15 research outputs found

    Towards an autonomous vision-based unmanned aerial system against wildlife poachers.

    Get PDF
    Poaching is an illegal activity that remains out of control in many countries. Based on the 2014 report of the United Nations and Interpol, the illegal trade of global wildlife and natural resources amounts to nearly $ 213 billion every year, which is even helping to fund armed conflicts. Poaching activities around the world are further pushing many animal species on the brink of extinction. Unfortunately, the traditional methods to fight against poachers are not enough, hence the new demands for more efficient approaches. In this context, the use of new technologies on sensors and algorithms, as well as aerial platforms is crucial to face the high increase of poaching activities in the last few years. Our work is focused on the use of vision sensors on UAVs for the detection and tracking of animals and poachers, as well as the use of such sensors to control quadrotors during autonomous vehicle following and autonomous landing

    Design and Implementation of Moving Object Visual Tracking System using μ-Synthesis Controller

    Get PDF
    Considering the increasing use of security and surveillance systems, moving object tracking systems are an interesting research topic in the field of computer vision. In general, a moving object tracking system consists of two integrated parts, namely the video tracking part that predicts the position of the target in the image plane, and the visual servo part that controls the movement of the camera following the movement of objects in the image plane. For tracking purposes, the camera is used as a visual sensor and applied to a 2-DOF (yaw-pitch) manipulator platform with an eye-in-hand camera configuration. Although its operation is relatively simple, the yaw-pitch camera platform still needs a good control method to improve its performance. In this study, we propose a moving object tracking system on a prototype yaw-pitch platform. A m-synthesis controller was used to control the movement of the visual servo part and keep the target in the center of the image plane. The experimental results showed relatively good results from the proposed system to work in real-time conditions with high tracking accuracy in both indoor and outdoor environments

    Fatality percentages of Sri Lankan leopards (Panthera pardus kotiya) killed in human activities in Sri Lanka

    Get PDF
    леопард, смертность, причины, самки, самцы, деятельность людей, среда обитания, агрокультура, Шри ЛанкаПриведены данные по наблюдению за жизнью диких леопардов для уточнения наиболее распространенных причин их гибели. Рассматривались и оценивались случаи гибели леопардов в течение 2010-2016 годов, показывающие, что основной и наиболее частой причиной гибели леопардов явился человеческий фактор. Среди всех половозрастных групп наблюдалась эта же тенденция, то есть человеческий фактор также являлся основной причиной гибели животных. Этот процент гибели может быть снижен за счет понимания особенностей жизни и обитания леопардов. В дополнение к этому необходимо применять меры по защите окружающей среды, особенно в тех местах, где сосредоточенa большая популяция этих животных, необходимо контролировать развитие сельского хозяйства в данных областях, привлекать внимание людей к данной проблеме за счет информации в виде вывесок, ограничивать скорость движения транспорта, чтобы снизить процент гибели животных

    Learning Control of Fixed-Wing Unmanned Aerial Vehicles Using Fuzzy Neural Networks

    Get PDF
    A learning control strategy is preferred for the control and guidance of a fixed-wing unmanned aerial vehicle to deal with lack of modeling and flight uncertainties. For learning the plant model as well as changing working conditions online, a fuzzy neural network (FNN) is used in parallel with a conventional P (proportional) controller. Among the learning algorithms in the literature, a derivative-free one, sliding mode control (SMC) theory-based learning algorithm, is preferred as it has been proved to be computationally efficient in real-time applications. Its proven robustness and finite time converging nature make the learning algorithm appropriate for controlling an unmanned aerial vehicle as the computational power is always limited in unmanned aerial vehicles (UAVs). The parameter update rules and stability conditions of the learning are derived, and the proof of the stability of the learning algorithm is shown by using a candidate Lyapunov function. Intensive simulations are performed to illustrate the applicability of the proposed controller which includes the tracking of a three-dimensional trajectory by the UAV subject to time-varying wind conditions. The simulation results show the efficiency of the proposed control algorithm, especially in real-time control systems because of its computational efficiency

    LAVAPilot: Lightweight UAV Trajectory Planner with Situational Awareness for Embedded Autonomy to Track and Locate Radio-tags

    Full text link
    Tracking and locating radio-tagged wildlife is a labor-intensive and time-consuming task necessary in wildlife conservation. In this article, we focus on the problem of achieving embedded autonomy for a resource-limited aerial robot for the task capable of avoiding undesirable disturbances to wildlife. We employ a lightweight sensor system capable of simultaneous (noisy) measurements of radio signal strength information from multiple tags for estimating object locations. We formulate a new lightweight task-based trajectory planning method-LAVAPilot-with a greedy evaluation strategy and a void functional formulation to achieve situational awareness to maintain a safe distance from objects of interest. Conceptually, we embed our intuition of moving closer to reduce the uncertainty of measurements into LAVAPilot instead of employing a computationally intensive information gain based planning strategy. We employ LAVAPilot and the sensor to build a lightweight aerial robot platform with fully embedded autonomy for jointly tracking and planning to track and locate multiple VHF radio collar tags used by conservation biologists. Using extensive Monte Carlo simulation-based experiments, implementations on a single board compute module, and field experiments using an aerial robot platform with multiple VHF radio collar tags, we evaluate our joint planning and tracking algorithms. Further, we compare our method with other information-based planning methods with and without situational awareness to demonstrate the effectiveness of our robot executing LAVAPilot. Our experiments demonstrate that LAVAPilot significantly reduces (by 98.5%) the computational cost of planning to enable real-time planning decisions whilst achieving similar localization accuracy of objects compared to information gain based planning methods, albeit taking a slightly longer time to complete a mission.Comment: Accepted to 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    UAV Maneuvering Target Tracking in Uncertain Environments based on Deep Reinforcement Learning and Meta-learning

    Get PDF
    This paper combines Deep Reinforcement Learning (DRL) with Meta-learning and proposes a novel approach, named Meta Twin Delayed Deep Deterministic policy gradient (Meta-TD3), to realize the control of Unmanned Aerial Vehicle (UAV), allowing a UAV to quickly track a target in an environment where the motion of a target is uncertain. This approach can be applied to a variety of scenarios, such as wildlife protection, emergency aid, and remote sensing. We consider multi-tasks experience replay buffer to provide data for multi-tasks learning of DRL algorithm, and we combine Meta-learning to develop a multi-task reinforcement learning update method to ensure the generalization capability of reinforcement learning. Compared with the state-of-the-art algorithms, Deep Deterministic Policy Gradient (DDPG) and Twin Delayed Deep Deterministic policy gradient (TD3), experimental results show that the Meta-TD3 algorithm has achieved a great improvement in terms of both convergence value and convergence rate. In a UAV target tracking problem, Meta-TD3 only requires a few steps to train to enable a UAV to adapt quickly to a new target movement mode more and maintain a better tracking effectiveness

    A Review of Deep Learning Methods and Applications for Unmanned Aerial Vehicles

    Get PDF
    Deep learning is recently showing outstanding results for solving a wide variety of robotic tasks in the areas of perception, planning, localization, and control. Its excellent capabilities for learning representations from the complex data acquired in real environments make it extremely suitable for many kinds of autonomous robotic applications. In parallel, Unmanned Aerial Vehicles (UAVs) are currently being extensively applied for several types of civilian tasks in applications going from security, surveillance, and disaster rescue to parcel delivery or warehouse management. In this paper, a thorough review has been performed on recent reported uses and applications of deep learning for UAVs, including the most relevant developments as well as their performances and limitations. In addition, a detailed explanation of the main deep learning techniques is provided. We conclude with a description of the main challenges for the application of deep learning for UAV-based solutions

    The potential of unmanned aerial systems for sea turtle research and conservation: A review and future directions

    Get PDF
    This is the final version. Available on open access from Inter Research via the DOI in this recordThe use of satellite systems and manned aircraft surveys for remote data collection has been shown to be transformative for sea turtle conservation and research by enabling the collection of data on turtles and their habitats over larger areas than can be achieved by surveys on foot or by boat. Unmanned aerial vehicles (UAVs) or drones are increasingly being adopted to gather data, at previously unprecedented spatial and temporal resolutions in diverse geographic locations. This easily accessible, low-cost tool is improving existing research methods and enabling novel approaches in marine turtle ecology and conservation. Here we review the diverse ways in which incorporating inexpensive UAVs may reduce costs and field time while improving safety and data quality and quantity over existing methods for studies on turtle nesting, at-sea distribution and behaviour surveys, as well as expanding into new avenues such as surveillance against illegal take. Furthermore, we highlight the impact that high-quality aerial imagery captured by UAVs can have for public outreach and engagement. This technology does not come without challenges. We discuss the potential constraints of these systems within the ethical and legal frameworks which researchers must operate and the difficulties that can result with regard to storage and analysis of large amounts of imagery. We then suggest areas where technological development could further expand the utility of UAVs as data-gathering tools; for example, functioning as downloading nodes for data collected by sensors placed on turtles. Development of methods for the use of UAVs in sea turtle research will serve as case studies for use with other marine and terrestrial taxa

    Visual-based SLAM configurations for cooperative multi-UAV systems with a lead agent: an observability-based approach

    Get PDF
    In this work, the problem of the cooperative visual-based SLAM for the class of multi-UA systems that integrates a lead agent has been addressed. In these kinds of systems, a team of aerial robots flying in formation must follow a dynamic lead agent, which can be another aerial robot, vehicle or even a human. A fundamental problem that must be addressed for these kinds of systems has to do with the estimation of the states of the aerial robots as well as the state of the lead agent. In this work, the use of a cooperative visual-based SLAM approach is studied in order to solve the above problem. In this case, three different system configurations are proposed and investigated by means of an intensive nonlinear observability analysis. In addition, a high-level control scheme is proposed that allows to control the formation of the UAVs with respect to the lead agent. In this work, several theoretical results are obtained, together with an extensive set of computer simulations which are presented in order to numerically validate the proposal and to show that it can perform well under different circumstances (e.g., GPS-challenging environments). That is, the proposed method is able to operate robustly under many conditions providing a good position estimation of the aerial vehicles and the lead agent as well.Peer ReviewedPostprint (published version
    corecore