64 research outputs found

    가변 토폴로지 트러스 로봇의 안정적인 주행 알고리즘 개발

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 기계공학과, 2020. 8. 김종원.Variable Topology Truss (VTT) is truss structured modular robot that can self-reconfigure its topology and geometric configuration, which can be usefully applied to rescuing work in disaster site. In this thesis, design of VTT is introduced and stable rolling locomotion algorithm for VTT is proposed. To achieve self-reconfiguration feature, VTT are composed specially designed members and nodes. VTTs members consist of Spiral Zippers which are novel linear actuators that has high extension ratio, light weight and high strength. VTTs nodes consist of Passive Member-Ends and Master Member-Ends. Passive Member-Ends are linkage type spherical joint with large angle range that can accommodate many members. Master Member-Ends are spherical manipulators that built in Sphere and it move member to change topology of VTT. Rolling locomotion of VTT is achieved by controlling the center of mass by geometric reconfiguration. However, the locomotion planning is complex problem, because VTT is parallel mechanism with high degree of freedom and many constraints, which makes it difficult to predict and avoid constraints for feasible planning. Thus, it needs stable algorithm that can find locomotion trajectory even in complicated and large environment. In addition, since VTT has many sophisticated components, the algorithm must prevent VTT being damaged from ground by tumbling. To meet the requirements, proposed locomotion algorithm is composed of 3 steps; support polygon planning, center of mass planning and node position planning. In support polygon planning, support polygon path is planned by newly proposed random search algorithm, Polygon-Based Random Tree (PRT). In center of mass planning, trajectory of desired projected center of mass is planned by maximizing stability feature. Planned support polygon path and center of mass trajectory guide VTT to have good-conditioned shape which configuration is far from constraints and makes locomotion planning success even in complex and large environment. In node position planning, Non-Impact Rolling locomotion algorithm was developed to plan position of VTTs nodes that prevent damage from the ground while following planned support polygon path and center of mass trajectory. The algorithm was verified by two case study. In case study 1, locomotion planning and simulation was performed considering actual constraints of VTT. To avoid collision between VTT and obstacle, safety space was defined and considered in support polygon planning. The result shows that VTT successfully reaches the goal while avoiding obstacles and satisfying constraints. In case study 2, locomotion planning and simulation was performed in the environment having wide space and narrow passage. Nominal length of VTT was set to be large in wide space to move efficiently, and set to be small in narrow passage to pass through it. The result shows that VTT successfully reaches the goal while changing its nominal length in different terrain.가변 토폴로지 트러스 (Variable Topology Truss, VTT)는 토폴로지와 기하학적 형상의 재구성이 가능한 트러스 구조의 모듈 로봇이다. 본 논문에서는 VTT의 설계 구조를 소개하고 VTT의 안정적인 주행을 알고리즘을 제안한다. VTT는 토폴로지와 기하학적 형상의 재구성을 위해 특수한 구조의 멤버와 노드를 가진다. VTT의 멤버는 높은 압축비, 가벼운 중량, 높은 강도를 가진 신개념 선형 구동기인 스파이럴 지퍼로 구성되어 있다. VTT의 노드는 패시브 멤버 엔드와 마스터 엔드로 구성되어 있다. 패시브 멤버는 링키지 구조의 3 자유도 관절로, 넓은 각도 구동 범위를 가지고 있고 많은 수의 멤버를 연결할 수 있다. 마스터 멤버 엔드는 노드 부의 내장된 구형 매니퓰레이터로, 토폴로지 재구성 시 멤버를 이동시키는데 사용된다. VTT는 기하학적 형상을 변화하여 구르는 움직임을 통해 주행한다. VTT의 주행 알고리즘은 서포트 폴리곤 계획 단계, 무게 중심 계획 단계, 노드 위치 계획 단계로 이루어진다. 서포트 폴리곤 계획 단계에서는 새롭게 제안된 무작위 탐색 (random search) 알고리즘인 Polygon-Based Random Tree (PRT)을 적용해 서포트 폴리곤의 경로를 계획한다. 무게 중심 계획 단계에서는 안정성을 최대화하는 VTT의 무게 중심 궤적을 계획한다. 계획된 서포트 폴리곤 경로와 무게 중심 궤적을 VTT가 제한 조건으로부터 먼 좋은 상태의 형상을 유지하게 하여 복잡한 환경에 대해서도 경로 계획이 실패하지 않고 안정적으로 이루어질 수 있도록 한다. 노드 위치 계획 단계에서는 서포트 폴리곤 경로와 노드 위치의 궤적을 추종하는 노드 위치 궤적을 계획한다. 이 과정에서 비충격 롤링 이동 알고리즘 (Non-Impact Rolling locomotion algorithm)을 적용하여 지면과의 충돌로 인한 충격이 일어나지 않는 궤적을 계획한다. 실제 VTT의 제한 조건을 반영한 모델에 본 알고리즘을 적용하여 시뮬레이션을 수행한 결과, VTT가 모든 제한 조건을 만족하고 장애물을 회피하면서 목표 지점에 도달할 수 있음을 확인하였다.Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Previous Truss Type Modular Robot 4 1.3 Previous Research on VTTs Locomotion 8 1.3.1 Heuristic Based Methods 9 1.3.2 Optimization Based Method 10 1.4 Objectives of Locomotion Algorithm 12 1.5 Contribution of Thesis 13 1.5.1 Introduction to Hardware Design of VTT 13 1.5.2 Stable Rolling Locomotion of VTT 15 Chapter 2. Design of Variable Topology Truss 17 2.1 Member Design 18 2.1.1 Spiral Zipper 20 2.1.2 Tensioner 26 2.2 Node Design 28 2.2.1 Passive Member-End and Sphere 29 2.2.2 Master Member-End 36 2.3 Control System 40 2.4 Node Position Control Experiment 44 Chapter 3. Mathematical Model of Variable Topology Truss 47 3.1 Configuration and Terminology 47 3.2 Inverse Kinematics 50 3.3 Constraints 51 3.4 Stability Criteria 64 Chapter 4. Locomotion Algorithm 66 4.1 Concept of Locomotion Algorithm 67 4.1.1 Method for Successful Planning and Obstacle Avoidance 67 4.1.2 Method to Prevent Damage from the Ground 71 4.1.3 Step of Locomotion Algorithm 72 4.2 Support Polygon Planning 73 4.2.1 Polygon-Based Random Tree (PRT) Algorithm 73 4.2.2 Probabilistic Completeness of PRT Algorithm 79 4.3 Center of Mass Planning 85 4.4 Node Position Planning 86 4.4.1 Concept of Non-Impact Rolling Locomotion 86 4.4.2 Planning Algorithm for Non-Impact Rolling Locomotion 89 4.4.3 Optimization Problem of Moving Phase 94 4.4.4 Optimization Problem of Landing Phase 98 4.4.5 Optimization Problem of Transient Phase 99 Chapter 5. Experimental Verification 100 5.1 Case Study 1: Actual VTT Prototype 101 5.1.1 Simulation Condition 101 5.1.2 Obstacle Avoidance Method 103 5.1.3 Simulation Result 104 5.2 Case Study 2: Environment with Narrow Passage 111 5.2.1 Simulation Condition 111 5.2.2 Support Polygon Planning with Varying Nominal Length 114 5.2.3 Simulation Result 117 Chapter 6. Conclusion 126 Bibliography 129 Abstract in Korean 134Docto

    Motion Planning for Variable Topology Trusses: Reconfiguration and Locomotion

    Full text link
    Truss robots are highly redundant parallel robotic systems that can be applied in a variety of scenarios. The variable topology truss (VTT) is a class of modular truss robots. As self-reconfigurable modular robots, a VTT is composed of many edge modules that can be rearranged into various structures depending on the task. These robots change their shape by not only controlling joint positions as with fixed morphology robots, but also reconfiguring the connectivity between truss members in order to change their topology. The motion planning problem for VTT robots is difficult due to their varying morphology, high dimensionality, the high likelihood for self-collision, and complex motion constraints. In this paper, a new motion planning framework to dramatically alter the structure of a VTT is presented. It can also be used to solve locomotion tasks that are much more efficient compared with previous work. Several test scenarios are used to show its effectiveness. Supplementary materials are available at https://www.modlabupenn.org/vtt-motion-planning/.Comment: 20 pages, 36 figure

    Modular Robots Morphology Transformation And Task Execution

    Get PDF
    Self-reconfigurable modular robots are composed of a small set of modules with uniform docking interfaces. Different from conventional robots that are custom-built and optimized for specific tasks, modular robots are able to adapt to many different activities and handle hardware and software failures by rearranging their components. This reconfiguration capability allows these systems to exist in a variety of morphologies, and the introduced flexibility enables self-reconfigurable modular robots to handle a much wider range of tasks, but also complicates the design, control, and planning. This thesis considers a hierarchy framework to deploy modular robots in the real world: the robot first identifies its current morphology, then reconfigures itself into a new morphology if needed, and finally executes either manipulation or locomotion tasks. A reliable system architecture is necessary to handle a large number of modules. The number of possible morphologies constructed by modules increases exponentially as the number of modules grows, and these morphologies usually have many degrees of freedom with complex constraints. In this thesis, hardware platforms and several control methods and planning algorithms are developed to build this hierarchy framework leading to the system-level deployment of modular robots, including a hybrid modular robot (SMORES-EP) and a modular truss robot (VTT). Graph representations of modular robots are introduced as well as several algorithms for morphology identification. Efficient mobile-stylereconfiguration strategies are explored for hybrid modular robots, and a real-time planner based on optimal control is developed to perform dexterous manipulation tasks. For modular truss robots, configuration space is studied and a hybrid planning framework (sampling-based and search-based) is presented to handle reconfiguration activities. A non-impact rolling locomotion planner is then developed to drive an arbitrary truss robot in an environment

    A two-stage structural optimisation and thermal discretisation of non-convective structured insulators: applications in granular-solid structures by additive manufacturing technology

    Get PDF
    A systematic design procedure for characterising the strength and insulation requirements of a modular unit structure from additive manufacturing has been presented. The proposed 'two-stage' method consists of structural optimisation and thermal 'discretisation', through use of the Metamorphic Development (MD) and Discretisation by Partitioning Method (DbPM), respectively. A structural layout optimisation method of a consolidated granular-solid structure for strength requirements is demonstrated. The reliability of the layout optimized design solution tested using experiments and finite element analysis (PEA) are reproduced with reasonable accuracy. Layout optimisation yielded 40% savings in build material, whilst satisfying the targeted deflection. [Continues.

    Model Validation and Simulation

    Get PDF
    The Bauhaus Summer School series provides an international forum for an exchange of methods and skills related to the interaction between different disciplines of modern engineering science. The 2012 civil engineering course was held in August over two weeks at Bauhaus-Universität Weimar. The overall aim was the exchange of research and modern scientific approaches in the field of model validation and simulation between well-known experts acting as lecturers and active students. Besides these educational intentions the social and cultural component of the meeting has been in the focus. 48 graduate and doctoral students from 20 different countries and 22 lecturers from 12 countries attended this summer school. Among other aspects, this activity can be considered successful as it raised the sensitivity towards both the significance of research in civil engineering and the role of intercultural exchange. This volume summarizes and publishes some of the results: abstracts of key note papers presented by the experts and selected student research works. The overview reflects the quality of this summer school. Furthermore the individual contributions confirm that for active students this event has been a research forum and a special opportunity to learn from the experiences of the researchers in terms of methodology and strategies for research implementation in their current work

    An Assessment to Benchmark the Seismic Performance of a Code-Conforming Reinforced-Concrete Moment-Frame Building

    Get PDF
    This report describes a state-of-the-art performance-based earthquake engineering methodology that is used to assess the seismic performance of a four-story reinforced concrete (RC) office building that is generally representative of low-rise office buildings constructed in highly seismic regions of California. This “benchmark” building is considered to be located at a site in the Los Angeles basin, and it was designed with a ductile RC special moment-resisting frame as its seismic lateral system that was designed according to modern building codes and standards. The building’s performance is quantified in terms of structural behavior up to collapse, structural and nonstructural damage and associated repair costs, and the risk of fatalities and their associated economic costs. To account for different building configurations that may be designed in practice to meet requirements of building size and use, eight structural design alternatives are used in the performance assessments. Our performance assessments account for important sources of uncertainty in the ground motion hazard, the structural response, structural and nonstructural damage, repair costs, and life-safety risk. The ground motion hazard characterization employs a site-specific probabilistic seismic hazard analysis and the evaluation of controlling seismic sources (through disaggregation) at seven ground motion levels (encompassing return periods ranging from 7 to 2475 years). Innovative procedures for ground motion selection and scaling are used to develop acceleration time history suites corresponding to each of the seven ground motion levels. Structural modeling utilizes both “fiber” models and “plastic hinge” models. Structural modeling uncertainties are investigated through comparison of these two modeling approaches, and through variations in structural component modeling parameters (stiffness, deformation capacity, degradation, etc.). Structural and nonstructural damage (fragility) models are based on a combination of test data, observations from post-earthquake reconnaissance, and expert opinion. Structural damage and repair costs are modeled for the RC beams, columns, and slabcolumn connections. Damage and associated repair costs are considered for some nonstructural building components, including wallboard partitions, interior paint, exterior glazing, ceilings, sprinkler systems, and elevators. The risk of casualties and the associated economic costs are evaluated based on the risk of structural collapse, combined with recent models on earthquake fatalities in collapsed buildings and accepted economic modeling guidelines for the value of human life in loss and cost-benefit studies. The principal results of this work pertain to the building collapse risk, damage and repair cost, and life-safety risk. These are discussed successively as follows. When accounting for uncertainties in structural modeling and record-to-record variability (i.e., conditional on a specified ground shaking intensity), the structural collapse probabilities of the various designs range from 2% to 7% for earthquake ground motions that have a 2% probability of exceedance in 50 years (2475 years return period). When integrated with the ground motion hazard for the southern California site, the collapse probabilities result in mean annual frequencies of collapse in the range of [0.4 to 1.4]x10 -4 for the various benchmark building designs. In the development of these results, we made the following observations that are expected to be broadly applicable: (1) The ground motions selected for performance simulations must consider spectral shape (e.g., through use of the epsilon parameter) and should appropriately account for correlations between motions in both horizontal directions; (2) Lower-bound component models, which are commonly used in performance-based assessment procedures such as FEMA 356, can significantly bias collapse analysis results; it is more appropriate to use median component behavior, including all aspects of the component model (strength, stiffness, deformation capacity, cyclic deterioration, etc.); (3) Structural modeling uncertainties related to component deformation capacity and post-peak degrading stiffness can impact the variability of calculated collapse probabilities and mean annual rates to a similar degree as record-to-record variability of ground motions. Therefore, including the effects of such structural modeling uncertainties significantly increases the mean annual collapse rates. We found this increase to be roughly four to eight times relative to rates evaluated for the median structural model; (4) Nonlinear response analyses revealed at least six distinct collapse mechanisms, the most common of which was a story mechanism in the third story (differing from the multi-story mechanism predicted by nonlinear static pushover analysis); (5) Soil-foundation-structure interaction effects did not significantly affect the structural response, which was expected given the relatively flexible superstructure and stiff soils. The potential for financial loss is considerable. Overall, the calculated expected annual losses (EAL) are in the range of 52,000to52,000 to 97,000 for the various code-conforming benchmark building designs, or roughly 1% of the replacement cost of the building (8.8M).Theselossesaredominatedbytheexpectedrepaircostsofthewallboardpartitions(includinginteriorpaint)andbythestructuralmembers.Lossestimatesaresensitivetodetailsofthestructuralmodels,especiallytheinitialstiffnessofthestructuralelements.Lossesarealsofoundtobesensitivetostructuralmodelingchoices,suchasignoringthetensilestrengthoftheconcrete(40EAL)orthecontributionofthegravityframestooverallbuildingstiffnessandstrength(15changeinEAL).Althoughthereareanumberoffactorsidentifiedintheliteratureaslikelytoaffecttheriskofhumaninjuryduringseismicevents,thecasualtymodelinginthisstudyfocusesonthosefactors(buildingcollapse,buildingoccupancy,andspatiallocationofbuildingoccupants)thatdirectlyinformthebuildingdesignprocess.Theexpectedannualnumberoffatalitiesiscalculatedforthebenchmarkbuilding,assumingthatanearthquakecanoccuratanytimeofanydaywithequalprobabilityandusingfatalityprobabilitiesconditionedonstructuralcollapseandbasedonempiricaldata.Theexpectedannualnumberoffatalitiesforthecodeconformingbuildingsrangesbetween0.05102and0.21102,andisequalto2.30102foranoncodeconformingdesign.Theexpectedlossoflifeduringaseismiceventisperhapsthedecisionvariablethatownersandpolicymakerswillbemostinterestedinmitigating.Thefatalityestimationcarriedoutforthebenchmarkbuildingprovidesamethodologyforcomparingthisimportantvalueforvariousbuildingdesigns,andenablesinformeddecisionmakingduringthedesignprocess.Theexpectedannuallossassociatedwithfatalitiescausedbybuildingearthquakedamageisestimatedbyconvertingtheexpectedannualnumberoffatalitiesintoeconomicterms.Assumingthevalueofahumanlifeis8.8M). These losses are dominated by the expected repair costs of the wallboard partitions (including interior paint) and by the structural members. Loss estimates are sensitive to details of the structural models, especially the initial stiffness of the structural elements. Losses are also found to be sensitive to structural modeling choices, such as ignoring the tensile strength of the concrete (40% change in EAL) or the contribution of the gravity frames to overall building stiffness and strength (15% change in EAL). Although there are a number of factors identified in the literature as likely to affect the risk of human injury during seismic events, the casualty modeling in this study focuses on those factors (building collapse, building occupancy, and spatial location of building occupants) that directly inform the building design process. The expected annual number of fatalities is calculated for the benchmark building, assuming that an earthquake can occur at any time of any day with equal probability and using fatality probabilities conditioned on structural collapse and based on empirical data. The expected annual number of fatalities for the code-conforming buildings ranges between 0.05*10 -2 and 0.21*10 -2 , and is equal to 2.30*10 -2 for a non-code conforming design. The expected loss of life during a seismic event is perhaps the decision variable that owners and policy makers will be most interested in mitigating. The fatality estimation carried out for the benchmark building provides a methodology for comparing this important value for various building designs, and enables informed decision making during the design process. The expected annual loss associated with fatalities caused by building earthquake damage is estimated by converting the expected annual number of fatalities into economic terms. Assuming the value of a human life is 3.5M, the fatality rate translates to an EAL due to fatalities of 3,500to3,500 to 5,600 for the code-conforming designs, and 79,800forthenoncodeconformingdesign.ComparedtotheEALduetorepaircostsofthecodeconformingdesigns,whichareontheorderof79,800 for the non-code conforming design. Compared to the EAL due to repair costs of the code-conforming designs, which are on the order of 66,000, the monetary value associated with life loss is small, suggesting that the governing factor in this respect will be the maximum permissible life-safety risk deemed by the public (or its representative government) to be appropriate for buildings. Although the focus of this report is on one specific building, it can be used as a reference for other types of structures. This report is organized in such a way that the individual core chapters (4, 5, and 6) can be read independently. Chapter 1 provides background on the performance-based earthquake engineering (PBEE) approach. Chapter 2 presents the implementation of the PBEE methodology of the PEER framework, as applied to the benchmark building. Chapter 3 sets the stage for the choices of location and basic structural design. The subsequent core chapters focus on the hazard analysis (Chapter 4), the structural analysis (Chapter 5), and the damage and loss analyses (Chapter 6). Although the report is self-contained, readers interested in additional details can find them in the appendices

    Assessment of heritage timber structures: Review of standards, guidelines and procedures

    Get PDF
    This paper reviews the official documentation (standards, guidelines and procedures) available for the assessment of heritage timber structures. The subsequent discussion does not catalogue all relevant technical literature. Instead, it intends to convey the state of background knowledge, recommendations and code rules using some illustrative examples. A specific focus is given to visual inspection as a fundamental first step for all different scopes and levels of assessment. The objectives of this review are to: (1) highlight the gaps and limitations in the currently available tools as well as the need for standardization; (2) contribute to the definition of an ontological approach, relating the scope of the assessment, information required and necessary procedures, (3) identify guidance for the different scopes of the assessment. The variety of timber species, architectural typologies and structural solutions, together with the varied response of these structures to climatic and other natural and man-made hazards, warrant a multifaceted and integrated assessment methodology that accounts for the hierarchical nature of timber structures behaviour and the multitude of agents affecting such behaviour. A review of existing standards and guidelines illustrates the need for a tool to consistently record the assessment process and the final decision taken, which will serve to constitute the knowledge base for the development of the next generation of more integrated and heritage specific guidelines

    Advancing Bridge Load Rating: State of Practice and Frameworks

    Get PDF
    693JJ319D000020 TO693JJ320F000170The U.S. has more than 600,000 bridges, making the distributed load rating and posting processes across the nation a significant effort that does and can benefit from improvements in efficiency. Bridge load rating, posting, and overweight permitting processes evolve due to the regulatory requirements regarding the frequency of inspections and relevant changes to bridges that necessitate re-rating them. These factors include changes to the dead load, strength of members, and any maintenance or rehabilitation work. As such, States are interested in modifying their procedures to implement technology and improved means and methods to reduce the time associated with load rating. Being able to load rate bridges efficiently and accurately is a necessity, particularly in the use case of permit load routing. Based on the extensive findings during the information collection processes for this project, frameworks for future bridge load rating, posting, and overweight permitting were developed to improve productivity, efficiency, and consistency by closing process gaps and through the application of newer technologies. The newer technologies include digital twin concepts; integrating various (new) data; creating, updating, and reusing models; integrating sensing data (bridge, traffic, weigh-in-motion); and better analysis methods. This work may help develop the state of practice

    Model Validation and Simulation

    Get PDF
    The Bauhaus Summer School series provides an international forum for an exchange of methods and skills related to the interaction between different disciplines of modern engineering science. The 2012 civil engineering course was held in August over two weeks at Bauhaus-Universität Weimar. The overall aim was the exchange of research and modern scientific approaches in the field of model validation and simulation between well-known experts acting as lecturers and active students. Besides these educational intentions the social and cultural component of the meeting has been in the focus. 48 graduate and doctoral students from 20 different countries and 22 lecturers from 12 countries attended this summer school. Among other aspects, this activity can be considered successful as it raised the sensitivity towards both the significance of research in civil engineering and the role of intercultural exchange. This volume summarizes and publishes some of the results: abstracts of key note papers presented by the experts and selected student research works. The overview reflects the quality of this summer school. Furthermore the individual contributions confirm that for active students this event has been a research forum and a special opportunity to learn from the experiences of the researchers in terms of methodology and strategies for research implementation in their current work

    Edoardo Benvenuto Prize. Collection of papers

    Get PDF
    The promotion of studies and research on the science and art of building in their historical development constitutes the objective that the Edoardo Benvenuto Association has set itself, since its establishment, in order to honor the memory of Edoardo Benvenuto (1940-1998). The Association in recent years has achieved interesting results by developing various activities such as: organization of national and international meetings, conferences, study days; collaborations with national and foreign research institutions; promotion of the editorial series “Between Mechanics and Architecture"; activation of the portal Bibliotheca Mechanica Architectonica, first “open source” digitized library dedicated to historical research on mechanical and architectural texts. But perhaps the most qualifying initiative was the institution of the Edoardo Benvenuto Prize, arrived in 2019 in its twelfth edition, reserved for young researchers in the field of historical studies on science and the art of building. The awarding of the Prize takes place after an in-depth examination of the texts received by the Association by an international commission of experts. The purpose of this book is to collect and present the most recent studies and publications produced by the winners of the various editions of the Edoardo Benvenuto Prize
    corecore