperRAM (DRAM) chip and a 128 Mbit HyperFlash
memory, embodying the system L3 and the external storage,
respectively.

Two mounting holes, on the side of the camera connector,
allow to plug a 3D-printed camera holder that can be set
either in front-looking or down-looking mode, accounting
for the most common visual sensors layouts and enabling a
large variety of tasks like obstacle avoidance [9] and visual
state estimation [3], respectively. On the shield there are also
a JTAG connector for debug purposes and an external I2C
plug for future development. Two headers, located on both
sides of the PCB, grant a steady physical connection with
the drone and at the same time they bring the shield power
supply and allow communication with the CF’s main MCU
(i.e., ST Microelectronics STM32F4058) through SPI interface
and GPIO signals. The form factor of our final PULP-Shield
prototype, shown in Figure 6, is 30×28 mm and it weighs
∼5 g (including all components), well below the payload limit
imposed by the nano-quadcopter.

The PULP-Shield embodies the Host-Accelerator heteroge-
neous architectural paradigm at the ultra-low power scale [19],
where the CF’s MCU offloads the intensive visual navigation
workloads to the PULP accelerator. As reported in Figure 5 the
interaction starts from the host, which wakes up the accelerator
with a GPIO interrupt 1 . Then, the accelerator fetches from
its external HyperFlash storage the binary to be executed 2 .
After the ULP camera is configured via I2C 3 the frames
can be transferred to the L2 shared memory through the
µDMA 4 and this can be performed in pipeline with the
computation running on the CLUSTER (i.e., in double buffering
fashion). All additional data, like the weights used in our
CNN, can be loaded from the DRAM/Flash memory 5 and

6http://www.cypress.com/products/hyperbus-memory
7http://www.himax.com.tw/products/cmos-image-sensor/image-sensors
8http://www.st.com/en/microcontrollers/stm32f405-415.html

the parallel execution can start on the accelerator 6 . Once
the computation is completed the results are returned to the
drone’s MCU via SPI 7 .

Even if the PULP-Shield has been developed specifically to
fit the CF quadcopter, its basic concept and the functionality
it provides are quite general and portable to any drone based
on an SPI-equipped MCU. The system-level architectural
template is meant for minimizing data transfers (i.e., exploiting
locality of data) and communication overhead between the
main MCU and the accelerator – without depending on the
internal microarchitecture of either one.

Fig. 6: The PULP-Shield pluggable PCB.

V. EXPERIMENTAL RESULTS

In this section we present the experimental evaluation of our
visual navigation engine, considering three main metrics: i) a
QoR comparison with other CNNs for autonomous navigation
of UAVs, ii) the capability of performing all the required
computations within the allowed power budget and iii) a
quantitative control accuracy evaluation of the closed-loop
system when deployed on the field. All the results are based
on the PULP-Shield configuration presented in Section IV.

A. CNN Evaluation
To assess the regression performance of our modifications

to the original CNN, employing the testing sequence from
the Udacity dataset, we present in Table II a comparison
with the state-of-the-art. We compare our version of the



Fig. 7: DroNet performance in frames per second (fps) in all
tested configurations (coloring is proportional to total system
power).

DroNet network, named PULP-DroNet, against a set of other
architectures from the literature [15], [18], [22] and also
against the same original DroNet model [9]. Note that, we
report the same accuracy/performance previously presented
in [9] for the same reference architectures. Our regression
and classification results are gathered analyzing the testing
sequence on the official PULP simulator, that precisely models
the behavior of the target architecture executing the same
binary deployed on the PULP-Shield. Performance results
(e.g., processing time) are instead obtained running the PULP-
DroNet CNN on the actual hardware. In Table II, explained
variance (EVA) and root-mean-square error (RMSE) refer to
the regression problem (i.e., steering angle) whereas Accuracy
and F1-score are related to the classification problem (i.e.,
collision probability).

From these results, we can observe that our modified design,
even though 160 times smaller and running with two orders of
magnitude lower power consumption than the best architecture
(i.e., ResNet-50 [18]), maintains a considerable prediction
performance while achieving comparable real-time operation
(18 frames per second). Regarding the original DroNet, it
is clear that the proposed modifications, like quantization
and fixed-point calculation, are not penalizing the overall
network’s capabilities, quite the opposite. In fact, both the
regression and classification problems benefit from the fine-
tuning, highlighting how the generalization of such models
depends critically on the quantity and variety of data available
for training.

B. Performance and Power Consumption

We measured wall-time performance and power consump-
tion by sweeping between several operating modes on GAP8.
We focused on operating at the lowest (1.0 V) and highest
(1.2 V) supported core VDD voltages. We swept the oper-
ating frequency between 50 and 250 MHz, well beyond the
GAP8 officially supported configuration9. In Figure 7 we
report performance as frame-rate and total power consumption
measured on the GAP8 SoC. Selecting a VDD operating
point of 1.2 V would increase both power and performance

9https://greenwaves-technologies.com/gap8-datasheet

Fig. 8: Power envelope break-down of the entire cyber-
physical system running at VDD@1.0 V, FC@50 MHz,
CL@100 MHz with PULP-Shield zoom-in.

up to 272 mW and 18 fps. We found the SoC to be working
correctly @ 1.0 V for frequencies up to ∼175 MHz; we note
that as expected when operating @ 1.0 V there is a definite
advantage in terms of energy efficiency. We identified the most
energy-efficient configuration in VDD@1.0 V, FC@50 MHz
and CL@100 MHz, that is able to deliver up to 6 fps, with an
energy requirement per frame of 7.1 mJ.

In Figure 8, we report the power break-down for the
complete cyber-physical system and for the proposed PULP-
Shield. Our nano-quadcopter is equipped with a 240 mA h
3.7 V LiPo battery enabling a flight time of ∼7 minutes
under standard conditions, which results in an average power
consumption of 7.6 W. The power consumption of all the
electronics aboard the original drone amounts to 277 mW
leaving ∼7.3 W for the 4 rotors. The electronics consumption
is given by the 2 MCUs included in the quadrotor and all the
additional devices (e.g., sensors, LEDs, etc.). In addition to
that, introducing the PULP-Shield, we increase the peak power
envelope by 64 mW (i.e., 0.8% of the total) using the most
energy-efficient configuration and accounting also for the cost
of L3 memory access and the onboard ULP camera. On the
PULP-Shield break-down, visible on the right of Figure 8, we
consider the worst-case envelope of the HyperRAM operating
at full speed only for the time required for L3-L2 data transfers
with an average power consumption of 14 mW. As onboard
computation accounts for roughly 5% of the overall power
consumption (propellers, sensors, compute and control, cfr
Section I), our PULP-Shield enables the execution of the
DroNet network (and potentially more) in all configurations
within the given power envelope.

Finally, we performed an experiment to evaluate the cost in
terms of operating lifetime of carrying the physical payload of
the PULP-Shield and of executing the DroNet workload. To
ensure a fair measurement, we decoupled the DroNet output
from the nano-drone control and statically set it to hover (i.e.,
keep constant position over time) at 0.5 m from the ground. We
targeted three different configurations: i) the original CrazyFlie
without any PULP-Shield; ii) PULP-Shield plugged but never
turned on, to evaluate the lifetime reduction due to the addi-
tional weight introduced; iii) PULP-Shield turned on and exe-
cuting DroNet at VDD@1.0 V, FC@50 MHz, CL@100 MHz.
Our results are summarized in Table III, where as expected



TABLE II: Results on regression and classification task.

Model EVA RMSE Accuracy F1-score Num. Layers Memory [MB] Processing time [fps] Device
Giusti et al. [15] 0.672 0.125 91.2% 0.823 6 0.221 23 Intel Core i7
ResNet-50 [18] 0.795 0.097 96.6% 0.921 50 99.182 7 Intel Core i7
VGG-16 [22] 0.712 0.119 92.7% 0.847 16 28.610 12 Intel Core i7
DroNet [9] 0.737 0.109 95.4% 0.901 8 1.221 20 Intel Core i7

PULP-DroNet (Ours) 0.748 0.111 95.9% 0.902 8 0.610 18 GAP8 SoC

TABLE III: CrazyFlie 2.0 (CF) lifetime with and with-
out PULP-Shield (both turned off and running DroNet at
VDD@1.0 V, FC@50 MHz, CL@100 MHz).

Original CF
CF + PULP-Shield

PULP-Shield (off) PULP-Shield (on)
Lifetime ∼440 s ∼350 s ∼340 s

the biggest reduction in the lifetime is given by the increased
weight. Ultimately, the price for our visual navigation engine is
∼ 22% of the original lifetime. This lifetime reduction can be
curtailed through a number of optimization. Starting from the
straightforward redesign of the PCB and camera holder with
lighter plastic materials (e.g., flexible substrate), it is possible
to integrate the entire electronics of the drone. In this last case,
we could either integrate the existing MCUs with the PULP
SoC in the same PCB/frame or envision a PULP-based nano-
drone, where the host MCU would be replaced by the PULP
SoC, scheduling all the control tasks on the FC.

C. Control Evaluation

The figures of merit of this control accuracy evaluation are
i) the longest indoor traveled distance the nano-drone is able
to cover autonomously before stopping and ii) its capability
of collision avoidance in presence of unexpected dynamic
obstacles when flying at high speed. In all the following
experiments we use the most energy-efficient configuration of
our visual navigation engine of VDD@1.0 V, FC@50 MHz,
CL@100 MHz. Note that all the control-loops and state esti-
mation parameters running on the nano-drone are kept as they
come with the official firmware10, leaving room for further
improvements.

Fig. 9: Testing environment: indoor corridor.

The first control accuracy experiment is conceived to assess
the capability of our nano-UAV of autonomous navigation

10https://github.com/bitcraze/crazyflie-firmware

in a previously unseen indoor environment, particularly chal-
lenging due to the visual differences from training samples
(dominantly outdoor). As shown in Figure 9, our visual navi-
gation engine enables an indoor traveled distance of ∼113 m,
flying at a average speed of 0.5 m/s. The path navigated is
composed of two straight corridors (∼50 m each), divided
by two sharp 90° turns, resulting in the central “U” turn.
As shown in the supplementary video material (https://youtu.
be/JKY03NV3C2s), the straight corridors are traveled with
minimal modification of the indoor environment, in contrast
to the “U” turn that requires some more auxiliary white tape
on the ground to enforce the correct understanding of the
surrounding by the CNN. The flight terminates due to the
glossy paint at the end of the corridor, due to the interference
of the light reflection with the CNN understanding, resulting
in a constant high probability of collision.

In the second part of the control accuracy evaluation,
we analyze the system’s capability of preventing collisions.
Correctly identifying obstacles has been already implicitly
demonstrated with the autonomous navigation test. With the
collision avoidance set of experiments we want to push our
visual navigation engine to its limit, preventing collisions also
under very unfavourable conditions – i.e., high flight speed
and small reaction space/time. The setup of this experiment is
represented by a straight path where, after the nano-drone has
traveled the first 8 m at full speed, an unexpected dynamic
obstacle appear within only 2 m of distance from it (i.e., at
10 m from the starting point). We performed multiple experi-
ments, sweeping the flight speed, to identify the maximum one
for which the nano-drone is still able to react promptly and
prevent the collision. Results, also shown in the supplementary
video material (https://youtu.be/JKY03NV3C2s), demonstrate
that our visual navigation engine enables safe flight up to
∼1.5 m/s.

Figure 10 reports the real-time log of the relevant on-
board information (i.e., probability of collision, estimated and
desired velocity, and altitude), paired with external events
(i.e., start, appearing of the obstacle, and braking), of this
experiment. The initial take-off is followed by ∼2 s of in place
hovering before the output of the CNN is used and the flight
in the forward direction starts. The altitude of this experiment
is kept constant at 0.5 m, as reported in Figure 10-A. As
soon as the probability of collision output from the CNN,
shown in Figure 10-B, is higher of the critical probability of
collision threshold of 0.7, the target forward velocity is pushed
to 0, resulting in a prompt obstacle avoidance mechanism.
The onboard state estimation of the current forward velocity
(i.e., Vx estimated) is reported in Figure 10-C paired with the
desired velocity in the same direction, that is calculated on
the basis of the probability of collision and bounded to the

https://youtu.be/JKY03NV3C2s
https://youtu.be/JKY03NV3C2s
https://youtu.be/JKY03NV3C2s


Fig. 10: Onboard real-time log of the collision avoidance
experiment, paired with external events.

maximum forward velocity, i.e., 1.5 m/s. If we would relax
the experiment’s constraints – e.g., increasing the braking
space/time – we could enable a safe flight, avoiding collision,
also at higher flight speed.

VI. CONCLUSIONS

Nano- and pico-sized UAVs are ideal ubiquitous nodes; due
to their size and physical footprint, they can act as mobile
sensor hubs and data collectors for tasks such as surveillance,
inspection, etc. However, to be able to perform these tasks,
they must be capable of autonomous navigation of complex
environments such as the indoor of buildings and offices. In
this work, we introduce the first vertically integrated visual
navigation engine for autonomous nano-UAVs field-tested in
closed loop demonstrations, as shown in supplementary video
materials. Our engine consumes 64–272 mW while running
at 6–18 fps, enough i) to enable autonomous navigation on
a >100 m previously unseen indoor environment, and ii) to
ensure robustness against the appearance sudden obstacles at
2 m distance while flying at 1.5 m/s. To pave the way for a huge
number of advanced use-cases of autonomous nano-UAVs as
wireless mobile smart sensors, we release open-source our
PULP-Shield design and all code running on it, as well as
datasets and trained networks.
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