
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Publicly Accessible Penn Dissertations

2021

Modular Robots Morphology Transformation And Task Execution Modular Robots Morphology Transformation And Task Execution

Chao Liu
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/edissertations

 Part of the Robotics Commons

Recommended Citation Recommended Citation
Liu, Chao, "Modular Robots Morphology Transformation And Task Execution" (2021). Publicly Accessible
Penn Dissertations. 4287.
https://repository.upenn.edu/edissertations/4287

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/4287
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F4287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=repository.upenn.edu%2Fedissertations%2F4287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/4287?utm_source=repository.upenn.edu%2Fedissertations%2F4287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/4287
mailto:repository@pobox.upenn.edu

Modular Robots Morphology Transformation And Task Execution Modular Robots Morphology Transformation And Task Execution

Abstract Abstract
Self-reconfigurable modular robots are composed of a small set of modules with uniform docking
interfaces. Different from conventional robots that are custom-built and optimized for specific tasks,
modular robots are able to adapt to many different activities and handle hardware and software failures
by rearranging their components. This reconfiguration capability allows these systems to exist in a variety
of morphologies, and the introduced flexibility enables self-reconfigurable modular robots to handle a
much wider range of tasks, but also complicates the design, control, and planning.

This thesis considers a hierarchy framework to deploy modular robots in the real world: the robot first
identifies its current morphology, then reconfigures itself into a new morphology if needed, and finally
executes either manipulation or locomotion tasks. A reliable system architecture is necessary to handle a
large number of modules. The number of possible morphologies constructed by modules increases
exponentially as the number of modules grows, and these morphologies usually have many degrees of
freedom with complex constraints. In this thesis, hardware platforms and several control methods and
planning algorithms are developed to build this hierarchy framework leading to the system-level
deployment of modular robots, including a hybrid modular robot (SMORES-EP) and a modular truss robot
(VTT). Graph representations of modular robots are introduced as well as several algorithms for
morphology identification. Efficient mobile-stylereconfiguration strategies are explored for hybrid modular
robots, and a real-time planner based on optimal control is developed to perform dexterous manipulation
tasks. For modular truss robots, configuration space is studied and a hybrid planning framework
(sampling-based and search-based) is presented to handle reconfiguration activities. A non-impact rolling
locomotion planner is then developed to drive an arbitrary truss robot in an environment.

Degree Type Degree Type
Dissertation

Degree Name Degree Name
Doctor of Philosophy (PhD)

Graduate Group Graduate Group
Mechanical Engineering & Applied Mechanics

First Advisor First Advisor
Mark Yim

Keywords Keywords
Control, Modular Robots, Motion Planning, Reconfiguration

Subject Categories Subject Categories
Robotics

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/4287

https://repository.upenn.edu/edissertations/4287

MODULAR ROBOTS MORPHOLOGY TRANSFORMATION

AND TASK EXECUTION

Chao Liu

A DISSERTATION

in

Mechanical Engineering and Applied Mechanics

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2021

Mark Yim, Supervisor of Dissertation
Director of GRASP Lab and Asa Whitney Professor of Mechanical Engineering and
Applied Mechanics

Jennifer R. Lukes, Graduate Group Chairperson
Professor of Mechanical Engineering and Applied Mechanics

Dissertation Committee

Mark Yim, Director of GRASP Lab and Asa Whitney Professor of Mechanical Engineering
and Applied Mechanics
Camillo J. Taylor, Associate Dean of Penn Engineering and Raymond S. Markowitz
President’s Distinguished Professor of Computer and Information Science
Cynthia Sung, Gabel Family Term Assistant Professor of Mechanical Engineering and
Applied Mechanics

MODULAR ROBOTS MORPHOLOGY TRANSFORMATION

AND TASK EXECUTION

© COPYRIGHT

2021

Chao Liu

Dedicated to my loving family.

iii

Acknowledgments

I would like to first thank my advisor, Professor Mark Yim, for the opportunity to work

in this world-class laboratory on frontier robotics research. I gratefully acknowledge his

support throughout my studies at Penn. In the past few years, I was fortunate to have the

freedom to explore these exciting research topics with his encouragement and inspiration.

His vision on research and education deeply affects my thoughts and inspires me to pursue

more challenges.

I would also like to express my gratitude to the other members of my thesis committee,

Professor Camillo J. Taylor and Professor Cynthia Sung. They gave me lots of insightful

advice on my research and provided great comments on this thesis.

Many thanks would also go to my collaborators and the students that I worked with

for their invaluable contributions to my research projects. I would also like to thank my

lab-mates. I can always seek help from them and the discussions with them were immensely

helpful for my work. I also truly appreciate the support from the MEAM and the GRASP

staff.

I am indebted to my family for their continuous support and encouragement. My parents

always allow me to make decisions and do whatever I am interested in, and provide countless

support for my life. My grandparents worked very hard when they were young and I can

always learn a lot from their attitude toward life. I would also like to thank my girlfriend

Min Wang for her long-term support and encouragement with patience.

I shall extend my thanks to the National Science Foundation (NSF), the Air Force Office

of Scientific Research, and the Army Research Lab.

iv

ABSTRACT

MODULAR ROBOTS MORPHOLOGY TRANSFORMATION

AND TASK EXECUTION

Chao Liu

Mark Yim

Self-reconfigurable modular robots are composed of a small set of modules with uniform

docking interfaces. Different from conventional robots that are custom-built and optimized

for specific tasks, modular robots are able to adapt to many different activities and han-

dle hardware and software failures by rearranging their components. This reconfiguration

capability allows these systems to exist in a variety of morphologies, and the introduced

flexibility enables self-reconfigurable modular robots to handle a much wider range of tasks,

but also complicates the design, control, and planning.

This thesis considers a hierarchy framework to deploy modular robots in the real world:

the robot first identifies its current morphology, then reconfigures itself into a new morphol-

ogy if needed, and finally executes either manipulation or locomotion tasks. A reliable system

architecture is necessary to handle a large number of modules. The number of possible mor-

phologies constructed by modules increases exponentially as the number of modules grows,

and these morphologies usually have many degrees of freedom with complex constraints. In

this thesis, hardware platforms and several control methods and planning algorithms are

developed to build this hierarchy framework leading to the system-level deployment of mod-

ular robots, including a hybrid modular robot (SMORES-EP) and a modular truss robot

(VTT). Graph representations of modular robots are introduced as well as several algorithms

for morphology identification. Efficient mobile-style reconfiguration strategies are explored

for hybrid modular robots, and a real-time planner based on optimal control is developed

to perform dexterous manipulation tasks. For modular truss robots, configuration space is

studied and a hybrid planning framework (sampling-based and search-based) is presented to

handle reconfiguration activities. A non-impact rolling locomotion planner is then developed

to drive an arbitrary truss robot in an environment.

v

Contents

Acknowledgments iv

Abstract v

Contents vi

List of Tables xi

List of Figures xii

I Preliminaries 1

1 Introduction 2
1.1 Motivation . 3
1.2 SMORES-EP . 5
1.3 Variable Topology Truss . 6
1.4 Thesis Contributions and Outline . 7

2 Overview of Related Work 11
2.1 Modular Robotic Systems . 11
2.2 Control and Motion Planning . 12

II System Design and Architecture 14

3 Modular Robot Hardware 15
3.1 SMORES-EP . 15
3.2 Variable Topology Truss . 18

4 Software Architecture 23
4.1 Hybrid Architecture . 23
4.2 Architecture Design . 24

4.2.1 Configuration . 24
4.2.2 Robot Interface . 25
4.2.3 User Interface . 25
4.2.4 Implementation . 25

vi

III SMORES-EP 27

Introduction 28

5 Module Control 30
5.1 Introduction . 31
5.2 PaintPot Sensor in SMORES-EP . 32

5.2.1 Manufacturing Overview . 32
5.2.2 Performance Characteristics . 34
5.2.3 Wheel and Tilt PaintPots in SMORES-EP 34
5.2.4 Cost . 35

5.3 Sensor Characterization . 35
5.4 Position Estimation . 38

5.4.1 Transition Model . 38
5.4.2 Observation Model . 40
5.4.3 Kalman Filter . 43

5.5 DOF Control . 44
5.6 Experiments . 45
5.7 Conclusion . 48

6 Docking and Undocking 50
6.1 Introduction . 50
6.2 Docking Control . 52

6.2.1 Navigation . 53
6.2.2 Pose Adjustment . 53
6.2.3 Approach . 55

6.3 Experiment . 56
6.4 Conclusion . 58

7 Graph Model and Configuration Recognition 59
7.1 Introduction . 60
7.2 Related Work . 61
7.3 Graph Representation and Library Design . 62
7.4 Algorithms for Configuration Recognition . 65

7.4.1 Configuration Discovery . 66
7.4.2 Root Module . 68
7.4.3 Matching and Mapping . 70

7.5 Test Scenario . 75
7.6 Conclusion . 77

8 Morphology Transformation 79
8.1 Introduction . 80
8.2 Related Work . 82
8.3 Self-reconfiguration Planning . 83

8.3.1 Configuration Decomposition . 84
8.3.2 Module Mapping . 85

vii

8.3.3 Reconfiguration Actions . 87
8.3.4 Hardware Execution . 88

8.4 Parallel Self-assembly Planning . 89
8.4.1 Task Assignment . 90
8.4.2 Parallel Assembly Actions . 92

8.5 Experiments . 93
8.5.1 Self-reconfiguration . 93
8.5.2 Self-assembly . 100

8.6 Conclusion . 105

9 Manipulation Planning 107
9.1 Introduction . 108
9.2 Related Work . 110

9.2.1 Motion Planning for Manipulation . 110
9.2.2 Modular Robot Control and Planning 112

9.3 Kinematics For Modular Robots . 113
9.3.1 Kinematics Graph . 113
9.3.2 Kinematics for Modules . 116
9.3.3 Kinematics for Chains . 117

9.4 Control and Motion Planning . 119
9.4.1 Control . 119
9.4.2 Motion Planning . 121
9.4.3 Integrated Control and Motion Planning 124
9.4.4 Iterative Algorithm for Manipulation Planning 126

9.5 Experiments . 128
9.5.1 Real-Time Control . 128
9.5.2 Whole-Body Manipulation . 133

9.6 Conclusion . 135

IV Variable Topology Truss 136

Introduction 137

10 Configuration, Kinematics, and Control 139
10.1 Introduction . 139
10.2 Configuration . 141
10.3 Kinematics . 142
10.4 Control . 145
10.5 Experiments . 147
10.6 Conclusion . 149

11 Topology Reconfiguration Advantage 150
11.1 Introduction . 151
11.2 Motion Planning Algorithm . 152

11.2.1 Grid Space Model . 152

viii

11.2.2 Node Motion Model and Reconfiguration Actions 156
11.2.3 Collision . 157
11.2.4 Transition Model . 158
11.2.5 Graph Search Algorithm . 159

11.3 Test Scenarios . 162
11.3.1 Scenario 1 . 163
11.3.2 Scenario 2 . 165

11.4 Conclusions . 167

12 Node Configuration Space 168
12.1 Introduction . 168
12.2 Single Node Configuration Space . 170

12.2.1 Obstacle Region and Free Space . 170
12.2.2 Free Space Boundary . 172

12.3 Single Node Path Planning . 178
12.3.1 Cell Decomposition . 178
12.3.2 Path Planning . 179
12.3.3 Completeness for Single Node Planning 179

12.4 Shape Morphing Approach . 180
12.5 Experiments . 180

12.5.1 Single-Node Experiment . 181
12.5.2 Multi-Node Experiment . 182

12.6 Conclusion . 184

13 Reconfiguration 185
13.1 Introduction . 185
13.2 Related Work . 186
13.3 Problem Statement . 187
13.4 Hardware and Environmental Constraints . 188

13.4.1 Length Constraints . 188
13.4.2 Collision Avoidance . 189
13.4.3 Stability . 189
13.4.4 Manipulability . 190

13.5 Geometry Reconfiguration . 190
13.5.1 Obstacle Region and Free Space . 190
13.5.2 Path Planning for a Group of Nodes 197
13.5.3 Geometry Reconfiguration Planning 199

13.6 Topology Reconfiguration . 200
13.6.1 Enclosed Subspace in Free Space . 200
13.6.2 Topology Reconfiguration Actions . 200
13.6.3 Topology Reconfiguration Planning . 205

13.7 Test Scenarios . 212
13.7.1 Geometry Reconfiguration . 212
13.7.2 Topology Reconfiguration . 215

13.8 Conclusion . 221

ix

14 Locomotion 222
14.1 Introduction . 222
14.2 Locomotion . 224

14.2.1 Truss Polyhedron . 225
14.2.2 Locomotion Planning . 226

14.3 Test Scenarios . 227
14.4 Conclusion . 230

V Conclusions 231

15 Contributions and Future Work 232
15.1 Contributions . 232
15.2 Future Work . 233

Bibliography 235

x

List of Tables

7.1 Isomorphic mappings. 77

8.1 Reconfiguration actions for Task 1. 96
8.2 The vertex height of modules before and after the reconfiguration process. . 96
8.3 Reconfiguration actions for Task 2. 98
8.4 Reconfiguration actions for Task 3. 99
8.5 Initial locations of all modules in Task 1. 101
8.6 Initial locations of all modules in Task 2. 103
8.7 Initial locations of all modules in Task 3. 105

12.1 Comparison between the proposed method and the RRT approach from [52]. 181

14.1 Comparison with the optimization approach from [106]. 230
14.2 Comparison with the optimization approach from [149]. 230

xi

List of Figures

3.1 (a) A SMORES-EP module. (b) The SMORES-EP module driving mechanism. 16
3.2 (a) Internal view of the magnets in EP-Face. (b) Internal view of the EP-

Face with circuit board. 16
3.3 The circuit for driving EP magnets. 17
3.4 (a) A wheel PaintPot sensor is installed in a chassis. (b) Two wipers (Harwin

S1791-42) are mounted on a circuit board at a 50° angle to one another fixed
to the wheel. 18

3.5 (a) A tilt PaintPot sensor is installed on a chassis. (b) A single wiper in-
stalled on the base of a SMORES-EP module contacts the track. 18

3.6 The hardware of a VTT in octahedron configuration is composed of twelve
members. Note that at least eighteen members are required for topology
reconfiguration [132]. 19

3.7 (a) An extended VTT edge module. (b) A shorter configuration with com-
ponents marked. 19

3.8 The series elastic tension cable system: The drive gear (1) is connected to
a torsion spring (2), which is connected to the spool (3). The yellow line
is the path of the cable, which continues down through the band column
and attaches to the friction wheel. The drive gear and spool positions are
measured by encoders (4). The cap (5) is the attachment point to the zipper. 20

3.9 The Spiral Zipper driving board is located underneath the band management
system. This board measures the edge module length, drive the Spiral Zipper
joint, and communicate with the central computer over Wi-Fi. 21

3.10 (a) The band marker strip is attached to the band to act as a quadrature
encoder. (b) Quadrature encoder signal is generated after processing the
raw signals from two reflectance sensors by a comparator. 21

3.11 (a) An optical switch is installed on the band management system to count
band teeth. (b) The optical switch used in VTTs. 21

4.1 The general software architecture for modular robots. 24
4.2 (a) A SMORES-EP configuration is created in Unity environment. (b) A

dual-arm system is created by CKBot UBar modules in Rviz with a cluttered
environment. (c) A VTT configuration is created in Rviz. 26

5.1 A potentiometer has three terminals: two fixed electrical terminals at the
resistive track ends and one electrical contact (wiper) that can move along
the track surface. 33

xii

5.2 A bead of conductive paint applied beneath the screw head forms a good
electrical connection with the track. 33

5.3 When the wheel position θ = 0 rad, two wipers are contacting the track
symmetrically to the middle location of it and θ ranges from −π rad to π rad. 36

5.4 When the TILT DOF position θ = 0 rad, the wiper is contacting the middle
of the track and θ ranges from −π/2 rad to π/2 rad. 37

5.5 (a) Sensor characterization setup using AprilTags tracking approach. (b)
Camera view of three tags in the characterization process. 37

5.6 (a) Wiper 0 data through the entire range of a wheel PaintPot. (b) Wiper
1 data through the entire range of a wheel PaintPot. 38

5.7 Wheel PaintPot sensor characterization results: (a) θ̄0 = f̄0(V0) =
5.0281× 10−9V 3

0 − 1.2255× 10−5V 2
0 + 1.7856× 10−2V0 − 7.2750; (b)

θ̄1 = f̄1(V1) = 5.1596× 10−9V 3
1 −1.2409× 10−5V 2

1 +1.7927× 10−2V1−5.8128. 39
5.8 (a) Wiper data from −80° to 80° of a tilt PaintPot. (b) The characterization

result θ = f(V0) = 4.7517× 10−9V 3
0 −8.7608× 10−6V 2

0 +8.6756× 10−3V0−
2.7173. 39

5.9 (a) Wiper 0 data through the entire range of a wheel PaintPot. (b) Wiper
1 data through the entire range of a wheel PaintPot. 46

5.10 Wheel PaintPot sensor characterization results: (a) θ̄0 = f̄0(V0) =
−6.5012× 10−8V 3

0 + 7.2912× 10−5V 2
0 − 1.1587× 10−2V0− 3.4595; (b) θ̄1 =

f̄1(V1) = −1.8511× 10−8V 3
1 + 1.0419× 10−5V 2

1 + 1.4362× 10−2V1 − 5.1767. 46
5.11 (a) Command PAN DOF to move from angular position π rad to 0 rad. (b)

Command PAN DOF to move from angular position −π rad to 0 rad. 47
5.12 (a) Wiper data from −80° to 80° of a tilt PaintPot. (b) The characterization

result θ = f(V0) = 4.4674× 10−10V 3
0 −1.5933× 10−6V 2

0 +6.5369× 10−3V0−
2.1117. 48

5.13 Command TILT DOF from angular position −1.3 rad to 1.3 rad. 48

6.1 A SMORES-EP module is on the ground. 53
6.2 (a)mi TOP Face is connected withmj TOP Face. (b) its kinematic diagram.

(c) — (e) are the kinematic diagrams of the three other cases when mi TOP
Face is involved in the connection. 54

6.3 (a) The docking task is to connect LEFT Face of mi with mj and the goal
pose of mi is shown in dashed line. In this case, mi needs to align the
connector by adjusting x′i and θ

′
i to zeros. (b) If the assembly action is to

connect TOP Face of mi with mj , then mi needs to align the connector by
adjusting y′i and θ

′
i to zeros. 54

6.4 A helping module is a SMORES-EP module equipped with some payload so
that it can lift another module. 56

6.5 The tracked position of Module 3 in the docking process. 56
6.6 Adjustment of the position and orientation before docking BOTTOM Face

of Module 3 with TOP Face of Module 4: (a) Module 3 finished navigation
process and started to adjust its pose; (b) y′3 and θ′3 have been adjusted
and it started to approach the goal for docking; (c) The docking process of
Module 3 was accomplished. 57

xiii

6.7 Pose adjustment of Module 3 before docking: (a) adjusting y′3 and θ′3; (b)
adjusting x′3 while maintaining the correct orientation. 57

7.1 Connecting two BOTTOM Faces: (a) Orientation is 0; (b) Orientation is 1. . 64
7.2 (a) A three-module configuration. (b) The corresponding graph representation. 65
7.3 Given two SMORES configurations, an example of common subconfiguration

between them is circled by "- -" with mapping 1 → 1 and 0 → 2. The set
containing the subgraphs of (a) and (b) circled by "—" is MCS(1, 1) with
mapping 1→ 1, 2→ 0, and 0→ 2. 71

7.4 Walker configurations with different labels: (a) the configuration in the li-
brary; (b) the new configuration to recognize. 76

7.5 Walker configuration graphs: (a) the configuration in the library; (b) the
new design. 76

8.1 (a) Configuration decomposition for Gi = (Vi, Ei) and the subconfiguration
encircled by “- -” is Ĝi = (V̂i, Êi). (b) Configuration decomposition for
Gg = (Vg, Eg) and the subconfiguration encircled by “- -” is Ĝg = (V̂g, Êg). . 85

8.2 Replace Gi = (V i, Ei) with virtual module M and replace the connection
between Gi = (V i, Ei) and every Ĝαi = (V̂ α

i , Ê
α
i) with a virtual connection. . 86

8.3 Replace Gg = (V g, Eg) with virtual moduleM and replace the connection
between Gg = (V g, Eg) and every Ĝαg = (V̂ α

g , Ê
α
g) with a virtual connection. 86

8.4 A helping module docks with Module 1 BOTTOM Face and lifts it up so
that LEFT Face of Module 1 can be aligned with BOTTOM Face of Module
2, then carry Module 1 to the location to finish the docking action. 89

8.5 Reconfigure a walker configuration (a) into a mobile vehicle with an arm
configuration (b) in which eleven SMORES-EP modules are involved. 94

8.6 The graph representation of the walker configuration (a) and the graph repre-
sentation of the mobile manipulator configuration (b) are shown. MCS(1, 1)
is encircled by “—” under mapping 1 → 1 and 3 → 8. After removing
MCS(1, 1), there are three unconnected subgraphs in both the current ini-
tial configuration and the current goal configuration which are encircled by
“- -”. 94

8.7 The new graph representation of the walker configuration (a) and the new
graph representation of the mobile manipulator configuration (b) are shown.
MCS(M,M) is encircled by “—” under mappingM→M, 9 → 5, 8 → 3,
2 → 9, 11 → 4, and 10 → 2. After removing MCS(M,M), there are
two unconnected subgraphs in the current initial configuration and three
unconnected subgraphs in the current goal configuration which are encircled
by “- -”. 95

8.8 MCS(M,M) is encircled by “—” under mapping M → M, 4 → 6, and
6→ 10. After removing MCS(M,M), there are two unconnected subgraphs
in both the current initial configuration and the current goal configuration
which are encircled by “- -” . 95

8.9 MCS(M,M) is encircled by “—” under mapping M → M, 5 → 7, and
7→ 11. 95

xiv

8.10 SMORES-EP hardware reconfiguration from a walker to a mobile vehicle
with an arm. 96

8.11 Reconfigure a driver configuration (a) into a snake configuration (b) with
seven SMORES-EP modules involved. 98

8.12 (a) The graph representation of the driver configuration. (b) The graph
representation of the snake configuration. 98

8.13 Reconfigure a omni-driver configuration (a) into a mobile observer configu-
ration (b) with nine SMORES-EP modules involved. 99

8.14 (a) The graph representation of the omni-driver configuration. (b) The graph
representation of the mobile observer configuration. 99

8.15 SMORES-EP hardware mobile manipulator self-assembly: (a) Execute
actions (0,B, 1,L) and (5,B, 1,R); (b) Execute actions (2,B, 1,T) and
(6,T, 1,B); (c) Execute action (4,T, 6,B); (d) Execute action (3,T, 4,B).
(e) — (f) The final assembly. (g) The target kinematic topology. 100

8.16 The actual path of each module for Task 1. 101
8.17 SMORES-EP hardware holonomic vehicle self-assembly: (a) Execute

assembly actions (0,T, 1,L) and (5,T, 1,R); (b) Execute assembly actions
(4,T, 1,B) and (8,T, 1,T); (c) Execute assembly actions (3,T, 8,B),
(2,T, 5,B), (7,T, 4,B), and (6,T, 0,B). (d) — (e) The final assembly. (f)
The target kinematic topology. 102

8.18 The actual path of each module for Task 2. 103
8.19 SMORES-EP hardware RC car self-assembly: (a) Execute actions

(1,R, 2,L) and (3,L, 2,R); (b) A helping module is used to execute
the current docking action; (c) Execute actions (4,T, 3,B), (7,T, 1,B),
(6,B, 3,T), and (5,B, 1,T). (d) — (e) The final assembly. (f) The target
kinematic topology. 104

8.20 The actual path of each module in Task 3. The blue blocks without number
labeled represent the helping modules. 106

9.1 A modular robot configuration built by PolyBot modules is composed of
multiple chains [159]. 109

9.2 (a) A CKBot UBar module has one DOF and four connectors. (b) A CKBot
CR module has one DOF and six connectors. 114

9.3 (a) The module graph of a CKBot UBar module in which gMB, gBM, gML,
gLM, gMR, and gRM are invariant of θ. (b) The module graph of a CKBot
CR module in which gMBa , gBaM, gMBt , gBtM, gMT , gTM, gML, gLM,
gMR, and gRM are invariant of θ. 114

9.4 (a) A SMORES-EP module has four DOFs and four connectors. The frames
of all rigid bodies are shown and B is fixed in M. (b) The module graph
of a SMORES-EP module in which gMB and gBM are invariant of Θ =
(θl, θr, θp, θt). 115

9.5 (a) A configuration by two CKBot UBar modules. (b) The kinematics graph
model of the configuration. (c) The kinematic chain from W to T2. 115

9.6 (a) Kinematics for SMORES-EP modules. (b) — (e) Four cases to connect
R and T . 117

9.7 (a) Environment boundary. (b) Sphere obstacle avoidance. 122

xv

9.8 A block obstacle (a) is approximated with 3 levels of spheres. (b) 8 spheres
in level 1. (c) 64 spheres in level 2. (d) 470 spheres in level 3. 123

9.9 (a) A configuration built by 14 CKBot UBar modules is placed in a cluttered
environment with 6 obstacles. (b) Apply the sphere-tree construction algo-
rithm on all obstacles and the total number of obstacle spheres is 373. For
the module inside the circle at its current state, only 5 highlighted obstacle
spheres are necessary for collision avoidance and their obstacle planes are
shown. 124

9.10 Control pF to follow a given trajectory along +y-axis of W by 15 cm from
the initial pose (a) to the final pose (d). All the modules have to be on the
left side of the boundary. m1, m2, and m3 have to approach the boundary
first (b) and then move away from the boundary (c) to finish the task. . . . 128

9.11 Control pF from its initial pose (a) to its final pose (d) by both following a
given trajectory along +y-axis ofW by 15 cm and navigating to the destina-
tion directly. The modules have to move around the sphere obstacle while
executing these two tasks. 129

9.12 The motion of pF : (a) the four-module task; (b) the five-module trajectory
following task. 129

9.13 The control input Θ̇ for the five-module chain experiment: (a) the trajectory
following task; (b) the destination navigation task. 130

9.14 The motion of pF : (a) the CKBot five-module destination navigation task;
(b) the SMORES-EP four-module chain destination navigation task. 131

9.15 Control a chain of SMORES-EP modules to navigate from its initial pose
(a) to a goal pose (b). This chain is constructed by four modules with 16
DOFs. 131

9.16 Control pF1 and pF2 to follow two given trajectories respectively from their
initial poses (a) to their final poses (d). Module m1, m2, and m3 initially
have to move backward (b) and then move forward (c) in order to control
pF1 and pF2 to follow their trajectories. 132

9.17 (a) The tracking result for pF1 . (b) The tracking result for pF2 132
9.18 Control pF1 and pF2 from the initial poses (a) to new locations between the

obstacles (f). The body composed by module m1, m2, and m3 first moves
backward a little bit (b) and then moves to one side in order to help F1 and
F2 to go around obstacles (c) — (e). After going around obstacles, both
frames can navigate quickly to their destinations. The planned trajectories
are shown as blue lines. 133

9.19 (a) Module m9 approaches an obstacle. (b) Module m14 approaches an
obstacle. 134

9.20 (a) The motion of pF1 . (b) The motion of pF2 134

10.1 A single node with six members can be split into a pair of nodes and two
separate nodes can also merge into a single node. 140

10.2 A VTT is composed of twelve members. Currently, the motion of node v1

and node v4 are under control by seven blue members. 142
10.3 The control loop for position control. 145

xvi

10.4 (a) A VTT is constructed by twelve edge modules. (b) v2, v3, and v5 are
moved to higher locations. 147

10.5 Tracking performance for qv2 (a), qv3 (b), and qv5 (c). 148
10.6 Control input of every link vector. 148
10.7 Length of every moving edge module. 149

11.1 A two dimensional example with four nodes and three members when δ = 0.1
is shown. The generated grids are shown with “- -”. The coordinates in
Cartesian space are in dark blue color and the coordinates in the grid space
are in light green color. 155

11.2 (a) A truss in Cartesian space. (b) The equivalent cubic truss in the grid
space with δ = 0.2. 155

11.3 In the grid space, a node (•) can move to 27 different locations with one
discrete action, defined to be the 27 points of intersection between lines in
the figure including the center of the cube that is the no motion action. . . . 156

11.4 Light green triangle (M) is sweeped by member e when moving node v to new
location v′ along the yellow trajectory (→) and the new state of member e
is e′. e doesn’t collide with any other members in (a) but does collide with
two members in (b) during the motion. 158

11.5 Transition model diagram. 159
11.6 The initial VTT. 162
11.7 ∀e ∈ {(v0, v5), (v1, v5), (v2, v5), (v3, v5), (v4, v5), (v6, v5)}, move e [v5] from the

initial location to the goal location. With only geometry reconfiguration
actions, edge module (v1, v5) will collide with edge module (v3, v4). 163

11.8 The sequence to change the states of all involved edge modules is shown and
the motion directions are denoted as→. First move the intersection node in
a small step, and then split it into two separate nodes and move one of the
node downward in a large step. Move both nodes closer and finally merge
them in the goal location. 164

11.9 ∀e ∈ {(v0, v5), (v1, v5), (v2, v5), (v3, v5), (v4, v5), (v6, v5)}, move e [v5] from the
initial location to the goal location. With only geometry reconfiguration
action, there is no way for edge module (v0, v5) and (v1, v5) to traverse edge
module (v3, v4). 165

11.10 The sequence to change the states of all involved edge modules is shown and
the motion directions are denoted as→. First move the intersection node to
the center by two Move actions, and then split them into two separate nodes
and move them in different directions to go around the obstacle member. In
the end, merge these two nodes into a single one. 166

12.1 (a) (vi, vj) collides with (vm, vn) when vi is on the blue polygon. (b) (vi, vj)
collides with (vm, vj) when vi is on the blue ray r. (c) (vi, vj) collides with
(vi, vk) when vi is on the blue ray r1 or r2. 171

12.2 (a) Given node v0, one of its neighbors v1 and a member (v6, v8) can define
the blue polygon. This polygon is part of Cv0

obs. (b) The obstacle region Cv0
obs

for node v0. 172

xvii

12.3 v is enclosed by polygon P1, P2, P3, P4, and P5, and polygon P6 is outside
the enclosure that has nothing to do with Cvfree(q

v). 173
12.4 (a) The intersection between the polygon generated by node v1 with member

(v2, v3) and the polygon by node v1 with member (v2, v6) is a ray and no
polygon is cut. (b) The intersection between the polygon generated by node
v1 with member (v2, v6) and the polygon by node v4 with member (v2, v3)
is a ray and only one polygon is cut into two pieces. (c) The intersection
between the polygon generated by node v1 with member (v6, v8) and the
polygon by node v2 with member (v6, v7) is a ray and both polygons are cut
into two pieces. (b) The intersection between the polygon generated by node
v1 with member (v2, v3) and the polygon by node v4 with member (v2, v3)
is also a polygon which is the region between the two parallel black lines. . . 174

12.5 For node v0, Ps is the red polygon. One set of its neighbor polygons contains
two obstacle polygons. The green polygon is the innermost one along vector
ns that is added to the boundary of Cv0

free(q
v0). 177

12.6 Cv0
free(q

v0) is bounded by polygons. 177
12.7 (a) Cv0

free(q
v0) is decomposed into multiple convex polyhedrons. (b) The path

planned for v0 to move from its initial location qvi to the goal location qvg is
shown as the green path, and v0 only needs to traverse two convex polyhedrons.178

12.8 (a) A VTT is constructed from 18 members with 8 nodes. (b) Cv7
free(q

v7
i) is

decomposed into 56 cells in total. 182
12.9 The task is to move node v7 from its initial configuration qv7

i shown in (a)
to a goal configuration qv7

g shown in (d). The three cells and the complete
path node v7 has to traverse are shown. v7 is moved to the intersection
between the first cell and the second cell shown in (b), then to the center of
the second cell shown in (c), and finally to the goal location inside the third
cell. 182

12.10 The motion task is to change the shape of a VTT from a cubic truss for
rolling locomotion (a) to a tower truss for shoring (b). 183

12.11 The nodes are all encircled by "◦" and their complete paths are shown as "—
". (a) For node v1, there are 61 cells generated after the cell decomposition
process and it has to traverse five cells to go to the destination. (b) For
node v3, there are 87 cells generated after the cell decomposition process
and it has to traverse three cells to go to the destination. (c) For node v5,
there are 40 cells generated after the cell decomposition process and it has
to traverse seven cells to go to the destination. (d) For node v6, there are
34 cells generated after the cell decomposition process and it has to traverse
two cells to go to the destination. 183

13.1 A VTT is composed of 21 edge modules with 10 nodes among which v0 and
v1 form a group. 192

13.2 (a) Ĉv0
free(q

v0) is computed with all members controlling v1 ignored. (b)
Ĉv1

free(q
v1) is computed with all members controlling v0 ignored. 192

13.3 One obstacle polygon of Cv0
obs shown in Figure 12.2a becomes a polyhedron

bounded by five polygons if the size of VTT components is considered. . . . 194

xviii

13.4 (a) Detailed illustration of the formation of the obstacle polyhedron. (b)
Close view of the obstacle polyhedron. 194

13.5 Cv0
free(q

v0) with physical size of the robot components being considered. . . . 196
13.6 (a) Ĉv0

free(q
v0) is computed with all members controlling v1 ignored. (b)

Ĉv1
free(q

v1) is computed with all members controlling v0 ignored. 197
13.7 (a) Enclosed subspace Cv0

free(q
v0) contains the current position of v0. (b)

Another enclosed subspace is separated from Cv0
free(q

v0) by obstacles. 201
13.8 (a) Enclosed subspace Cv0

free(q
v0) when v0 and v1 are separated; (b) Enclosed

subspace Cv0
free(q

v0) after merging v1 with v0. 202
13.9 (a) Node v0, v2, v3, v6, and v7 are on the same plane. (b) Splitting node v0

in this way to separate Ev0 into two sets is not valid, because node v0 will
be in singular configuration. Similarly, it is not valid to merge v1 with v0. . . 203

13.10 (a) Node v0 is outside the truss. (b) It is possible to split node v0 in this
way to generate v1. Reversely, v0 and v1 can be merged. 203

13.11 Split node v0 into v0 and v1: (a) a right way to move node v1 away from
node v0; (b) a wrong way to move node v1 away from node v0. 204

13.12 Topology connections among three enclosed subspaces of node v. 210
13.13 v3 and v5 firstly extend outward, and then move upward to their goal po-

sitions. The support polygon is formed by three nodes (v2, v4, v5) on the
ground shown as the aqua region (N) and the green dot (•) is the center of
mass represented on the ground. 213

13.14 v1 and v6 can navigate to their goal positions easily since Ĉv1
free(q

v1
i) and

Ĉv6
free(q

v6
i) almost cover the whole workspace. 213

13.15 The minimum length (Lmin) and the maximum length (Lmax) of all moving
edge modules, the minimum angle between every pair of edge modules (θmin),
and the motion manipulability (µ) are measured throughout the geometry
reconfiguration process in Figure 13.13 and Figure 13.14. 214

13.16 Cv5
free(q

v5
i) is the yellow space on the upper left and Cv5

free(q
v5
g) is the green

space on the lower right. They are not connected and separated by the
obstacle region generated from edge (v3, v4). 215

13.17 The sequence to move v5 from qv5
i to qv5

g is shown. The support polygon is
the aqua region (�) and the green dot (•) is the center of mass represented
on the ground. (a) — (c) First move v5 to a new location. (d) Split v5

into a pair. (e) — (h) Move these two newly generated nodes in different
directions to go around the edge module (v3, v4). (i) — (j) Merge them into
an individual node and move this node to qv5

g 216
13.18 The minimum length (Lmin) and the maximum length (Lmax) of all moving

edge modules, the minimum angle between every pair of edge modules (θmin),
and the motion manipulability (µ) are measured throughout the topology
reconfiguration process in Figure 13.17. 217

13.19 (a) A VTT is constructed from 19 members with 9 nodes. (b) The task is
to move v0 from its initial position to a position outside the cubic truss. . . . 218

13.20 v has to move from Cvfree(q
v
i) that is the yellow enclosed subspace to the green

enclosed subspace, and then Cvfree(q
v
g) that is the blue enclosed subspace. . . 219

xix

13.21 The sequence to move v0 from qv0
i to qv0

g by traversing three enclosed sub-
spaces in Cvfree is shown. The support polygon is the aqua region (�) and
the green dot (•) is the center of mass represented on the ground. (a) —
(c) Move v0 to traverse the plane formed by v3, v4, v7, and v8. (d) Split v0

into a pair here so that both newly generated nodes can move around edge
module (v3, v7) while avoiding singular configuration. (e) — (h) Two newly
generated nodes are moved to a location inside the green enclosed subspace
and merge. (i) — (j) Move the merged node to a new location and split it
in a different way to generate two new nodes. (k) — (n) One node traverses
the space inside the cubic truss to go to the blue enclosed subspace, and the
other node moves upward. Then these two nodes merge at a location inside
the blue enclosed subspace. (o) Move the node to the target location. 219

13.22 The minimum length (Lmin) and the maximum length (Lmax) of all moving
edge modules, the minimum angle between every pair of edge modules (θmin),
and the motion manipulability (µ) are measured throughout the topology
reconfiguration process in Figure 13.21. 220

14.1 A VTT in octahedron configuration executes a single rolling locomotion
step. (a) Initially node v0, v1, and v2 forms the support polygon shown
as the aqua region (N), and the center of mass projected onto the ground
(•) is within this support polygon. The truss wants to roll from its current
support polygon to an adjacent support polygon formed by node v1, v2,
and the new tipping location. (b) v3 and v5 are moved so that the support
polygon is expanded and the center of mass projected onto the ground is on
member (v1, v2). (c) v0 and v4 are moved to their destinations to finish this
locomotion step, and the center of mass projected onto the ground is within
the new support polygon formed by node v1, v2, and v3. 224

14.2 The locomotion task is to roll the truss from (a) to (b). 228
14.3 The planned motion for this locomotion task is shown. (a) — (c) Move

node v3 and v5 to first expand the support polygon that is the aqua region.
(d) Move v0 and v4 to move the center of mass represented on the ground
(•) toward the target support polygon. (e) — (h) Once the center of mass
represented on the ground is inside the target support polygon, lift v0 and
move both v0 and v4 to their target locations. (i) — (j) Finally move v6 to
its target location to finish the locomotion process. 228

14.4 The minimum length (Lmin) and the maximum length (Lmax) of all moving
edge modules, the minimum angle between every pair of edge modules (θmin),
and the motion manipulability (µ) are measured throughout the locomotion
process in Figure 14.3. 229

xx

Part I

Preliminaries

1

Chapter 1

Introduction

Robots have been developed for years. There are a number of robotic systems in various

morphologies. These robots are usually good at different applications or used in different

scenarios. For example, many types of manipulators have been developed for factory au-

tomation, mobile robots can explore indoor environments efficiently, and snake robots and

legged robots are very good at locomotion on uneven terrains. Given these systems which

are specifically designed for some certain scenarios, it is still a challenge to deploy robots

in the real world, which requires robots to respond to huge uncertainty, including the com-

plexity of environments and the unknown nature of tasks that robots have to execute. It

is desired to have robots change morphologies which is the key idea of self-reconfigurable

modular robots.

Self-reconfigurable modular robots are composed of repeated building blocks (modules)

from a small set of types. Often all modules have uniform docking interfaces that allow the

transfer of mechanical forces and moments, electrical power, and communication through-

out the robot [160]. These systems are able to adapt themselves to new circumstances or

new tasks and recover from damage by changing their shapes. There are three key advan-

tages for modular robots over fixed-morphology robots: versatility, robustness, and low cost.

Self-reconfigurable modular robotic systems are potentially more adaptive due to their re-

configuration capability. Modules are interchangeable, so these systems can do self-repair by

2

replacing faulty parts. Modules are usually very simple and only have limited functionality,

thus modular robotic systems are potentially cheaper with batch fabrication.

1.1 Motivation

Self-reconfigurable modular robots are able to deliberately change their own morphologies

by rearranging the connectivity of their components so that they can adapt to new circum-

stances, perform new tasks, and recover from damage. For example, a cluster of modules

can initially form a mobile vehicle and move on the ground, and then reconfigure into a

snake morphology to traverse some narrow passage, and finally reconfigure into a manipula-

tor on a base for some manipulation task. This is a promising goal for modular robots and

it is highly dependent on three fundamental parts: configuration recognition, morphology

transformation, and task execution.

Modular robotic systems consist of repeated building units resulting in a large number of

different ways to arrange them. This characteristic enables these systems to form different

morphologies when needed. This also brings about a fundamental requirement that the robot

needs to be capable of recognizing its morphology in order to behave as expected and this is

called configuration recognition. Note that the term configuration in reconfigurable robotics

is commonly generalized to represent the connectivity of modules. For example, various

locomotion behaviors using gait table control for Polypod [157] are programmed for different

configurations, such as slinky locomotion for a biped walker, caterpillar locomotion and

rolling-track locomotion for a loop [158]. A robot constructed from Polypod modules has to

know how modules are arranged in order to apply the right locomotion policy. Configuration

recognition is also shown to be useful when executing tasks using SMORES-EP for which

a design library composed of multiple behaviors using different configurations is built [53].

In order to deploy a cluster of SMORES-EP modules to accomplish given tasks, the system

has to identify itself and figure out the mapping from the hardware to the isomorphic

configuration in the library in order to implement existing controllers.

Once a modular robotic system identifies its current configuration that is suitable for

some given tasks, motion planning and control techniques have to be developed for task ex-

3

ecution. While this is a general problem for applications of robotic systems, some challenges

still have to be taken into account regarding modular robots. One advantage of modular

robots over traditional robotic systems with fixed morphologies is the flexibility: modular

robots are able to address tasks in more scenarios by altering their methodologies or configu-

rations, and the number of configurations increases exponentially as the number of modules

increases. Hence, a universal model or a model generator is required for arbitrary configu-

rations. In addition, a single module usually has one or more degrees of freedom (DOFs),

and combining multiple modules to form a structure results in a high-dimensional system.

Furthermore, multiple motion goals may share many DOFs which complicates the control

and motion planning problem.

Other than the motion planning problem that is similar to traditional robotic systems,

morphology transformation is in particular for modular robots. In order to respond to various

scenarios, a modular robot is capable of reconfiguring its current morphology into another

more suitable one for some given task which is known as reconfiguration motion planning.

The reconfiguration capability is fundamental for modular robots to execute a variety of

tasks, explore different environments, and address potential unknowns. In a reconfiguration

process, motions of multiple modules are involved leading to the global change of the overall

system. However, the planning is usually difficult due to a couple of reasons, such as the

exponential increase of the number of possible configurations with respect to the number of

modules and complex physical constraints. Furthermore executing reconfiguration actions

is usually hard and time-consuming, and the efficiency of the reconfiguration process can be

highly affected by the transformation strategy.

This thesis considers a hierarchy framework for modular robots composed of these three

components which are distributed in three levels. Morphology identification and planning, as

the top level of the framework, enable the robot to identify its current morphology and select

a suitable morphology. The second level is the reconfiguration strategy that can output a

sequence of reconfiguration actions if the robot needs to alter its morphology. The third level

includes dexterous manipulation planners and locomotion controllers for task execution. In

4

this thesis, these components are mainly studied for two modular robots, SMORES-EP and

VTT, and these work can be easily extended to other modular robots.

1.2 SMORES-EP

The SMORES-EP, standing for Self-assembly MOdular Robot for Extreme Shape-Shifting

with EP-Face connector, is a hybrid modular robot. Each SMORES-EP module is in a cubic

shape with four active rotational DOFs: pan, tilt, and left/right wheels. It has differential

wheeled drive using its left and right wheels. There are four active connectors being equipped

on a module leading to numerous ways to connect a set of modules. A SMORES-EP module

is highly space-constrained. A low-cost position sensing solution is presented for SMORES-

EP and the solution is shown to be reliable to estimate a DOF position leveraging a modified

Kalman filter that can handle piece-wise nonlinear signals. The estimation and control of

all DOFs are all running on a single microcontroller.

A number of SMORES-EP modules can form many different morphologies and these

morphologies are modeled as graphs. Their topologies or configurations that describe how

modules are connected are the fundamental to distinguish them, and these configurations

should be invariant under different labeling of modules. The unique graph representation

of a configuration is introduced and the robot can identify its current configuration by

distributed messages transmitted among modules. An algorithm to quickly match two iso-

morphic configurations is also presented in order to utilize existing behaviors. Different

from chain-style or lattice-style reconfiguration strategies, a cluster of SMORES-EP mod-

ules can reconfigure themselves in a mobile-style process in which modules can undock from

the cluster in a carefully planned sequence and then dock with desired modules to form a

new configuration. In addition, several separated modules can self-assemble into a desired

morphology to enhance their capability that is similar to the collective behaviors of insects

in nature. This mobile-style morphology transformation strategy is shown to be efficient and

demonstrated on real hardware. Finally, dexterous manipulation planning using modular

robots is formulated as a linearly constrained quadratic program to handle real-time con-

trol and planning simultaneously, and automatic locomotion control based on CPG control

5

networks has been studied well, such as [9, 57].

1.3 Variable Topology Truss

A Variable Topology Truss (VTT) is a modular robot in truss structure. Similar to vari-

able geometry truss (VGT) robots, a VTT is composed of edge modules or members with

intersections being nodes. These edge modules have variable lengths to achieve geometry

reconfiguration. Additionally, a VTT is able to self-reconfigure the attachment of members

at the nodes called topology reconfiguration, changing its topology by merging or splitting

nodes. Two separate nodes in the truss can dock to form one node which connects all of

the involved members. Reversely, a single node with a sufficient amount of members can

undock into a pair of nodes. The reconfiguration capability and the high extension ratio of

the actuators used enable a VTT to change its shape and size dramatically. One example

application using VTT structures aims to build a robot system that can be deployed into

a disaster scenario. The robot is mobile by tumbling and can move into a building and re-

configure into large support structures to reinforce the building, shoring to prevent further

collapse as first responders search for victims. This application exploits the inherent large

strength-to-weight ratio of truss structures.

The configuration model and the kinematics model of an arbitrary VTT are derived. A

motion controller as well as the corresponding hardware design are developed to guarantee

the motion of a robot. Because of the topology reconfiguration capability, a VTT can achieve

some highly dexterous motions. This behavior is similar to the DNA replication process in

which topoisomerase can change the topology of DNA by cutting and resealing strands as

tanglements form [18]. A VTT has the powerful reconfiguration capability but the reconfig-

uration planning is difficult. Reconfiguration actions happen at nodes and the configuration

space of a single node is complicated. A fast algorithm to compute the obstacle region and

the free space of a given node is provided so that the motion of a node can be planned easily.

The geometry reconfiguration planning can be simplified by considering a group of nodes at

each time with an efficient sampling strategy and a fast collision checking approach. Several

complex physical constraints are also under consideration to ensure the feasibility of the

6

planned motions. The topology reconfiguration planning is solved by explicitly computing

the free space of a node which is partitioned by its obstacle regions. A sequence of topology

reconfiguration actions can be generated to navigate a node in its free space. Locomotion

is necessary to deploy a VTT to perform tasks. An efficient rolling locomotion planner is

presented for an arbitrary VTT while avoiding impact from the environment which may

damage the mechanical components of the robot.

1.4 Thesis Contributions and Outline

It is a challenge for robots to work in the real world and one significant reason is that robots

have to encounter a large number of unknown scenarios, including various environments

and tasks. The compatibility between a robot and a scenario is highly dependent on the

morphology of the robot. For example, a legged robot can be good at running on the ground

efficiently but bad at climbing stairs, while a snake robot is able to climb stairs easily. In

order to make robots more universal to handle more tasks, functional structures can be

added. A vehicle can be equipped with an arm for manipulation tasks, or more limbs can be

added to a legged robot to have extra DOFs to handle manipulation tasks. However, these

added functional structures also have limitations. This thesis focuses on modular robots and

considers the idea that robots can change their morphologies as needed to better address

different scenarios. A self-reconfigurable modular robotic system is composed of a number

of modules with uniform docking interfaces. These modules are capable of forming various

morphologies and transforming from one morphology to another.

In order to deploy self-reconfigurable modular robots, a hierarchy framework is consid-

ered and studied. Modular robots can be in different morphologies and the morphology

identification relying on the proposed graph representation is necessary. Then the mor-

phology transformation strategy allows modules to reconfigure themselves into a desired

morphology when needed for the current scenario. Finally, dexterous manipulation plan-

ners and automatic locomotion controllers are running to command the robot to execute

tasks. This framework also heavily relies on a robust hardware platform, including a reliable

hardware design and control, and a carefully designed software architecture. In particular,

7

a hybrid modular robot SMORES-EP and a modular truss robot VTT are studied in this

thesis.

Chapter 3 introduces the hardware design of SMORES-EP and VTT, including actu-

ating, docking interfaces, sensing, joint state estimation, and communication. A general

software architecture for modular robots is presented in Chapter 4 and this architecture

is implemented for hardware platforms and shown to provide good performance to handle

various planning and control tasks. This is the foundation to apply modular robots in real

scenarios.

For SMORES-EP, my work in hardware development and control is first presented in

Chapter 5. A SMORES-EP module is a highly space-constraint system and customized

position sensors are used. These sensors are manufactured manually and yield non-consistent

measurement and performance. In order to provide reliable joint state estimation, a fast

characterization process is presented and a Kalman filter with a simplified observation model

is developed to handle the non-linearity issues. All the joint state estimators and controllers

of a module are running on a low-cost microcontroller. In Chapter 6, an efficient docking

strategy is presented. SMORES-EP is a hybrid modular robot that can reconfigure in all

styles. Rather than reconfiguring in chain style or lattice style, a docking controller in mobile

style is developed. This docking process can simplify the execution of a reconfiguration action

and it is possible to execute multiple reconfiguration actions in parallel. Chapter 7 defines

the graph representation of a modular robot morphology and develops some algorithms for

morphology discovery and recognition. This work can be extended to other modular robots

easily and is tested with the SMORES-EP system. Chapter 8 delves into the morphology

transformation strategy based on the mobile-style docking process. The goal is to enable

a cluster of modules to transform into a desired morphology in an efficient way. These

modules may initially form a morphology and a set of undocking and docking action pairs

are computed and executed to reconfigure into a new morphology, or initially they are

separated on the ground and self-assemble into a structure to perform a task that cannot be

solved by an individual. Chapter 9 introduces a manipulation planner for modular robots in

8

chain-style structures. A general kinematics model for arbitrary morphologies is developed

and the planning and control problems are formulated as a linearly constrained quadratic

program that can be solved in real time. The CKBot system is also used for demonstration.

A VTT is a modular truss robot. Some basic concepts, the configuration model and the

kinematics model for an arbitrary VTT, and the hardware control framework are presented

in Chapter 10. The additional capability of VTTs over other truss robots is that they

can rearrange the connections of their members to reconfigure the topology. This topology

reconfiguration capability allows more dexterous motions which is explored in Chapter 11. A

new cell decomposition method is proposed with the shape of a VTT being considered so that

efficient discrete motion actions can be applied. A VTT is a parallel robot and it is easier to

control its shape by planning the motion of nodes. However, when moving nodes in a VTT,

the collision between members is difficult to avoid. Chapter 12 delves into the configuration

space for VTT nodes. A fast algorithm is presented to compute the configuration space of a

given node so that the motion of this node can be easily planned. This chapter also shows

that motions of multiple nodes are strongly coupled. Moving one node can significantly

change the configuration space of other nodes in a truss robot. Hence it is a challenge to

do reconfiguration planning for a VTT while satisfying all physical constraints. A motion

planning framework to deal with this challenge is presented in Chapter 13. Chapter 14

solves the locomotion tasks for VTT robots. A non-impact rolling locomotion planner is

developed to drive an arbitrary VTT in an environment.

The SMORES-EP system and the VTT system are the core platforms in this thesis, but

the presented work here can be applied to other modular robots. The graph representation

of the SMORES-EP robot is a general model for modular robots, and the morphology

identification and recognition algorithm based on this model can also be used for other

modular robots. The proposed reconfiguration strategy is valid for mobile-type or hybrid

modular robots. And the dexterous manipulation planner is compatible with modular robots

that can be in chain-style structures. The VTT has a similar structure with other modular

parallel robots or truss robots but also has an additional topology reconfiguration capability.

9

Hence, the model and the control framework can also be applied to these robots. The

configuration space algorithm and the geometry reconfiguration planner can be applied as

well to change the shape of a truss robot. Similarly, the non-impact locomotion planner can

be used to drive any truss robot.

10

Chapter 2

Overview of Related Work

This chapter provides an overview of the literature related to modular robots, including

hardware, algorithms on control and planning.

2.1 Modular Robotic Systems

The performance of a self-reconfigurable modular robotic system is highly dependent on

the hardware design and there are many challenges in order to overcome a lot of limiting

factors, such as strength, precision, module dexterity and complexity, and so on. These

systems are typically classified into three categories by the geometric arrangement of their

units: lattice-type, chain-type, and mobile-type.

Lattice-type modular robotic systems are composed of modules that are arranged and

connected nominally on a regular, three-dimensional pattern such as a cubical or hexagonal

grid. Various systems have been developed, including Metamorphic [21], 3D Fracta [95],

Telecubes [138], and Miche [35]. These architectures usually offer simpler reconfiguration as

well as easily scaled representations as collision detection need only be considered locally.

However, they are usually limited in application due to their motion constraints.

Chain-type modular robots, such as PolyBot [159], M-TRAN [96], and CKBot [163],

consist of chains of modules which are usually in tree-like configurations and are more

versatile as the serial chains of modules can act like articulated robot arms. Nevertheless,

these systems are computationally more difficult to represent and analyze and more difficult

11

to control.

Mobile-type modular robots are able to use the environment to maneuver around, and

can either hook up to form complex chains or lattices or form a number of smaller robots, like

Millibots [98], Swarm-bots [38], Planar Catoms [62], and Kilobots [112]. They can usually

simulate collective intelligence of creatures from nature to overcome limited capability of

individuals by executing tasks as a group.

Hybrid-type modular robotic systems can be in all of these architectures, and thus are able

to achieve all types of reconfiguration, locomotion, and manipulation activities. Examples

of hybrid systems include SUPERBOT [119], SMORES [26], and Roombots [134].

In addition to these modular robotic systems, some modular robots are in truss structures

which are commonly called variable geometry trusses (VGT) [91] and the truss members have

variable lengths, such as TETROBOT [42], Odin [86], and LAR [148]. VTTs are similar to

VGTs with additional capability to reconfigure nodes resulting in topology reconfiguration.

Hardware is important to demonstrate the potential of modular robots. A more com-

prehensive review of major modular robots can be found in [160] and [125]. In this thesis,

SMORES-EP, CKBot, and VTT are the hardware platforms. SMORES-EP is a hybrid

modular robot, CKBot is a chain-type modular robot, and VTT is a modular truss robot.

2.2 Control and Motion Planning

Robot behaviors heavily rely on robust controllers and motion planners. These behaviors are

mainly aiming at manipulation of objects and locomotion. Gait tables have been commonly

used to encode locomotion behaviors for known morphologies constructed by chain-type

modular robots [158]. Other approaches to program locomotion gaits for chain-type struc-

tures include hormone-based gait control [120], role-based gait control [136], phase automata

model [165], and CPG-based locomotion control [9, 57, 133]. These approaches can be im-

plemented in a distributed way. Compared with chain-type modular robots, lattice-type

modular robots perform locomotion by cluster-flow in which modules continuously execute

detachment and attachment actions locally to achieve the global motion of the cluster [30,

166]. Redundant systems are common in modular robotics. Manipulation behaviors usually

12

involve the control and planning of a hyper-redundant arm built by several modules [22, 87,

127]. Some frameworks are well developed to address this type of motion planning prob-

lem. However, some difficulties need to be considered for modular robots. More details on

existing manipulation strategies can be found in Chapter 9.

A significant capability of self-reconfigurable modular robots that differentiates them

from normal robotic systems is the morphology transformation. These robots are able to

execute reconfiguration actions to alter the connections among modules resulting in the

change of their overall morphologies. The reconfiguration process of lattice-type robots can

be simplified through discretization and the control actions are also easy to execute, such

as the reconfiguration planning for Telecubes [150]. It is more difficult to do reconfiguration

for chain-style robots in which closed kinematic chains have to be formed [124]. Control

and planning schemes of multiple rigid bodies in an environment with complex obstacles

are usually involved in the process. Efforts for mobile-style reconfiguration planning have

mainly focused on self-assembly that several separated modules can form a target structure

efficiently. Some simple mobile-style self-reconfiguration behaviors using SMORES-EP are

shown in [25] and only one or two modules were involved in each reconfiguration process. A

detailed review on the reconfiguration planning is in Chapter 8.

Truss modular robots have a different type of architecture. Previous truss robots can

metamorphose through changing the lengths of truss members, and the VTT system can

additionally rearrange the connections among truss members. Related work on shape con-

trol, locomotion, and reconfiguration for truss modular robots can be found in Chapter 13

and Chapter 14.

13

Part II

System Design and Architecture

14

Chapter 3

Modular Robot Hardware

SMORES-EP and VTT are the core hardware systems in my work. This chapter provides

an overview of these two systems and my contributions to their development.

3.1 SMORES-EP

The SMORES-EP modular robot is in hybrid architecture that can behave in all three

types of reconfiguration, locomotion, and manipulation activities (chain-type, lattice-type,

and mobile-type). The conceptual design of this robot is first introduced in [26]. The

system can emulate many past modular robotic systems by rearranging modules in ways

that replicate their kinematics. A SMORES-EP module has four active rotational DOFs

and four connectors shown in Figure 3.1a. The motion of a module is actuated through a

gear train shown in Figure 3.1b. The left wheel and the right wheel can continuously rotate

and are driven by DC brushed motors with 298:1 gearboxes independently. The pan and

tilt DOFs are coupled and driven by two DC brushed motors with 1000:1 gearboxes driving

three gears in a differential configuration where pan DOF can continuously rotate to produce

a twist motion and tilt DOF is limited to ±90° to produce a bending joint. A SMORES-EP

module has an 80 mm cube-like form factor with four EP-Face connectors [143] equipped

on its four sides (LEFT, RIGHT, TOP, and BOTTOM) for docking. Each face can form

a strong connection with other modules by the use of four EP magnets arranged in a ring,

with south poles counterclockwise of north shown in Figure 3.2. The ring arrangement

15

(a) (b)

Figure 3.1: (a) A SMORES-EP module. (b) The SMORES-EP module driving mechanism.

(a) (b)

Figure 3.2: (a) Internal view of the magnets in EP-Face. (b) Internal view of the EP-Face
with circuit board.

of the magnets makes the connector able to connect in four possible configurations. Also

connected EP-Faces are able to exchange data through the magnetic coupling of connected

EP-magnets which are capable of UART serial communication [143]. These four faces can

be independently assembled and a module can be easily assembled using eight screws. All

four motors are attached to the bottom face, and the space in the center of the module is

occupied by circuit boards, batteries, and wires. A single module can lift four SMORES-EP

modules held out in a cantilever due to the limitations of motors and connector forces.

The electronics in a SMORES-EP module is distributed among multiple bodies. Each

EP-Face has its own electronics to control its four EP magnets (Figure 3.2b). These four

magnets are driven by an array of five half-H bridges that is capable of sourcing 6 A current.

The circuit is shown in Figure 3.3 allowing bi-directional drive of each magnet (activation

16

EPM

1

EPM

2

EPM

3

EPM

4

+12V +12V +12V+12V +12V

Half-

Bridge

4

Half-

Bridge

3

Half-

Bridge

2

Half-

Bridge

1

Common

Half-

Bridge

Figure 3.3: The circuit for driving EP magnets.

and deactivation) in a sequential manner. This circuit is controlled by an ATmega168A

microcontroller running at 8 MHz. Three pulses of length 3 ms are applied at intervals of

3 ms when activating or deactivating a magnet. Two mated EP-Faces are able to exchange

data through the magnetic coupling of connected EP-magnets: when a coil is pulsed, the

generated magnetic field also flows through the core of the connected coil, and the changing

field generates a voltage across that coil. Similar capabilities have been demonstrated in [34].

A low-cost position sensing solution is applied for every articulated joint in a SMORES-

EP module [79]. An inexpensive carbon-embedded polymer spray paint is used to generate

a resistive track surface so that one or more wipers can measure the voltage at the point of

contact with the resistive strip [144]. The three continuously-rotating faces (LEFT, RIGHT,

and TOP) have Wheel PaintPots with circular tracks and two wipers offset parallel to the

axis of rotation are mounted on their circuit boards (Figure 3.4), while the central hinge

has a Tilt PaintPot that covers 180° arc with a wiper offset normal to the axis of rotation

installed on the BOTTOM Face (Figure 3.5). The measurement from a PaintPot encoder

of each joint is also gathered by the microcontroller of the corresponding face.

A 32 bit microcontroller STM32F303 running at 72 MHz is used as the central onboard

processor of a module. It communicates with four faces via I2C to handle all EP-Face

connector activities (activation or deactivation), all DOFs’ position estimation and control

(gathering measurements of all DOFs and sending commands to motors), and Wi-Fi com-

17

(a) (b)

Figure 3.4: (a) A wheel PaintPot sensor is installed in a chassis. (b) Two wipers (Harwin
S1791-42) are mounted on a circuit board at a 50° angle to one another fixed to the wheel.

(a) (b)

Figure 3.5: (a) A tilt PaintPot sensor is installed on a chassis. (b) A single wiper installed
on the base of a SMORES-EP module contacts the track.

munication with the central computer (UDP protocol) via a Wi-Fi module (TI CC3000

chip).

3.2 Variable Topology Truss

The variable topology truss, or VTT, is a class of self-reconfigurable modular robots in truss

framework composed of edge modules or members (beam elements in a truss) and nodes

(intersections of members). An example is shown in Figure 3.6. Each module is a linear

actuator with two passive chainable spherical joints that can be docked with other modules

(Figure 3.7). VTTs have similar structures with variable geometry trusses (VGTs) [91] but

with additional topology reconfiguration capability. While VGTs only have control over the

shape or geometry of trusses, VTTs are able to rearrange the connections among members

by splitting or merging nodes.

18

Figure 3.6: The hardware of a VTT in octahedron configuration is composed of twelve mem-
bers. Note that at least eighteen members are required for topology reconfiguration [132].

(a) (b)

Figure 3.7: (a) An extended VTT edge module. (b) A shorter configuration with components
marked.

The Spiral Zipper joint [24] is operated as both a prismatic actuator and a structural

component in an edge module. It can achieve a high extension ratio as well as form a high

strength-to-weight ratio column to support a large compression load. In the current version,

the joint is driven by a brushed DC motor with a Planetary gear box via a friction drive

mechanism. The friction drive has an interference fit with the band column and uses friction

19

to extend or retract the band column. The addition of a support ring is incorporated into

the drive system in order to enable operation when the column is subjected to a bending

load. The drawback of the Spiral Zipper joint is that it cannot withstand high tension.

An elastic tension cable system (Figure 3.8) is applied in order to overcome this difficulty.

This system can apply constant tension to the Spiral Zipper band and this fixed tension is

configurable.

The electronics of each module is separated into two places for tension cable control and

Spiral Zipper control respectively. The tension cable system (Figure 3.8) is located at the

opposite end of the edge module from the Spiral Zipper friction drive. A torsion spring acts

as a torque sensor. The cable is stored in a spool inside the tension cable module. The spool

is connected in proportional to the tension in the cable. A pair of encoders measure this

twist by measuring the rotational offset in the spool and drive motor, providing the input for

feedback control. Controlling this twist allows the cable to extend and contract along with

the zipper while maintaining a fixed tension. An ESP-32 based development board with

an OLED screen is used to control the tension applied to the cable and also communicate

with a central computer. The Spiral Zipper driving board is located underneath the band

management system shown in Figure 3.9. A NUCLEO-F303K8 development board running

Figure 3.8: The series elastic tension cable system: The drive gear (1) is connected to
a torsion spring (2), which is connected to the spool (3). The yellow line is the path of
the cable, which continues down through the band column and attaches to the friction
wheel. The drive gear and spool positions are measured by encoders (4). The cap (5) is the
attachment point to the zipper.

20

Figure 3.9: The Spiral Zipper driving board is located underneath the band management
system. This board measures the edge module length, drive the Spiral Zipper joint, and
communicate with the central computer over Wi-Fi.

(a) (b)

Figure 3.10: (a) The band marker strip is attached to the band to act as a quadrature
encoder. (b) Quadrature encoder signal is generated after processing the raw signals from
two reflectance sensors by a comparator.

(a) (b)

Figure 3.11: (a) An optical switch is installed on the band management system to count
band teeth. (b) The optical switch used in VTTs.

21

at 72 MHz controls the DC motor and is able to measure the length of the member by

reading quadrature encoder signals (Figure 3.10b) generated from two alternating black

and white strips attached to the body of the Spiral Zipper shown in Figure 3.10a. This

functionality has been demonstrated in [72]. The length of a member can also be measured

by an optical switch combined with the DC motor quadrature encoder shown in Figure 3.11a.

The optical switch (Figure 3.11b) can count the number of band teeth going through its

slot and the moving direction is determined by the DC motor and can be derived from the

quadrature encoder of the motor. In the current experiment setup, every member length

is also measured by a VICON motion capture system for initialization. Another ESP-32

based Wi-Fi module handles the communication with the central computer and commands

the NUCLEO-F303K8 to control the Spiral Zipper joint.

22

Chapter 4

Software Architecture

This chapter presents a general software architecture for modular robots, the fundamental

to control hardware platforms. This architecture is implemented for SMORES-EP, CKBot,

and VTT with minor modifications for each system.

4.1 Hybrid Architecture

A modular robotic system is usually composed of a number of modules, and these modules

not just need to communicate with each other but also execute physical interaction, such as

docking and undocking. A robust and efficient architecture is required when executing tasks

on a hardware platform in real-time. A simulator is also helpful when exploring planning and

control algorithms. Although the gap between the simulator and the reality is a challenge to

overcome, it is tedious to regenerate programs that work only in simulation for real robots.

This also requires a proper design of the software architecture so that the sim-to-real transfer

can be derived easily.

In this thesis, the control architecture for modular robots is hybrid: distributed at low-

level actions and centralized at high-level planning. The framework has to handle a number

of modules: each module has its own processor to handle hardware-level control and com-

munication, and a central computer is used for high-level control and planning. Simulation

tools are also provided and the communication with a simulator is in the same way with

real hardware platforms, so there is no need to regenerate programs when switching from

23

simulation to real hardware platforms. This design of software architectures makes use of

distributed computing power and also achieves efficiency through centralized information

processing.

4.2 Architecture Design

The general software architecture is shown in Figure 4.1. The core of the architecture

is Server that communicates with User Interface, Parameter Server, and robots

(Simulator and Hardware).

4.2.1 Configuration

The robot setup is defined by users and Server can get these information from Parameter

Server.

1. Configuration — Configuration description parameters are provided to Server in

order to generate models for the defined robot. For modular robots, these parameters

may include a graph representation and module labels.

2. Constraints — Constraints related to the planning and control problems are defined

and transmitted to Server, such as hardware limits, workspace boundary, and obstacles.

Figure 4.1: The general software architecture for modular robots.

24

4.2.2 Robot Interface

Server communicates with either a simulator or a hardware platform to execute control

commands and track module states. This communication should be fast enough in order to

achieve real-time control, such as a trajectory following task for a chain of modules. This

communication is also important to deal with hardware failures.

4.2.3 User Interface

Users can access several actions and services related to control, planning, and options for

simulation. Core actions and services include Module Control Action, Transformation Action,

Locomotion Action, Manipulation Action, Module State Service, and Robot State Service. Mod-

ule Control Action provides the interface to execute module-level commands, such as moving

a joint. Transformation Action, Locomotion Action, and Manipulation Action provide high-level

control and planning interfaces for a cluster of modules. Users can also access information

related to an individual module by Module State Service, or access information of the whole

structure built by modules through Robot State Service.

4.2.4 Implementation

This architecture is applied to SMORES-EP, CKBot, and VTT, and implemented in Robot

Operating System (ROS) [141]. Server is composed of several ROS nodes. The robot config-

uration and constraints are fully defined in a YAML file and Server is able to get and parse

these parameters from the ROS parameter server easily. Then Server creates the communi-

cation with hardware, and also initializes the robot and the workspace in a simulator. Rviz

(ROS visualizer) is used as the visualization tool for CKBot and VTT (Figure 4.2b and Fig-

ure 4.2c). For CKBot, the URDF of the robot configuration is generated automatically first

from the corresponding YAML file so that Rviz can display the robot. For SMORES-EP,

a simulator [53] is developed on Unity platform [147] (Figure 4.2a). The communication

between ROS and Unity is achieved by rosbridge package [111]. All hardware-level control

actions are implemented locally on each module, such as estimation and control of each

articulated joint in a SMORES-EP module, the state of an EP-Face connector, velocity

25

(a) (b) (c)

Figure 4.2: (a) A SMORES-EP configuration is created in Unity environment. (b) A dual-
arm system is created by CKBot UBar modules in Rviz with a cluttered environment. (c)
A VTT configuration is created in Rviz.

control of a VTT edge module, and so forth. Several high-level control and planning in-

terfaces are constructed for users, such as the manipulation planners for SMORES-EP and

CKBot, the locomotion controller for VTT, and the morphology transformation planners

for SMORES-EP and VTT.

26

Part III

SMORES-EP

27

Introduction

This part presents the research work in order to deploy SMORES-EP, a newly developed

hybrid modular robot. A SMORES-EP module is highly space-constrained with four DOFs

and four connectors so that the system has high flexibility that can be applied in a large

range of scenarios. In order to achieve a fully autonomous modular robotic system, several

core components are necessary: a reliable hardware control strategy, an algorithm to allow

the robot to transform its morphology as needed, and a framework to enable the robot to

execute tasks, including manipulation and locomotion.

Chapter 5 presents the complete local control and estimation solution for SMORES-EP

modules. The control of every DOF is straightforward as long as reliable position feedback

can be guaranteed. The difficulty of integrating reliable position sensors is addressed by

using low-cost absolute encoders. These encoders can be manually manufactured easily but

require extra effort in order to perform well.

Chapter 6 introduces the docking controller that is the fundamental for SMORES-EP to

transform from one morphology into another one. The docking process is divided into three

phases which can be executed continuously by the corresponding motion controllers. With

the efficiency of the hybrid architecture in Chapter 4, multiple docking action queries can

be handled simultaneously.

Chapter 7 defines the model to describe an arbitrary SMORES-EP morphology that

can also be extended to other modular robots, such as CKBot. Mathematical analysis and

several algorithms that can be applied for automatic configuration recognition are provided,

and these tools are prerequisites to building high-level motion planning frameworks.

28

Chapter 8 delves into the morphology transformation problem for SMORES-EP and

other hybrid or mobile-type modular robots. This mobile-style transformation strategy is

shown to be an easy and efficient solution for such systems. Two categories of transformation

— self-assembly and self-reconfiguration — are discussed. Multiple modules can execute

reconfiguration actions in parallel in a cooperative manner.

Chapter 9 deals with the manipulation planning using modular robots. Modules can form

a large variety of morphologies which are inherently high-DOF systems. A general kinematics

model is developed for arbitrary morphologies and the manipulation planning problem is

formulated as a quadratic program with a novel way to embed all motion constraints as linear

constraints. This framework can also be applied to single-arm or dual-arm manipulation and

whole-body manipulation.

29

Chapter 5

Module Control

This chapter presents the control framework for a SMORES-EP module, including a low-

cost position sensing technique, a position estimation method, and a controller to control its

four joints. This chapter excerpts heavily from [79]. Credit is due to co-author Tarik Tosun.

A SMORES-EP module is a highly space-constrained system equipped with four DOFs

driven by DC brushed motors and four EP-Face connectors. It is important to have accurate

position sensing for state estimation and control in robotics. Reliable and accurate position

sensors are usually expensive and difficult to customize. Incorporating them into systems

that have very tight volume constraints such as modular robots is particularly difficult. In

SMORES-EP modules, PaintPots are used for position sensing. PaintPots are low-cost,

reliable, and highly customizable position sensors [144], but their performance is highly de-

pendent on the manufacturing and calibration process. A complete solution is presented

for the use of PaintPots in a variety of sensing modalities including manufacturing, char-

acterization, and estimation for SMORES-EP modules. A Kalman filter with a simplified

observation model is developed to deal with the piece-wise non-linearity issues that result

in the use of low-cost microcontrollers. With this technique, it is shown that each DOF of

a SMORES-EP module can be controlled using a feedback controller easily and precisely.

30

5.1 Introduction

Robotics control process usually requires a robust controller as well as accurate state sensing

for feedback. For a SMORES-EP module, hardware control involves a position controller

for all four DOFs shown in Figure 3.1. Every DOF needs to be equipped with an absolute

position sensor to report its current state. This is challenging for SMORES-EP that is a

highly space-constrained robotic system. Commercial position sensors are available for many

applications. However, the form factor often presents a challenge to use these commercial

off-the-shelf sensors. Customizable position sensors give more flexibility to fit tight space

constraints.

Servos have been used in many modular robotic systems, such as Conro [16] and CK-

Bot [163]. Servo motors have built-in position control circuits. Some modular robotic

systems, such as 3D Fracta [95], M-TRAN III [65], and SUPERBOT [119], use rotary

potentiometers for position feedback. Optical or hall-effector sensor encoders are used in

PolyBot [159], Crystalline [114], and ATRON [54] to report position information. These

devices are usually too large for highly space-constrained systems.

PaintPots are highly customizable and low-cost position sensors that can be easily man-

ufactured by widely accessible materials (spray paint and plastic sheets) and tools (laser

cutters or scissors) [144]. The sensors can exist in different forms in terms of size, shape,

and surface curvature. Thus, these sensors can be easily integrated with well designed parts

or systems. The sensing performance and cost of PaintPot sensors make them competitive

with commercial potentiometers yet the customizability enables the use in situations which

are not possible with commercial potentiometers [144].

Two different designs of PaintPot sensors are used in SMORES-EP modules. In each

SMORES-EP module, there are four DOFs requiring position sensing shown in Figure 3.1a:

three continuously rotating joints (LEFT DOF, RIGHT DOF, PAN DOF) and one bending

joint with a 180° range of motion (TILT DOF). Conductive spray paint is used to generate

a resistive track surface. The manufacturing process is easy enough for a person to make

a sensor quickly, but often does not yield consistent measurement and performance. The

31

terminal-to-terminal resistance can vary over a large range depending on the thickness of

the paint with a non-linear output. This fact complicates the position estimation for every

DOF.

For state estimation, stochastic techniques based on the probabilistic assumptions of the

uncertainties in the system are widely applied. For linear systems, the Kalman filter [56] has

been shown to be a reliable approach where uncertain parts in systems are assumed to have

a particular probability distribution, usually Gaussian. Extensions including the extended

Kalman filter (EKF) and the unscented Kalman filter (UKF) [151] have been developed for

nonlinear systems. For SMORES-EP DOF state estimation, a new Kalman filter with a

simpler observation model considering the non-linearity of PaintPot sensors is developed.

A complete and convenient calibration process is developed to precisely characterize each

position sensor quickly. Four estimators can run on a 72 MHz microcontroller at the same

time to track the states of all DOFs in a SMORES-EP module. The reported position

information can be used directly by the onboard feedback controller to drive four DOFs

with good performance.

5.2 PaintPot Sensor in SMORES-EP

The tight space requirement of a SMORES-EP module made it very difficult to incorpo-

rate off-the-shelf position encoders into the design, motivating the development of custom

PaintPot encoders that occupy very little space within the robot. This section provides an

overview of the manufacturing techniques used to create PaintPots, the fundamental mate-

rial resolution of the sensors, and the design of the PaintPots used in SMORES-EP. More

details can be found in [144].

5.2.1 Manufacturing Overview

A potentiometer is a three-terminal resistor with a sliding or rotating contact (or wiper)

that functions as a voltage divider (Figure 5.1). The resistive track surface of a PaintPot

encoder is made from conductive spray paint on a plastic track substrate. The PaintPots

in SMORES-EP use three coats of MG Chemicals Total Ground conductive paint [145]

32

Figure 5.1: A potentiometer has three terminals: two fixed electrical terminals at the resis-
tive track ends and one electrical contact (wiper) that can move along the track surface.

(a) (b)

Figure 5.2: A bead of conductive paint applied beneath the screw head forms a good elec-
trical connection with the track.

sprayed onto acrylonitrile butadiene styrene (ABS) plastic sheets. Three coats of paint are

applied, with five minutes of drying time between coats, following the painting guidelines

in the datasheet. ABS plastic can be cut to precise shapes in a laser cutter and forms an

ideal substrate for the paint, which readily bonds to the surface [145]. Electric terminals are

created by mounting zinc-coated screws at the ends of the resistive strip. Applying paint

above and beneath the screws creates an electrical connection between the track surface and

the screw (Figure 5.2). Leaded solder adheres to zinc-coated screws, allowing wires to be

attached and detached.

Each PaintPot uses one or more wipers to measure the voltage at the point of contact with

the resistive strip. Wipers with high contact pressure should be avoided, as they may scratch

the paint. A larger contact surface area also reduces contact resistance, improving signal

quality. The Harwin S1791-42 EMI Shield Finger Contact [115] is used in SMORES-EP

modules. The wiper is a 4 mm high gold-plated tin spring contact with a 1.45 mm×2.05 mm

contact area, and a contact force of 1 N (mounted on a PCB at a 3 mm working height).

33

5.2.2 Performance Characteristics

The fundamental material resolution of the resistive track was determined by characterizing

the signal-to-noise ratio of the measured voltage on small length scales. Based on the tests,

the fundamental resolution of the track material is 8.63±0.126µm, which is of the same order

of magnitude as some commercially available high-precision potentiometers. In SMORES-

EP, the limiting factor in resolution is the analog-to-digital conversion bit depth (10 bit, or

84µm); to reach the material limit, 14 bit of analog-to-digital conversion depth would be

required.

5.2.3 Wheel and Tilt PaintPots in SMORES-EP

Each of the four articulated joints in a SMORES-EP module is equipped with a PaintPot,

which provides absolute position encoding.

Wheel PaintPots

The wheel PaintPots, shown in Figure 3.4a, have a circular track and two wiper contacts,

allowing continuous rotation and providing position information over the full 360° range

of the left, right, and pan joints. The annular geometry allows a slip ring to fit through

the center. Tabs on the track extend into the center of the circle to provide space for the

terminal contacts. The V-shaped gap provides enough space for the wipers to pass from one

side of the track to the other without contacting both simultaneously (which would cause a

short circuit). The two wipers are mounted on a PCB above the track at a 50° angle to one

another (Figure 3.4b); this configuration ensures that at least one wiper contacts the track

at all times.

Tracks are cut in batches in a laser cutter. To facilitate easy mounting, a layer of double-

sided adhesive is applied to the back of the ABS sheet before cutting. After cutting, three

coats of paint are applied, and strips are allowed to dry for 24 hours. Strips are mounted in

a mated groove in a 3D-printed chassis as shown in Figure 3.4a. The chassis has a raised

triangular feature that mates with the gap in the strip so that the wipers remain at the

same level as they pass through the gap region. Zinc-coated screws are used for electrical

34

terminals. The measured terminal-to-terminal resistance of wheel PaintPots ranges from

2 kΩ to 20 kΩ, depending on the thickness of the paint. Before use, a coat of petroleum-

based grease is applied to the track surface.

Tilt PaintPots

The tilt PaintPots, shown in Figure 3.5a, have tracks with cylindrical curvature about their

axis of rotation. A single wiper contacts the track and measures position through the full

180° of motion of the tilt joint (Figure 3.5b). The track geometry of the tilt PaintPot makes

very efficient use of space inside the SMORES-EP module; to our knowledge, no off-the-shelf

potentiometers replicate this unusual non-planar shape.

Tilt PaintPots have the same ABS/adhesive substrate as wheel PaintPots, and similar

screw contacts. They are mounted to the 3D printed chassis before painting, allowing them

to be painted in their final curved shape. This is preferable to painting flat and then bending:

bending the paint after it has dried causes cracks to form, increases the resistance (three

orders of magnitude), and causes a non-smooth variation of voltage along the length of the

track. The terminal-to-terminal resistances of the tilt PaintPots range from 3 kΩ to 10 kΩ.

5.2.4 Cost

The PaintPots used in SMORES-EP are inexpensive. The wipers are available from

Digikey.com for $0.35 USD in quantities of 100. A 12 oz MG Chemicals Total Ground spray

paint can be purchased from Amazon.com for $16 USD, and 0.79 mm ABS sheets can be

purchased from McMaster.com for $3.70 USD per square foot. Based on these, materials

for wheel PaintPots cost $1.05 USD and tilt PaintPots cost $0.70 USD. In order to build

SMORES-EP modules with quality control testing [144], we yield about 75% of our wheel

PaintPots and 90% of our tilt PaintPots, making the effective materials costs $1.40 USD

and $0.78 USD respectively.

5.3 Sensor Characterization

Potentiometers used as voltage dividers typically model the input position as having a

linear relationship with the output voltage. Close adherence to the linear model has to be

35

achieved by ensuring that the resistance between two points along the track is constant,

which requires uniform geometry, thickness, and material properties of the track. This

is difficult for PaintPots which are manually spray-painted. In order to obtain accurate

position control on all DOFs of a SMORES-EP module, a calibration process is needed to

characterize the performance of the particular PaintPots installed.

One terminal of a wheel PaintPot is connected with 3.3 V and the other terminal is

connected with ground. Two wipers can contact the track and report current voltage (V0

and V1) in the form of two 10 bit analog-to-digital conversion values ranging from 0 to 1023,

and wheel position θ = 0 rad is shown in Figure 5.3 and the whole range of θ is from −π rad

to π rad. When a wiper contacts on or around the V-shape gap, the voltage value is not

usable. This is the reason for having two wipers, to enable sensing the full 360° range. So,

V0 should be ignored when θ is in the range from 2
3π rad to 5

6π rad and V1 should be ignored

when θ is in the range from −5
6π rad to −2

3π rad.

Similar to wheel PaintPots, the tilt PaintPot is also powered between ground and 3.3 V

with one single wiper contacting the track all the time. The voltage V0 from the voltage

divider goes through a 10 bit analog-to-digital conversion (with range from 0 to 1023). When

the tilt position θ = 0 rad, the wiper is positioned in the middle of the track as shown in

Figure 5.4.

Figure 5.3: When the wheel position θ = 0 rad, two wipers are contacting the track sym-
metrically to the middle location of it and θ ranges from −π rad to π rad.

36

Figure 5.4: When the TILT DOF position θ = 0 rad, the wiper is contacting the middle of
the track and θ ranges from −π/2 rad to π/2 rad.

(a)

Tag 1

Tag 0
Tag 2

(b)

Figure 5.5: (a) Sensor characterization setup using AprilTags tracking approach. (b) Camera
view of three tags in the characterization process.

An automatic sensor calibration setup is developed based on AprilTags tracking [103]

shown in Figure 5.5a. Three tags are used to track the rigid bodies of a SMORES-EP module.

Tag 2 is fixed to the base to be the reference frame, Tag 1 is fixed to the TOP Face of a

SMORES-EP module for TILT DOF tracking, and Tag 0 can be fixed to LEFT Face, RIGHT

Face, or TOP Face for wheel DOF tracking (Figure 5.5b). During the characterization, one

DOF is moved at a time through its entire range of motion (2π rad for wheel DOF, π rad for

TILT DOF) in both directions. The data, including θ and reported voltage(s), are recorded

at 14 Hz (speed limited by the AprilTag ROS package).

While the voltage data is not linear with the DOF position, it is monotonic (piece-wise

monotonic for wheel DOFs). A third-order polynomial provides a suitable model. For a wheel

PaintPot, the data from both wipers are shown in Figure 5.6a and Figure 5.6b respectively.

For wiper 0, the reported voltage V0 is not useful when DOF position θ is in the range from

2
3π rad to 5

6π rad (shown in red). Due to the gap of wheel PaintPots, θ = f0(V0) is a piece-

wise function which can be converted into a continuous function θ̄0 = f̄0(V0) by shifting

the segment ranging from 5
6π rad to π rad (shown in green) by 2π rad downward (shown in

37

0 5 10 15 20

250

500

750

V
0

0 5 10 15 20

-2.5

0.0

2.5

θ
(r

ad
)

0 5 10 15 20
Time (s)

-2.5

0.0

2.5

θ̄ 0
(r

ad
)

(a)

0 5 10 15 20

250

500

750

V
1

0 5 10 15 20

-2.5

0.0

2.5

θ
(r

ad
)

0 5 10 15 20
Time (s)

-2.5

0.0

2.5

θ̄ 1
(r

ad
)

(b)

Figure 5.6: (a) Wiper 0 data through the entire range of a wheel PaintPot. (b) Wiper 1
data through the entire range of a wheel PaintPot.

yellow). Similarly, for wiper 1, the segment when θ is in the range from −5
6π rad to −2

3π rad

(shown in red) is meant to be trimmed, and the piece-wise function θ = f1(V1) is converted

into a continuous function θ̄1 = f̄1(V1) by shifting the segment ranging from −π rad to

−5
6π rad (shown in green) by 2π rad upward (shown in yellow). After taking 50 s data in

both directions (showing little hysteresis), f̄0(V0) and f̄1(V1) are shown in Figure 5.7a and

Figure 5.7b respectively. An example run from a tilt PaintPot is shown in Figure 5.8a and

the characterization result θ = f(V0) is shown in Figure 5.8b.

5.4 Position Estimation

5.4.1 Transition Model

Four DC motors are used to drive four DOFs (LEFT DOF, RIGHT DOF, PAN DOF, and

TILT DOF) with a geared drive train shown in Figure 3.1b. The drive has pinion gears

driving four identical spur gears. Two outer spur gears are attached to the left wheel and

the right wheel respectively for the LEFT DOF and the RIGHT DOF. The crown gear

is coupled to the two inner spur gears. When these two inner gears spin in the opposite

38

300 400 500 600 700 800
V0

-4

-3

-2

-1

0

1

2

θ̄ 0
(r

ad
)

AprilTag
PaintPot

(a)

300 400 500 600 700 800
V1

-2

-1

0

1

2

3

θ̄ 1
(r

ad
)

AprilTag
PaintPot

(b)

Figure 5.7: Wheel PaintPot sensor characterization results: (a) θ̄0 = f̄0(V0) =
5.0281× 10−9V 3

0 − 1.2255× 10−5V 2
0 + 1.7856× 10−2V0 − 7.2750; (b) θ̄1 = f̄1(V1) =

5.1596× 10−9V 3
1 − 1.2409× 10−5V 2

1 + 1.7927× 10−2V1 − 5.8128.

0 5 10 15 20
200

400

600

800

V
0

0 5 10 15 20
Time (s)

-1

0

1

θ
(r

ad
)

(a)

200 400 600 800
V0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

θ
(r

ad
)

AprilTag
PaintPot

(b)

Figure 5.8: (a) Wiper data from −80° to 80° of a tilt PaintPot. (b) The characterization
result θ = f(V0) = 4.7517× 10−9V 3

0 − 8.7608× 10−6V 2
0 + 8.6756× 10−3V0 − 2.7173.

direction, the top wheel attached to the crown gear rotates which is the PAN DOF. TILT

DOF rotates when these two inner spur gears spin in the same direction. The transmission

ratio for each DOF is determined by the gear train, then a linear relationship between the

DOF velocity and the motor angular velocity can be obtained

θ̇ = kω + n (5.1)

39

in which k is the transmission ratio of the DOF, ω is the angular velocity of the driving

motor(s), n ∼ N(0, Q) is the additive Gaussian white noise, and θ̇ is the angular velocity of

the DOF. The transition model of a DOF in discrete time can be derived by one-step Euler

integration:

θt = θt−1 + θ̇t−1δt+ nt−1δt

= θt−1 + kωt−1δt+ nt−1δt

= θt−1 +Gωt−1 + Unt−1

(5.2)

in which δt is the finite time interval. Let θ be the state x and ω be the system input u,

then the transition model is

xt = xt−1 +Gut−1 + Unt−1 (5.3)

5.4.2 Observation Model

In Section 5.3, a PaintPot can be characterized with a nonlinear model — a third-order

polynomial θ = f(V). Here V is the measurement, namely the reported voltage(s) from

the wiper(s). Based on this, a nonlinear observation model z = h(x) where z is the mea-

surement and x is the state can be derived. z = h(x) can be linearized about the current

mean and variance of the DOF position x to apply an extended Kalman filter (EKF). How-

ever, this places some computational burden on the SMORES-EP microcontroller. Here,

a simple approach is presented that can generate a linear observation model directly with-

out linearization of the original nonlinear observation model about the current mean and

variance of the state to overcome this nonlinearity. With this new approach, what needs to

do is just checking if features are available using a simple rule and compute the newly con-

verted measurements by evaluating polynomials obtained from the sensor characterization

(Section 5.3).

Wheel PaintPots

For the wheel PaintPot sensor, the observation model is a piece-wise function due to the

geometry of the sensor:

40

1. When θ ∈
(
−π rad,−5

6π rad
)
∪
(
−2

3π rad, 2
3π rad

)
∪
(

5
6π rad, π rad

)
, there are two valid

measurements which are the reported voltages V0 and V1 from both wipers;

2. When θ ∈
[
−5

6π rad,−2
3π rad

]
, only V1 is valid;

3. When θ ∈
[

2
3π rad, 5

6π rad
]
, only V0 is valid.

To accommodate the 2π rad shift to obtain a continuous function for sensor characteri-

zation (Section 5.3), the observation can be modeled as

z =



V0

V1

 =

 f̄−1
0 (x)

f̄−1
1 (x+ 2π)

 x < −5

6
π rad

V1 = f̄−1
1 (x) −5

6
π rad ≤ x ≤ −2

3
π radV0

V1

 =

 f̄−1
0 (x)

f̄−1
1 (x)

 −2

3
π rad < x <

2

3
π rad

V0 = f̄−1
0 (x)

2

3
π rad ≤ x ≤ 5

6
π radV0

V1

 =

 f̄−1
0 (x− 2π)

f̄−1
1 (x)

 x >
5

6
π rad

(5.4)

in which x is the DOF position θ.

In order to avoid linearizing this piece-wise nonlinear observation model, the measure-

ment is changed to be the reported states rather than the two reported voltages. During

the motion, there is at least one feature available for tracking, namely at least one wiper is

contacting the wheel PaintPot at any time. Let zi be the measurement from the ith feature,

then the measurement model with additive Gaussian white noise is simplified as

zi = xi + vi = hi(x, vi) i = 0, 1 (5.5)

in which vi ∼ N(0, Ri), and xi is the reported state from the ith feature determined by

41

state x in the following way:

x0 =


x x ≤ 5

6
π

x− 2π x >
5

6
π

(5.6a)

x1 =


x+ 2π x < −5

6
π

x x ≥ −5

6
π

(5.6b)

Here, the measurement model is linear and the predicted measurement can be computed

easily. The actual measurement for the ith feature can be obtained by evaluating f̄i(Vi)

derived from the sensor characterization process. Recall that when x ∈
[

2
3π rad, 5

6π rad
]
,

V0 is not valid meaning this feature is not available. Otherwise the actual measurement

from this feature is simply f̄0(V0) if x /∈
[

2
3π rad, 5

6π rad
]
. And the valid range of V0 is from

V 0
min = f̄−1

0 (5
6π − 2π) (because the segment from 5

6π rad to π rad is shifted downward by

2π rad) to V 0
max = f̄−1

0 (2
3π). Similar procedures can be applied to V1, and this feature is

f̄1(V1) if x /∈
[
−5

6π rad,−2
3π rad

]
, otherwise this feature is not available. The valid range of

V1 is from V 1
min = f̄−1

1 (−2
3π) to V 1

max = f̄−1
1 (−5

6π + 2π).

Tilt PaintPots

The observation model for tilt PaintPots is straightforward which is

z = V0 = f−1(x) (5.7)

and it is a nonlinear function. Similarly, in order to avoid linearizing this observation

model, the measurement is changed to be the reported state and there is only one feature

for tracking. Then the observation model with additive Gaussian white noise is simplified

as

z = x+ v = h(x, v) (5.8)

in which v ∼ N(0, R) and the model is linear. The feature should always be available and

the actual measurement for this feature is obtained by evaluating f(V0).

42

5.4.3 Kalman Filter

With the transition model and the new form of observation model, a Kalman filter framework

can be applied for state estimation.

Kalman Filter for Wheels

The initial state of a wheel DOF can be derived by any available feature. First check V0,

and if it is inside the valid range from V 0
min to V 0

max, compute the initial state x0 = f̄0(V0),

and shift x0 if necessary. That is if x0 < −π, let x0 be x0 + 2π. If V0 /∈ (V 0
min, V

0
max),

then x0 = f̄1(V1) because wiper 1 must contact the valid range of the track at this time,

and similarly shift x0 if necessary, namely if x0 > π, let x0 be x0 − 2π. The prior state

can be represented as a Gaussian distribution p(x0) ∼ N(µ0,Σ0) where µ0 = x0 and Σ0 is

initialized to an arbitrarily small value.

With Eq. (5.3), the prediction step is

µ̄t = µt−1 +Gut (5.9a)

Σt = Σt−1 + U2Q (5.9b)

With Eq. (5.5), Eq. (5.6a), and Eq. (5.6b), the predicted measurement z̄t that is related to

xit (the reported state from ith feature with i = 0, 1) can be computed. The analog-to-digital

value Vi from the ith feature at time t is used to compute the actual measurement zi. If

Vi ∈ (V i
min, V

i
max), zit = f̄i(Vi). Otherwise, this feature is not available. If both features are

available, then zt =
[
z0
t , z

1
t

]ᵀ, Ct = [1, 1]ᵀ, and the Kalman gain is

Kt = ΣtC
ᵀ
t (CtΣtC

ᵀ
t +R)−1 (5.10)

in which R = diag(R0, R1). If there is only one feature (e.g. the ith feature) available, then

zt = zit, Ct = 1, and the Kalman gain is

Kt = ΣtCt(C
2
t Σt +Ri)−1 (5.11)

43

The state is then updated:

µt = µ̄t +Kt(zt − z̄t) (5.12a)

Σt = Σt −KtCtΣt (5.12b)

The estimated position for this wheel DOF at time t is µt.

Kalman Filter for Tilt

The initial state for a TILT DOF can be derived by evaluating f(V0). The prior state can

be represented as a Gaussian distribution p(x0) ∼ N(µ0,Σ0) where µ0 = x0 and Σ0 is

initialized with some small value. The prediction step is in the same form with wheel DOFs

(Eq. (5.9a), Eq. (5.9b)). The predicted measurement z̄t can be computed from Eq. (5.8)

which is simply µ̄t. The current actual measurement is computed by evaluating zt = f(V0)

where V0 is the current reported voltage. Then the Kalman gain is simply

Kt = Σt(Σt +R)−1 (5.13)

and the state is updated in the following:

µt = µ̄t +Kt(zt − z̄t) (5.14a)

Σt = Σt −KtΣt (5.14b)

And the estimated position for TILT DOF at time t is µt.

5.5 DOF Control

It is straightforward to develop a position controller for SMORES-EP DOF control. For

each DOF, the error on the state and its derivative are defined as

e = xdes − x (5.15a)

ė = ẋdes − ẋ (5.15b)

44

Then a simple feedback position controller can be derived:

u = Kpe+Kdė (5.16)

For LEFT DOF and RIGHT DOF, the signed output ul and ur computed from Eq. (5.16)

can be applied to the corresponding motors directly. PAN DOF and TILT DOF are coupled

and driven by the same pair of motors. According to the configuration of these two motors,

one motor is driven by command up + ut and the other one is driven by command up − ut
where up and ut are the signed output computed from Eq. (5.16).

Given a desired position command for a DOF and the expected motion duration, a

polynomial trajectory xdes(t) can be generated from the current position to this desired

position. At each time step, the controller first fetch the current position of this DOF from its

estimator, then compute the desired position and desired velocity at this moment governed

by the pre-generated trajectory xdes(t), and finally compute the output from Eq. (5.16). A

similar approach can be used when doing velocity control on a DOF where the trajectory is

a linear polynomial with the slope being the desired velocity.

5.6 Experiments

The PaintPot sensors, including wheel PaintPots and tilt PaintPots, are installed in

SMORES-EP modules for position sensing. Currently, 25 SMORES-EP modules have been

assembled. In the experiments, both a wheel PaintPot and a tilt PaintPot are characterized

first and then the newly developed Kalman filters are implemented and used with the DOF

controller to show the effectiveness of the low-cost position sensing solution.

The data from both wipers for a wheel PaintPot is shown in Figure 5.9a and Figure 5.9b

respectively. The segments labeled by red color are useless, and the green segments are

shifted to the yellow segments to generate continuous functions to describe the relationship

between the reported voltage and the angular position. This sensor is installed for PAN

DOF on a SMORES-EP module. All sensors are painted manually, so the quality is not

consistent with no guarantees on bounds. The sensor characterization results for both wipers

45

0 5 10 15 20 25
0

250

500
V

0

0 5 10 15 20 25

-2.5

0.0

2.5

θ
(r

ad
)

0 5 10 15 20 25
Time (s)

-2.5

0.0

2.5

θ̄ 0
(r

ad
)

(a)

0 5 10 15 20 25
0

250

500

V
1

0 5 10 15 20 25

-2.5

0.0

2.5

θ
(r

ad
)

0 5 10 15 20 25
Time (s)

-2.5

0.0

2.5

θ̄ 1
(r

ad
)

(b)

Figure 5.9: (a) Wiper 0 data through the entire range of a wheel PaintPot. (b) Wiper 1
data through the entire range of a wheel PaintPot.

200 300 400 500 600
V0

-3

-2

-1

0

1

2

θ̄ 0
(r

ad
)

AprilTag
PaintPot

(a)

200 300 400 500 600
V1

-2

-1

0

1

2

3

θ̄ 1
(r

ad
)

AprilTag
PaintPot

(b)

Figure 5.10: Wheel PaintPot sensor characterization results: (a) θ̄0 = f̄0(V0) =
−6.5012× 10−8V 3

0 + 7.2912× 10−5V 2
0 − 1.1587× 10−2V0 − 3.4595; (b) θ̄1 = f̄1(V1) =

−1.8511× 10−8V 3
1 + 1.0419× 10−5V 2

1 + 1.4362× 10−2V1 − 5.1767.

46

0 2 4 6 8
0

250

500

V
0

0 2 4 6 8

400

500

600

V
1

0 2 4 6 8
Time (s)

0

2

θ
(r

ad
)

AprilTag
Estimator

(a)

0 2 4 6 8

300

400

V
0

0 2 4 6 8
0

250

500

V
1

0 2 4 6 8
Time (s)

-2

0

θ
(r

ad
)

AprilTag
Estimator

(b)

Figure 5.11: (a) Command PAN DOF to move from angular position π rad to 0 rad. (b)
Command PAN DOF to move from angular position −π rad to 0 rad.

are shown in Figure 5.10a and Figure 5.10b respectively.

Using the Kalman filter, the estimator is still able to derive a good estimation of the

angular position for the PAN DOF on this module. A simple controller is used to command

the PAN DOF to a desired position from its current position along a fifth-order polynomial

trajectory. The first experiment commands the PAN DOF to angular position 0 rad from

π rad resulting in an average error of 0.0878 rad as shown in Figure 5.11a. In this experiment,

V0 is not valid for a while because wiper 0 contacts the gap of the track. The second

experiment commands the PAN DOF to angular position 0 rad from −π rad with an average

error being 0.0698 rad as shown in Figure 5.11b. In this experiment, V1 is not valid when

wiper 1 contacts the gap of the track.

The data from the wiper for a tilt PaintPot is shown in Figure 5.12a and the sensor

characterization result is shown in Figure 5.12b. In the experiment, this TILT DOF is

commanded to traverse most of the range. The result from the estimator is shown in

Figure 5.13 with an average error being around 0.0325 rad.

47

0 5 10 15 20

200

400

600

V
0

0 5 10 15 20
Time (s)

-1

0

1

θ
(r

ad
)

(a)

100 200 300 400 500 600
V0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

θ
(r

ad
)

AprilTag
PaintPot

(b)

Figure 5.12: (a) Wiper data from −80° to 80° of a tilt PaintPot. (b) The characterization
result θ = f(V0) = 4.4674× 10−10V 3

0 − 1.5933× 10−6V 2
0 + 6.5369× 10−3V0 − 2.1117.

0 2 4 6

200

400

600

V
0

0 2 4 6
Time (s)

-1

0

1

θ
(r

ad
)

AprilTag
Estimator

Figure 5.13: Command TILT DOF from angular position −1.3 rad to 1.3 rad.

5.7 Conclusion

In this chapter, the onboard DOF control and estimation are presented. A complete low-

cost and highly customizable position estimation solution is presented, especially suitable

for highly space-constrained designs that are very common in modular robotic systems.

PaintPots are low-cost, highly customizable, and can be manufactured easily by accessible

materials and tools in low quantities. For the SMORES-EP system, two different types of

PaintPot sensors are used, and a convenient automatic calibration approach is developed

48

using AprilTags. A modified Kalman filter is developed to overcome the piece-wise nonlin-

earity of the sensors and some experiments show the accuracy. The successful application of

PaintPots in the SMORES-EP system shows that they can provide reliable position infor-

mation with a simple hardware setup. PaintPots can be easily adapted to and installed on

a variety of systems, the not consistent performance due to the manufacturing process can

be resolved by the presented characterization process that can be easily set up, and reliable

state estimation can be derived by the modified Kalman filter that can be running on a

low-cost microcontroller. The overall solution provides a new position sensing technique for

a wide range of applications.

49

Chapter 6

Docking and Undocking

This chapter presents the docking control for the SMORES-EP system, the fundamental to

achieve morphology transformation. This chapter excerpts heavily from [78]. Credit is due

to co-authors Qian Lin and Hyun Kim, who contributed significantly to this work.

Docking and undocking capability makes self-reconfigurable modular robots different

from other robotic systems. This capability enables the dramatic change of topology con-

nections among a set of modules. The docking and undocking process heavily relies on the

latching mechanism design. It is desired to have a robust controller to handle a variety of

scenarios with high efficiency which significantly affect the efficiency of a morphology trans-

formation process. SMORES-EP uses EP-Faces as its connectors and a pair of connected

EP-Face connectors can undock easily. The docking process is divided into three phases

with carefully designed controllers to guarantee success. This approach is demonstrated on

the SMORES-EP hardware platform and can be easily extended to other similar modular

robots. In this work, sensing of module poses is provided by the VICON motion capture

system. When operating outdoors, the sensing solution designed for SMORES-EP from [25]

can be leveraged.

6.1 Introduction

Docking is a necessary, but usually difficult task for modular robots, which occurs at certain

module faces, or connectors. There are many connector designs that can be either gendered

50

or ungendered. The general requirements for modular robot docking interfaces are high

strength, high speed of docking/undocking, low power consumption, and a large area of

acceptance [29].

Mechanical devices or structural hook-type connectors are widely designed for docking

activities. Robotic arms and grippers are used in SMC Rover [93], Gunryu [45], and Swarm-

bot [38]. The mechanical design is straightforward and easy to be strong, but difficult to

be compact, which limits the robot flexibility. Structural hook-type connector are used in

CEBOT [32], Millibot trains [12], T.E.M.P. [102], M-TRAN III [94], and Sambot [152]. The

SINGO connector [129] for SUPERBOT is hermaphroditic, and capable of disconnection

even when one module is unresponsive, allowing for self-repair. These docking systems are

mechanically complicated, and usually require a large amount of space. Accurate positioning

is also crucial for these connectors resulting in a small area of acceptance. The design

complexity may also cause failure over time.

Magnets exist in many modular robotic systems for docking. Permanent magnet inter-

faces are easy to implement and have a relatively large area of acceptance. Modules can

be easily docked as long as they are close to each other within some distance, with the

misalignment adjusted automatically. However, extra actuation is needed for undocking.

M-TRAN [96] uses permanent magnets for latching and undocks using shape memory alloy

(SMA) coils to generate the required large force. However, it takes minutes for these coils to

cool leading to slow response, and this connector is not energy efficient. Permanent magnets

are also used in programmable parts [63] for latching. This docking interface is gendered.

The original SMORES system utilizes permanent magnets as docking interfaces as well and

a unique docking key for undocking [26]. Permanent magnets are placed at the frame corners

of a flying system called ModQuad [116]. Here modules dock by adjoining the frame corner

magnets and undock with aggressive maneuvers of vehicle structures [118].

The docking interface design can significantly affect the docking execution. In general,

the aim is to make the level of positioning precision required for docking as low as possible,

or extra high-quality sensors are needed to provide precise pose feedback. Connector area-

51

of-acceptance and some preferred properties are studied in [28, 101]. Infrared (IR) sensors

are installed on the docking faces for assisting alignment of hook-type connectors, such as

PolyBot [162], CONRO [113], and the heterogeneous system in SYMBRION project [85].

Two mobile robots are shown to dock using a visual-based system that uses a black-and-

white camera to track a visual target [8]. Vision-based approaches were developed for

M-TRAN III [94] by placing a camera module on a cluster of modules that can detect LED

signals. However, guidance by this visual feedback is not sufficient to realize positional

precision for its mechanical docking interface and extra efforts from the cluster are required

for connection. Similarly, Swarm-bot applies an omni-directional camera to detect docking

slots with a ring of LEDs, but cannot guarantee the success of docking. In comparison, the

docking process can be easier with magnet-based connectors. Using a similar visual-based

solution with M-TRAN III, CKBot clusters with magnet faces show more robust and easier

docking procedures [161]. The large area-of-acceptance of magnet docking faces can also be

seen by stochastic self-assembly modular robots [40, 155, 156].

In SMORES-EP, electro-permanent magnets (EP magnets) [64] are used as its connec-

tors [143]. The magnets can be switched on or off with pulses of current, unlike electro-

magnets which require sustained current while on. In the design, the EP magnet is driven

by three pulses under 11.1 V battery voltage. A pair of EP-Face connectors can provide as

much as 90 N to maintain their docking status and very little energy is consumed to connect

with or disconnect from each other. Magnetic forces can draw two modules together through

a gap of 4 mm normal, and 7 mm parallel to the faces leading to a large area of acceptance.

Incorporated with the proposed control approach, a single docking action can be executed

within seconds.

6.2 Docking Control

In SMORES-EP, undocking can be executed by simply applying pulses of current to switch

all involved magnets off. However, docking is more difficult. Given a docking task, that is

to connect module mi’s connector ci with module mj ’s connector cj , the whole process is

divided into three phases to ensure its success: navigation, pose adjustment, and approach.

52

Figure 6.1: A SMORES-EP module is on the ground.

6.2.1 Navigation

Each SMORES-EP module can behave as a differential-drive vehicle. The state of a module

mi on the ground is defined as pi = [xi, yi, θi] where oi = [xi, yi]
ᵀ is the location of the center

of mi and θi is the orientation of mi (Figure 6.1). Its differential-drive kinematics model is

ṗ =


ẋ

ẏ

θ̇

 =


cos θ 0

sin θ 0

0 1


 v

ω

 (6.1)

in which v is the linear velocity along x-axis of the body frame of mi and ω is the angular

velocity around z-axis of the body frame of mi which are determined by the velocity of

LEFT DOF and RIGHT DOF. A simple control strategy to control this module mi to go

to a desired position is first adjusting its pose θi to face the destination and then moving

along a straight line toward the destination. Given the docking task mentioned earlier, a

collision-free path can be generated for mi to go to a location close to mj along the routes

predefined by a roadmap. A simple PID controller is used to calculate the linear and angular

command (v and ω).

6.2.2 Pose Adjustment

Once the navigation procedure is done for module mi, namely mi is located somewhere that

is close to module mj , module mi starts to adjust its pose to align the involved connector.

53

(a) (b) (c) (d) (e)

Figure 6.2: (a) mi TOP Face is connected with mj TOP Face. (b) its kinematic diagram.
(c) — (e) are the kinematic diagrams of the three other cases when mi TOP Face is involved
in the connection.

The desired pose of modulemi is fully determined by modulemj . For example, TOP Face of

mj is attached to TOP Face of mi shown in Figure 6.2a (kinematic diagram in Figure 6.2b).

There are three more cases with TOP Face of mi being involved shown in Figure 6.2c —

Figure 6.2e. The pose of mi with respect to mj denoted as pij is determined by the involved

connectors, e.g. pij = [w, 0, π]ᵀ for Figure 6.2b. Then given pj = [xj , yj , θj]
ᵀ, the pose of mi

is

pi =

 R 0

0 1

 pij + pj (6.2)

in which R =

 cos θj − sin θj

sin θj cos θj

. In this way, the target pose of module mi can be

calculated easily.

If ci (the connector of mi to be attached with mj) is either LEFT Face or RIGHT Face,

then adjust x′i and θ′i to zeros where x′i is the x location of mi with respect to the goal

(a) (b)

Figure 6.3: (a) The docking task is to connect LEFT Face of mi with mj and the goal pose
of mi is shown in dashed line. In this case, mi needs to align the connector by adjusting x′i
and θ′i to zeros. (b) If the assembly action is to connect TOP Face of mi with mj , then mi

needs to align the connector by adjusting y′i and θ
′
i to zeros.

54

pose of mi and θ′i is the orientation of mi with respect to the goal pose of mi. Otherwise,

adjust y′i and θ
′
i to zeros where y′i is the y location of mi with respect to the goal pose of

mi. Two cases are shown in Figure 6.3. Note that this process has nothing to do with cj .

A kinematics model for the second case can be derived as ẏ′i

θ̇′i

 =

 sin θ′i 0

0 1


 v

ω

 (6.3)

A control law to make y′i and θ
′
i to converge to zeros is

 v

ω

 =

 sin θ′i 0

0 1


−1

K2×2

 −y′i
−θ′i

 (6.4)

where K is positive definite and K = diag(2, 1) is used in the experiments. A similar

controller can be derived for the first case. For the pose adjustment controller, the constraint

on one dimension is relaxed to make the system fully actuated. For example, with the

controller in Eq. (6.4), only y′i and θ
′
i are under control and x

′
i is no longer constrained, so x′i

may diverge possibly resulting in collision. However, this drift is not a concern for SMORES-

EP modules which use differential drive. This is confirmed in the hardware experiments.

6.2.3 Approach

The last step is to approach cj by moving in a straight line which is similar to the controller

used in the navigation step following a given trajectory. If ci is either TOP Face or BOTTOM

Face, then module mi will first adjust ci to the right position and then keep moving and

eventually pushingmj until ci and cj are fully connected. Otherwise, when ci is either LEFT

Face or RIGHT Face, a helping module shown in Figure 6.4 is needed. An extra docking

action that is docking TOP Face of the helping modulemH withmi’s connector c̄i where c̄i is

LEFT Face if ci is RIGHT Face, or the vice versa, is needed. After mH is connected with mi,

mi is lifted so that it can adjust ci to the right position, delivered to its destination, and then

placed down. Finally, mH keeps moving to pushmi to approachmj for docking. The helping

55

Figure 6.4: A helping module is a SMORES-EP module equipped with some payload so
that it can lift another module.

module is a SMORES-EP module equipped with an extra mass on the BOTTOM Face as

a counterbalance while lifting a module. While moving modules translate, the controller

should keep the orientation of these modules fixed as docking requires the magnet faces to

mate properly. To ease this requirement on the SMORES-EP modules, the EP-Faces have

a relatively large area of acceptance.

6.3 Experiment

In the setup, an empty grid map where each grid cell is a square 10 cm×10 cm is used to pro-

vide a roadmap. In this experiment, the pose of Module 3 is [−0.318 m,−0.132 m, 0.454 rad]ᵀ

and the pose of Module 4 is [−0.16 m, 0.0 m, 0.454 rad]ᵀ. The goal is to dock TOP Face of

Module 3 with BOTTOM Face of Module 4. VICON motion capture system is used to track

Figure 6.5: The tracked position of Module 3 in the docking process.

56

their poses. The tracked motion of Module 3 is shown in Figure 6.5. Module 3 first navigates

to a location close to Module 4, then starts to adjust its body frame (Figure 6.6a) so that its

TOP Face is aligned with BOTTOM Face of Module 4 (Figure 6.6b) and the performance

is shown in Figure 6.7a. The controller can adjust the pose of Module 3 quickly and align

its connector within 6 s while almost keeping x′3 fixed. Then Module 3 moves forward to

Module 4 for final docking (Figure 6.6c) and the performance is shown in Figure 6.7b. It

can be seen that Module 3 can steadily approach Module 4 while maintaining its orientation

fixed (very little oscillation of θ′3 around zero value) so that the involved connector is always

3

4

(a)

3

4

(b)

3

4

(c)

Figure 6.6: Adjustment of the position and orientation before docking BOTTOM Face of
Module 3 with TOP Face of Module 4: (a) Module 3 finished navigation process and started
to adjust its pose; (b) y′3 and θ′3 have been adjusted and it started to approach the goal for
docking; (c) The docking process of Module 3 was accomplished.

113 114 115 116 117 118 119 120

Time (s)

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

y
′ 3

(m
)

y′3
desired y′3

−3

−2

−1

0

1

2

3

θ′ 3
(r

ad
)

θ′3
desired θ′3

(a)

120 121 122 123 124 125 126

Time (s)

−0.30

−0.29

−0.28

−0.27

−0.26

−0.25

−0.24

x
′ 3
/m

x′
3

desired x′
3

−3

−2

−1

0

1

2

3

θ′ 3
(r

ad
)

θ′3
desired θ′3

(b)

Figure 6.7: Pose adjustment of Module 3 before docking: (a) adjusting y′3 and θ′3; (b)
adjusting x′3 while maintaining the correct orientation.

57

aligned.

6.4 Conclusion

In this chapter, a control strategy for docking is proposed. Given a docking action, the

process is divided into three phases: navigation, pose adjustment, and approach. Motion

controllers are developed to ensure the success of docking between modules which is demon-

strated by the SMORES-EP hardware platform.

58

Chapter 7

Graph Model and Configuration

Recognition

A modular robot can be in a large number of morphologies or configurations and the number

of morphologies increases exponentially as the number of modules increases. This chapter

presents a general modeling approach for modular robots as well as a configuration recogni-

tion algorithm. These tools are also the foundation of the self-adaption problem in the next

chapter. This chapter excerpts heavily from [81].

In a modular robotic system, a module can have several DOFs and connectors, and

there is usually a huge number of ways to connect a set of modules. Hence, the model of

a robot varies with the change of its morphology. A general modeling method is necessary

to characterize and distinguish them. This is different from fixed-shape robots in that the

connections among their links and joints don’t change. In addition, these modular robot

morphologies or configurations should be invariant under different labeling. It is desired

for modular robots to be capable of recognizing their current configuration. It is common

to build a library of configurations with properties and controllers. In order to reuse these

well-developed techniques, the robot has to match itself to an existing one in the library

and, if true, map each module to a unique module in the matching configuration. In this

work, a general graph model is proposed for modular robots. The cluster can be discov-

59

ered by leveraging distributed information from each module. Then an efficient algorithm

is presented to address the matching and mapping problem in polynomial time. The algo-

rithm is demonstrated on the SMORES-EP system and shown to be efficient to solve this

configuration recognition problem.

7.1 Introduction

Modular robots are able to adapt or be adapted to many different functions or activities,

handle hardware and software failures, and also be cost-effective to be used in more cost-

sensitive tasks [135]. With these advantages, modular robotic systems are promising to do a

wide variety of tasks. However, it is also a challenge to come up with planning and control

algorithms to handle numerous modules. One key reason is that the number of all possible

configurations of the system increases drastically as the number of modules increases. Plus,

each module may have multiple DOFs and the configurations in topology become even

more complicated. Hence, a general modeling approach is necessary to characterize and

differentiate these configurations which are supposed to be invariant of explicit labels.

Graphs have been shown useful to represent modular robot configurations and there are

several techniques from graph theory for us to use. In this work, the graph model of a

configuration can be captured in a distributed manner, and then an automatic configuration

recognition algorithm is proposed. It is useful for modular robots if they can automati-

cally identify their configurations so that there is no need to program this information every

time when constructing a new configuration. A library of useful configurations, as well as

preprogrammed behaviors, is usually built for modular robots to handle a variety of tasks.

Configuration recognition is necessary in order to make use of these well developed tech-

niques, namely matching a new modular robotic configuration to an existing configuration

in a library and mapping each module in these two configurations. This process is also

helpful in self-repair and rapid manual repair discussed in [105].

As mentioned, the number of all possible configurations of modular robots grows dras-

tically as the number of modules increases, so it is challenging to put forward an efficient

algorithm for configuration recognition, which is even more difficult when taking the connec-

60

tion types between modules into consideration. This chapter presents a new representation

for modular robot configurations and a polynomial-time algorithm for configuration recog-

nition which can solve matching and mapping problems simultaneously. In addition, a local

algorithm for configuration discovery of modular robots in linear time is introduced and

demonstrated on the SMORES-EP platform.

7.2 Related Work

Graphs have been widely used to represent modular robot configurations. Polypod [158] and

PolyBot [159] are represented as graphs where modules are nodes and connections are edges.

This graph representation is shown to be useful for closed-chain reconfiguration planning [15,

164]. The graph model can also be represented as a vertex-edge incidence matrix (IM) or

assembly incidence matrix (AIM) with connecting port information embedded [20]. Simi-

larly, the graph representation can be converted into an adjacency matrix or port-adjacency

matrix [105]. Connecting port information can also be embedded in an unlabeled directed

graph [17]. Furthermore, Connector-Graph (C -Graph) embeds the orientation information

of each connection [49]. In essence, these are all graph-based representations with different

information embedded.

It is desired to enable a modular robot to identify its current configuration which is neces-

sary when deploying configuration recognition algorithms in real hardware platforms. Butler

et al. [13] presented a distributed recognition algorithm for lattice-based systems. Castano

and Will [17] proposed a centralized method to build the configuration representation. In

contrast, Hou [47] proposed a distributed method to collect the necessary connection infor-

mation among all modules. Baca et al. [5] also presented a real-time distributed algorithm

to discover the modules and the topology of the configuration.

Based on these graph representations and the output from the configuration discovery

process, a variety of configuration recognition approaches are introduced. Chen and Burdick

[20] presented a method to enumerate the non-isomorphic assembly configurations from a

set of modules. Park et al. [105] compared three methods of matching and mapping, an

automorphism grouping method (nauty), a spectral decomposition approach, and a heuristic

61

graph search (3DLL). In particular, the nauty method first finds all graph isomorphism

configurations with the adjacency matrix of the given robot configuration and then finds the

matching configuration by checking the port-adjacency matrix and considering the symmetry

property of the modules. However, this method scales badly with the increase of the number

of modules. The spectral decomposition method is trying to find the permutation matrix

between isomorphic configurations which are represented by port-adjacency matrices. This

method requires more computation for structures with symmetry and numerical stability is

a concern for large matrices, and the time to compute eigenvectors becomes extremely long

at a very large scale. For the 3DDL method, robots are represented by a three-dimensional

linked list of module objects (3DDL) and some heuristics are evaluated in order to filter out

most of the configurations in the library concerning all possible choices of origin module.

However, for different modular robotic systems, different reasonable heuristics may need to

be designed and some heuristics can be invariant under some similar configurations so that it

cannot find the accurate matching. Also, the 3DLL method is specific to CKBot and cube-

oriented modules [105]. An algorithm based on the methods of linear algebra to recognize

isomorphism between two configuration graphs of modular robots is discussed in [131]. It is

also focusing on the configuration matrix based on the adjacency matrix and the complexity

is O(n6 log n) in terms of manipulations of elementary operations. An improved 3DLL

approach is presented in [169]. It first finds all graph isomorphism configurations with the

adjacency matrix (similar to nauty) which may take a lot of time for configurations with

a large amount of modules and then compare the configuration’s space representation list

with those in the library which requires the global position and orientation information with

respect to a base module, so it only works for modular robots with fixed discrete states for

each DOF.

7.3 Graph Representation and Library Design

A good configuration representation is helpful for configuration recognition. The basic re-

quirement to construct the database is that each configuration should have a unique repre-

sentation in the database. In particular, a modular robot configuration can be represented as

62

a graph. Each vertex of the graph represents a module and each edge of the graph represents

a connection between two modules. This graph can then be converted into an adjacency

matrix and then a port adjacency matrix [105] or a configuration graph matrix [131] which

has been discussed in Section 7.2.

Let G = (V,E) be an undirected graph, where V is the set of vertices of G and E is

the set of edges of G. Graphs with only one path between each pair of vertices are trees.

Any acyclic graph is a tree. Some preliminaries on rooted trees are discussed here. Once a

tree G = (V,E) is rooted with respect to a vertex τ ∈ V , the parent of a vertex v ∈ V is

the vertex connected to it on the path to τ which is unique except for τ , and the child of

a vertex v ∈ V is a vertex of which v is the parent. The configuration of a modular robot

cluster is represented as a rooted tree and the root has to be selected as the center of its

graph [88] defined as the following:

Definition 1. Let T be a tree. The center of T is the unique vertex (or unique pair of

adjacent vertices) such that removing that vertex (or vertices) from T leaves a collection of

components each having less than half the vertices of T .

Given a tree T and a vertex v, T − v is the result of removing v from T . If T − v is

connected, v is a leaf; otherwise, T − v consists of several acyclic components, and if T − v

has no components of order greater than n/2, v is a central vertex. This is the rule to define

the root for the graph of a given configuration.

A modular robot module usually has multiple connectors and there may also be multiple

ways to connect them. For each connection between two modules, the involved faces and

orientations are meant to be considered. A connection in a configuration is defined as the

following:

Definition 2. A connection between module u’s connector U_Con and module v’s con-

nector V_Con with orientation Ori is defined as

connect(u, v) = {Face : U_Con,Face2Con : V_Con,Orientation : Ori}

63

from module u’s point of view and

connect(v, u) = {Face : V_Con,Face2Con : U_Con,Orientation : Ori}

from module v’s point of view.

Each connection has three attributes: Face, Face2Con and Orientation, so modular

robots can be connected in multiple ways and the number of all possible configurations

grows dramatically as the number of modules increases. However, some seemingly different

connections can actually be considered equivalent. This is a general definition of connection

for modular robots and attributes vary with different systems. For example, each SMORES-

EP module has four faces (LEFT Face, RIGHT Face, TOP Face, BOTTOM Face) and each

face can be configured to connect with any face of other modules. Since there are no an-

gular limits on rotation for LEFT DOD, RIGHT DOF, and PAN DOF, and EP-Faces are

hermaphroditic, for connections among LEFT Face, RIGHT Face, and TOP Face, the con-

nections in which only the Orientation attribute is different are equivalent. In contrast, for

connections between two BOTTOM Faces, the orientation needs to be considered and there

are two different orientations (Orientation = [0, 1]) in total which is shown in Figure 7.1. In

addition, the module is bilaterally symmetric, namely LEFT Face or LEFT DOF is a mirror

image of RIGHT Face or RIGHT DOF, so all possible connections between LEFT Face and

RIGHT Face are also equivalent, namely all connections with LEFT Face or RIGHT Face as

their Face or Face2Con attribute are equivalent. ∼= is used to denote the equivalent relation

between two connections.

(a) (b)

Figure 7.1: Connecting two BOTTOM Faces: (a) Orientation is 0; (b) Orientation is 1.

64

1 2

3

(a)

1

2

3

T
T

L
R

(b)

Figure 7.2: (a) A three-module configuration. (b) The corresponding graph representation.

A modular robot configuration can be fully determined using a graph G = (V,E), in

which V is the set of modules and E is the set of edges containing connection information

defined by Definition 2. A three-module SMORES-EP configuration example is shown in

Figure 7.2. For this configuration, the connections can be expressed as following:

connect(1, 2) = {Face : TOP Face,Face2Con : TOP Face,Orientation : Null}

connect(2, 3) = {Face : RIGHT Face,Face2Con : LEFT Face,Orientation : Null}

In addition, for this simple configuration, the root module can be defined as Module 2

according to Definition 1.

The library is a collection of modular robot configurations and each configuration has its

unique representation. The representation of each configuration contains the corresponding

rooted graph G, the information of all connections defined in Definition 2 and all CN values

described in Section 7.4.2. Some more properties can also be added to configurations in the

library, like robot behavior property, for other design purposes. While, for configuration

recognition, they are not necessary.

7.4 Algorithms for Configuration Recognition

This section presents the modular robot configuration recognition algorithm that can solve

the matching and mapping problem simultaneously in polynomial time. The algorithm

contains three parts:

65

1. Discover the configuration of a cluster of modular robots;

2. Given a new modular robot configuration, decide the root module;

3. Verify if the configuration can be matched with an existing configuration in the library

and, if true, map each module to the module in this known isomorphic configuration.

7.4.1 Configuration Discovery

When a modular robot configuration is constructed, a fully autonomous robotic system

has to be able to figure out the configuration by itself, then the graph representation can

be discovered to represent its current configuration. This discovery process is affected by

the hardware design, especially how a module communicates with its neighbors and the

communication protocol. For the SMORES-EP modular robotic system, every module can

talk to its neighbors via EP-Faces. Sending and receiving messages share the same route

so that each EP-Face is either in sending state or receiving state. In addition, the system

requires a central controller to control the whole cluster of modules. Each module can only

exchange data with this central controller via Wi-Fi and exchange data with other modules

via EP-Face connectors.

A cluster discovery algorithm based on distributed information among modules is pre-

sented. The pseudocode is presented in Algorithm 1. The input to this algorithm is a

starting module. This module can be selected randomly. The output is all the connections

in this configuration. The idea is to traverse every module in the breadth-first search order

and record every connection one by one.

Line 9 : The algorithm only checks faces that are not verified. Initially, every face of

every module is not verified and each face can be verified via two conditions: 1. when a face

is not verified in Line 9, mark it to be verified; 2. when a face receives messages in Line 15,

mark it to be verified.

Line 10 — 14 : Switch all not verified faces in the configuration to Receiving Mode,

except F , to wait for the message sent from F .

Line 15 — 18 : If there is a connection that this face F is involved in, the connected

66

Algorithm 1: Configuration Discovery
Input: Start module S
Output: Configuration connections E

1 Create empty set V to store visited modules;
2 Create empty queue Q;
3 Q.enqueue(S);
4 while Q is not empty do
5 Current module C = Q.dequeue();
6 if C /∈ V then
7 V ← V ∪ {C};
8 Create empty set NM to store newly recognized modules;
9 foreach Face F of C that is not verified do

10 foreach module M /∈ V do
11 foreach Face F ′ of M that is not verified do
12 Switch F ′ to Receiving Mode;
13 end
14 end
15 Switch F to Sending Mode and send message;
16 Switch F to Receiving Mode;
17 Update connections E;
18 Update NM ;
19 end
20 Q.enqueue(NM − V);
21 end
22 end

face F ′ should be able to receive the message sent from F . Then after some certain time

during which F is already switched to Receiving Mode in Line 16, the connected module will

control F ′ to send out feedback message and turn off the communication function for F ′ so

F should receive this feedback message then module C will also turn off the communication

function for F . Only MAGNET 1 (there are four magnets in an EP-Face) is active when

sending and all magnets are active when in Receiving Mode so that the orientation can be

determined by checking which magnet can receive messages. Both messages contain module

ID and sending face information. Then both modules will store the connection information.

This connected module will then be added to set NM in Line 18. If there is no connection,

namely after some certain time F doesn’t receive any feedback message, module C will also

record that there is no connection on F and turn off the communication function, and set

67

NM will remain the same.

Once this process is done, every module stores its connection information locally and

the central computer will request this information from modules one by one. This will then

be used to build the graph representation of the configuration.

7.4.2 Root Module

The root module is defined to be the center vertex of the graph of a given modular robot

configuration. As discussed in Section 7.3, intuitively this can be done by iteratively re-

moving each vertex in the graph and counting the number of vertices in these generated

acyclic components that requires the traversal of these subgraphs. An efficient algorithm

using dynamic programming to figure out the root module is presented here. The idea is to

compute the order of all acyclic components after removing every vertex in the graph, and

then find the one or a pair satisfying the requirement. This problem has been solved in [47]

in a distributed way in that every module runs the same code and exchanges connection

information with its neighbors. This requires the robots to exchange more data and it is

time-consuming when coordinating all the modules and ensuring that they can receive data

properly. This is especially difficult for a system like SMORES-EP in which the sending

mode and receiving mode between connectors share the same route. Hence, a centralized

algorithm that uses local information gathered in configuration discovery is presented.

Based on the gathered local information, the graph of a configuration G = (V,E) can

be built and rooted with respect to a random module v0. The parent and the children of

any vertex v ∈ V are then determined. The set of connectors is denoted as C and CNv(c)

is defined to denote the total number of modules connected to v via its connector c ∈ C (as

in [47]) which is the number of vertices of the component of T−v corresponding to connector

c (for SMORES-EP modules, C = {LEFT Face,RIGHT Face,TOP Face,BOTTOM Face}).

The number of modules n satisfies

n =
∑
c∈C

CNv(c) + 1, ∀v ∈ V (7.1)

68

and a configuration graph G can be rooted with respect to all n vertices but CNv(c) is

invariant under the selection of the root.

For any vertex v ∈ V that is not a leaf with respect to root τ , its child connected via

its connector c is denoted as v̂c, the mating connector of v̂c as ĉ′, the set of its children as

N (v, τ), and the set of connectors connected with its children as Cd(v) ⊆ C. If v ∈ V has

both a parent and some children, and N (v, τ) and Cd(v) are known, then

CNv(c) =
∑

ĉ∈C−ĉ′
CNv̂c(ĉ), c ∈ Cd(v) and v̂c ∈ N (v, τ) (7.2a)

CNv(c) = n− 1−
∑

c′∈Cd(v)

CNv(c′), c /∈ Cd(v) (7.2b)

Eq. (7.2a) and Eq. (7.2b) construct the recursive solution to figure out all CNv(c). According

to Definition 1, root module τ has to satisfy the following condition:

CNτ (c) ≤ 1

2
n, ∀c ∈ C (7.3)

The descendants of v ∈ V with respect to root τ is denoted as desc(v, τ). With the above

Algorithm 2: Root Module Search
Input: Graph representation G = (V,E)
Output: Root module τ

1 Root G = (V,E) with respect to a module v0 with height of H and the height of
v ∈ V is h(v);

2 Initialize CNv(c) for v ∈ V and c ∈ C to be zero;
3 Initialize h← 1;
4 while h ≤ H do
5 foreach module v with h(v) = h do
6 foreach module v̂c ∈ N (v, τ̂) do
7 CNv(c) =

∑
ĉ∈C−ĉ′ CNv̂c(ĉ) ∀c ∈ Cd(v);

8 CNv̂c(ĉ′) = n− 1−∑ĉ∈Cd(v̂) CNv̂c(ĉ);
9 end

10 end
11 h← h + 1;
12 end
13 τ ← v ∈ V such that CNv(c) ≤ 1

2n ∀ c ∈ C

69

recursive solution, solving CNv1(c1) and solving CNv2(c2) have overlapping subproblems if

v2 ∈ desc(v1, τ). They both need to solve CNu(c), where u ∈ desc(v2, τ) and c ∈ Cd(u).

A bottom-up algorithm is constructed. The pseudocode is presented in Algorithm 2. The

algorithm starts from vertices whose height are one. If v ∈ V is a leaf, then Cd(v) = ∅ and

CNv(c) = 0 except when c is the connector connected with its parent. For v ∈ V with

h(v) > 0, N (v, v0) 6= ∅ and Cd(v) 6= ∅. CNv(c) when c ∈ Cd(v) can be computed using

Eq. (7.2a) and also compute CNv̂c(ĉ′) where h(v̂c) = h(v) − 1 using Eq. (7.2b). In this

iteration, CNv(c) where c /∈ Cd(v) is not computed which will be computed when visiting

its parent vertex. After this iteration, move to the modules with higher height and the

algorithm ends until the predefined root v0 is visited. It is clear that the root module can

be found in time O(|V |).

7.4.3 Matching and Mapping

The configuration graph G = (V,E) can be rooted with respect to the root module searched

by Algorithm 2. Then given two configurations, the objective is to verify if they are isomor-

phic in terms of modular robotic system topology and, if true, map each module from one

configuration to that in another configuration. Intuitively, this can be solved by traverse the

tree from the root to the leaves and check all the edges and the corresponding CNv(c) values

and, if the connections are equivalent and CNv(c) are equal, then these two connections

share the same topology. However, since modular robots are usually symmetric in their

geometry, for example, for SMORES-EP system, the left side is a mirror image of the right

side for each module, there will be multiple candidates for some connection when trying to

find the equivalent one in the other configuration. It is a heavy computation burden to track

all the options and the number of cases to track can quickly grow.

If two modular robot configurations G1 = (V1, E1) and G2 = (V2, E2) are isomorphic,

then each module v1 ∈ V1 must be able to be mapped to a unique module v2 ∈ V2 who

shares the same topology and the number of mapped pairs of modules is the number of

modules in G1 or G2. Hence, if there exists this bijective mapping f : V1 → V2, then G1

and G2 are isomorphic and f is the mapping that we are looking for. For each module

70

v1 ∈ V1, there may be multiple modules in G2 that share the same topology with v1 in

G1. The idea of the algorithm is to try to find some possible mappings which result in

multiple common subgraphs of both configurations, and, if these two configurations are

isomorphic, then there must be one common subgraph containing all the modules that is

also the isomorphism mapping.

Given two modular robot configurations G1 = (V1, E1) and G2 = (V2, E2), there may be

some common parts between them. Two definitions are introduced:

Definition 3. Given two modular robot configurations G1 = (V1, E1) and G2 = (V2, E2), a

common subconfiguration is a set of connected graphs {G′1, G′2} where G′1 = (V ′1 , E
′
1) ⊆

G1, G′2 = (V ′2 , E
′
2) ⊆ G2 such that G′1 and G′2 are isomorphic. The corresponding bijective

common subconfiguration mapping is defined as f ′ : V ′1 → V ′2 .

Definition 4. Given the condition that module v1 ∈ V1 of G1 = (V1, E1) must be mapped

to module v2 ∈ V2 of G2 = (V2, E2), the common subconfiguration with maximum common

connections is called maximum common subconfiguration with respect to v1 and v2

denoted as MCS(v1, v2) with mapping f : V̂1 → V̂2 where V̂1 ⊆ V1 and V̂2 ⊆ V2. If a module

pair (v′1, v
′
2) satisfies v′1 ∈ V̂1, v′2 ∈ V̂2 and f(v′1) = v′2, then (v′1, v

′
2) ∈ MCS(v1, v2) under

f : V̂1 → V̂2.

Given two graphs G1 and G2 rooted with respect to τ1 ∈ V1 and τ2 ∈ V2 respectively,

01

23

4

TL

T

T

LR

T

T

(a)

0

1 2

3 4

T

L

T

T

L

R

T

L

(b)

Figure 7.3: Given two SMORES configurations, an example of common subconfiguration
between them is circled by "- -" with mapping 1 → 1 and 0 → 2. The set containing the
subgraphs of (a) and (b) circled by "—" is MCS(1, 1) with mapping 1 → 1, 2 → 0, and
0→ 2.

71

for module v1 ∈ V1 and v2 ∈ V2, a common subconfiguration {G′1, G′2} can be constructed

where V ′1 = {v1, v̂
c1
1 }, V ′2 = {v2, v̂

c2
2 } under a subconfiguration mapping f ′ : V ′1 → V ′2

such that f ′(v1) = v2 and f ′(v̂c11) = v̂c22 if and only if connect(v1, v̂
c1
1) ∼= connect(v2, v̂

c2
2)

which is called the feasibility rule. A stronger feasibility rule can be designed by adding

CNv1(c1) = CNv2(c2) then the rule becomes a sufficient condition which is expressed as a

form of a function F ((v1, c1), (v2, c2)). c1 is not necessarily to be equal to c2 because of the

symmetry property of modules.

Theorem 1. Given MCS(v1, v2) under mapping f : V1 → V2, for any module pair (v′1, v
′
2) ∈

MCS(v1, v2) under f : V1 → V2, MCS(v′1, v
′
2) is equal to MCS(v1, v2).

According to Theorem 1 and previous analysis, if F ((v1, c1), (v2, c2)) is true, then

(v̂c11 , v̂
c2
2) ∈ MCS(v1, v2) under f : V1 → V2 and MCS(v̂c11 , v̂

c2
2) is equal to MCS(v1, v2).

Hence, whether computing MCS(v1, v2) is equivalent to computing MCS(v̂c11 , v̂
c2
2) depends

only on the corresponding feasibility rule. If two modular robot configurations G1 = (V1, E1)

and G2 = (V2, E2) are isomorphic, τ1 and τ2 are the only root module of G1 and G2

respectively, then a common subconfiguration {G1, G2} under mapping f : V1 → V2 must

exist and this common subconfiguration is actually MCS(τ1, τ2). There may be multiple

options of f : V1 → V2 because of the symmetry property of the modules. The problem to

compute MCS(τ1, τ2) can be converted into the problem to compute MCS(τ̂ c11 , τ̂ c22) just by

checking F ((τ1, c1), (τ2, c2)). This leads to the recursive solution to compute MCS(τ1, τ2)

and the subproblem is to solve MCS(τ̂ c11 , τ̂ c22) where c1 ∈ Cd(τ1) and c2 ∈ Cd(τ2). Whichever

of these MCSs is equivalent to MCS(τ1, τ2) is the solution and the corresponding mapping

f : V1 → V2 is generated accordingly. For some configurations that may have a pair of root

modules while each configuration is only rooted with respect to one root in the library,

just need to root this configuration with respect to both of the root modules and compare

both of them with that in the library. With this, a bottom-up algorithm to check the

isomorphism and map modules simultaneously is developed.

The algorithm takes two rooted configuration graphs as input. Some preliminary checks

can be added here, like the number of root modules, the height of trees, the number of

72

modules in each level, and so on. If they fail these tests, they cannot be isomorphic because

there can be two root modules at most and, if two graphs are isomorphic, then they should

have the same root modules. This bottom-up algorithm is started from the modules that are

leaves of two given configurations and move gradually to their roots. During the process, all

possible MCS which may be equivalent to MCS(τ1, τ2) are computed and their corresponding

mappings are generated. In the end, the one that contains all the modules is the solution and

the common subconfiguration mapping tells us how to map each module. The pseudocode

is presented in Algorithm 3. For any vertex v ∈ V with its depth d(v) > 0, its parent

connected via its connector c is denoted as ṽc and the mating connector of ṽc as c̃′.

Line 8 — 9 : It is possible that (v1, v2) or (ṽc11 , ṽ
c2
2) has been added to some MCSs with

respect to some pair of modules. MCSP is the set of all MCSs containing (ṽc11 , ṽ
c2
2) with

corresponding mapping fp . SimilarlyMCSC is the set of all MCSs containing (v1, v2) with

corresponding mapping fc.

Line 10 — 28 : If F ((ṽc11 , c̃
′
1), (ṽc22 , c̃

′
2)) is true, then MCS(v1, v2) is equal to MCS(ṽc11 ,

ṽc22). WhenMCSP is empty butMCSC is not empty, any MCS(u1, u2) ∈ MCSC is equal

to MCS(v1, v2) from Theorem 1. Hence, as long as ṽc11 /∈ U1 ∧ ṽc22 /∈ U2 , each MCS(u1, u2)

is also equal to MCS(ṽc11 , ṽ
c2
2) and u1 and u2 are updated accordingly. Then MCS is also

updated which is to remove the old MCS(u1, u2) if existing and add the new MCS(u1, u2).

Similar to the previous case, whenMCSP is not empty andMCSC is empty, then, as long

as v1 /∈ P1 ∧ v2 /∈ P2, MCS(p1, p2) is equal to MCS(v1, v2) and p1 and p2 are also updated.

In addition, it is possible that v1 ∈ P1 ∧ v2 /∈ P2 or v1 /∈ P1 ∧ v2 ∈ P2, then there is

no MCS ∈ MCS equal to MCS(v1, v2) or MCS(ṽc11 , ṽ
c2
2). So MCS(v1, v2) or MCS(ṽc11 , ṽ

c2
2)

is a new possible MCS which may be equal to MCS(τ1, τ2). Thus, add MCS(v1, v2) with

mapping f : {v1, ṽ
c1
1 } → {v2, ṽ

c2
2 } toMCS.

Line 29 — 31 : If both MCSP and MCSC are empty, then MCS(v1, v2) or MCS(ṽc11 ,

ṽc22) is a new possible MCS which may be equal to MCS(τ1, τ2). Thus, add MCS(v1, v2)

with mapping f : {v1, ṽ
c1
1 } → {v2, ṽ

c2
2 } toMCS.

Line 32 — 51 : This is the last case when F ((ṽc11 , c̃
′
1), (ṽc22 , c̃

′
2)) is true that bothMCSP

73

Algorithm 3: Matching and Mapping
Input: G1 = (V1, E1) with root τ1 and G2 = (V2, E2) with root τ2 where h(G1) = h(G2) = H

Output: MCS(τ1, τ2) with f : V̂1 → V̂2

1 Create a set MCS = {MCS(Null,Null)} with a trivial mapping f : ∅ → ∅;
2 Initialize h← H;
3 while h > 0 do
4 foreach v1 ∈ V1 with d(v1) = h do
5 MCS′ ←MCS;
6 foreach v2 ∈ V2 with d(v2) = h do
7 if F ((ṽc11 , c̃′1), (ṽc22 , c̃′2)) then
8 MCSP = {MCS(p1, p2) ∈MCS′ fp : P1 → P2 | (ṽc11 , ṽc22) ∈ MCS(p1, p2)};
9 MCSC = {MCS(u1, u2) ∈MCS′ fc : U1 → U2 | (v1, v2) ∈ MCS(u1, u2)};

10 if MCSP = ∅ ∧MCSC 6= ∅ then
11 foreach MCS(u1, u2) ∈MCSC do
12 if ṽc11 /∈ U1 ∧ ṽc22 /∈ U2 then
13 Add (ṽc11 , ṽc22) to MCS(u1, u2) such that fc(ṽc11) = ṽc22 ;
14 u1 ← ṽc11 and u2 ← ṽc22 ;
15 UpdateMCS;
16 end
17 end
18 else if MCSP 6= ∅ ∧MCSC = ∅ then
19 foreach MCS(p1, p2) ∈MCSP do
20 if v1 /∈ P1 ∧ v2 /∈ P2 then
21 Add (v1, v2) to MCS(p1, p2) such that fp(v1) = v2;
22 p1 ← v1 and p2 ← v2;
23 UpdateMCS;
24 else if (v1 ∈ P1 ∧ v2 /∈ P2) ∨ (v1 /∈ P1 ∧ v2 ∈ P2) then
25 Construct MCS(v1, v2) with f : {v1, ṽ

c1
1 } → {v2, ṽ

c2
2 } such that f(v1) = v2

and f(ṽc11) = ṽc22 ;
26 Add MCS(v1, v2) to MCS;
27 end
28 end
29 else if MCSP = ∅ ∧MCSC = ∅ then
30 Construct MCS(v1, v2) with f : {v1, ṽ

c1
1 } → {v2, ṽ

c2
2 } such that f(v1) = v2 and

f(ṽc11) = ṽc22 ;
31 Add MCS(v1, v2) to MCS;
32 else
33 MCS′P = {MCS(p1, p2) ∈MCSP | v1 /∈ P1 ∧ v2 /∈ P2};
34 MCS′C = {MCS(u1, u2) ∈MCSC | ṽc11 /∈ U1 ∧ ṽc22 /∈ U2};
35 if MCS′P = ∅ ∧MCS′C 6= ∅ then
36 foreach MCS(u1, u2) ∈MCS′C do
37 Add (ṽc11 , ṽc22) to MCS(u1, u2) such that fc(ṽc11) = ṽc22 ;
38 u1 ← ṽc11 and u2 ← ṽc22 ;
39 UpdateMCS;
40 end
41 else if MCS′P 6= ∅ ∧MCS

′
C = ∅ then

42 foreach MCS(p1, p2) ∈MCS′P do
43 Add (v1, v2) to MCS(p1, p2) such that fp(v1) = v2;
44 p1 ← v1 and p2 ← v2;
45 UpdateMCS;
46 end
47 else if MCS′P 6= ∅ ∧MCS

′
C 6= ∅ then

48 MCS(p1, p2)← MCS(u1, u2) ∪MCS(p1, p2),
∀ (MCS(p1, p2),MCS(u1, u2)) ∈MCS′P ×MCS

′
C;

49 UpdateMCS;
50 end
51 end
52 end
53 end
54 end
55 h← h− 1;
56 end

74

and MCSC are not empty. MCS(u1, u2) ∈ MCSC cannot be equal to any MCS(p1, p2) ∈

MCSP for the reason that the algorithm starts from leaves of two given trees and multiple

modules may share a parent but multiple modules cannot have the same children. In Line

33 and Line 34 the algorithm checks if (v1, v2) can be added to any MCS(p1, p2) or (ṽc11 , ṽ
c2
2)

can be added to any MCS(u1, u2). MCS is updated according to different conditions and

the special one is that when both MCS ′P and MCS ′C are not empty, MCS(u1, u2) and

MCS(p1, p2) have to be merged with all possible combinations.

Line 55 : Update h and, in the next iteration, the one-level higher modules will be

compared to update MCS. The last group of modules that the algorithm compares are

those with depth equal to one.

In the end, there will be multiple MCS(τ1, τ2) ∈MCS and multiple MCS(q1, q2) ∈MCS

such that (τ1, τ2) ∈ MCS(q1, q2). Among all these candidates, the one covering maximum

number of modules is the solution of MCS(τ1, τ2) with corresponding mapping f : V̂1 → V̂2.

If the roots of both two given configurations are unique, then they are isomorphic if V̂1 = V1

(obviously V̂2 = V2) and not isomorphic if V̂1 6= V1 (namely V̂2 6= V2).

This algorithm can be improved to be more efficient for matching and mapping task.

When checking v1 ∈ V1 with d(v1) = h, if ∀v2 ∈ V2 with d(v2) = h, F ((ṽc11 , c̃
′
1), (ṽc22 , c̃

′
2)) is

not true, then these two configurations cannot be isomorphic and the algorithm can stop or

continue with next candidate. This algorithm can solve the matching and mapping problem

in time O(|E1|2) or O(|V1|2) for the worst case. In reality, the number of connectors a

module has is usually small, so the time for a large number of modules should be much

smaller than the worst case.

7.5 Test Scenario

The integral algorithm is implemented in Python. The SMORES-EP configuration used in

this experiment is a walker with a manipulator shown in Figure 7.4. The corresponding

graph representations of them are shown in Figure 7.5. This is a special configuration that

has a lot of symmetric parts. For example, the left legs and the right legs are symmetric

and the front legs and the back legs are also symmetric.

75

(a) (b)

Figure 7.4: Walker configurations with different labels: (a) the configuration in the library;
(b) the new configuration to recognize.

1 0 2

4 8

5 9

6

7

10

11

3

12

13

T
T

TT

T

T

T

T

T

T

T

T

T

R

R

RL

B B

T

L

B B B

B

L

(a)

3 1 0

2 4

9 8

7

10

12

5

11

6

13

T
T

TT

T

T

T

T

T

T

T

T

T

R

R

RL

B B

T

L

B B B

B

L

(b)

Figure 7.5: Walker configuration graphs: (a) the configuration in the library; (b) the new
design.

First run Algorithm 1 to discover all the connections in this configuration shown in Fig-

ure 7.4b. The sequence to discover all the connections is connect(0, 1) → connect(0, 4) →

connect(0, 12) → connect(1, 11) → connect(1, 3) → connect(4, 8) → connect(12, 5) →

connect(11, 6) → connect(3, 7) → connect(3, 2) → connect(6, 13) → connect(2, 9) →

connect(7, 10).

Then the graph G = (V,E) can be built based on these connections. With G = (V,E),

the root and all CNv(c) for v ∈ V and c ∈ C can be computed by Algorithm 2 and the

root module is Module 1. Some preliminary tests can be implemented to filter most of

the configurations in the library and the one shown in Figure 7.4a is the closest one. The

76

Table 7.1: Isomorphic mappings.

10→ 5 10→ 5 9→ 5 9→ 5 8→ 5 8→ 5 5→ 5 5→ 5
7→ 4 7→ 4 2→ 4 2→ 4 4→ 4 4→ 4 12→ 4 12→ 4
3→ 1 3→ 1 3→ 1 3→ 1 0→ 1 0→ 1 1→ 1 0→ 1
9→ 7 9→ 7 10→ 7 10→ 7 5→ 7 5→ 7 8→ 7 8→ 7
2→ 6 2→ 6 7→ 6 7→ 6 12→ 6 12→ 6 4→ 6 4→ 6
1→ 0 1→ 0 1→ 0 1→ 0 1→ 0 1→ 0 1→ 0 1→ 0
8→ 9 5→ 9 8→ 9 5→ 9 10→ 9 9→ 9 10→ 9 9→ 9
4→ 8 12→ 8 4→ 8 12→ 8 7→ 8 2→ 8 7→ 8 2→ 8
0→ 2 0→ 2 0→ 2 0→ 2 3→ 2 3→ 2 3→ 2 3→ 2
5→ 11 8→ 11 5→ 11 8→ 11 9→ 11 10→ 11 9→ 11 10→ 11
12→ 10 4→ 10 12→ 10 4→ 10 2→ 10 7→ 10 2→ 10 7→ 10
13→ 13 13→ 13 13→ 13 13→ 13 13→ 13 13→ 13 13→ 13 13→ 13
6→ 12 6→ 12 6→ 12 6→ 12 6→ 12 6→ 12 6→ 12 6→ 12
11→ 3 11→ 3 11→ 3 11→ 3 11→ 3 11→ 3 11→ 3 11→ 3

graph representation G = (V ,E) (Figure 7.5a) rooted with respect to the corresponding

root module (Module 0), all connection information, and all CN values are stored in the

library. Then run Algorithm 3 to match this new configuration G = (V,E) to G = (V ,E)

and map each module v ∈ V to v̄ ∈ V . Since there are many symmetric parts, the mapping

between G and G is not unique. By the configuration recognition algorithm, all isomorphic

mappings f : V → V can be obtained. For this example, there are eight different mappings

in total shown in Table 7.1.

7.6 Conclusion

This chapter introduces the graph model of modular robots and develops an efficient algo-

rithm for modular robots to do configuration recognition automatically. A new configuration

can be discovered by the use of local communication among modules and a graph represen-

tation can be generated. Then its root module(s) and all CN values are computed using

dynamic programming. Each configuration in the library has a unique representation con-

taining its rooted graph with respect to its root module, all connections, and all CN values.

Matching and mapping problem is solved by searching MCS and, if this new configuration

is isomorphic to some configuration in the library, all the mapping results will be computed.

The algorithm can be adapted to other modular systems easily. as long as local communi-

77

cation among modules is supported for configuration discovery and equivalent connections

can be defined for matching and mapping.

78

Chapter 8

Morphology Transformation

This chapter presents the morphology transformation strategy for the SMORES-EP system

that can also be extended to other similar self-reconfigurable modular robots. This enables

the self-adaption of these systems to different scenarios. This chapter excerpts heavily

from [73] and [78]. Credit is due to Michael Whitzer, Qian Lin, and Hyun Kim, who

contributed significantly to this work.

The capability to do morphology transformation distinguishes modular robots from other

robotic systems. This allows modular robots to handle a much wider range of tasks and they

can reconfigure themselves as needed. SMORES-EP is a hybrid modular robotic system that

can form kinematic chains to address a variety of manipulation and locomotion scenarios,

yet can reconfigure using a mobile reconfiguration strategy. There are two types of self-

adaption activities: 1. self-assembly that is to allow multiple separated modules to form

target kinematic chains; 2. self-reconfiguration that is to transform a morphology into a

different one. For self-assembly, a desired kinematic topology can be mapped onto a planar

pattern with the optimal module assignment based on the modules’ locations, then the

mobile reconfiguration assembly process can be executed in parallel. For self-reconfiguration,

the initial configuration and the goal configuration have to be compared, and then find the

required sequence of reconfiguration actions. The reconfiguration actions can be executed in

a distributed and parallel manner so that each module can efficiently finish its reconfiguration

79

task which results in a global reconfiguration of the overall morphology.

8.1 Introduction

Self-reconfigurable modular robots are able to adapt their morphologies to many different

activities, handle hardware and software failures by reconfiguring themselves, which relies

on the self-reconfiguration planning. This self-reconfiguration ability enables a modular

robotic system to change the arrangement of modules from one arbitrary configuration to

another. While the reconfiguration planning problem is well defined, the problem is usually

difficult to solve because of the physical constraints particular to each self-reconfigurable

robotic system. For example, the modules are usually designed to be simple to manufacture

and low-cost so that each module only has a limited number of actuators and connectors.

This results in limited motion ability and often complex system constraints. In addition,

the number of possible arrangements for a cluster of modules grows exponentially with the

number of modules which makes the planning problem intractable to find optimal solutions

with naïve brute-force techniques.

As introduced in Part I, the majority of self-reconfigurable robots are typically divided

into three main types: chain-type, lattice-type, and mobile-type with some models that are

hybrid among these types. Lattice-type self-reconfigurable robots sit nominally on a lattice

and reconfigure between neighboring lattice positions. There are already many reconfigu-

ration planning algorithms for lattice-type robots. However, it is difficult for lattice-type

modular robots to generate some dynamic locomotion and generic manipulation. In con-

trast, chain-type self-reconfigurable robots are particularly well suited for locomotion and

manipulation. Numerous chain-type modular robotic systems have been developed in the

past few years. Self-reconfiguration with this type of robot is often a difficult and time-

consuming task in which closed chains have to be formed [135]. The third type, mobile-type

robots, use the environment to move between modules as they reconfigure. The system are

usually composed of a large number of identical robots that can move around on the flat

ground and connect together to form different planar shapes.

Self-assembly is related to self-reconfiguration for modular robots which is most related

80

to the mobile-style reconfiguration as pieces are assembled as separate units. This swarming

behavior is common in nature that groups of individuals can join together to overcome

the limited capability of individuals, especially for insects who often need to collaborate

in large groups to accomplish tasks. This collective has inspired similar approaches for

robotic systems, such as modular robots that are composed of numerous simple building

blocks, or modules, that can be joined into different connected morphologies depending on

task requirements. Determining the motion sequence of a cluster of modules to form a goal

morphology is called self-assembly planning.

A particularly useful self-assembly example of collaborative behavior can be shown for

systems that can achieve mobile reconfiguration. Every individual module can locomote

around an area, however, it may discover that it cannot cross a gap that is larger than one

module. Instead, multiple modules can join to form a snake configuration making it long

enough to cross over. Other applications include reaching tall spaces or rapid simultaneous

exploration. All of these behaviors are similar to the behaviors shown in ants.

The goal is to allow modular robots to self-assemble or self-reconfigure into desired

morphologies to perform complex tasks. There are several challenges needed to be addressed:

1. Efficiency is important, especially for modular robotic systems that include a large

number of modules;

2. Many physical constraints have to be considered for real hardware applications;

3. Accurate docking is required.

SMORES-EP is a hybrid modular robotic system that can achieve all three types of

motions for reconfiguration. As mentioned, each module is a four-DOF (LEFT DOF, RIGHT

DOF, PAN DOF, and TILT DOF) system with four connectors (LEFT Face or L, RIGHT

Face or R, TOP Face or T and BOTTOM Face or B). There are seventeen ways to connect

two modules to achieve different kinematics functionality. This chapter focuses on mobile-

style reconfiguration that is shown to be a reliable and efficient strategy for modular robots.

Robot morphologies are modeled as graphs introduced in Chapter 7. The self-reconfiguration

81

planner can compare and decompose the initial configuration and the goal configuration

efficiently so that a sequence of reconfiguration actions can be generated in such a way

that modules can act in a reasonable order to achieve the goal configuration efficiently. For

self-assembly, given the current locations of all modules, every individual is mapped to a

module in the target configuration in an optimal way by solving a task assignment problem.

Then the assembly actions can be executed in parallel for efficiency while satisfying physical

hardware constraints. This framework can also speed up the self-reconfiguration process by

executing the sequential reconfiguration actions in parallel. The effectiveness and robustness

of the framework in this chapter are demonstrated on the physical hardware. These proposed

algorithms can be easily extended to other mobile-type modular robots.

8.2 Related Work

Lattice-type modular robots usually offer simpler reconfiguration, as the motions of modules

are constrained in a discrete set of locations. Self-reconfiguration planning for these robots

includes work from [14, 30, 99, 138]. Chain-type modular robots can be more versatile in

that modules are able to do motions in continuous space. However, it is usually difficult for

these robots to do reconfiguration due to the difficulty in control. Closed chains are formed

during the reconfiguration process, such as [15, 100, 164]. These works only consider single-

DOF modules with uniform connections. More complex chain-style reconfiguration tasks are

addressed in [4, 48, 49]. While lattice-style reconfiguration and chain-style reconfiguration

have been studied in depth, the mobile form of reconfiguration has not been.

Self-assembly is related to self-reconfiguration for modular robots. Stochastic self-

assembly algorithms are for modules that are not self-actuated but use external actuation,

such as fluid flow [63, 90, 156]. Static planar structures can be assembled by building blocks

which are supplied by mobile robots [153]. Self-assembly solutions for mobile-type modular

robots typically use modules that do not have non-holonomic constraints and aim for planar

structures [69, 117, 123]. An approach to solve configuration formation is presented in [27]

but in sequential manner which makes the formation process slow. Assembling structures in

3-dimensional space is shown in [142, 154] but does not deal with the physical constraints

82

of land-mobile platforms. The self-assembly work in this chapter differs from structural

self-assembly in that the assembly goal is to build a movable kinematic topology, such as

a multi-limbed form. The target morphologies are similar to those built by chain-type

modular robots. For example, reconfiguration for PolyBot in a kinematic topology was

presented in [164]. The proposed parallel self-assembly framework can also be used to make

the sequential reconfiguration actions more efficient by executing these actions in parallel.

8.3 Self-reconfiguration Planning

The self-reconfiguration planning problem can be stated as: Given an arbitrary initial con-

figuration and goal configuration, find the actions required for the system to transform the

initial configuration to the goal configuration. Different atomic reconfiguration actions can

be defined for different modular robotic systems. Usually there are two atomic reconfig-

uration actions: Docking and Undocking. Docking means connecting two connectors and

Undocking means disconnecting an existing connection. Different modular robots have dif-

ferent procedures to execute these two atomic actions. In particular, for the SMORES-EP

modular robotic system, a Docking action requires two modules to move their involved

connectors to be in proximity, align these two faces, and activate all corresponding mag-

nets. Similarly, an Undocking action requires two modules to deactivate all magnets of both

involved connectors.

An outline of the reconfiguration planning algorithm follows. The first step is to find

the root module of the initial configuration as in Section 7.4.2, and then figure out the

root module of the goal configuration. From here, a novel way to decompose the initial

configuration and the goal configuration into multiple subconfigurations can be applied.

These subconfigurations can then be mapped between the initial and the goal configuration.

This mapping is computed by iteratively adding virtual modules and virtual connections to

these subconfigurations. After the connection and disconnection actions are determined, the

locomotion plans for modules to move to their required positions for docking can then be

implemented with standard 2D path planning approaches. Commonly used nomenclature

is listed in the following:

83

Gi Initial Configuration
Gg Goal Configuration
Gi Initial Subconfiguration in MCS

Gg Goal Subconfiguration in MCS

Ĝi Initial Subconfiguration not in MCS

Ĝg Goal Subconfiguration not in MCS
G′i Initial Configuration after Virtual Module Operation
G′g Goal Configuration after Virtual Module Operation
τi Initial Configuration Root Module
τg Goal Configuration Root Module
ταi αth Subconfiguration Root of Gi
τβg βth Subconfiguration Root of Gg
M Virtual Module

8.3.1 Configuration Decomposition

Given the initial and the goal configuration, first decompose them into multiple subconfigu-

rations. For efficiency, the goal is to find the decomposition that shares the most connections

(edges in the graph) between the initial and the goal configuration. Reconfiguration actions

(Docking and Undocking) are usually hard to execute and also time-consuming. Hence, one

goal of the algorithm is to minimize the number of Docking and Undocking actions. In

addition, it is hard to change the height of a vertex in the graph, for example, moving a

module which is a leaf vertex of a configuration to a position close to the root requires more

actions, so minimizing these changes will make the physical reconfiguration more efficient

as well.

Given any two modular robot configurations Gi = (Vi, Ei) and Gg = (Vg, Eg), their root

modules τi and τg can be computed in O(|Vi|) and O(|Vg|) respectively, then MCS(τi, τg)

under mapping f : V i → V g where V i ⊆ Vi and V g ⊆ Vg can be computed efficiently.

These two subconfigurations Gi = (V i, Ei) and Gg = (V g, Eg) contained in MCS(τi, τg)

are isomorphic so that there is no need to reconfigure these modules. If subtracting sub-

configurations Gi = (V i, Ei) from Gi = (Vi, Ei) without keeping boundaries, a graph

Ĝi = (V̂i, Êi) composed of multiple unconnected subgraphs is generated. Similar opera-

tions can be applied to the goal configuration Gg = (Vg, Eg) to generate Ĝg = (V̂g, Êg).

84

(a) (b)

Figure 8.1: (a) Configuration decomposition for Gi = (Vi, Ei) and the subconfiguration
encircled by “- -” is Ĝi = (V̂i, Êi). (b) Configuration decomposition for Gg = (Vg, Eg) and
the subconfiguration encircled by “- -” is Ĝg = (V̂g, Êg).

The process is shown in Figure 8.1 where Ĝi =
{
Ĝαi = (V̂ α

i , Ê
α
i)|α = 0, 1, 2, · · · , n

}
and

Ĝg =
{
Ĝβg = (V̂ β

g , Ê
β
g)|β = 0, 1, 2, · · · ,m

}
. This process is defined as a configuration de-

composition for Gi = (Vi, Ei) and Gg = (Vg, Eg) with respect to the root module pair τi and

τg written as CD(Gi, τi, Gg, τg). This configuration decomposition can be finished in time

O(|Vi|2) or O(|Ei|2) and, in reality, a SMORES-EP module has only four connectors so the

time for a large number of modules should be much smaller than the worst case as discussed

in Section 7.4.3. Then the problem is to do reconfiguration planning from Ĝi = (V̂i, Êi) to

Ĝg = (V̂g, Êg).

8.3.2 Module Mapping

Applying configuration decomposition for the initial and the goal configuration, Gi = (Vi, Ei)

and Gg = (Vg, Eg), modules involved in MCS(τi, τg) are mapped under f : V i → V g where

V i ⊆ Vi and V g ⊆ Vg, so Ĝi = (V̂i, Êi) and Ĝg = (V̂g, Êg) can be generated respectively, both

of which are composed of multiple subconfigurations. The connection between Gi = (V i, Ei)

and subconfiguration Ĝαi = (V̂ α
i , Ê

α
i) in Ĝi = (V̂i, Êi) for α = 0, 1, · · · , n is denoted as

connect(u, ταi) where u ∈ V i and ταi ∈ V̂ α
i . The vertex ταi is called the subconfiguration

root for Gi = (Vi, Ei) and there are n subconfiguration roots in total. Similarly there are m

subconfiguration roots for Gg = (Vg, Eg) denoted as τβg where β = 0, 1, · · · ,m.

Then replace Gi = (V i, Ei) with a virtual moduleM and replace connect(u, ταi) with a

85

(a) (b)

Figure 8.2: Replace Gi = (V i, Ei) with virtual module M and replace the connection
between Gi = (V i, Ei) and every Ĝαi = (V̂ α

i , Ê
α
i) with a virtual connection.

virtual connection connect(M, ταi) defined as

connect(M, v) = {Face : Null,Face2Con : Null,Orientation : Null} (8.1)

in which v represents a module. All virtual connections are equivalent. The new corre-

sponding modular robot configuration with a virtual module and some virtual connections

is written as G′i = (V ′i , E
′
i) where V

′
i = Vi \V i∪{M} as shown in Figure 8.2. This operation

is called the Virtual Module Operation.

These procedures can be applied to the goal configuration Gg = (Vg, Eg) and the corre-

sponding G′g = (V ′g , E
′
g) is generated shown in Figure 8.3. Applying configuration decom-

position on G′i = (V ′i , E
′
i) and G′g = (V ′g , E

′
g) with respect to virtual module Mi and Mg,

MCS(Mi,Mg) under mapping f : V
′
i → V

′
g where V ′i ⊆ V ′i and V ′g ⊆ V ′g can be computed.

The solution to MCS(Mi,Mg) may not be unique. In addition to these two virtual modules,

(a) (b)

Figure 8.3: Replace Gg = (V g, Eg) with virtual module M and replace the connection
between Gg = (V g, Eg) and every Ĝαg = (V̂ α

g , Ê
α
g) with a virtual connection.

86

each vertex u ∈ V ′i is mapped to a unique module v ∈ V ′g. After configuration decomposition

CD(G′i,Mi, G
′
g,Mg), Ĝ′i = (V̂ ′i , Ê

′
i) and Ĝ′g = (V̂ ′g , Ê

′
g) are generated respectively. Repeat

the virtual module operation for Ĝ′i = (V̂ ′i , Ê
′
i) and Ĝ′g = (V̂ ′g , Ê

′
g), and two new modular

robot configurations with virtual modules and virtual connections are generated.

Mapping is completed by repeating this process until every module in Vi has been mapped

with a unique module in Vg. If assuming that configuration decomposition is applied N

times, then N mappings f1, f2, · · · , fN are computed in order. This mapping process main-

tains the vertex height between configurations as much as possible and also keeps most of

the common topology connections so that fewer reconfiguration actions are needed. For the

worst case, the mapping process has to do configuration decomposition d|Vi|/2e+1 times (at

least two modules can be mapped after each configuration decomposition except for the first

and the last configuration decomposition and dxe maps x to the least integer greater than

or equal to x), so the time complexity is O(|Vi|3). Again, for a large number of modules, in

reality, the mapping process should be much faster than the worst case.

8.3.3 Reconfiguration Actions

Once the mapping process is done, the corresponding reconfiguration actions can be de-

termined. Assume there are N mappings ft : tVi → tVg, t = 1, 2, · · · , N computed in

order, then a mapping f : Vi → Vg that maps all modules from the initial configuration

Gi = (Vi, Ei) to the goal configuration Gg = (Vg, Eg) can be obtained by the combination

of these mappings while excluding virtual module mapping (Mi →Mg). This mapping is

one-to-one and onto and the inverse of the mapping is f−1 : Vg → Vi. Thus, the reconfig-

uration actions can be computed by iterating modules in Gi = (Vi, Ei) from leaves to the

root.

Recall that for a modular robot configuration G = (V,E) rooted at τ , for any vertex

v ∈ V with depth d(v) > 0, its parent connected via its connector c is denoted as ṽc

and the mating connector of ṽc as c̃. Given the mapping f : Vi → Vg, each vi ∈ Vi is

mapped to a unique vg ∈ Vg, and ṽcii and ṽ
cg
g are their parents respectively. Similarly,

with the inverse mapping f−1 : Vg → Vi, ṽ
cg
g ∈ Vg is also mapped to a unique v′i ∈ Vi.

87

If module pair (vi, vg) and (ṽcii , ṽ
cg
g) are in any MCS during the module mapping process,

then connect(vi, ṽ
ci
i) ∼= connect(vg, ṽ

cg
g) and there is no need to reconfigure. Otherwise, the

reconfiguration action is undocking vi from ṽcii by removing connect(vi, ṽ
ci
i) and docking

vi with v′i by constructing connect(vi, v
′
i) which should be equivalent to connect(vg, ṽ

cg
g) in

Gg(Vg, Eg).

Once all modules except subconfiguration roots for Gi = (Vi, Ei) and modules in

MCS(τi, τg) are visited, Ĝi = (V̂i, Êi) has reconfigured into Ĝg = (V̂g, Êg) by executing

reconfiguration actions from leaves to subconfiguration roots. This enables us to pick one

solution to MCS(Mi,Mg) in the module mapping process freely since the module should

be easy to maneuver when a reconfiguration action is applied. Then execute Algorithm 3

— the Matching and Mapping algorithm — to check if the new configuration is isomorphic

to the goal configuration. If not, continue iterating unvisited modules and executing

reconfiguration actions. This process can be done in time O(|Vi|).

8.3.4 Hardware Execution

To implement the reconfiguration plan described above with SMORES-EP, modules must

undock from their initial positions in the current configuration, safely navigate them to their

final positions in the goal configuration, and then dock to the appropriate modules.

The environment in which the modules will reconfigure can be described with a discrete

representation. The graph representation of the environment and the reconfiguration plan

can then be used to sequentially generate trajectories that safely navigate the modules

to their new reconfigured positions in the goal configuration. These trajectories can be

generated through graph search techniques such as A∗ [43].

When generating the trajectory for each module, the modules not involved in the current

reconfiguration action will be represented as static obstacles in the discrete environment. It

may be the case that the current reconfiguration action requires the motion of other modules

to create appropriate free space. Given the full discrete environment and system state

knowledge, a state machine can be used to identify when additional free space is required,

and initiate the motions of the occluding modules to enable the current reconfiguration

88

1 2Helping Module

12

11
2

2

Helping Module

Helping ModuleHelping Module

Figure 8.4: A helping module docks with Module 1 BOTTOM Face and lifts it up so that
LEFT Face of Module 1 can be aligned with BOTTOM Face of Module 2, then carry Module
1 to the location to finish the docking action.

action.

Since locomotion on the ground is achieved by rotating the LEFT and RIGHT Faces,

aligning the orientation of these faces with a stationary mating face could be problematic

since their orientation is coupled to translation. When a mobile module is docking to a

stationary one, if the face on the stationary module is a LEFT, RIGHT, or TOP Face,

the stationary face can rotate to align the orientation appropriately. There are two special

docking action cases in which this cannot be done: 1. Dock either a LEFT Face or a RIGHT

Face with a mating BOTTOM Face; 2. Dock BOTTOM Face with a mating BOTTOM Face

with Orientation attribute being 1. In these cases, the BOTTOM Face cannot rotate as the

SMORES-EP modules have fixed BOTTOM faces. For these two cases, a helping module

is utilized. As mentioned, a helping module is also a SMORES-EP module with some

payload attached to its BOTTOM Face. The helping module can dock with and lift the

mobile module so that the face is no longer coupled with the ground and can be orientated

appropriately. A proof-of-concept demo of this behavior is shown in Figure 8.4. The detailed

usage of helping modules is already discussed in Chapter 6.

8.4 Parallel Self-assembly Planning

Assume there is a team of modules M = {m1,m2, · · · ,mn} in the Euclidean space R2. The

state of a module mi ∈ M is defined as pi = [xi, yi, θi]
ᵀ where oi = [xi, yi]

ᵀ is the location

89

of the center of mi and θi is the orientation of mi. Then the distance between module mi

and mj can be derived as ‖oi − oj‖. Every SMORES-EP module is a cube with a side

length of w. The assembly goal is a SMORES-EP tree topology configuration G = (V,E)

where |V | = n. Not all kinematic topology can be built by self-assembly process. Only

the kinematic topology that can be unfolded onto a plane can be achieved by a bunch of

separated modules on the ground.

Definition 5. The target kinematic topology that can be self-assembled by separated mod-

ules is a modular robot configuration G = (V,E) that can be fully unfolded to a plane

satisfying:

1. G is a connected graph;

2. The Euclidean distance between two adjacent modules is w;

3. The center of every module occupies a unique location.

We are not interested in all topologies that satisfy the constraints in Definition 5. Some

topologies are less useful for executing tasks. For example, the connection in Figure 7.1b

shows the two BOTTOM Faces are connected with Orientation 1. This arrangement un-

necessarily constrains the relative orientation between two modules so it is not considered

in this work. In addition, the target topology is also meant to satisfy hardware constraints,

such as the connector and actuator limitations when lifting many modules.

The modules are at arbitrary locations with constraint that the distance between any

pair of modules mi and mj denoted as dij is greater than w. The kinematic topology self-

assembly problem is stated: Given a target kinematic topology G = (V,E) and a team of n

modules M = {m1,m2, · · · ,mn} where n = |V |, find a sequence of collision-free assembly

actions to form the target kinematic topology.

8.4.1 Task Assignment

In order to self-assemble n separated modules into a target kinematic topology, each module

has to be mapped to a role in the target. This problem is modeled as a task assignment prob-

90

lem, finding the optimal assignment solution among n! different assignments with respect

to some cost function.

Given a target kinematic topology G = (V,E), first check if it satisfies the requirements

in Definition 5 in order to be self-assembled and, if so, fully unfold it onto the ground. The

root module τ of G can be computed by Algorithm 2 in linear time. Then the state of each

module vi ∈ V with respect to this root module τ denoted as p̄i after fully unfolding G can

be computed in breadth-first search order starting from τ . From Section 6.2.2, the state of a

module is fully determined if the state of its parent module and the involved connection are

known. If module vi is the parent of module vj , then, in breadth-first search order, when

visiting vj , the state of vi with respect to τ should already be known that is p̄i =
[
x̄i, ȳi, θ̄i

]ᵀ.
The state of mj with respect to mi denoted as p̄ji is determined by the involved connectors.

Then the state of vj with respect to τ is

p̄j =

 R 0

0 1

 p̄ji + p̄i (8.2)

in which R =

 cos θ̄i − sin θ̄i

sin θ̄i cos θ̄i

.
Given a set of n modules M , each m ∈ M needs to be mapped by a module v ∈ V

in an optimal way. In this task assignment problem, the objective is to minimize the total

distance that all modules have to travel in order to assemble G. First, the center location

of all modules can be defined as oc = [xc, yc]
ᵀ where xc =

∑n
i=1 xi/n and yc =

∑n
i=1 yi/n.

Then the root module is selected as

mτ = arg min
mi∈M

‖oi − oc‖ (8.3)

The state of every module mi ∈ M with respect to mτ denoted as p̃i can be computed

simply with a rigid body transformation. Obviously p̃τ = [0, 0, 0]ᵀ that is the state of mτ

with respect to itself. Recall that ōi is the location of the center of vi with respect to

91

τ ∈ V . Given mτ is mapped to τ , namely ‖õτ − ōτ‖ = 0, the distance between every

pair of mi ∈ M \ {mτ} and vj ∈ V \ {τ} is simply ‖õi − ōj‖ which is the cost of the

task — moving to location of vj — for module mi. Other factors can also be included in

the cost besides distance, such as the orientation. The optimal task assignment problem

can be solved by Kuhn-Munkres algorithm or other concurrent assignment and planning

of trajectories algorithms in polynomial time [146]. The output is a one-to-one and onto

mapping f : V → M that is used later by a motion planner to generate the assembly

sequence.

8.4.2 Parallel Assembly Actions

With mapping f : V → M , the assembly sequence from the root to the leaves of G can be

computed. In each step, the modules in M mapped to the modules in the target kinematic

topology G at the same depth can be executed in a parallel manner. Let d(G) be the depth

of the rooted graph G. An assembly action is a tuple of the form (mi, ci,mj , cj) which

means connect mi’s connector ci with mj ’s connector cj . The parallel assembly algorithm is

shown in Algorithm 4. In every iteration, first fetch all modules in the current depth from

the target topology, then, with the optimal mapping f : V →M , the corresponding moving

Algorithm 4: Parallel Assembly
Input: Target kinematic topology G = (V,E) with root τ and depth d(G)

f : V →M
Output: Parallel Assembly Sequence A

1 d← 1;
2 while d ≤ d(G) do
3 Create empty action queue A;
4 V ← {v ∈ V |d(v) = d};
5 for v ∈ V do
6 m← f(v);
7 m̃c ← f(ṽc);
8 A.enqueue((m, c, m̃c, c̃′));
9 end

10 A.enqueue(A);
11 d← d+ 1;
12 end

92

modules (e.g. m) are determined as well as their parent modules (e.g. m̃c). Then a group

of assembly actions A composed of (m, c, m̃c, c̃′) can be derived.

For each group of assembly actions A ∈ A, all actions can be executed in parallel except

when multiple modules are docking with different connectors of the root module. The group

of assembly actions A with the root module involved is separated into two subgroups: one

group contains the actions for LEFT Face and RIGHT Face of the root module which can

be executed first. The other group contains the actions for TOP Face and BOTTOM Face

of the root module which are executed later. This is because the root module is not fixed to

the ground and it is hard to ensure all modules to be attached can approach the root module

simultaneously. For each assembly action a = (mi, ci,mj , cj) ∈ A, the docking strategy from

Chapter 6 can be applied. A square grid environment is generated once the root module

is determined, with the root module at the center. The grid serves as a routing graph for

navigating modules. Similar to the self-reconfiguration process, when ci is either LEFT Face

or RIGHT Face, a helping module is required to finish this assembly action. In this process,

add a new assembly action (mH,T,mi, c̄i) where mH is a helping module and c̄i is LEFT

Face if ci is RIGHT Face, or the vice versa.

8.5 Experiments

The algorithms presented in this chapter are demonstrated with the SMORES-EP hardware

platform. Several self-reconfiguration tasks and self-assembly tasks are shown in this section.

8.5.1 Self-reconfiguration

Task 1: Walker → Mobile Manipulator

The task is to reconfigure a cluster of SMORES-EP modules from a walker (Figure 8.5a)

into a mobile vehicle with an arm (Figure 8.5b) with eleven modules. The initial and the

goal graph representation are shown in Figure 8.6 where τi is Module 1 and τg is Module 1

respectively. For Gi = (Vi, Ei) and Gg = (Vg, Eg), MCS(τi, τg) only contains two modules

under mapping 1 → 1 and 3 → 8. The result of the virtual module operation is shown

in Figure 8.7. In addition to some equivalent virtual connections, there are two common

93

(a) (b)

Figure 8.5: Reconfigure a walker configuration (a) into a mobile vehicle with an arm config-
uration (b) in which eleven SMORES-EP modules are involved.

12

4

8

5

967

10 11

3

T

T

T

T

T T

T

R
RR

L

B

T

L

T T

L

T

R
L

(a)

1

2 4

8

5

9

6

7

10 11

3

B

T

T

T

TT

R

T

L

B TBB

TT

TT

B

R

L

(b)

Figure 8.6: The graph representation of the walker configuration (a) and the graph represen-
tation of the mobile manipulator configuration (b) are shown. MCS(1, 1) is encircled by “—”
under mapping 1 → 1 and 3 → 8. After removing MCS(1, 1), there are three unconnected
subgraphs in both the current initial configuration and the current goal configuration which
are encircled by “- -”.

connections in MCS(M,M). The rest of module mapping process is shown in Figure 8.8

and Figure 8.9. There are only virtual connections in MCS(M,M), each of which requires

reconfiguration actions. The final mapping f : Vi → Vg is 1 → 1, 3 → 8, 9 → 5, 8 → 3,

2 → 9, 11 → 4, 10 → 2, 4 → 6, 6 → 10, 5 → 7, and 7 → 11 and the corresponding

reconfiguration actions are shown in Table 8.1.

The hardware execution of this plan is shown in Figure 8.10. First, Module 6 and Module

7 have to move away so that Module 5 can move to dock with Module 8. Then Module 7

moves to dock with BOTTOM Face of Module 6, and Module 4 undocks from Module 2 and

94

2

4

8

5

967

10 11
T T

T T

R
R

L

T

T T

L

T

(a)

2 4

5

9

6

7

10 11

3

B

T

T

BT

TB TB

TT

T

(b)

Figure 8.7: The new graph representation of the walker configuration (a) and the new
graph representation of the mobile manipulator configuration (b) are shown. MCS(M,M)
is encircled by “—” under mapping M→M, 9 → 5, 8 → 3, 2 → 9, 11 → 4, and 10 → 2.
After removing MCS(M,M), there are two unconnected subgraphs in the current initial
configuration and three unconnected subgraphs in the current goal configuration which are
encircled by “- -”.

45

67
T

T T

T

(a)

6

7

10 11
TB

(b)

Figure 8.8: MCS(M,M) is encircled by “—” under mappingM→M, 4→ 6, and 6→ 10.
After removing MCS(M,M), there are two unconnected subgraphs in both the current
initial configuration and the current goal configuration which are encircled by “- -”

.

5

7

(a)

7

11

(b)

Figure 8.9: MCS(M,M) is encircled by “—” under mappingM→M, 5→ 7, and 7→ 11.

95

Table 8.1: Reconfiguration actions for Task 1.

Action ID Face ID Face Orientation
Undock 5 TOP Face 4 TOP Face Null
Dock 5 TOP Face 8 BOTTOM Face Null

Undock 7 TOP Face 6 TOP Face Null
Dock 7 TOP Face 6 BOTTOM Face Null

Undock 4 LEFT Face 2 LEFT Face Null
Dock 4 TOP Face 10 BOTTOM Face Null

Undock 6 RIGHT Face 2 RIGHT Face Null
Dock 6 TOP Face 2 BOTTOM Face Null

Table 8.2: The vertex height of modules before and after the reconfiguration process.

v 1 2 3 4 5 6 7 8 9 10 11
h(v) in Gi 3 2 2 1 0 1 0 1 0 1 0
h(v) in Gg 3 2 4 0 0 1 0 1 0 1 0

Figure 8.10: SMORES-EP hardware reconfiguration from a walker to a mobile vehicle with
an arm.

96

moves to dock with Module 10. Finally, Module 6 moves to dock with Module 2 followed

by Module 7. Now Ĝg = (V̂g, Êg) is formed and run the Matching and Mapping algorithm

(Algorithm 3) which shows that this configuration is isomorphic to Gg = (Vg, Eg) and no

further reconfiguration actions are needed. Table 8.2 shows how the vertex height of each

module changes after the reconfiguration actions and, for those modules that need to execute

actions, their heights have no change except for Module 4.

These sequential reconfiguration actions can be executed in parallel by formulating all

docking actions as a self-assembly problem. First execute all undocking actions in Table 8.1

so that these modules are free to move. Then run the parallel algorithm (Algorithm 4) in

which the target topology is the goal configuration, and the mapping is simply f−1 : Vg → Vi

derived from the reconfiguration planner. The algorithm starts from modules in the goal

configuration with depth being 1, but ignores existing connections which are not constructed

by docking actions in Table 8.1. By the mapping, the depth of Module 4 and Module 5 in

the goal configuration are both 2, the depth of Module 6 is 3, and the depth of Module 7 is

4. Hence, the output of the assembly process is first (5,T, 8,B) and (4,T, 10,B) in parallel,

then execute (6,T, 2,B), finally execute (7,T, 6,B).

Task 2: Driver → Snake

This task is to reconfigure a cluster of SMORES-EP modules from a driver (Figure 8.11a)

into a snake (Figure 8.11b) with seven modules. The initial and the goal graph representation

are shown in Figure 8.12 where τi is Module 4 and τg is Module 4 respectively. MCS(τi, τg)

is empty. A virtual module M and a virtual connection (M, τi) are added to Gi and a

similar operation is applied to Gg. Then MCS(M,M) is under mapping M → M and

4 → 4 which can be removed for further configuration decomposition. The final mapping

between these two configurations f : Vi → Vg is 1→ 7, 2→ 5, 3→ 6, 4→ 4, 5→ 3, 6→ 2,

and 7→ 1 and the corresponding reconfiguration actions are shown in Table 8.3.

97

(a) (b)

Figure 8.11: Reconfigure a driver configuration (a) into a snake configuration (b) with seven
SMORES-EP modules involved.

1

2 4

7

6

5

3

TT

T

RR L

B

L

B

B

T
B

(a)

5 247 6 13
TTT BB BT BT BT B

(b)

Figure 8.12: (a) The graph representation of the driver configuration. (b) The graph repre-
sentation of the snake configuration.

Table 8.3: Reconfiguration actions for Task 2.

Action ID Face ID Face Orientation
Undock 1 BOTTOM Face 2 TOP Face Null
Dock 1 TOP Face 3 BOTTOM Face Null

Undock 7 TOP Face 5 BOTTOM Face Null
Dock 7 BOTTOM Face 6 TOP Face Null

Undock 2 RIGHT Face 4 LEFT Face Null
Dock 2 TOP Face 4 BOTTOM Face Null

Undock 5 LEFT Face 4 RIGHT Face Null
Dock 5 BOTTOM Face 4 TOP Face Null

Task 3: Omni-Driver → Mobile Observer

This task is to reconfigure a cluster of SMORES-EP modules from an omni-driver (Fig-

ure 8.13a) into a mobile observer (Figure 8.13b) with nine modules. The initial and the goal

98

(a) (b)

Figure 8.13: Reconfigure a omni-driver configuration (a) into a mobile observer configuration
(b) with nine SMORES-EP modules involved.

1

2

4

7

6

3

T

T

T

R BL

B

B

T

B

5

T

T TTBT
89

(a)

12

4

7

6

5

TT

T

RR L

B

L

B

B

T
B

3

T

T

T

B

8

9

(b)

Figure 8.14: (a) The graph representation of the omni-driver configuration. (b) The graph
representation of the mobile observer configuration.

Table 8.4: Reconfiguration actions for Task 3.

Action ID Face ID Face Orientation
Undock 7 TOP Face 6 BOTTOM Face Null
Dock 7 BOTTOM Face 8 TOP Face Null

Undock 8 TOP Face 1 LEFT Face Null
Dock 8 LEFT Face 1 RIGHT Face Null

Undock 4 TOP Face 1 RIGHT Face Null
Dock 4 RIGHT Face 1 LEFT Face Null

Undock 6 TOP Face 1 BOTTOM Face Null
Dock 6 BOTTOM Face 4 TOP Face Null

99

graph representation are shown in Figure 8.14 where τi is Module 1 and τg is Module 1 re-

spectively. MCS(τi, τg) is under mapping 1→ 1, 2→ 8, and 3→ 9 which can be maintained

during the reconfiguration process. The final mapping for other modules is 4 → 2, 5 → 5,

6 → 4, 7 → 6, 8 → 3, and 9 → 7, and the corresponding reconfiguration actions are shown

in Table 8.4.

8.5.2 Self-assembly

Task 1: Mobile Manipulator

The first task is to form a mobile vehicle with an arm that can reach higher locations as

shown in Figure 8.15g. There are seven modules involved with Module 1 selected as the

0

1 2

5

6

3

4

(a) (b) (c) (d)

(e) (f)

0
3

4

5

6

1 2

(g)

Figure 8.15: SMORES-EP hardware mobile manipulator self-assembly: (a) Execute actions
(0,B, 1,L) and (5,B, 1,R); (b) Execute actions (2,B, 1,T) and (6,T, 1,B); (c) Execute
action (4,T, 6,B); (d) Execute action (3,T, 4,B). (e) — (f) The final assembly. (g) The
target kinematic topology.

100

Table 8.5: Initial locations of all modules in Task 1.

Module x (m) y (m) θ (rad)

Module 0 0.017 0.357 1.142
Module 1 0 0 0
Module 2 0.305 0.129 0.641
Module 3 -0.318 -0.132 0.454
Module 4 -0.318 0.158 0.823
Module 5 0.264 -0.448 -0.763
Module 6 -0.172 -0.380 -2.431

root module mτ which is the closest to the center (Figure 8.15a). The initial locations of

all modules with respect to the root module are shown in Table 8.5. In the target topology

(Figure 8.15g), the root module τ is computed as Module 0. Hence Module 0 in the target

topology G = (V,E) is mapped to Module 1 in the set of modules M on the ground. The

mapping f : V → M that is 0→ 1, 1→ 5, 2→ 2, 3→ 0, 4→ 6, 5→ 4, and 6→ 3 is then

derived by Kuhn-Munkres algorithm.

The assembly sequence starts from all vertices v ∈ V with depth of one in the target

topology which include Module 0, Module 2, Module 5, and Module 6. Because the root

module is involved in this step, the assembly actions are separated into two subgroups.

0

2

3

1

4

5

66

(m)

(m
)

Figure 8.16: The actual path of each module for Task 1.

101

Module 0 and Module 5 start moving first to dock with LEFT Face and RIGHT Face of

Module 1 respectively (Figure 8.15a), then Module 2 and Module 6 begin the docking process

with TOP Face and BOTTOM Face of the root module (Figure 8.15b). In this way, even

Module 1 can be moved slightly after docking with Module 0 and Module 5, Module 2 and

Module 6 can still dock with Module 1 successfully. Lastly, Module 4 and Module 3 execute

the assembly actions (Figure 8.15c and Figure 8.15d). It takes 130 seconds to finish the

whole assembly process with paths shown in Figure 8.16.

Task 2: Holonomic Vehicle

The second task assembles nine modules into a holonomic vehicle in order to move as in

Figure 8.17f. Based on the initial locations of all modules, the root module mτ is then

selected as Module 1. Then the pose of every module with respect to mτ is computed and

60

4

7
1

5

8

2

3

(a) (b) (c) (d)

(e)

3
7

8

4

015

26

(f)

Figure 8.17: SMORES-EP hardware holonomic vehicle self-assembly: (a) Execute assembly
actions (0,T, 1,L) and (5,T, 1,R); (b) Execute assembly actions (4,T, 1,B) and (8,T, 1,T);
(c) Execute assembly actions (3,T, 8,B), (2,T, 5,B), (7,T, 4,B), and (6,T, 0,B). (d) —
(e) The final assembly. (f) The target kinematic topology.

102

Table 8.6: Initial locations of all modules in Task 2.

Module x(m) y(m) θ(rad)

Module 0 -0.421 0.388 -0.760
Module 1 0. 0. 0.
Module 2 -0.110 -0.469 1.445
Module 3 0.386 -0.143 0.509
Module 4 -0.343 0.082 -2.961
Module 5 0.118 -0.472 1.700
Module 6 0.215 0.428 -2.058
Module 7 -0.342 -0.044 -1.249
Module 8 0.270 -0.317 2.416

shown in Table 8.6. The root module of the target topology G = (V,E) in Figure 8.17f

is Module 0. Given Module 0 in the target topology is mapped to Module 1 in this set of

modules M on the ground, the optimal mapping f : V → M is derived as 0 → 1, 1 → 0,

2 → 8, 3 → 5, 4 → 4, 5 → 6, 6 → 3, 7 → 2, and 8 → 7. The assembly process is shown

in Figure 8.17a — Figure 8.17c and the final assembly is shown in Figure 8.17d and Figure

8.17e. The behavior that the group of assembly actions is separated into two when the root

module is involved can be seen to ensure the success of the docking process. Then the rest of

the assembly actions can be executed in parallel. Module 2, 3, 6, and 7 begin moving at the

same time to locations close to their destinations, adjust their poses, and finally approach to

1

0

2

3

4

5

6

7

8

(m)

(m
)

Figure 8.18: The actual path of each module for Task 2.

103

execute docking actions. It takes 103 seconds in total to finish the whole assembly process.

With the proposed planner and controller, the recorded actual path of every module in the

experiment is illustrated in Figure 8.18.

Task 3: RC Car

The last task assembles seven modules into a vehicle in order to push heavy items shown

in Figure 8.19f. The root module mτ is selected as Module 2 that is the closest module to

the center of the cluster. Then the initial locations of all modules with respect to mτ are

shown in Table 8.7. The root module τ of the target topology G = (V,E) is Module 0, and

given τ is mapped to mτ , the mapping f : V → M that is 0 → 2, 1 → 1, 2 → 3, 3 → 5,

4 → 7, 5 → 6, and 6 → 4 is derived. The assembly actions are shown in Figure 8.19a —

Figure 8.19c. For the first step, Module 1 needs to dock its RIGHT Face with Module 2 LEFT

Face and Module 3 needs to dock its LEFT Face with Module 2 RIGHT Face. These two

assembly actions cannot be executed directly since the LEFT Face and RIGHT Face cannot

be aligned directly. This step needs the help of a helping module shown in Figure 8.19b. In

2

1

3

7

4

5

6

(a) (b) (c)

(d) (e)

4

13

60
25

(f)

Figure 8.19: SMORES-EP hardware RC car self-assembly: (a) Execute actions (1,R, 2,L)
and (3,L, 2,R); (b) A helping module is used to execute the current docking action; (c)
Execute actions (4,T, 3,B), (7,T, 1,B), (6,B, 3,T), and (5,B, 1,T). (d) — (e) The final
assembly. (f) The target kinematic topology.

104

Table 8.7: Initial locations of all modules in Task 3.

Module x(m) y(m) θ(rad)

Module 1 0.070 0.155 -1.352
Module 2 0 0 0
Module 3 -0.066 -0.250 0.997
Module 4 -0.299 0.170 0.811
Module 5 0.311 0.197 -2.539
Module 6 0.330 -0.373 -2.728
Module 7 -0.487 0.218 -0.436

this experiment, there is only one helping module. Similar to common docking actions, the

helping module first navigates to a location close to Module 3, then adjusts its pose to align

its TOP Face, and approaches Module 3 RIGHT Face for docking. Then it lifts Module 3

so that Module 3 can adjust its LEFT Face. Finally, the helping module delivers Module

3 to the desired location for docking with Module 2 RIGHT Face. This process repeats

for Module 1 RIGHT Face. After both Module 1 and Module 3 are docked with the root

module (Module 2), the rest of the four modules can execute assembly actions in parallel. It

takes 260 seconds in total to finish this assembly task, though 210 seconds are consumed by

the helping module. More helping modules working in parallel would decrease the duration.

The final assembly result is shown in Figure 8.19d and Figure 8.19e. The recorded path in

the experiment is shown in Figure 8.20.

8.6 Conclusion

This chapter addresses the self-adaption planners for modular robots using mobile-style re-

configuration, including self-reconfiguration and self-assembly. These planners are based on

the graph representation of modular robots. For self-reconfiguration, an efficient algorithm

is developed to do configuration decomposition iteratively by adding virtual modules and

virtual connections so that each module in the initial configuration is mapped to a module

in the goal configuration with which reconfiguration actions can be computed. For self-

assembly, given a target kinematic topology, modules are mapped by those in the target

105

1

3

6

7
5

(m)

(m
)

4

2

Figure 8.20: The actual path of each module in Task 3. The blue blocks without number
labeled represent the helping modules.

configuration in an optimal way and then the assembly actions can be computed and exe-

cuted in parallel. This parallel assembly planner can also speed up the self-reconfiguration

process by formulating all necessary docking actions as a self-assembly problem.

106

Chapter 9

Manipulation Planning

This chapter presents the manipulation planning for modular robots in chain-type structures,

such as SMORES-EP and CKBot. Once a suitable morphology is chosen for a scenario,

a generic approach for control and motion planning is needed in order to handle various

morphologies and environments. This chapter excerpts heavily from [74] and [80].

Motion planning in high-dimensional space is a challenging task. In order to perform

dexterous manipulation in an unstructured environment, a robot with many DOFs is usually

necessary, which also complicates its motion planning problem. Real-time control brings

about more difficulties in which robots have to maintain stability while moving toward

the target. Redundant systems are common in modular robots that consist of multiple

modules and are able to transform into different configurations with respect to different

needs. Different from robots with fixed geometry or configurations, the kinematics model

of a modular robotic system can alter as the robot reconfigures itself, and developing a

generic control and motion planning approach for such systems is difficult, especially when

multiple motion goals are coupled. A new manipulation planning framework is developed

in this chapter. The problem is formulated as a sequential linearly constrained quadratic

program (QP) that can be solved efficiently. Some constraints can be incorporated into this

QP, including a novel way to approximate environmental obstacles. This solution can be

used directly for real-time applications or as an off-line planning tool, and it is validated

107

and demonstrated on the CKBot and SMORES-EP modular robot platforms.

9.1 Introduction

Manipulation tasks are common in robotics applications. In unstructured, cluttered envi-

ronments, these tasks are usually executed by redundant robots to reach larger workspaces

while avoiding obstacles and other constraints. This results in motion planning in high-

dimensional space.

The motion planning problem is usually solved by some well developed framework (e.g.

MoveIt! [23]) containing three components: a path planner, a trajectory generator, and a

tracking controller. The path planner is responsible for generating collision-free paths. The

trajectory generator smooths the computed paths and generates trajectories that can be

parameterized by time while satisfying motion constraints, such as maximum velocities and

accelerations. The tracking controller guarantees the motion of the robot when executing

the generated trajectories. This type of framework has shown successful applications in

many scenarios but rarely achieves real-time performance for all three components in high

dimensions. Some approaches combine path planning with trajectory optimization that can

directly construct trajectories resulting from optimization over a variety of criteria. These

approaches are related to optimal control of robotic systems.

Modular robots are designed to be versatile and adaptable with respect to different

tasks, environments, functions, or activities. A single module in a modular robotic system

usually has one or more DOFs. Combining many modules to form versatile systems results

in robots requiring representations with high dimensions. This dimensionality makes control

and motion planning difficult. That the system is not a single structure but can take a very

large number of configurations (typically exponential in the number of modules) requires

an approach that can be applied to arbitrary configurations. For example, a modular robot

configuration built with PolyBot modules [159] is shown in Figure 9.1 which has multiple

serial kinematic chains. This is different from common multi-limb systems with a single

base. These systems can be modeled such that chains are decoupled.

In a modular robotic system, modules usually are approximated by simple shapes such

108

Figure 9.1: A modular robot configuration built by PolyBot modules is composed of multiple
chains [159].

as a cube or a sphere. This is often useful for reconfiguration but can make manipulation

more complex. Rather than two long fingers in a parallel jaw gripper, to obtain similar

geometry, a modular robot may require many modules to form those long fingers. This

results in grasping type of motions in which two or more chains can behave as a multi-arm

system to clamp an object [126]. Hence, in order to grasp some object, motion planning

for multiple (potentially high DOF) chains are necessary. In addition, their motions are

strongly coupled. This fact leads to a more complicated control and planning problem.

This chapter presents a new approach for real-time manipulation planning and control

as well as a novel way to approximate environmental obstacles, and apply it to two modular

robotic systems. In order to solve the problem in general, a universal kinematics model is

required for arbitrary configurations. This approach concomitantly can be easily extended,

such as a dual-arm system or a modular robot configuration that has multiple chains. A

quadratic programming approach that can be solved efficiently for real-time applications is

proposed. This requires that system control stability, hardware motion constraints (joint

limits and actuation limits), and collision avoidance can be incorporated into this quadratic

program (QP) as linear constraints. One advantage of this approach is that the large vari-

ety of configurations and kinematic structures found from modular robotic systems can be

represented easily as linear constraints, including situations where multiple portions of the

robot may have different simultaneous goals. This approach can also be used as an off-line

109

trajectory planner by simple Euler integration. The framework is tested and evaluated on

CKBot and SMORES-EP in the end.

9.2 Related Work

High-dimensional motion planning and control have been studied over several decades. This

section reviews several types of approaches from previous work and some special approaches

for modular robots.

9.2.1 Motion Planning for Manipulation

Artificial potential field manipulation planning methods can avoid searching in high-

dimensional configuration space, planning in operational space directly [61]. Robots can

avoid collision in real time, but may get stuck at local minima. Analytical navigation

functions that have a unique minimum at the goal configuration avoiding local minima are

shown in [110]. However, it is usually computationally expensive to build such a navigation

function in general. A Monte Carlo technique was applied to escape local minima of the

potential by executing Brownian motions [7].

Sampling-based approaches have been used widely for high-dimensional motion planning

problems. The probabilistic roadmap (PRM) has been demonstrated on planar articulated

robots with many DOFs [3, 59]. Expansive configuration space was proposed to resolve

the narrow passage issue which is a common problem for sampling-based planners [50].

Rapidly-exploring Random Trees (RRT) approach was later presented in [67] to deal with

nonholonomic constraints. An optimal sampling-based planner (RRT∗) is introduced in [58]

with less efficiency. These approaches require post-processing to generate smooth trajectories

in order to be executable for real tasks.

Search-based planners rely on the discretization of the space. However, these approaches

are generally not suitable for high-dimensional problems. For example, naïve A∗ can rarely

scale to large complicated planning problems. In order to increase the efficiency of these

approaches, a number of suboptimal heuristic searches have been proposed [33, 70, 71].

These methods are promising but are currently computationally inefficient when solving

110

motion planning problems in high-dimensional space.

Once a feasible path is found, a trajectory generator is needed to smooth and shorten the

computed path with time parameterization. Trajectories are modeled as elastic bands that

need to maintain equilibrium states under internal contraction forces and external repulsion

forces [11, 108]. Obstacles in the workspace are considered directly which is also beneficial

for real-time trajectory modification while a precomputed path is necessary.

Another class of planners is related to optimal control. Rather than separate the planning

process into two phases (path planning and trajectory planning), trajectories are constructed

directly by these frameworks which optimize over a variety of criteria. A global time-optimal

trajectory generator is introduced in [130]. It combines a grid search with a local optimiza-

tion to obtain the global optimal solution. This approach requires the representations of

obstacle regions in configuration space which is difficult to derive for high-dimensional prob-

lems. CHOMP formulates the cost to be the combination of trajectory smoothness and

obstacle avoidance, and gradients for these two terms are needed [109, 170]. This approach

uses pre-computed signed distance fields for collision checking. A similar idea is used in

ITOMP that can also deal with dynamic environments [104]. In contrast, STOMP [55] can

also handle more general objective functions for which gradients are not available by using

trajectory samples, but can be difficult to determine the number of samples. A sequential

convex optimization approach is presented in [122] which adds new constraints and costs

during the motion so as to tackle a larger range of motion. Collision is detected by check-

ing the intersection of the swept-out volume of the robot in an interval and obstacles, and

a collision-avoidance penalty gradient can be incorporated into the optimization problem

to ensure safety. These works mainly focus on single-high-DOF-arm manipulation tasks.

Given the trajectories of end-effectors, an optimal control framework is formulated to solve

whole-body manipulation tasks [128]. A repulsive velocity can be applied to any rigid body

whenever it collides with any obstacle based on a physical simulator. Reachable sets are

used for safe and real-time trajectory design in [46], but the reachability analysis has to be

offline. Some optimal controllers handle the obstacles by mixed integer programming which

111

is known to be an NP-hard problem [121].

The approach presented here is also related to optimal control and differs from these

previous works in two ways: 1. the way in which the motion planning problem is formulated

and 2. the simple model that approximates the environmental obstacles. Multiple motion

goals are incorporated into the objective function in the form of feedback controllers to

guarantee the trajectory tracking performance or efficient search for navigation, and the

output can be applied to the system directly to achieve real-time performance. During

the motion, both the objective function and constraints may be updated according to the

current scenario which allows the approach to tackle a wider range of tasks. For collision

avoidance, a new way to simplify obstacles dynamically during the motion is presented, and

the collision avoidance constraint can be modeled as linear constraints in order to solve the

optimization problem efficiently. A collision-avoidance penalty is added to the objective

function when any rigid body is near any obstacle in the form of the projected motion from

the rigid body to this obstacle. This approach is well suited for real-time applications since

its output can be applied on robotic systems directly in real-time, or can be used as an

off-line trajectory planner by integrating the output over time.

9.2.2 Modular Robot Control and Planning

Modular robots are inherently systems with many DOFs. They are usually composed of a

large number of modules with each module has one or more DOFs. This chapter addresses

the manipulation tasks of modular robots that form configurations in tree topologies. That is

they are constructed from multiple serial chain configurations without forming loops. Work

related to manipulation of modular robot systems includes inverse kinematics for highly

redundant chains using PolyBot [2, 159], and constrained optimization techniques with non-

linear constraints [31]. Due to complicated constraints in these approaches, real-time appli-

cations for large systems cannot be guaranteed and numerical issues have to be addressed

when solving the optimization problem in the presence of obstacles. Another set of related

work includes controller design for modular robots, such as an adaptive control approach

using a neural network architecture [89], a virtual decomposition control approach [168], a

112

distributed control method with torque sensing [84], and a centralized controller [36]. These

approaches consider the control problem in a free environment and require extra motion

planning to fully control the system in a complex environment.

9.3 Kinematics For Modular Robots

In this section, a general kinematics model for modular robots is derived. For other manip-

ulators, a similar technique can be applied to derive necessary models in order to utilize this

planning framework.

9.3.1 Kinematics Graph

The representation of a modular robot configuration is already discussed in Chapter 7 which

is an undirected graph G = (V,E). Each vertex v ∈ V represents a module and each edge

e ∈ E represents the connection between two modules. In order to further describe the

kinematics model of a modular robot configuration, a module graph is used to model a

module’s topology which includes all connectors and joints. A module graph is a directed

graph Gm = (Vm, Em): each vertex is a rigid body in the module which is either a connector

or the module body, and each edge represents how two adjacent rigid bodies are connected.

The transformations among all rigid bodies are determined by the joint set and geometry.

For example, a CKBot UBar module in Figure 9.2a is a single-DOF module as well as four

connectors (TOP Face, BOTTOM Face, LEFT Face, and RIGHT Face). A frame is attached

to each rigid body (T for TOP Face, B for BOTTOM Face, L for LEFT Face, R for RIGHT

Face, andM for the module body). For simplicity,M is attached to the center of the joint

rotation axis and the frame for every connector is attached to the center of it, and when

the module joints are in their zero positions, all rigid bodies are in the same orientation

and the translation offsets among them are determined by the module geometry. Let B be

fixed inM, then the homogeneous transformations amongM, L, and R are invariant of the

joint parameter θ because they are rigidly connected. Only the homogeneous transformation

between M and T is related to θ. This relationship can be fully represented in a directed

graph shown in Figure 9.3a. The edge direction denotes the direction of the corresponding

113

(a) (b)

Figure 9.2: (a) A CKBot UBar module has one DOF and four connectors. (b) A CKBot
CR module has one DOF and six connectors.

(a) (b)

Figure 9.3: (a) The module graph of a CKBot UBar module in which gMB, gBM, gML,
gLM, gMR, and gRM are invariant of θ. (b) The module graph of a CKBot CR module in
which gMBa , gBaM, gMBt , gBtM, gMT , gTM, gML, gLM, gMR, and gRM are invariant of θ.

forward kinematics. Gm is the set of unique module graphs Gm for a modular robotic system

since some systems have more than one type of module (e.g., CKBot in Figure 9.2).

In general, given a module m with connector set C and joint set Θ, a frame C is attached

to each connector c ∈ C and frame M is attached to the module body. Let mapping

gF1F2 : Q → SE(3) describe the forward kinematics from F1 to F2 in joint space Q, then

∀c ∈ C, gMC and gCM can be defined with respect to Θ. The results for CKBot CR modules

and SMORES-EP modules are shown in Figure 9.3b and Figure 9.4. With a module graph

114

(a) (b)

Figure 9.4: (a) A SMORES-EP module has four DOFs and four connectors. The frames of
all rigid bodies are shown and B is fixed in M. (b) The module graph of a SMORES-EP
module in which gMB and gBM are invariant of Θ = (θl, θr, θp, θt).

model, it is easy to obtain the kinematics graph GK = (VK , EK) for a modular robot

configuration which is constructed by composing the modules by connecting connectors. A

directed edge is used to denote each connection and the transformation between the two

mating connectors is fixed since they are rigidly connected. Using this kinematics graph, a

kinematic chain from frame F1 to frame F2 can be derived by following the shortest path

GK : F1 F2. This creates a graph with no loops. A simple configuration built by two

CKBot UBar modules is shown in Figure 9.5a. FrameW is the world frame and module m1

is fixed to it via its BOTTOM Face. The kinematics graph for this configuration is shown

(a)

(b)

(c)

Figure 9.5: (a) A configuration by two CKBot UBar modules. (b) The kinematics graph
model of the configuration. (c) The kinematic chain from W to T2.

115

in Figure 9.5b and the kinematic chain from W to T2 shown in Figure 9.5c. All the edges

have fixed homogeneous transformations except for edge (M1, T1) and edge (M2, T2), and

it can be concluded that the forward kinematics mapping is gWT2 : T2 → SE(3) where Tp

represents the p-torus. However, it can be seen that all the edges in the shortest path from

W to L1 have fixed homogeneous transformations, so L1 is fixed in W.

Similar to the configuration discovery algorithm (Algorithm 1), the kinematics graph

can be built by visiting modules in breadth-first-search order. The given configuration is

traversed from the module fixed to the world frame W. When visiting a new module m,

denoting its parent via its connector c as m̃ and the mating connector of m̃ as c̃, record

the fixed homogeneous transformation gCC̃ in which frame C and frame C̃ are attached to

c and c̃ respectively. Not until all modules are visited, is the GK = (VK , EK) of the

given configuration constructed. With this structure, there is no need for the case-by-case

derivation of the kinematics as long as the kinematics for each type of module and connection

are defined.

9.3.2 Kinematics for Modules

Recall that given a module m with connector set C and joint set Θ, a frame C is attached

to each connector c ∈ C and frameM is attached to the module body. For a joint θ ∈ Θ, a

twist ξ̂θ ∈ se(3) can be defined with respect toM in which ξθ = (vθ, ωθ) ∈ R6 is the twist

coordinates for ξ̂θ1, and ξ is the set of the twist associated with each joint. For homogeneous

transformation gMC , it is straightforward to have

gMC = gMC(Θ
C) =

∏
i

exp(ξ̂ΘC
i
ΘCi) gMC(0) (9.1)

in which ΘC denotes the parameter vector in the joint space of the kinematic chain fromM

to C. If no joints are involved in the kinematic chain from M to C, then C is fixed in M

and gMC is a constant determined by the geometry of the module. gCM is just the inverse

of gMC .
1Refer to Chapter 2 in [97] for background.

116

(a)

(b) (c)

(d) (e)

Figure 9.6: (a) Kinematics for SMORES-EP modules. (b) — (e) Four cases to connect R
and T .

9.3.3 Kinematics for Chains

A kinematic chain from frame S to F can be obtained as GK : S F where S and F are two

vertices ofGK . In this kinematic chain, all homogeneous transformations between connectors

(e.g., gT1B2 in Figure 9.5c) are fixed and can be easily computed. The relative orientation

between connectors is determined by examining the connector design. For example, there

are four cases for connecting SMORES-EP modules shown in Figure 9.6b — Figure 9.6e

due to the arrangement of the magnets on the connector. The homogeneous transformation

gSF can be computed by multiplying the homogeneous transformation of each edge of path

GK : S F in order. In particular, let S be world frame W, if module m1,m2, · · · ,mN

are involved in this chain, then the position of the origin of F in W is given by

pWF = gWF

[
0 0 0 1

]ᵀ
(9.2)

and the instantaneous spatial velocity of F is given by the twist

V̂ s
WF =

N∑
i=1

Ni∑
j=1

(
∂gWF
∂θij

g−1
WF

)
θ̇ij (9.3)

117

in which θij is the jth joint parameter of module mi involved in this chain and the number

of joints of module mi involved in this chain is Ni. Rewrite Eq. (9.3) in twist coordinates as

V s
WF = JsWF Θ̇WF (9.4)

in which

ΘWF = [θ11 · · · θ1N1 θ21 · · · θ2N1 · · · θN1 · · · θNNn]ᵀ (9.5)

JsWF =

[
J1 J2 · · · JN

]
(9.6)

Ji =

[(
∂gWF
∂θi1

g−1
WF

)∨ (
∂gWF
∂θi2

g−1
WF

)∨
· · ·

(
∂gWF
∂θiNi

g−1
WF

)∨]
(9.7)

and JsWF is the spatial chain Jacobian.

Define the twist of the jth joint of module mi with respect to W as ξ′ij that is

ξ′ij =

(
∂gWF
∂θij

g−1
WF

)∨
= AdgWMi

ξij

in which AdgWMi
is the adjoint transformation2 and ξij is defined in Section 9.3.2 for each

joint in a module with respect to its module body frame. Then Ji becomes

Ji =

[
ξ′i1 ξ′i2 · · · ξ′iNi

]
(9.8)

With this spatial chain Jacobian, the velocity of the origin of frame F is

vsF = V̂ s
WFp

W
F =

(
JsWF Θ̇WF

)∧
pWF (9.9)

For a module mi in the kinematic chain GK :W F (Mi is a vertex in the correspond-

ing path), a sub-kinematic chain GK :W Mi can be defined with joint parameter vector

ΘWMi =
[
θ11, θ12, · · · , θīj̄i

]ᵀ where θīj̄i is the parameter of the j̄ith joint of module mī. For

example, take the sub-kinematic chain from W to M2 in Figure 9.5c, then i = 2, ī = 1,
2Refer to Chapter 2 in [97] for adjoint transformation definition.

118

j̄i = 1, since there is only one joint between W and M2 which is the 1st joint of module

m1. Then the spatial module Jacobian JsWMi
or JsMi

for simplicity can be defined as

JsMi
=

[
ξ′11 ξ′12 · · · ξ′

īj̄i

]
(9.10)

and the velocity of the origin ofMi is

vsMi
=
(
JsMi

Θ̇WMi

)∧
pWMi

(9.11)

By replacing all twists associated with joints after the j̄ith joint of module mī in the spatial

chain Jacobian of chain GK :W F with 6× 1 zero vectors, the spatial module Jacobian

can also be written as

JsMi
=

[
ξ′11 ξ′12 · · · ξ′

īj̄i
06×1 · · · 06×1

]
(9.12)

then the velocity of the origin ofMi is represented as

vsMi
=
(
JsMi

Θ̇WF
)∧

pWMi
(9.13)

9.4 Control and Motion Planning

9.4.1 Control

Given the kinematic chain GK :W F , the goal of the control task is to move pWF (or pF

for simplicity) — the position of F — to follow a desired trajectory.

Let p̃F = p̃F (t) be the desired trajectory for the robot to track and ṽsF (or ṽF for

simplicity) is the derivative of p̃F , and the error and its derivative are defined as

e = p̃F − pF (9.14)

ė = ˙̃pF − ṗF = ṽF − vF (9.15)

119

The error e can converge exponentially to zero as long as it satisfies

ė+Ke = 0 (9.16)

in which K is positive definite. Substitute e and ė:

ṽsF − vsF +K(p̃F − pF) = 0 (9.17)

With Eq. (9.9), Eq. (9.17) can be rewritten as

(JsWF Θ̇WF)
∧
pF = ṽsF +K(p̃F − pF) (9.18)

Eq. (9.18) is the control law to control the position of frame F , namely Θ̇WF (or Θ̇F for

simplicity) — the velocities of all involved joints that satisfy this equation — can move pF

to p̃F in exponential time.

Suppose there are α motion goals p̃F1 , p̃F2 , · · · , p̃Fα , then the control law for all motion

goals can be written as

JP = Ṽ + K(P̃−P) (9.19)

which is the stack of Eq. (9.18) for each motion goal. This makes the control problem for

multiple motion goals easier without considering the fact that some motion goals may be

coupled. That is, some kinematic chains may share DOFs. The work needs to do is only

building an Eq. (9.18) for each individual motion goal and then stacking them as linear

constraints. Building a specific model for different combinations of motion goals is not

necessary.

Recall that a modular robotic system is usually redundant so that there can be an infinite

number of solutions to Eq. (9.19). This problem is formulated as a quadratic program:

minimize
1

2
Θ̇ᵀΘ̇

subject to JP = Ṽ + K(P̃−P)
(9.20)

120

where Θ is the set of joint parameters in kinematic chains GK : W F1, GK : W F2,

· · · , GK :W Fα. Then solving (9.20) yields the minimum norm solution of joint velocities

at every moment.

The joint position and velocity limits can be added to the quadratic program as inequality

constraints as follows:

Θmin −Θ

∆t
≤ Θ̇ ≤ Θmax −Θ

∆t
(9.21)

Θ̇min ≤ Θ̇ ≤ Θ̇max (9.22)

in which ∆t is the time duration for the current step. Due to these two constraints, K

cannot be too aggressive or solutions may not be obtained.

This optimization approach is helpful for many types of motion tasks. The controller

can be used to move pF to a desired position p̃F by setting ṽsF = 0, and it can also control

pF to move at a desired velocity by increasing p̃F by ṽF∆t for every time step.

9.4.2 Motion Planning

The goal of the motion planning task is to enable a cluster of modules to navigate collision-

freely in an environment with obstacles.

Frame Boundaries

The cluster of modules can be kept in any polyhedral region in space which is defined by the

boundaries of the environment. For a module mi in the kinematic chain GK : W F , let

ŝij be the unit direction vector from pWMi
(or pMi for simplicity) — the origin ofMi in world

frame W — to the jth face of the environment polyhedron perpendicular with distance dij ,

then if enforcing the constraint

vsMi
• ŝij = (JsMi

Θ̇)∧pMi • ŝij ≤ dij (9.23)

for every side of the environment polyhedron, pMi will never cross the boundary of the

environment as long as this kinematic chain follows the velocity for much less than 1 second.

121

(a) (b)

Figure 9.7: (a) Environment boundary. (b) Sphere obstacle avoidance.

Using a sphere with radius ri to approximate the geometry size of module mi, then the

constraint

vsMi
• ŝij = (JsMi

Θ̇)∧pMi • ŝij ≤ dij − ri (9.24)

will ensure that the module body will always be inside the environment boundaries (Fig-

ure 9.7a). Thus, applying constraint (9.24) to all modules in the kinematic chain will ensure

the chain will stay inside the environment.

Obstacle Avoidance

It is hard to represent the collision-free space analytically in joint space due to the high

DOFs of modular robotic systems. Here an alternative is proposed. The obstacles can be

approximated by a set of spheres using a sphere-tree construction algorithm [10]. Similar

ideas have been explored in [31, 167]. There are two issues using this idea. This collision-

avoidance constraint is modeled as the condition that the distance between every sphere

approximating the robot and every sphere approximating the obstacles is greater than the

sum of their radius. This leads to quadratic constraints which are not suitable for real-time

applications of large systems due to numerical issues. In addition, in order to approximate

obstacles with decent accuracy, many spheres have to be generated. For example, a block

object shown in Figure 9.8a is constructed by multiple spheres. A more accurate approxima-

tion of this object requires more spheres (Figure 9.8b — Figure 9.8d). An advantage of this

122

(a) (b) (c) (d)

Figure 9.8: A block obstacle (a) is approximated with 3 levels of spheres. (b) 8 spheres in
level 1. (c) 64 spheres in level 2. (d) 470 spheres in level 3.

approach is that obstacles automatically have some level of buffer that can further guarantee

motion safety. However, using a small number of spheres to approximate an obstacle can

lead to too conservative planning space not finding collision-free paths when they exist. On

the other hand, if there are a large number of spheres, there will also be a large number of

constraints that can prohibit the optimization problem from being solved efficiently without

numerical issues.

In this chapter, the obstacle avoidance requirement is modeled as linear constraints which

are efficient to solve stably. For a module mi in the kinematic chain GK : W F , let s̃ij
be the unit direction vector from pMi to the center of the jth obstacle sphere oj in world

frame W with radius roj . Imaging a plane Pij with s̃ij as its normal vector and o′j being the

point of tangency to this sphere, then if enforcing the constraint

vsMi
• s̃ij = (JsMi

Θ̇)∧pMi • s̃ij ≤ ‖o′j − pMi‖ − ri (9.25)

in which o′j = oj − rojsij for every obstacle sphere, pMi will never touch an obstacle (Fig-

ure 9.7b). In order to enable the system to safely navigate the environment, this constraint

has to be applied for every module.

In order to resolve the difficulty that there can be a large number of obstacle spheres

leading to a large number of constraints, a novel way is presented to significantly simplify

these constraints as a pre-processing step for optimization. As mentioned, for module mi

and the jth obstacle sphere, compute an obstacle plane Pij to build a linear constraint. If

another obstacle sphere and module mi are perfectly separated by Pij , then this obstacle

123

(a) (b)

Figure 9.9: (a) A configuration built by 14 CKBot UBar modules is placed in a cluttered
environment with 6 obstacles. (b) Apply the sphere-tree construction algorithm on all
obstacles and the total number of obstacle spheres is 373. For the module inside the circle
at its current state, only 5 highlighted obstacle spheres are necessary for collision avoidance
and their obstacle planes are shown.

sphere can be ignored for mi at the current planning step, because as long as module mi

never intersects with obstacle plane Pij ,mi cannot touch this obstacle sphere. By this simple

rule, the set of obstacle spheres can be refined by iteratively applying an erase-remove idiom

technique efficiently for real-time performance. For example, a robot configuration built

by fourteen CKBot UBar modules is placed in a cluttered environment where there are six

obstacles (Figure 9.9a). After applying the sphere-tree construction algorithm, 373 obstacle

spheres are derived in total shown in Figure 9.9b. For the module circled in the figure,

after refining the set of all obstacle spheres, only five obstacle spheres need to be considered.

Their obstacle planes are shown in Figure 9.9b. In the current step, Obstacle 1 and Obstacle

6 are behind other obstacles so they can be ignored. And for the rest of the obstacles, only

five spheres are needed to approximate these obstacle-avoidance constraints.

9.4.3 Integrated Control and Motion Planning

With the control law in Section 9.4.1 and the motion constraints in Section 9.4.2, the control

and motion planning problem for multiple kinematic chains GK : W Fi, i = 1, 2, · · · , α

124

can be formalized as the following quadratic program with linear constraints:

minimize 1
2Θ̇ᵀΘ̇

subject to JP = Ṽ + K(P̃−P)

Θmin−Θ
∆t ≤ Θ̇ ≤ Θmax−Θ

∆t

Θ̇min ≤ Θ̇ ≤ Θ̇max

(JsMi
Θ̇)∧pMi • ŝij ≤ dij − ri ∀(Mi, fj) ∈ VK × F

(JsMi
Θ̇)∧pMi • s̃ik ≤ ‖o′k − pMi‖ − ri ∀(Mi, Sk) ∈ VK × Si

(9.26)

in which F is the set of all faces of the environment polyhedron and fj is the jth face, S

is the set of all spheres approximating the environmental obstacles, Si ⊆ S is the current

set of obstacle spheres under consideration for module mi, and Sk is the kth sphere in Si.

By solving this quadratic program, the minimum norm solution that satisfies the hardware

limits, control requirement, and motion constraints can be obtained for the current time

step given the current state of every kinematic chain GK : W Fi where i = 1, 2, · · · , α,

the desired velocity, and the position of the origin of each frame Fi.

This formulation can be used for motion tasks with simple constraints (e.g., when ob-

stacles are far from robots and motion goals). The equality constraint enables the motion

goal to be achieved very fast with suitable gains. However, this can also cause difficulties

for optimization. For complicated scenarios, a sequential convex optimization formulation

in which the objective function and constraints are updated when encountering obstacles is

proposed. Initially the objective function is in the following form:

f(Θ̇) = ‖Θ̇‖2 + λ‖JP− (Ṽ + K(P̃−P)‖2 (9.27)

in which λ is a weight to address the significance of the feedback controller. In order to

avoid entering space that is hard to maintain safety, aggressive motions toward obstacles

are penalized by adding ‖vsMi
• sij‖2 to the objective function when the distance between

module body frameMi of the robot and the jth obstacle is less than dmin, and the objective

125

function becomes

f(Θ̇) = ‖Θ̇‖2 + λ‖JP− (Ṽ + K(P̃−P)‖2 + µij‖vsMi
• sij‖2 (9.28)

in which µij is also a weight. The new penalizing term means minimizing the motion of this

module mi toward the jth obstacle sphere. It is necessary to check every module to update

the objective function and this can be computed easily by sphere-to-sphere distance.

If module mi makes contact with the jth obstacle sphere, this module will be forced to

move away by defining a repulsive velocity as the normal to the obstacle plane. This can be

done by adding a hard inequality constraint

vsMi
• sij =

(
JsMi

Θ̇
)∧

pMi • sij ≤ γij (9.29)

in which γij is bounded between −‖vsMi
‖ and 0. This constraint can force module body

frame Mi to move away from the jth obstacle sphere. Note that the previously added

penalizing term for this module µij‖vsMi
• sij‖2 is removed from the objective function. The

larger γij is, the faster the moduleMi moves away from the jth obstacle.

9.4.4 Iterative Algorithm for Manipulation Planning

The set of module graph Gm described in Section 9.3.1 and the twist set ξ described in

Section 9.3.2 associated with all the joints in different type of modules are computed and

stored. For a modular robot configuration G, assuming the base module m̄ and how it is

attached to the world frame W as well as the motion goals p̃F1 , p̃F2 , · · · , p̃Fα for frame F1,

F2, · · · , Fα respectively are known, the set of all faces of the environment polyhedron is

F and the set of all spheres approximating environmental obstacles is S, the full algorithm

framework is shown in Algorithm 5 with following functions:

• BFS(G,Gm, m̄): Traverse a modular robotic configuration G in breadth-first-search

order starting from m̄ to construct the kinematics graph GK = (VK , EK);

• GetChain(GK ,F): Return the kinematic chain from W to F in GK ;

126

Algorithm 5: Control and Motion Planning
Input: ξ, Gm, m̄, F1, F2, · · · , Fα, {p̃Fi(t)|0 ≤ t ≤ T, i = 1, 2, · · · , α}, F , S
Output: result

1 GK ← BFS(G,Gm, m̄);
2 GK :W Fi ← GetChain(GK ,Fi), i ∈ [1, α];
3 Initialize Θ;
4 Initialize K and ∆t;
5 t← 0;

6 while
α∑
i=1
‖pFi − p̃Fi(T)‖ ≥ ε do

7 Compute ŝij ∀(Mi, fj) ∈ VK × F ;
8 Compute Si ⊆ S ∀Mi ∈ VK and s̃ik ∀Sk ∈ Si;
9 Θ̇← SolveQP(GK ,F1,F2, · · · ,Fα, P̃(t), Ṽ(t),P,K,∆t);

10 if Θ̇ = Null then
11 return result ← False;
12 end
13 Publish Θ̇ to the system;
14 t← t+ ∆t;
15 end
16 return result ← True;

• SolveQP(GK ,F1,F2, · · · ,Fα, P̃(t), Ṽ(t),P,K,∆t): Construct and try to solve the

quadratic program described in Section 9.4.3. If failed to solve this program, then

return Null as an invalid solution.

After initializing all the parameters, compute the unit direction vector ŝij between every

Mi ∈ VK and every face of the environment fj ∈ F , compute Si ⊆ S for everyMi ∈ VK and

the corresponding unit direction vector s̃ik betweenMi and every obstacle sphere Sk ∈ Si. If

there is no valid solution, the program should stop, or the program will continue until every

pFi is close enough to the destination p̃Fi(T). If the trajectory p̃Fi(t) is not specified and

only p̃Fi(T) where T →∞ is given, then this algorithm can automatically find a trajectory

for modules to navigate the environment. The output from the planner can be applied

directly online (e.g., running on robot modules) to achieve real-time performance, or can be

integrated over time (one-step Euler integration) to generate the trajectory for each module

or joint.

127

9.5 Experiments

Several experiments on two hardware platforms are performed to verify the approach. Here,

it is shown that the framework is able to execute a motion task with guaranteed control

performance on real hardware while satisfying all hardware constraints, frame boundary

constraint, and obstacle avoidance. The framework is also tested in a complex scenario

showing its ability for online trajectory optimization for navigation tasks.

9.5.1 Real-Time Control

CKBot Chain

A configuration with four CKBot UBar modules is shown in Figure 9.10a. The base module

m̄ = m1 is attached to the world frameW and frame F is attached to connector T of module

m4. A virtual frame boundary is next to the right side of the base. The task is to control

pF to follow a given trajectory to the position shown in Figure 9.10d. Another experiment

setup with five CKBot UBar modules is shown in Figure 9.11a. The black sphere is an

obstacle, the base module m̄ = m1 and frame F is attached to connector T of module m5.

Two tasks are executed: control pF to follow a given trajectory and control pF to approach

a specified destination with the final position of pF as shown in Figure 9.11d. The control

loop runs at 20 Hz with gain K = diag(1, 1, 1). Figure 9.12 and Figure 9.14a shows pF (t)

(a) (b) (c) (d)

Figure 9.10: Control pF to follow a given trajectory along +y-axis of W by 15 cm from the
initial pose (a) to the final pose (d). All the modules have to be on the left side of the
boundary. m1, m2, and m3 have to approach the boundary first (b) and then move away
from the boundary (c) to finish the task.

128

(a) (b) (c) (d)

Figure 9.11: Control pF from its initial pose (a) to its final pose (d) by both following a
given trajectory along +y-axis of W by 15 cm and navigating to the destination directly.
The modules have to move around the sphere obstacle while executing these two tasks.

0 2 4
Time (s)

0.16

0.20

0.24

x
(m

)

Desired Position x
Current Position x

0 2 4
Time (s)

-0.12

-0.08

-0.04

0.00

y
(m

)

Desired Position y
Current Position y

0 2 4
Time (s)

0.12

0.16

0.20

0.24

z
(m

)

Desired Position z
Current Position z

(a)

0 2 4 6 8
Time (s)

0.18
0.21
0.24
0.27
0.30

x
(m

)

Desired Position x
Current Position x

0 2 4 6 8
Time (s)

-0.08

-0.04

0.00

0.04
y

(m
)

Desired Position y
Current Position y

0 2 4 6 8
Time (s)

0.06
0.09
0.12
0.15
0.18

z
(m

)

Desired Position z
Current Position z

(b)

Figure 9.12: The motion of pF : (a) the four-module task; (b) the five-module trajectory
following task.

and p̃F of these three tests demonstrating the tracking and the navigation performance.

The velocity commands for all modules in these two five-module demonstrations are shown

in Figure 9.13 and all commands are within the constraints of each module. Modules move

more aggressively at the beginning when executing the destination navigation task in order

to quickly approach the destination.

129

0 2 4 6 8
Time (s)

0.00

0.08

0.16

θ̇ 1
(r

ad
/s

)

0 2 4 6 8
Time (s)

-0.06

-0.03

0.00

θ̇ 2
(r

ad
/s

)

0 2 4 6 8
Time (s)

-0.04

0.00

θ̇ 3
(r

ad
/s

)

0 2 4 6 8
Time (s)

-0.05

0.00

0.05

θ̇ 4
(r

ad
/s

)

0 2 4 6 8
Time (s)

0.00

0.04

0.08

θ̇ 5
(r

ad
/s

)

(a)

0 10 20 30
Time (s)

0.00

0.08

0.16

θ̇ 1
(r

ad
/s

)

0 10 20 30
Time (s)

-0.10

-0.05

0.00

θ̇ 2
(r

ad
/s

)

0 10 20 30
Time (s)

-0.04

-0.02

0.00

θ̇ 3
(r

ad
/s

)
0 10 20 30

Time (s)

-0.04

0.00

0.04

θ̇ 4
(r

ad
/s

)

0 10 20 30
Time (s)

0.00

0.05

0.10

θ̇ 5
(r

ad
/s

)

(b)

Figure 9.13: The control input Θ̇ for the five-module chain experiment: (a) the trajectory
following task; (b) the destination navigation task.

SMORES-EP Chain

The experiment setup with four SMORES-EP modules is shown in Figure 9.15a. The base

module m̄ = m1 is fixed to the world frame W and frame F is attached to connector T

of module m4. This system has 16 DOFs and the task is to control pF to navigate to a

specified destination shown in Figure 9.15b. The control loop runs at 20 Hz and the gain

K = diag(0.5, 0.5, 0.5). The experiment result pF (t) is shown in Figure 9.14b. The position

sensors installed in SMORES-EP modules are PaintPots, and these low-cost sensors with

a modified Kalman filter for nonlinear systems are used to provide position information of

130

0 10 20 30
Time (s)

0.18
0.21
0.24
0.27
0.30

x
(m

)

Desired Position x
Current Position x

0 10 20 30
Time (s)

-0.08

-0.04

0.00

0.04

y
(m

)

Desired Position y
Current Position y

0 10 20 30
Time (s)

0.06
0.09
0.12
0.15
0.18

z
(m

)

Desired Position z
Current Position z

(a)

0 5 10 15 20
Time (s)

-0.09
-0.06
-0.03
0.00
0.03

x
(m

)

Desired Position x
Current Position x

0 5 10 15 20
Time (s)

-0.08
-0.06
-0.04
-0.02
0.00

y
(m

)

Desired Position y
Current Position y

0 5 10 15 20
Time (s)

0.225
0.240
0.255
0.270
0.285

z
(m

)

Desired Position z
Current Position z

(b)

Figure 9.14: The motion of pF : (a) the CKBot five-module destination navigation task; (b)
the SMORES-EP four-module chain destination navigation task.

(a) (b)

Figure 9.15: Control a chain of SMORES-EP modules to navigate from its initial pose (a)
to a goal pose (b). This chain is constructed by four modules with 16 DOFs.

each DOF (Chapter 5). Due to the limitations of the hardware, some noise is evident.

CKBot Branch

A configuration with nine CKBot UBar modules is shown in Figure 9.16a. The base module

m̄ = m1 is fixed to the world frame W. Frame F1 is attached to connector T of module

m6 and frame F2 is attached to connector T of module m9. Chain GK : W F1 and

131

(a) (b) (c) (d)

Figure 9.16: Control pF1 and pF2 to follow two given trajectories respectively from their
initial poses (a) to their final poses (d). Module m1, m2, and m3 initially have to move
backward (b) and then move forward (c) in order to control pF1 and pF2 to follow their
trajectories.

0.0 2.5 5.0 7.5
Time (s)

0.100
0.125
0.150
0.175
0.200

x
(m

)

Desired Position x
Current Position x

0.0 2.5 5.0 7.5
Time (s)

-0.32

-0.24

-0.16

-0.08

y
(m

)

Desired Position y
Current Position y

0.0 2.5 5.0 7.5
Time (s)

0.275
0.300
0.325
0.350
0.375

z
(m

)

Desired Position z
Current Position z

(a)

0.0 2.5 5.0 7.5
Time (s)

0.100
0.125
0.150
0.175
0.200

x
(m

)

Desired Position x
Current Position x

0.0 2.5 5.0 7.5
Time (s)

0.08

0.16

0.24

0.32
y

(m
)

Desired Position y
Current Position y

0.0 2.5 5.0 7.5
Time (s)

0.300
0.325
0.350
0.375

z
(m

)

Desired Position z
Current Position z

(b)

Figure 9.17: (a) The tracking result for pF1 . (b) The tracking result for pF2 .

GK : W F2 have common parts composed by module m1, m2, and m3. The task is to

control pF1 and pF2 to follow trajectories respectively to the pose shown in Figure 9.16d.

The control loop runs at 20 Hz and the gain is diag(0.1, 0.1, 0.1) for both motion goals. The

tracking performance is shown in Figure 9.17a and Figure 9.17b.

132

9.5.2 Whole-Body Manipulation

A configuration with fourteen CKBot UBar modules is constructed in a simulation environ-

ment shown in Figure 9.18a. The base module m̄ = m1 is fixed to the world frameW. There

are two obstacles in the workspace which are close to the robot. The sphere-tree construc-

tion outputs 126 obstacle spheres in total to approximate these two obstacles. Frame F1

and F2 are attached to connector T of module m9 and module m14 respectively. Similarly,

Chain GK :W F1 and GK :W F2 share four modules. The task is to control pF1 and

pF2 to new locations between these two obstacles (Figure 9.18f). The control loop runs at

20 Hz and the gain is diag(0.1, 0.1, 0.1) for both motion goals. In this complex scenario, the

quadratic program can be constructed and solved by Gurobi [39] in 6.3 ms in average with

standard deviation of 2.3 ms and a maximum time of 15.5 ms on a laptop computer (Intel

Core i7-8750H CPU, 16GB RAM).

Initially the motions of pF1 and pF2 are symmetric because modules are all not very

(a) (b) (c)

(d) (e) (f)

Figure 9.18: Control pF1 and pF2 from the initial poses (a) to new locations between the
obstacles (f). The body composed by module m1, m2, and m3 first moves backward a little
bit (b) and then moves to one side in order to help F1 and F2 to go around obstacles (c) —
(e). After going around obstacles, both frames can navigate quickly to their destinations.
The planned trajectories are shown as blue lines.

133

(a) (b)

Figure 9.19: (a) Modulem9 approaches an obstacle. (b) Modulem14 approaches an obstacle.

0 25 50 75
Time (s)

0.1
0.2
0.3
0.4
0.5

x
(m

)

Desired Position x
Current Position x

0 25 50 75
Time (s)

0.08

0.16

0.24

0.32

y
(m

)

Desired Position y
Current Position y

0 25 50 75
Time (s)

0.275
0.300
0.325
0.350
0.375

z
(m

)

Desired Position z
Current Position z

(a)

0 25 50 75
Time (s)

-0.5
-0.4
-0.3
-0.2
-0.1

x
(m

)

Desired Position x
Current Position x

0 25 50 75
Time (s)

0.08

0.16

0.24

0.32

y
(m

)
Desired Position y
Current Position y

0 25 50 75
Time (s)

0.27
0.30
0.33
0.36

z
(m

)

Desired Position z
Current Position z

(b)

Figure 9.20: (a) The motion of pF1 . (b) The motion of pF2 .

close to obstacles. At this stage, the main body composed by module m1, m2, and m3

moves backward slightly. Frame F1 approaches one of the obstacle first (Figure 9.18b and

Figure 9.19a), and the objective function is updated to penalize the motion of m9 which has

to move along the obstacle. Then module m14 approaches the other obstacle (Figure 9.18c

and Figure 9.19b), and a penalty term for this module is also added to the objective function.

Both frames move slowly during this phase (Figure 9.18c and Figure 9.18d). Figure 9.20

shows that pF1 and pF2 change slowly. Repulsive motion constraints are added to the

optimization function when some module nearly contact obstacles. The main body leans to

134

one side to help both frames to go around obstacles. After moving around obstacles slowly,

both frames can quickly navigate to their destinations (Figure 9.18e and Figure 9.18f). The

final planned trajectory takes 92.15 s.

9.6 Conclusion

This chapter presents a new approach to online manipulation motion planning well suited for

reconfigurable modular robot systems. This approach formulates the motion planning prob-

lem as a sequential quadratic program. A novel way is proposed to approximate obstacles

in the environment considering both accuracy and simplicity so that the obstacle-avoidance

requirement can be modeled as a small number of linear constraints. The objective function

and constraints are updated according to the current scenario in order to handle a larger

range of tasks. All motion constraints are linear that allows the approach to be applied to

real-time control. Multiple strongly coupled motion tasks can be handled easily which is

particularly useful for modular robots.

135

Part IV

Variable Topology Truss

136

Introduction

This part presents the research work for VTT, a self-reconfigurable modular robot in truss

structure. A VTT is constructed by edge modules with ends being reconfigurable nodes.

The linear actuators used in a VTT has a high extension ratio which allows dramatic change

of the overall shape. In addition, the connections among edge modules can be changed by

splitting or merging nodes which can change the topology of a VTT. These features enable

promising applications of the system but also complicates the design, control, and planning.

Chapter 10 introduces some basic concepts for VTTs, the general modeling approach

of an arbitrary VTT, as well as the control strategy. The state of every node and the

connections among edge modules can be embedded in a graph. A VTT is in essence a

parallel robot, and a general kinematics model and a controller are derived in this chapter.

Chapter 11 explores the advantage of topology reconfiguration. This special capability

that can rearrange the connections among edge modules is able to significantly increase

motion dexterity. A new representation of an arbitrary VTT in a space defined according

to the overall shape of the truss is presented which leads to an efficient search for motion

planning.

Chapter 12 delves into the configuration space for VTT nodes. As a parallel robot, it is

easier to plan the motions of nodes rather than do planning directly in the joint space. The

configuration space of a node in a VTT is complex mainly due to the unstructured obstacles

which are the members of the truss. A fast algorithm to compute this configuration space

is provided so that motion planning for a single node can be solved easily.

Chapter 13 presents the reconfiguration planning framework for the VTT platform.

137

Given a motion task that is to change the shape of a VTT, the planner can efficiently find

the paths for all involved nodes, considering all hardware constraints. The main challenges

are that motions of multiple nodes are strongly coupled and the number of topology recon-

figuration actions can be large. The proposed planner is shown to be effective to address

these challenges.

Chapter 14 deals with the locomotion tasks for VTT robots. Due to the complexity of

the mechanical design, it is preferred to have a non-impact locomotion planner to drive the

robot. A novel non-impact rolling locomotion planner is derived in this chapter which can

efficiently solve locomotion tasks while avoiding receiving impacts from the environment.

138

Chapter 10

Configuration, Kinematics, and

Control

This chapter presents the modeling approach and the control strategy for an arbitrary VTT.

Some contents are excerpted from [83].

A VTT is a modular truss robot. The spatial locations of all these edge modules and

the connections among them determine the structure or the configuration of a VTT. All

the information can be encoded in a graph representation easily. As a parallel robot, when

changing the configuration of a VTT, it is more straightforward to control the motions of

nodes rather than control the member lengths directly. This chapter derives the general

kinematics model and builds the controller to guarantee the motions of these moving nodes.

This kinematics model and the control technique can be applied to parallel robots with

similar structures.

10.1 Introduction

Modular truss robots are different from lattice and chain type systems in that the systems

are made up of beams that typically form parallel structures. In addition to the capability

to control the shape or geometry of a truss, a VTT can also self-reconfigure the connections

between truss members. A significant advantage for self-reconfigurable modular robots over

139

other robots with fixed morphologies is their versatility, namely they are able to adapt

themselves into different morphologies with respect to different requirements. For example,

a VTT in which the members form a broad supported structure is well suited for shoring

buildings or structures after disasters, while another truss with some members protruding

to form an arm that has a large reachable workspace is good at manipulation tasks.

A truss is composed of truss members (beams) and nodes (the connection points of

multiple beams). A VTT is composed of edge modules. Each edge module has an active

prismatic joint member and passive joint ends that can actively attach or detach from other

edge module ends. The configuration can be fully defined by the set of member lengths and

their node assignments at which point the edge modules are joined. A node is constructed

by multiple edge module ends using a linkage system with a passive rotational DOF. The

node assignments define the topology or how truss edge modules are connected, and the

lengths of all member defines the shape of the resulting system.

Thus, there are two types of reconfiguration motions: geometry reconfiguration and topol-

ogy reconfiguration. Geometry reconfiguration involves changing the lengths of edge modules

in a VTT leading to the motion of the corresponding nodes. In order to guarantee the con-

trollability of every node on a VTT, it is necessary that every node should have at least

three members attached (each node is of degree three or higher). Topology reconfiguration

involves changing the connectivity among members. This reconfiguration behavior happens

at nodes. A single node controlled by six members or more can be split into two separate

nodes, and two separate nodes can dock to form a single node (Figure 10.1). It is shown

Figure 10.1: A single node with six members can be split into a pair of nodes and two
separate nodes can also merge into a single node.

140

that reconfigurable VTT systems have at least eighteen members [132].

As VTTs are inherently parallel robots, it is much easier to solve the inverse kinematics

than the forward kinematics. So, for the geometry reconfiguration, rather than controlling

the active DOFs that are the member lengths, do the control over the motion of the nodes

and then do the inverse kinematics to easily determine member lengths.

10.2 Configuration

A VTT is a special type of parallel robot — constructed by linear actuators connected at

special node joints. Hence, the structure of a VTT can be modeled as an undirected graph

G = (V,E) where V is the set of vertices of G and E is the set of edges of G: each member

can be regarded as an undirected labeled edge e ∈ E of the graph and every intersection

among members can be treated as a vertex v ∈ V of the graph. The position of every node

v ∈ V is encoded as its property Pos such that v [Pos] = [vx, vy, vz]
ᵀ ∈ R3. Let qv = v [Pos]

and the configuration space of node v denoted as Cv is simply R3. In this way, the state of

an edge module e = (v1, v2) ∈ E is fully defined by Pos properties of its two vertices v1 and

v2. The position of a given node v ∈ V is controlled by changing the lengths of all attached

members denoted as Ev ⊆ E. Ev can be regarded as a parallel robot with all edge modules

being joint actuators.

In general, given a VTT G = (V,E), motions of nodes are controlled by all attached

actuated members and the system is usually an overconstrained parallel robot. For a motion

task, the set of all nodes V is separated into two groups: VF and VC where VF contains

all the fixed or stationary nodes and VC contains all the controlled nodes. For example,

given the VTT shown in Figure 10.2, when controlling the motion of node v1 and node v4,

VC = {v1, v4} and VF = {v0, v2, v3, v5}, and this is a 6-DOF system since there are two

controlled nodes. In addition, this system is overconstrained and the motions of the two

nodes are controlled by seven members. Note that VF and VC are not constant and they

can be changed during the motion of a VTT (reconfiguration and locomotion).

141

Figure 10.2: A VTT is composed of twelve members. Currently, the motion of node v1 and
node v4 are under control by seven blue members.

10.3 Kinematics

Given VC with Λ nodes under control, the position vector of this system is simply the stack

of qv where v ∈ VC , and this system is controlled by all members that are attached with

these nodes, namely
⋃
v∈VC E

v. Let lij be the link vector from a controlled node vi pointing

to any node vj . There are two types of link vectors: 1. if vj ∈ VF , then lij is an attachment

link vector ; 2. if vj ∈ VC , then lij is a connection link vector. The link vector satisfies the

following equation:

lij = qvj − qvi (10.1)

in which vi ∈ VC . Taking time derivative of Eq. (10.1) for an attachment link vector and a

connection link vector yields:

lᵀij l̇ij = (qvi − qvj)ᵀq̇vi ∀vj ∈ VF (10.2a)

142

l̇ij = q̇vj − q̇vi ∀vj ∈ VC (10.2b)

Assume VC = {v̄α|α = 1, 2, · · · ,Λ}, and for a controlled node v̄α, all the fixed nodes in

its neighborhood NG(v̄α) are denoted as v̂α1 , v̂α2 , · · · , v̂αN , and the corresponding attachment

link vectors are denoted as α l̂1,
α l̂2, · · · , α l̂N . Eq. (10.2a) is true for any α l̂t where t ∈

{1, 2, · · · , N}, so it can be rewritten into the following form for a controlled vertex vi:

BαL̇α = Aαq̇
v̄α (10.3)

in which

L̇α =

[
α ˙̂
lᵀ1

α ˙̂
lᵀ2 · · · α ˙̂

lᵀN

]ᵀ
3N×1

Bα =



α l̂ᵀ1 0 · · · 0

0 α l̂ᵀ2 · · · 0

...
...

. . .
...

0 0 · · · α l̂ᵀN


N×3N

Aα =

[
qv̄α − qv̂α1 qv̄α − qv̂α2 · · · qv̄α − qv̂αN

]ᵀ
N×3

If another controlled node v̄β ∈ NG(v̄α), namely v̄β is adjacent to v̄α, then

˙̄lαβ = q̇v̄β − q̇v̄α (10.4)

Combining Eq. (10.3) and Eq. (10.4), the following equation of motion can be derived:

BL̇ = Aṗ (10.5)

in which

p =

[
(qv̄1)ᵀ (qv̄2)ᵀ · · · (qv̄Λ)ᵀ

]ᵀ

143

L̇ =

[
L̇ᵀ1 L̇ᵀ2 · · · L̇ᵀΛ · · · ˙̄lαβ · · ·

]ᵀ
B = diag(B1, B2, · · · , BΛ, · · · , I, · · ·)

A = [A1,A2]ᵀ

A1 = diag(A1, A2, · · · , Aα, · · · , Aβ, · · · , AΛ)

A2 =


...

...
...

...
...

03×3α I3×3 03×(β−α−1) −I3×3 03×3(Λ−β)

...
...

...
...

...


The size of A2 is determined by the number of the controlled vertices and the connection

link vectors (if there are ω connection link vectors, A2 is a 3ω× 3Λ matrix). For the system

shown in Figure 10.2, A2 = [I,−I]3×6 since there are only two controlled nodes and one

connection link vector. It can be shown that B has full rank as long as there are no zero-

length members whereas A may not have full rank. This does make sense because there

must exist a set of link velocities given the velocities of all controlled nodes, but some link

velocities may result in invalid motions of nodes since the system is overconstrained.

Eq. (10.5) can be rearranged in two ways:

L̇ = B+Aṗ = JBAṗ (10.6a)

ṗ = A+BL̇ = JABL̇ (10.6b)

where B+ and A+ are the pseudo-inverse of B and A respectively, and both JBA and JAB

matrices are the Jacobian. These two equations are used to describe the relationship between

the link velocities and the controlled node velocities. JBA is always defined (as long as there

is no zero-length member), but JAB may not be defined. Given ṗ is known, Eq. (10.6a)

gives the minimum norm solution to Eq. (10.5), namely minimizing ‖L̇‖. On the other

hand, Eq. (10.6b) results in the unique least square solution to Eq. (10.5) if L̇ is known,

namely minimizing ‖BL̇ − Aṗ‖.

144

Figure 10.3: The control loop for position control.

10.4 Control

A control framework is proposed in this section to control a VTT. Given a VTT G = (V,E)

and the current VC and VF , robot position state p is defined, and the framework to control

p is shown in Figure 10.3.

The error on the state and its derivative are defined as

e = pdes − p (10.7a)

ė = ṗdes − ṗ (10.7b)

Let the controller input U = l̇, a continuous time system can be defined from Eq. (10.6b)

as

ṗ = JABU (10.8)

The error is expected to converge exponentially to zero, then the following equation is

derived:

ṗdes − JABU +Kp(pdes − p) = 0 (10.9)

resulting in

JABU = ṗdes +Kp(pdes − p) (10.10)

145

in which Kp is a positive definite gain matrix. Since this arm is an overconstrained sys-

tem, the solution of U is not unique. This difficulty is resolved by solving the following

optimization problem:

minimize
1

2
UᵀU

subject to JABU = ṗdes +Kp(pdes − p)
(10.11)

and the solution is given by

U = J+
AB(ṗdes +Kp(pdes − p)) (10.12)

where J+
AB is the pseudo inverse of JAB and the solution is the minimum joint speed solution.

Then given the desired state pdes and desired velocity vdes = ṗdes, the controller input U

that guarantees that the state approaches pdes in exponential time can be computed. This

control input U is the stack of all control input Uij which is the desired derivative of lij .

Given this continuous time system defined in Eq. (10.8) and the control input U , the

following can be derived:

p(t+ dt) ≈ p(t) + ṗ(t)dt = p(t) + JAB(t)Udt (10.13)

In addition, for each link vector lij satisfying Eq. (10.1), the following can be derived:

d‖lij‖ ≈ ‖pj(t+ dt)− pi(t+ dt)‖ − ‖pj(t)− pi(t)‖ (10.14)

If lij is an attachment link vector, namely vj ∈ VF , then pj(t+ dt) = pj(t).

For each link vector lij and the corresponding control input Uij which is a 3× 1 vector

in U , actuator command uij can be computed by

uij =

 ‖Uij‖ if d‖lij‖ ≥ 0

−‖Uij‖ if d‖lij‖ < 0
(10.15)

146

which contains the information of the speed and the moving direction for the corresponding

edge module. A PID controller for the edge module can be built to control its velocity with

the feedback of the length measurement.

10.5 Experiments

A VTT G = (V,E) built by twelve edge modules is shown in Figure 10.4a, in which

V = {v1, v2, v3, v4, v5, v6} and E = {(v3, v5), (v2, v3), (v3, v4), (v3, v6), (v2, v5), (v1, v6),

(v1, v4), (v2, v4), (v1, v2), (v1, v5), (v5, v6), (v4, v6)}. The initial location of each node is shown

in the following:

v1 [Pos] = [−0.193,−5.348, 0.094]ᵀ v2 [Pos] = [0.384,−4.968, 1.049]ᵀ

v3 [Pos] = [−0.243,−3.971, 1.066]ᵀ v4 [Pos] = [0.359,−4.286, 0.093]ᵀ

v5 [Pos] = [−0.787,−5.020, 1.051]ᵀ v6 [Pos] = [−0.811,−4.337, 0.084]ᵀ

The control task is to increase the height of v2, v3, and v5 by 50 cm shown in Fig-

(a) (b)

Figure 10.4: (a) A VTT is constructed by twelve edge modules. (b) v2, v3, and v5 are moved
to higher locations.

147

ure 10.4b. In this task, VF = {v1, v4, v6} and VC = {v2, v3, v5}. In the kinematics model

for this control task, there are six attachment link vectors — l12, l15, l24, l34, l56, l36, and

three connection link vectors — l23, l25, l35. These three moving nodes are controlled to

move along straight-line trajectories which are cubic polynomials, and the controller track-

ing performance is shown in Figure 10.5. The control loop runs at 20 Hz and the gain is

diag(1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5). The member velocity controller is running at

0 5 10
Time (s)

0.2

0.3

0.4

0.5

x
(m

)

Desired Position x
Current Position x

0 5 10
Time (s)

-5.1

-5.0

-4.9

-4.8

y
(m

)

Desired Position y
Current Position y

0 5 10
Time (s)

1.05

1.20

1.35

1.50

z
(m

)

Desired Position z
Current Position z

(a)

0 5 10
Time (s)

-0.4

-0.3

-0.2

-0.1

x
(m

)

Desired Position x
Current Position x

0 5 10
Time (s)

-4.1

-4.0

-3.9

-3.8

y
(m

)

Desired Position y
Current Position y

0 5 10
Time (s)

1.05

1.20

1.35

1.50

z
(m

)

Desired Position z
Current Position z

(b)

0 5 10
Time (s)

-0.9

-0.8

-0.7

-0.6

x
(m

)

Desired Position x
Current Position x

0 5 10
Time (s)

-5.2

-5.1

-5.0

-4.9

y
(m

)

Desired Position y
Current Position y

0 5 10
Time (s)

1.05

1.20

1.35

1.50

z
(m

)

Desired Position z
Current Position z

(c)

Figure 10.5: Tracking performance for qv2 (a), qv3 (b), and qv5 (c).

0 5 10
Time (s)

-0.01

0.00

0.01

u
23

(m
/s

)

0 5 10
Time (s)

-0.01

0.00

0.01

u
25

(m
/s

)

0 5 10
Time (s)

-0.005

0.000

0.005

u
35

(m
/s

)

0 5 10
Time (s)

0.00

0.02

0.04

u
12

(m
/s

)

0 5 10
Time (s)

0.00

0.02

0.04

u
24

(m
/s

)

0 5 10
Time (s)

0.00

0.02

0.04

u
34

(m
/s

)

0 5 10
Time (s)

0.00

0.02

0.04

u
36

(m
/s

)

0 5 10
Time (s)

0.00

0.02

0.04

u
15

(m
/s

)

0 5 10
Time (s)

0.00

0.02

0.04

u
56

(m
/s

)

Figure 10.6: Control input of every link vector.

148

0 5 10
Time (s)

1.05

1.20

1.35

‖l
23
‖

(m
)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

1.05

1.20

1.35

‖l
25
‖

(m
)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

1.05

1.20

1.35

‖l
35
‖

(m
)

0 5 10
Time (s)

1.2

1.4

1.6

‖l
12
‖

(m
)

0 5 10
Time (s)

1.2

1.4

1.6

‖l
24
‖

(m
)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

1.2

1.4

1.6

‖l
34
‖

(m
)

0 5 10
Time (s)

1.2

1.4

1.6

‖l
36
‖

(m
)

0 5 10
Time (s)

1.2

1.4

1.6

‖l
15
‖

(m
)

0 5 10
Time (s)

1.2

1.4

1.6

‖l
56
‖

(m
)

Figure 10.7: Length of every moving edge module.

100 Hz. During the task, the x position and the y position of every controlled node can

be maintained. The computed control input for the task is shown in Figure 10.6 and the

length of every member is shown in Figure 10.7. The commanded velocities for edge mod-

ule (v2, v3), (v2, v5), and (v3, v5) are oscillating around zero slightly and their lengths are

almost fixed since the desired relative positions among v2, v3, and v5 are not changing. The

lengths of all other involved edge modules are increasing as demand, and their velocities

are increasing initially and then decreasing to zeros. When all these three nodes are close

enough to their destinations respectively, the controller stops all actuators.

10.6 Conclusion

In this chapter, the configuration of a VTT is defined and the graph model is proposed

to describe an arbitrary VTT. This chapter also derives a general kinematics model for an

arbitrary VTT motion task and provides a control framework to execute motions.

149

Chapter 11

Topology Reconfiguration Advantage

A VTT is capable of altering its topology by merging or splitting nodes that can significantly

enhance its flexibility. Some motion that is blocked by members can be achieved by changing

the topology properly. This chapter explores the advantage of topology reconfiguration and

presents a planning framework to make use of this capability inspired by the DNA replication

process. The contents in this chapter excerpt heavily from [75].

The variable topology truss (VTT) is an extension of an existing class of robots, the

variable geometry truss (VGT). A VTT has the additional capability to change its topology

through self-reconfiguration. A single node with enough edge modules can be split into a

pair of nodes and two separate nodes can be merged to become an individual one. This

self-reconfiguration ability enables more versatile motions and results in more potential

applications for this type of robot in unstructured environments, such as space. This chapter

explores dexterous motions inspired by the DNA replication process — the topology of DNA

can be changed by cutting and resealing strands as tanglements form. These motions can

be planned efficiently based on a novel way to model the robot in a nonuniform grid space

and a simple local planner for collision avoidance. This approach significantly simplifies the

problem and some experiment results show that the complicated problem can be solved in

a reasonable time.

150

11.1 Introduction

The variable geometry truss (VGT) [91] is a class of modular robotic systems in a truss

structure and the truss members have variable lengths. A variable topology truss (VTT)

is similar to a VGT with the additional capability to self-reconfigure the attachment of

members at the nodes, changing its topology by merging or splitting nodes (Figure 10.1).

Two separate nodes in the truss can dock to form one node which connects all of the involved

members. Similarly, a single node with a sufficient amount of members can undock into a

pair of nodes.

Since topological reconfigurations also happen at nodes, all actions are considered to

occur at nodes. For example, if a set of edge modules E1 intersect at node v1, and another

set of edge modules E2 intersect at node v2, then the states of these edge modules can be

changed by manipulating node v1 and v2, including changing the locations of them, merging

v1 and v2, or splitting if v1 and v2 are already merged. For some simple cases, translating the

nodes small distances in the space can happen without collision. However, in many instances

translating nodes will often lead to the truss members colliding with other truss members.

In many of those cases, there may not be a path for that node to reach a goal location

without collision given the topology of the VTT configuration. Traditional motion planning

methods would require analysis of the motion, geometric reasoning of the topological spaces

in which collision can occur, and reconfiguration planning to change the topology if required.

This chapter presents a novel method of motion planning combined with limited recon-

figuration to enable motions of nodes without regard to internal collision via reconfiguration.

The advantage is from topology reconfiguration capability. This behavior is similar to DNA

replication in which topoisomerase can change the topology of DNA by cutting and resealing

strands as tanglements form [18]. The algorithm to solve this fundamental reconfiguration

problem is also inspired by this DNA motion. A new method to discretize the space nonuni-

formly is proposed so that discrete actions can be applied for a motion task and the space

can be explored efficiently. This method is the combination of the exact cell decomposition

method and the approximation method. The cells are determined based on truss geometry

151

and then are subdivided into octants. Different from common octree decomposition [44],

cells are not necessarily to be cubic. Collision-free actions can be computed efficiently and

a sequence of optimal reconfiguration actions are generated by a simple graph search algo-

rithm. This algorithm is demonstrated on some motion tasks and the necessary analysis is

provided.

As mentioned in Chapter 10, the structure of a VTT can be modeled as an undirected

graph G = (V,E) where V is the set of vertices of G and E is the set of edges of G. Each

graph edge is correspondent to a truss member and each graph vertex is correspondent to

a truss node. Because of the topology reconfiguration, the number of nodes can change.

However, the number of members in a system are physical elements that cannot merge or

disappear so that the number must remain constant.

In this chapter, the fundamental reconfiguration problem can be stated. For a variable

topology truss G = (V,E), the goal is to change the state of edge module e ∈ Ê from

its initial state to its goal state in which Ê ⊂ E. However, as the discussion above, edge

modules have to be controlled in form of a group because their states can only be modified

by manipulating the involved nodes. For any e = (v1, v2) ∈ E in a VTT configuration

G = (V,E), let e [v1] = v1 [Pos] and e [v2] = v2 [Pos], then the current state of this edge

module e is fully defined by e [v1] and e [v2]. Assume ∀e ∈ Ê intersect at node v̂, then the

motion task is, ∀e ∈ Ê, changing e [v̂] from [xi, yi, zi]
ᵀ to [xg, yg, zg]

ᵀ.

11.2 Motion Planning Algorithm

11.2.1 Grid Space Model

Planning in discrete space makes it possible to efficiently plan a sequence of discrete actions

for a complicated motion task. However, when discretizing space, discretization resolution

is an important issue. There is a trade-off for different discretization resolutions: too fine

resolution results in a large search space — too coarse resolution may bring about no solution

for a motion task even if there exists a valid path. This problem is especially significant

for modular robots, such as a VTT, which may have high dimensional spaces. Here a novel

152

way is presented to represent the system in a discretized workspace for a given VTT which

is called the grid space.

The automatically generated grid space has a stepsize that adapts depending on the

density of the workspace. A small exploration stepsize is used for high occupancy subspace

and a large exploration stepsize for low occupancy subspace. The density is a function of

the node positions of both the initial VTT configuration and a goal VTT configuration. Let

V be the set containing all nodes with unique locations and its size is N . Firstly all of these

node locations are extracted in x-axis, y-axis, and z-axis respectively:

X = {vx|v ∈ V }

Y = {vy|v ∈ V }

Z = {vz|v ∈ V }

Sort X, Y , and Z in nondecreasing order to generate three sequences X̂, Ŷ , and Ẑ respec-

tively. For each sequence, if two adjacent elements are the same or very close, keep only

one element. Use the parameter δ to set the threshold for closeness. Note that δ will often

be some fraction of the size of the truss. Then, for every two adjacent elements (e.g. xi

and xj), insert a midpoint between them, e.g. (xi + xj)/2, into the list as an intermediate

position. This will subdivide each cell in space into octants like octree decomposition. With

the final three sequences generated as follows:

X̂ = {x0, x1, · · · , xNx}

Ŷ = {y0, y1, · · · , yNy}

Ẑ = {z0, z1, · · · , zNz}

the following conversions from this grid space to Cartesian space in x-axis, y-axis, and z-axis

can be obtained respectively:

fx(ix) = xix ix = 0, 1, · · · , Nx (11.1a)

153

fy(iy) = yiy iy = 0, 1, · · · , Ny (11.1b)

fz(iz) = ziz iz = 0, 1, · · · , Nz (11.1c)

the inverse conversions (from Cartesian space to the grid space) are

f−1
x (x) = arg min

ix∈{0,1,··· ,Nx}
|x− xix | (11.2a)

f−1
y (y) = arg min

iy∈{0,1,··· ,Ny}
|y − yiy | (11.2b)

f−1
z (z) = arg min

iz∈{0,1,··· ,Nz}
|z − ziz | (11.2c)

Then the conversion from the grid space to Cartesian space can be defined as

f([ix, iy, iz]
ᵀ) =

[
xix , yiy , ziz

]ᵀ (11.3)

and the conversion from Cartesian space to the grid space can be defined as

f−1([x, y, z]ᵀ) =
[
f−1
x (x), f−1

y (y), f−1
z (z)

]ᵀ (11.4)

Note that this is a nonuniform grid space. Given a VTT configuration G = (V,E) in

Cartesian space, there is a corresponding VTT configuration G = (V,E) in the grid space.

A two-dimensional example is shown in Figure 11.1. Both Cartesian space and the grid

space coordinates are shown. It is apparent that, given a conversion between Cartesian

space and a grid space, different VTT configurations in Cartesian space may results in the

same VTT configuration in the grid space.

A truss example is shown in Figure 11.2a and the equivalent truss in a grid space is shown

in Figure 11.2b. In Cartesian space, the truss is a slightly deformed cube. The mapping in

the grid space is a regular cube with eight cells generated inside the cube.

Note that the non-uniform resolution is different from the octree decomposition where a

subdivision results in cells that are equally divided into cubes. Here the x-axis, y-axis, and

154

Figure 11.1: A two dimensional example with four nodes and three members when δ = 0.1
is shown. The generated grids are shown with “- -”. The coordinates in Cartesian space are
in dark blue color and the coordinates in the grid space are in light green color.

(a) (b)

Figure 11.2: (a) A truss in Cartesian space. (b) The equivalent cubic truss in the grid space
with δ = 0.2.

z-axis divisions may not be uniform. In addition, since the divisions are derived directly

on the location of nodes, there are fewer subdivisions than those that may occur in octree

where the number of subdivisions can become large if the nodes are slightly off from an even

division.

Once the conversion between Cartesian space and a grid space is computed, a VTT

configuration can be simplified — if two nodes are very close and are third-degree neighbors

or higher, these nodes can be merged into one. This is determined by the parameter δ. One

constraint for δ is that its value cannot be too large since the edge modules have a non-zero

155

minimum length.

11.2.2 Node Motion Model and Reconfiguration Actions

After the nonuniform grid space is computed, the motion of a node can be modeled as

discrete actions. The discrete action can be a geometric reconfiguration action or a topology

reconfiguration action. In the grid space, twenty-seven different possible discrete geometric

motion actions can be defined for a free node shown in Figure 11.3. The cube centered on

the free node can be defined by its two corners: [0, 0, 0]ᵀ and [2, 2, 2]ᵀ. Note that the cube

in this grid space is not necessarily a cubic shape in Cartesian space.

For a node in a VTT, there are some constraints on the motion that the node can

execute. Every node has to be attached to at least three members in order to maintain

controllability. If a node is controlled by six or more members, this node can be split into

a pair of controllable nodes with multiple ways to separate the involved members. For

example, if a node is controlled by six members, there are ten different ways to split six

members into two groups of three. However, if a node is controlled by five members, then

there is no way to split this single node as both nodes need to have at least three members.

The reconfigurability of nodes can be exploit to ease the collision-free motion planning

Figure 11.3: In the grid space, a node (•) can move to 27 different locations with one discrete
action, defined to be the 27 points of intersection between lines in the figure including the
center of the cube that is the no motion action.

156

problem. If a node moves to a location in the grid space that is already occupied by a node,

then the corresponding moving action will end up with a merge action. In this way, there

is no need to worry about collisions of nodes. For the VTT system, there are three possible

atomic actions for a specific node: Move, Merge and Split. Since only one node may exist in

a discrete location in the grid space, there are four different combinations of atomic motion

for a node:

a =



Move

Split + Move

Move + Merge

Split + Move + Merge

(11.5)

in which a is defined to be the discrete reconfiguration action. Note that not all actions are

executable because some actions may violate constraints resulting in a not valid motion.

As the reconfiguration process proceeds, some nodes may disappear and some nodes

may appear. Let V̂ ⊂ V contain the current nodes intersected by edge modules in Ê.

Initially, V̂ = {v̂} because all edge modules in Ê intersect at node v̂. When the discrete

reconfiguration action occurs, V̂ may change accordingly. For example, if v̂ is split into

v̂′ and v̂′′, then V̂ = {v̂′, v̂′′}, or if v̂ is merged with another node v̄, then V̂ = {v̄}. For

each node in V̂ , the same reconfigurability analysis can be applied to generate all possible

actions and the states of the involved edge modules in set Ê will be changed accordingly.

To minimize the search space for all possible actions, in this work, only one node is active in

each step, which means if there are multiple nodes in V̂ , apply action a for only one node.

11.2.3 Collision

When controlling a node to execute a motion action a, a parallel robot is actually under

control to move in a complex environment occupied by many other edge modules. It is not

straightforward to compute the collision-free space for this parallel robot directly but it is

possible to exhaustively check collision for every pair of members during the motion. For

example, for a VTT configuration G = (V,E), node v ∈ V is going to execute an action

a, and the involved member set is Ev. It is required to check whether any e ∈ Ev will

157

(a) (b)

Figure 11.4: Light green triangle (M) is sweeped by member e when moving node v to new
location v′ along the yellow trajectory (→) and the new state of member e is e′. e doesn’t
collide with any other members in (a) but does collide with two members in (b) during the
motion.

collide with any other edge module in set E\Ev during the motion action process. Every

edge module can be modeled as a line segment in space, thus, for every e ∈ Ev, naïvely the

task is just to check the intersection between a moving line segment and a still line segment.

This is actually not easy. With the nonuniform grid space and the node motion model, the

node is actually moving along a line segment. Hence, an easier and more efficient method

is presented to do collision check.

For a VTT configuration G = (V,E) and a node v ∈ V , once a reconfiguration action a

is executed, every moving member in Ev sweeps a triangle area (Figure 11.4a), and if this

member e ∈ Ev collides with another member ē ∈ E\Ev, then ē must intersect with the

triangle M generated by e (Figure 11.4b). There are two cases: ē is not parallel to M and ē

is parallel to M. For the first case, there are already many efficient algorithms to test the

intersection between a line segment and a triangle in 3D space, such as Möller-Trumbore

ray-triangle intersection algorithm [92]. For the second case, it is just a simple 2D geometry

math problem.

11.2.4 Transition Model

A transition model is required to describe the effect of a reconfiguration action on a VTT

configuration. For a VTT configuration G = (V,E), given a discrete reconfiguration action

a, a new VTT configuration G′ = (V ′, E′) is able to be computed by this transition model

158

Figure 11.5: Transition model diagram.

F(G, a) if action a is executable.

The transition model is shown in Figure 11.5. Given a VTT configuration G = (V,E)

and a reconfiguration task, the grid space can be computed as described in Section 11.2.1.

A corresponding VTT configuration G = (V,E) in this grid space can be computed, where

for each v ∈ V , its corresponding position in the grid space v [Pos] can be computed by

Eq. (11.4). Then the discrete action a can be applied on the corresponding node of the

VTT configuration G = (V,E) in the grid space to obtain the new states of all involved edge

modules. With Eq. (11.3), the new position of the corresponding node (the intersection of

these involved edge modules) can be calculated. Constraints need to be satisfied in Cartesian

space. Only collision-free criteria are considered here but it is straightforward to add more

constraints. An action satisfying all constraints is an executable reconfiguration action.

There are four different types of reconfiguration actions shown in Eq. (11.5). For geometry

reconfiguration actions, just apply the model in Section 11.2.3. For actions containing

topology reconfiguration actions, apply collision check for only Move action because Split

and Merge never cause any collision. Once the action is verified to be executable, the new

VTT configuration in Cartesian space can be obtained.

11.2.5 Graph Search Algorithm

With the transition model, it is straightforward to do motion planning by a graph search

algorithm. Two VTT configurations can be connected by an edge if and only if there is

an executable reconfiguration action taking the first VTT configuration to the second VTT

configuration. The search starts from the initial VTT configuration and stops until the goal

159

configuration is visited. A graph search algorithm designed based on A∗ framework is shown

in Algorithm 6.

Line 1 — 5 : Compute the nonuniform grid space and the equivalent initial VTT con-

figuration and the equivalent goal VTT configuration in this grid space. Also, make two

sets Q and Q where Q contains all newly computed VTT configurations or non-visited VTT

configurations in the grid space and Q contains all visited VTT configurations in the grid

Algorithm 6: Graph Search Algorithm

Input: Initial VTT configuration Gi = (Vi, Ei), edge set Ê, the intersection node v̂,
and the goal state of e [v̂] ∀e ∈ Ê

Output: Tree of VTT configuration graphs p
1 Compute the nonuniform grid space;
2 Compute Gi = (Vi,Ei) and Gg = (Vg,Eg) in the grid space and the corresponding

edge set Ê with ∀e ∈ Ê intersecting at node v̂;
3 Q ← {Gi,Gg};
4 Q ← ∅;
5 g(Gi)← 0, g(Gg)←∞;
6 while Gg = (Vg,Eg) ∈ Q do
7 G← arg min

G∈Q
r(G) = arg min

G∈Q
(g(G) + h(G));

8 Q ← Q \
{
G
}
;

9 Q ← Q∪
{
G
}
;

10 A = ComputeActions(Ê);
11 foreach a ∈ A do
12 G← F(G, a);
13 if G /∈ Q then
14 if G ∈ Q then
15 if g(G) + c(a) < g(G) then
16 g(G)← g

(
G
)

+ c(a);
17 p(G)← G
18 end
19 else
20 Q ← Q∪ {G};
21 g(G)← g(G) + c(a);
22 p(G)← G
23 end
24 end
25 end
26 end

160

space. The size of these two sets will change as the algorithm explores the configuration

space. It is not feasible to compute all possible VTT configurations as the number grows

exponentially in the number of members. At the beginning, only the initial VTT configura-

tion and the goal VTT configuration are in set Q and the algorithm starts with the initial

configuration. The value g(G) is the cost of the path from Gi to a VTT configuration G, so

g(Gi) = 0 and g(Gg) =∞ at the beginning.

Line 7 — 10 : Every iteration always starts with the VTT configuration with the smallest

cost r(G) in setQ and r(G) = g(G)+h(G) where h(G) is a heuristic function of configuration

G that estimates the cost of the cheapest path from G to Gg. The heuristic value can be

related to the distance from the current location to the goal location of every moving node.

In the beginning, the initial VTT configuration has the smallest cost. Then update set Q

and Q. The connection information among VTT configurations are not fully known, thus

it is necessary to try all possible actions for these moving members to create connections.

Recall that only one node is active for each reconfiguration step, so the total number of all

executable reconfiguration actions is not large and the worst case is C3
|Ê|

(the total number

of all combinations of all elements in Ê taken three at a time) for edge set Ê.

Line 11 — 25 : For every executable action a ∈ A, a new connection with another VTT

configuration can be obtained by the transition model. If this VTT configuration has been

visited, then this connection is not a new connection. If not, then there are two cases: this

configuration is not a newly found configuration which means there is already a connection

between this configuration and another VTT configuration, or this configuration is a new

one that has no connection before. For the first case, check whether its value needs to

be updated. c(a) is the cost of the current action a. It is reasonable to set the topology

reconfiguration action cost a relatively higher value because, for modular robots, docking

and undocking are usually difficult. If its value is updated, then its parent p(G) is also

updated accordingly. For the second case, initialize the value and the parent of this new

VTT configuration, and update set Q.

Once Gg = (Vg,Eg) is visited, then the algorithm ends. With p, a tree with visited VTT

161

configurations as vertices, it is straightforward to find the path connecting the initial VTT

configuration and the goal VTT configuration as well as the optimal reconfiguration action

sequence. With this algorithm, there is no need to compute all possible VTT configurations,

which is usually very time-consuming, and the tree is built as exploring VTT configurations.

11.3 Test Scenarios

The algorithm is implemented and tested with some tasks. Two reconfiguration examples

are presented. The initial VTT configuration G = (V,E) is shown in Figure 11.6. The

location of each node is in the following:

v0 [Pos] = [0.05, 0, 0]ᵀ v1 [Pos] = [0.1, 1.8, 0]ᵀ v2 [Pos] = [2.1, 1.9, 0]ᵀ

v3 [Pos] = [2.1, 0, 0]ᵀ v4 [Pos] = [0, 2.1, 3.1]ᵀ v5 [Pos] = [1.95, 0.9, 3]ᵀ

v6 [Pos] = [0, 0, 2.9]ᵀ

In order to explore and search the graph efficiently, a suitable model of action cost and a

good heuristic function are necessary. There are three different atomic actions: Move, Split,

and Merge. The action cost model in the experiment is that the cost of Move action is the

Figure 11.6: The initial VTT.

162

moving distance and the cost of Split or Merge is 1. The heuristic function is

h(G) =


∑
v∈V̂
‖vg [Pos]− v [Pos] ‖+ 1, |V̂ | > 1

‖vg [Pos]− v [Pos] ‖, |V̂ | = 1

in which vg [Pos] and v [Pos] are the goal location and the current location of node v re-

spectively, and |V̂ | is the size of set V̂ . Recall that V̂ ⊂ V contains all the current nodes

intersected by edge modules in Ê and if there are more than one node in set V̂ , then there

must be at least one Merge action afterward, so the heuristic value is the sum of Euclidean

distance for every node from its current location to its goal location plus one. Due to the

collision avoidance constraints, this heuristic function h(G) must be less than or equal to

the cost of moving from G to Gg, so the algorithm is guaranteed to find the optimal action

sequence (or shortest path).

11.3.1 Scenario 1

The first reconfiguration task is shown in Figure 11.7. The task is to move edge module

set Ê = {(v0, v5), (v1, v5), (v2, v5), (v3, v5), (v4, v5), (v6, v5)} and they all intersect at node v5.

∀e ∈ Ê, move e [v5] from its current position [1.95, 0.9, 3]ᵀ to [1, 0.9, 3]ᵀ which is very close

to its original position. However, this motion cannot be executed by moving node v5 to the

Figure 11.7: ∀e ∈ {(v0, v5), (v1, v5), (v2, v5), (v3, v5), (v4, v5), (v6, v5)}, move e [v5] from the
initial location to the goal location. With only geometry reconfiguration actions, edge mod-
ule (v1, v5) will collide with edge module (v3, v4).

163

goal position directly because edge module (v1, v5) will collide with edge module (v3, v4).

Topology reconfiguration actions are needed for this task.

The conversion between the grid space and Cartesian space is computed first with δ = 0.2

and the corresponding node locations in the grid space are

v0 [Pos] = [0, 0, 0]ᵀ v1 [Pos] = [0, 4, 0]ᵀ v2 [Pos] = [4, 4, 0]ᵀ

v3 [Pos] = [4, 0, 0]ᵀ v4 [Pos] = [0, 4, 2]ᵀ v5 [Pos] = [4, 2, 2]ᵀ

v6 [Pos] = [0, 0, 2]ᵀ

and ∀e ∈ E, the goal location of e [v5] in the grid space is [2, 2, 2]ᵀ. The lower bound of

the grid space is [0, 0, 0]ᵀ and the upper bound of the grid space is [4, 4, 2]ᵀ. In total, there

are 75 grid locations. The size of Ê is six and the number of all possible arrangements for

them in the grid space is 75 × 75 × (C3
6C

3
3/2) = 56250 and the size of the action space is

56250× 52 = 2925000. However, the algorithm only explores 3771 VTT configurations and

the sequence of optimal actions can be found efficiently.

The solution by the motion planner is illustrated in Figure 11.8. First move node v5

Figure 11.8: The sequence to change the states of all involved edge modules is shown and
the motion directions are denoted as →. First move the intersection node in a small step,
and then split it into two separate nodes and move one of the node downward in a large
step. Move both nodes closer and finally merge them in the goal location.

164

along −x-axis in the grid space to a closer location ([1.475, 0.9, 3.0]ᵀ) in Cartesian space,

then split the node into a pair of nodes so that two groups of edge modules can be controlled

separately and move one of them to the location [1.0, 1.35, 1.5]ᵀ which is below the obstacle

edge module. This action moves the node with a longer distance than the previous one

because the space occupancy is sparser along z-axis than that along x-axis. Next move two

newly generated nodes along −x-axis to [1.0, 0.9, 3.0]ᵀ and [0.5, 1.35, 1.5]ᵀ respectively so

that they can be merged in the goal location in the last step.

11.3.2 Scenario 2

The second reconfiguration task is shown in Figure 11.9. The task is also to move edge

module set Ê = {(v0, v5), (v1, v5), (v2, v5), (v3, v5), (v4, v5), (v6, v5)} intersecting at node v5,

and ∀e ∈ Ê, change e [v5] from its current position [1.95, 0.9, 3]ᵀ to [1, 1.2, 0.9]ᵀ. The initial

position is almost on the boundary of the truss but the goal position is almost in the center

of the structure. Still with only geometry reconfiguration actions, it is impossible to finish

this motion task because edge module (v3, v4) is between two edge modules (v0, v5) and

(v1, v5).

Set δ = 0.2 to compute the conversion between the grid space and Cartesian space and

Figure 11.9: ∀e ∈ {(v0, v5), (v1, v5), (v2, v5), (v3, v5), (v4, v5), (v6, v5)}, move e [v5] from the
initial location to the goal location. With only geometry reconfiguration action, there is no
way for edge module (v0, v5) and (v1, v5) to traverse edge module (v3, v4).

165

the corresponding node locations in the grid space are

v0 [Pos] = [0, 0, 0]ᵀ v1 [Pos] = [0, 6, 0]ᵀ v2 [Pos] = [4, 6, 0]ᵀ

v3 [Pos] = [4, 0, 0]ᵀ v4 [Pos] = [0, 6, 4]ᵀ v5 [Pos] = [4, 2, 4]ᵀ

v6 [Pos] = [0, 0, 4]ᵀ

and ∀e ∈ E, the goal location of e [v5] in the grid space is [2, 4, 2]ᵀ. The lower bound of the

grid space is still [0, 0, 0]ᵀ but the upper bound of the grid space is [4, 6, 4]ᵀ. This shows

that the way to decompose the space depends on the motion task. For this motion task,

finer cells along y-axis and z-axis are generated with the same parameter δ. With higher

resolution, there are more grid locations, in this example 175. The number of all possible

arrangements for this set of edge modules is 175× 175× (C3
6C

3
3/2) = 306250 and the size of

action space is 306250× 52 = 15925000 which is much larger. However, the algorithm only

needs to explore 8146 VTT configurations.

The solution is illustrated in Figure 11.10. Similarly, the conversion between the

Figure 11.10: The sequence to change the states of all involved edge modules is shown and
the motion directions are denoted as →. First move the intersection node to the center by
two Move actions, and then split them into two separate nodes and move them in different
directions to go around the obstacle member. In the end, merge these two nodes into a
single one.

166

grid space and Cartesian space is computed accordingly. Firstly, move node v5 to

[1.525, 1.05, 2.9]ᵀ and then to [1.1, 1.2, 1.9]ᵀ with a larger step because this part of space

is very sparse, and then split this node into a pair of nodes so that six edge modules are

separated into two groups to go across the obstacle. Move one of them to the goal location

and move the other one to [0.55, 1.05, 1.9]ᵀ to bypass the obstacle, and then merge them at

the goal location.

From these two examples, it is observed that there is no uniform motion stepsize because

the space occupancy is different. This makes the reconfiguration planning algorithm efficient

to explore VTT configurations using the proposed graph search algorithm.

11.4 Conclusions

This chapter shows the advantage of topology reconfiguration and presents a new reconfig-

uration planning algorithm to perform versatile motions inspired by the DNA replication

process. The reconfiguration planning problem is challenging due to its large topology con-

figuration space. Being a truss presents a variety of constraints to the inherent parallel

robot planning problems. A new method is presented to discretize the space called a grid

space, considering the overall shape of the robot and the motion task which results in a more

efficient decomposition of the workspace. A robot is then modeled in both Cartesian space

and this non-uniform grid space. Based on this new model, discrete reconfiguration actions

can be applied, an efficient collision checking method is developed, and then a transition

model is derived. The VTT configuration space can be explored efficiently using a graph

search algorithm with a heuristic function to do motion planning combined with topology

reconfiguration.

167

Chapter 12

Node Configuration Space

This chapter presents the fundamental analysis of the configuration space for VTT nodes.

This space is complicated due to the complexity of the truss structure. A fast algorithm

to compute this space is introduced which can be used for motion planning. This chapter

excerpts heavily from [76]. Credit is due to Sencheng Yu who contributed significantly to

this work.

A VTT is usually composed of many members spanning the workspace in a very flexible

manner. Motion planning and avoiding self-collision are difficult as these systems usually

have dozens of DOFs with complex intersecting parallel actuation. There are two different

types of shape-changing actions for a VTT: geometry reconfiguration and topology recon-

figuration. This chapter focuses on geometry reconfiguration actions. A fast and complete

method to compute the configuration space of a node in a VTT is presented. Based on

this, a cell decomposition approach can be applied to achieve efficient motion planning for

a single node, and a shape-morphing task can also be solved quickly by moving one node at

a time.

12.1 Introduction

A VTT is inherently a parallel robot. Different from open chain kinematic structures, it

is much easier to solve inverse kinematics problems than to solve forward kinematics for

parallel robots. Thus, rather than planning the motion of a VTT from the member lengths,

168

the motion planning problem is solved by planning node motions and the required member

lengths are determined afterward. Geometry reconfiguration is to change the lengths of

members that can be achieved by moving the corresponding nodes, and topology reconfigu-

ration is to change to connectivity among members that happens at nodes. Hence, planning

the motion of nodes is the fundamental to reconfigure a VTT.

For a VTT, the node assignment defines its topology and the lengths of all members

define its shape. In order to be a reconfigurable VTT, there are some constraints on the

arrangement of members, including that a VTT has to be a rigid structure to maintain

its shape and be statically determinant. In general, a node in a VTT needs at least three

members attached to ensure its controllability. In addition, topology-reconfigurable VTT

systems require at least eighteen members to reconfigure which means they have at least

eighteen actuated DOFs. Thus, motion planning for these systems involves at least eighteen

and typically more than twenty-one dimensions. In addition, members forming VTT struc-

tures typically span the workspace in a very non-uniform manner as the truss configuration

creates a complicated configuration space. These facts and constraints make the analysis

and planning for VTTs difficult.

This work focuses on the node configuration space in an arbitrary VTT. A node has

three DOFs but its obstacle region and free space are complicated. This chapter presents

a fast and complete approach to compute the obstacle region and the free space of a node,

and shows that multiple nodes in a VTT are usually strongly coupled in the space, namely

moving one node can significantly affect the configuration space of other nodes. It is also

shown that the free space of a node is usually not convex and can be further decomposed

into multiple convex polyhedrons in which the corresponding node can move freely without

considering collision. Then a simple graph search algorithm can be used to plan a path

for this node efficiently. This is beneficial to changing the overall shape of a VTT. The

constraint that motions of multiple nodes are strongly coupled can be relaxed by moving

one node at a time, which may lead to longer execution time compared to having all DOFs

move at the same time. But the advantage is that this very high-dimensional planning

169

problem is converted into multiple 3D problems which are feasible to be solved by graph

search algorithm rather than using high DOF search algorithms such as Rapidly-exploring

Random Trees (RRT). In this way, the multi-node planning problem can be significantly

simplified. This strategy is demonstrated effective by several tasks.

12.2 Single Node Configuration Space

As introduced in Section 10.2, the configuration of a VTT is modeled as a graph G = (V,E).

The Pos property of a vertex v ∈ V defines the Cartesian coordinates of the corresponding

node denoted as qv = [vx, vy, vz] which is the configuration of this node, and the configuration

space of node v denoted as Cv is R3. Node v is fully controlled by all attached edge modules

Ev ⊆ E, and Ev is a parallel robot actuated by edge modules. When moving node v, collision

could happen between some pair of members in Ev or between e ∈ Ev and ē ∈ E \ Ev.

12.2.1 Obstacle Region and Free Space

When moving a single node v ∈ V in G = (V,E), the state of every e ∈ Ev, denoted as

Av(qv), can only be changed by altering qv. For this node v, the obstacle region Cvobs ⊆ Cv =

R3 is defined as

Cvobs = {qv ∈ R3|Av(qv) ∩ Ov 6= ∅} (12.1)

in which Ov is the obstacle for Ev. Then the free space of node v is just the leftover

configurations denoted as

Cvfree = R3 \ Cvobs (12.2)

Theorem 2. For a given node v in G = (V,E), Cvobs can be fully defined by the states of

∀e ∈ E \ Ev.

Proof. Suppose the node to move is vi ∈ V then there are three cases where a moving

member e = (vi, vj) ∈ Evi could collide with other members:

1. Member (vi, vj) ∈ Evi may collide with (vm, vn) ∈ E \ Evi as shown in Figure 12.1a,

and the obstacle region generated by (vm, vn) can be defined by an unbounded polygon

formed by member (vm, vn) and node vj (the blue polygon in Figure 12.1a). Since one

170

(a) (b) (c)

Figure 12.1: (a) (vi, vj) collides with (vm, vn) when vi is on the blue polygon. (b) (vi, vj)
collides with (vm, vj) when vi is on the blue ray r. (c) (vi, vj) collides with (vi, vk) when vi
is on the blue ray r1 or r2.

node is connected with at least three nodes in a VTT, it can be concluded that ∃vl ∈ V

such that (vj , vl) ∈ E \ Ev. Therefore, the obstacle region in this case is defined by

the states of members in E \ Evi ;

2. Member (vi, vj) ∈ Evi collides with member (vj , vm) ∈ E \ Evi if and only if the

trajectory of vi intersects with r, a ray starting at qvj and pointing in the direction of

qvm − qvj as shown in Figure 12.1b. Then this ray-shaped obstacle region is defined

by the state of the member (vj , vm) ∈ E \ Evi ;

3. Member (vi, vj) ∈ Evi collides with (vi, vk) ∈ Evi if and only if the trajectory of vi

intersects with ray r1 or r2 where r1 starts from qvk and points in the direction of

qvk − qvj and r2 starts from qvj and extends in the opposite direction, as shown in

Figure 12.1c. Since ∃vm ∈ V such that (vm, vk) ∈ E \ Evi , r1 is contained in the

obstacle region caused by (vm, vk) and (vi, vj). Hence, r1 is fully defined by the states

of members in E \ Evi . And similar approach can be applied to r2. Therefore, these

obstacle regions are fully defined by the states of members in E \ Evi .

With Theorem 2, Cvobs is constructed by all polygons generated from E \Ev. For a simple

171

(a) (b)

Figure 12.2: (a) Given node v0, one of its neighbors v1 and a member (v6, v8) can define the
blue polygon. This polygon is part of Cv0

obs. (b) The obstacle region Cv0
obs for node v0.

VTT shown in Figure 12.2a, the obstacle region Cv0
obs for node v0 is shown in Figure 12.2b.

The number of these polygons is of O(|E|2). From Theorem 2, it can be concluded that the

motions of multiple nodes are strongly coupled. In a VTTG = (V,E), for any pair of nodes vi

and vj , Cviobs and C
vj
obs are fully defined by the edge module set E\Evi and E\Evj respectively.

If vi and vj are not adjacent, then Evi ⊆ E \ Evj and Evj ⊆ E \ Evi . Otherwise, vi and vj

share one edge module (vi, vj), and Evi \ {(vi, vj)} ⊆ E \ Evj , Evj \ {(vi, vj)} ⊆ E \ Evi .

In both cases, Cviobs is partially determined by Evj and Cvjobs is partially determined by Evi .

Hence, the motions of vi and vj are strongly coupled.

12.2.2 Free Space Boundary

All the polygons defined by E \ Ev form the obstacle region Cvobs for node v. If v is on any

polygon, collision must happen among members. However, node v may not be able to move

to any location inside Cvfree from its initial configuration qvi because Cvfree may be not fully

connected and can be separated by Cvobs. For example, Cvobs is composed of six polygons

shown in Figure 12.3, but node v is only able to move freely inside the space enclosed by

polygon P1, P2, P3, P4, and P5 starting from its current location. P6 and parts of polygons

172

Figure 12.3: v is enclosed by polygon P1, P2, P3, P4, and P5, and polygon P6 is outside the
enclosure that has nothing to do with Cvfree(q

v).

P1 — P5 are outside the enclosed space. This enclosed space is the subset of Cvfree denoted

as Cvfree(q
v) where qv is the initial location of node v. It is necessary to find the boundary of

Cvfree(q
v) in order to do motion planning for v.

Polygon Intersection

Given a polygon Pi with α sides denoted as sij where j ∈ [1, α], if Pi is connected with a

set of polygons denoted as Nij through sij , then Nij is called the neighbor set of Pi at side

sij . When checking intersections, there are four possible cases in terms of the intersection

set of two polygons. For the cases that the intersection set is empty and the intersection set

only contains a single point, no further computation is needed.

Another case is that the intersection of two polygons is a line segment or a ray. In this

case, both polygons (Figure 12.4c) would be cut into two pieces by the intersection line,

and there are two special situations that zero (Figure 12.4a) or only one (Figure 12.4b)

polygon is cut. Let the two intersected polygons be P1 and P2, and the resulted separated

polygons are {P ′1, P ′′1 } and {P ′2, P ′′2 }, respectively. Assume that P1 has α1 sides denoted as

S1 = {s1j | j = 1, 2, · · · , α1}. Similarly, S′1 for P ′1 is also defined. Then, for any side s′1j ∈ S′1
such that s′1j = s1m ∈ S1, namely this edge is inherited from P1, the neighbor set N ′1j of P ′1
is equal to the neighbor set N1m of P1. This is called the inheritance process. And for any

side s′1j ∈ S′1 such that ∃s1m ∈ S1, s′1j is a part of s1m, namely s1m in P1 is cut and P ′1 only

173

(a) (b)

(c) (d)

Figure 12.4: (a) The intersection between the polygon generated by node v1 with member
(v2, v3) and the polygon by node v1 with member (v2, v6) is a ray and no polygon is cut.
(b) The intersection between the polygon generated by node v1 with member (v2, v6) and
the polygon by node v4 with member (v2, v3) is a ray and only one polygon is cut into two
pieces. (c) The intersection between the polygon generated by node v1 with member (v6, v8)
and the polygon by node v2 with member (v6, v7) is a ray and both polygons are cut into
two pieces. (b) The intersection between the polygon generated by node v1 with member
(v2, v3) and the polygon by node v4 with member (v2, v3) is also a polygon which is the
region between the two parallel black lines.

174

inherits part of s1m, check every polygon in N1m and all those polygons that are connected

with P ′1 compose N ′1j . This is called the recheck process. Finally, for the side s′1j ∈ S′1 which

coincides with the cutting line, let N ′1j = {P ′′1 , P ′2, P ′′2 }. This is called the adding process.

The same approaches will also be applied to P ′′1 , P ′2, and P ′′2 to compute their neighbor

sets. In addition, there are special situations for the third case. If the intersection lies on a

side of one polygon, e.g. P1, and inside another, e.g. P2, then only P2 is cut and P1 only

requires the adding process. If the intersection lies on a side of both polygons, only the

adding process is applied to both.

The last case occurs when two polygons lie on the same plane and their intersection is

also a polygon (e.g. Figure 12.4d). For this case, one of the polygons, e.g. P1, remains

unchanged and the other one, e.g. P2, can be divided into a set of convex polygons, R2, so

that no polygon in R2 overlaps P1. To do this, starting from any s1m ∈ S1, cut P2 into P ′2

and P ′′2 using the line on which s1m lies and apply the above three processes to compute the

neighbors of P ′2 and P ′′2 . Only one of the resulted two polygons overlaps P1, e.g. P ′′2 . P ′2 is

put into R2 and, if it is a neighbor of P1, add it to the neighbor sets of P1 and add P1 to

the neighbor set of P ′2. Then continue to apply this operation to cut P ′′2 using another side

s1n ∈ S1 \ {s1m}. Repeat this process until there is a newly generated polygon that is fully

contained in P1 and remove it from the neighbor sets of polygons in R2.

The motion of a VTT node is kept inside the boundary of the workspace. The above

operations are also applied to the boundary of the workspace. And after this process, a set

of polygons Pobs forming the whole Cvobs and the boundary of the workspace is obtained.

Since each pair of polygons is checked, this process has quadratic time complexity in the

number of polygons and therefore O(|E|4).

Boundary Search

For a polygon Pi with αi sides and all of its neighbor sets {Nij | j = 1, 2, · · · , αi}, it is

fully connected if and only if ∀j ∈ [1, αi] such that Nij 6= ∅. The resulting polygons after

Polygon Intersection are separated into two sets: the set of all fully connected polygons F

and the set of all not fully connected polygons U . Suppose the workspace is closed, it can

175

be seen that the boundary of Cvfree(q
v), a polyhedron, can only be constructed from fully

connected polygons. For any polygon Pi, there are two normal vectors in different directions

perpendicular to the plane on which it lies. The one pointing inside Cvfree(q
v) is called the

inner direction vector denoted as ni. The distance between node v and a polygon is the

minimum distance between v and any points on this polygon. The polygon Ps with the

shortest distance to v (if multiple, choose the one with the maximum distance between v

and the plane on which the polygon lies) must be a boundary polygon and ns can be found

regardless of whether Cvfree(q
v) is convex or not. For node v0 in Figure 12.2, Ps is shown

in Figure 12.5. One set of its neighbor polygons contains two obstacle polygons sharing an

edge with Ps in which the green polygon is the innermost one along vector ns.

Then, Algorithm 7 is used to search for a set of boundary polygons Pb of Cvfree(q
v), and

the result of Cv0
free(q

v0) for node v0 in Figure 12.2 is shown in Figure 12.6. Since every polygon

is checked at most once, this process takes O(|E|2) time. After this process, the set U has

to be refined by removing polygons that are outside the obtained boundary.

Algorithm 7: Boundary Search Algorithm
Input: The current node position qv, the set of obstacle polygons Pobs

Output: The set of boundary polygons Pb of Cvfree(q
v)

1 Ps ← polygon closest to node v;
2 Pb ← ∅;
3 QP ← ∅;
4 QP .enqueue(Ps);
5 while QP 6= ∅ do
6 Pi ← QP .dequeue();
7 Pb ← Pb ∪ {Pi};
8 foreach sij ∈ Si do
9 P ij ← the innermost polygon in Nij along ni;

10 Compute inner direction vector n̄ij of P ij ;
11 if P ij /∈ Pb ∧ P ij /∈ QP then
12 QP .enqueue(P ij);
13 end
14 end
15 end

176

Figure 12.5: For node v0, Ps is the red polygon. One set of its neighbor polygons contains
two obstacle polygons. The green polygon is the innermost one along vector ns that is added
to the boundary of Cv0

free(q
v0).

Figure 12.6: Cv0
free(q

v0) is bounded by polygons.

177

12.3 Single Node Path Planning

12.3.1 Cell Decomposition

The enclosed free space Cvfree(q
v) is not necessarily convex which can be further decomposed

into several convex polyhedrons. The problem to decompose a non-convex polyhedron into a

minimum number of convex pieces is known to be NP-hard [19]. All polygons in Pb are passed

into a function of the Computational Geometry Algorithms Library (CGAL) to decompose

the space into O(r2) where r is the number of edges that have two adjacent facets that

span an angle of more than 180° with respect to the interior of the polyhedron [140]. The

cell decomposition result of the space in Figure 12.6 is shown in Figure 12.7a. Each convex

polyhedron denoted as c is a cell in which the node can move freely without considering

collision. However, some cells may intersect with some polygon P in U (the set of not fully

connected polygons) and these cells need to be further separated into two cells by the plane

on which P lies (this is because CGAL ignores this case when doing convex decomposition).

This checking process takes also O(|E|4) time, so the total time complexity of the boundary

construction for Cvfree(q
v) is O(|E|4).

(a) (b)

Figure 12.7: (a) Cv0
free(q

v0) is decomposed into multiple convex polyhedrons. (b) The path
planned for v0 to move from its initial location qvi to the goal location qvg is shown as the
green path, and v0 only needs to traverse two convex polyhedrons.

178

12.3.2 Path Planning

With all decomposed cells, a graph G = (V, E) can be constructed where V is the set of all

decomposed cells and E is the set of edges with each edge representing the connection of

two adjacent cells. The cost of an edge is the distance of the path the node has to traverse

from one cell to another. Two cells are adjacent if and only if they are not separated by

polygons in U . When traversing from one cell c′ to its adjacent cell c′′ in G, the path is a

straight line connecting the centers of two adjacent cells if it is inside Cvfree(q
v). Otherwise,

the path is from the center of cell c′ to the center of the intersection polygon between c′ and

c′′, then to the center of c′′. For node v, given its initial location qvi and a goal location qvg ,

find the cell ci and cg containing qvi and qvg respectively. Then a path from ci to cg in G can

be found using Dijkstra Algorithm. For example, the planned path for v0 in a simple VTT

is shown in Figure 12.7b.

12.3.3 Completeness for Single Node Planning

It is claimed that this single-node planning algorithm is complete, i.e. it must compute a

(continuous) path, τ : [0, 1] → Cvfree, such that τ(0) = qvi and τ(1) = qvg , or correctly report

that such a path does not exist [66].

According to Theorem 2, the obstacle region Cvobs of a node v is fully defined, as well

as the free space Cvfree = R3 \ Cvobs. Recall that for a configuration of a node qv, Cvfree(q
v) is

the enclosed space containing qv and its boundary is formed by either Cvobs or the workspace

boundary, thus v cannot go outside Cvfree(q
v) from qv, or it will traverse the obstacle region

or the workspace boundary. Hence, if the goal location qvg /∈ Cvfree(q
v), there is no feasible

path. Otherwise, there must be a feasible path τ connecting qvg with qvi .

Cvfree(q
v) is a polyhedron that can be decomposed into T convex polyhedrons denoted

as {ct|t = 1, 2, · · · , T} by convex decomposition operation, and qvi and qvg must be in some

cells. Let qvi ∈ ci and qvg ∈ cg. Node v can move freely from qv1 to qv2 as long as qv1 ∈ ct and

qv2 ∈ ct where t = 1, 2, · · · , T . Then, for adjacent cells cm and cn, there must exist a feasible

path τmn : [0, 1]→ Cvfree(q
v) ⊆ Cvfree such that τmn(0) = qvm and τmn(1) = qvn where qvm ∈ cm

179

and qvn ∈ cn since node v can always move from qvm to the common boundary of cm and cn

freely and then move to qvn freely. Recall that all of the convex polyhedron cells construct

a graph G = (V, E) and Dijkstra Algorithm is complete to find the shortest path, then it is

guaranteed to find a sequence of convex cells from ci to cg. Hence, the path τ : [0, 1]→ Cvfree

such that τ(0) = qvi and τ(1) = qvg is derived.

12.4 Shape Morphing Approach

With the ability to find a path of a single node in VTT, shape morphing can be achieved by

a sequence of single-node motion. Assume there are n nodes v1, v2, · · · , vn that should be

moved from qv1
i , qv2

i , · · · , qvni to qv1
g , qv2

g , · · · , qvng respectively to achieve a shape morphing

task. First compute Cv1
free(q

v1
i) and move v1 to qv1

g , then compute Cv2
free(q

v2
i). If qv2

g ∈ Cv2
free(q

v2
i),

move v2 to qv2
g . Otherwise, try to move the next candidate. The process is repeated until

all nodes are moved to their destinations or returns failure. Thus, the problem reduces to

be finding a sequence of node motions. In the worst case, the approach has to try n! times

which is the permutation of the number of moving nodes. The efficiency of the single-node

planning makes this approach applicable to the multi-node planning problem. The benefit of

doing this is that it is not necessary to do the free space computation and cell decomposition

frequently. However, the drawback is that it may not be able to find the solution for some

extreme cases even there exists a feasible path.

12.5 Experiments

The algorithm is implemented in C++ with the Boost Graph Library (BGL) [139] and the

Computational Geometry Algorithms Library (CGAL) [140]. CGAL is used to do convex

decomposition of a non-convex polyhedron and BGL is used to do graph search. To demon-

strate the algorithm, two experiments were conducted, both on a laptop computer (Intel

Core i7-8750H CPU, 16GB RAM). The first experiment is about single-node planning and

the second one is a multi-node planning test.

180

Table 12.1: Comparison between the proposed method and the RRT approach from [52].

Test Node Proposed Method / Cell Decomposition (s) RRT (s)
v0 0.3031 / 0.2301 0.3050
v1 0.3581 / 0.2740 1.0245
v2 0.5145 / 0.4383 0.9092
v3 0.1292 / 0.0552 2.2419
v4 0.1013 / 0.0294 0.7646
v5 0.0578 / 0.0327 0.8052
v6 0.2796 / 0.2022 0.6283

12.5.1 Single-Node Experiment

Several tests were used to evaluate the presented approach in this Chapter and do comparison

with the retraction-based RRT from [52] which is previously used for VTT geometry motion

planning. The VTT used in this test is shown in Figure 11.6. For each node v, a goal

location qvg ∈ Cvfree(q
v
i) satisfying ‖qvg − qvi ‖ < 1 is selected randomly. The results are shown

in Table 12.1.

From this test result, the proposed approach is faster than the retraction-based RRT. In

addition, one significant feature of VTTs is that they are able to achieve a large workspace.

But RRT can take more than 40 s to search a path with four times larger workspace, while the

proposed method is not affected by the workspace size. Also, most time in this approach

is taken by CGAL for cell decomposition which can be improved by using a faster cell

decomposition method but may end up with more convex cells generated.

A VTT shown in Fig 12.8a, constructed from 18 members, is used for a difficult task

test. The initial positions of all nodes are listed in the following:

qv0 = [1.0, 1.0,−0.3]ᵀ qv1 = [0,−1.4, 0]ᵀ

qv2 = [−1.0, 1.0, 0.3]ᵀ qv3 = [−0.5851,−0.1749, 0.8851]ᵀ

qv4 = [1.0,−0.3, 0]ᵀ qv5 = [0, 0,−1.0]ᵀ

qv6 = [−1.0,−0.3, 0]ᵀ qv7 = [−1.107, 0.6449, 0.6597]ᵀ

The task is to move node v7 from its initial configuration qv7
i to a goal configuration

181

(a) (b)

Figure 12.8: (a) A VTT is constructed from 18 members with 8 nodes. (b) Cv7
free(q

v7
i) is

decomposed into 56 cells in total.

(a) (b) (c) (d)

Figure 12.9: The task is to move node v7 from its initial configuration qv7
i shown in (a) to

a goal configuration qv7
g shown in (d). The three cells and the complete path node v7 has

to traverse are shown. v7 is moved to the intersection between the first cell and the second
cell shown in (b), then to the center of the second cell shown in (c), and finally to the goal
location inside the third cell.

qv7
g = [0.6666, 0.23333, 0.375]ᵀ shown in Figure 12.9d. This is extremely hard for the

retraction-based RRT because the space is narrow. The cell decomposition result is shown

in Figure 12.8b with 56 cells in total. For this task, node v7 needs to traverse three cells as

shown in Figure 12.9. The planning process takes 1.054 s, among which CGAL takes 0.959 s.

12.5.2 Multi-Node Experiment

The experiment for multi-node planning is to change the shape of a cubic VTT shown in

Fig 12.10a to a tower VTT shown in Figure 12.10b. The VTT is composed of 21 members

182

(a) (b)

Figure 12.10: The motion task is to change the shape of a VTT from a cubic truss for rolling
locomotion (a) to a tower truss for shoring (b).

(a) (b)

(c) (d)

Figure 12.11: The nodes are all encircled by "◦" and their complete paths are shown as
"—". (a) For node v1, there are 61 cells generated after the cell decomposition process and
it has to traverse five cells to go to the destination. (b) For node v3, there are 87 cells
generated after the cell decomposition process and it has to traverse three cells to go to
the destination. (c) For node v5, there are 40 cells generated after the cell decomposition
process and it has to traverse seven cells to go to the destination. (d) For node v6, there are
34 cells generated after the cell decomposition process and it has to traverse two cells to go
to the destination.

183

and 9 nodes. The initial positions of all nodes are listed in the following:

qv0 = [−1.605,−0.771, 2.075]ᵀ qv1 = [0.7779,−0.7642, 2.075]ᵀ

qv2 = [−0.4756,−2.022, 0.075]ᵀ qv3 = [−0.4142, 0.4228, 2.175]ᵀ

qv4 = [−1.605,−0.771, 0.075]ᵀ qv5 = [0.3819,−0.3707, 0.125]ᵀ

qv6 = [−0.4314,−0.9559, 1.2321]ᵀ qv7 = [−0.4756,−2.022, 2.075]ᵀ

qv8 = [0.1819,−0.1707, 0.075]ᵀ

There are four nodes v1, v3, v5, and v6 involved in this shape morphing process, and

their goal positions are qv1
g = [0.1819,−0.1707, 4.125]ᵀ, qv3

g = [−1.605,−0.771, 4.075]ᵀ, qv5
g =

[−0.4756,−2.022, 4.075]ᵀ, and qv6
g = [0.1819,−0.1707, 2.125]ᵀ. The approach is able to find

a valid sequence of moving each node and the result is to move v1, v3, v5, and v6 in order.

The motions for all involved nodes are shown in Figure 12.11a, Figure 12.11b, Figure 12.11c,

and Figure 12.11d respectively. It takes 4.004 s to find the path to do shape morphing and

3.509 s is consumed by CGAL. This experiment is also tested in [52] and, with the retraction-

based RRT algorithm, a waypoint that node v5 has to be moved higher than node v1 needs

to be added manually to mitigate the narrow passage problem.

12.6 Conclusion

A fast and complete approach is presented to compute the configuration space of a given node

in a VTT which makes it possible to do cell decomposition more efficiently and accurately.

Then a simple graph-based search algorithm can be used to generate an optimal path for

single-node motion tasks. Based on this approach, a shape morphing method for VTT

systems is introduced by changing the locations of multiple nodes. Some useful applications

are used to demonstrate the effectiveness of the approach.

184

Chapter 13

Reconfiguration

This chapter presents the reconfiguration planning framework for VTTs. The goal is to

allow a VTT to perform dexterous reconfiguration activities in order to handle a variety of

tasks. This chapter excerpts heavily from [82] and [83]. Credit is due to Sencheng Yu who

contributed significantly to this work.

VTT robots are able to change their configurations by not only controlling joint positions

(edge module lengths) but also reconfiguring the connections among edge modules. Motion

planning for VTT robots is difficult due to their non-fixed morphologies, high dimensionality,

the potential for self-collision, and complex motion constraints. In this chapter, a new

reconfiguration planning algorithm to dramatically alter the structure of a VTT is presented,

as well as some comparative tests to show its effectiveness.

13.1 Introduction

A significant advantage for self-reconfigurable modular robots over other robots with fixed

morphologies is their versatility, namely they are able to adapt themselves into different

morphologies with regard to different requirements. As mentioned, a VTT in which the

members form a broad supported structure is well-suited for shoring damaged buildings

to enable rescue operations. Another VTT with some members protruding to form an

arm may have a large reachable workspace that is good at manipulation tasks. However, a

fundamental complication with VTT systems comes from the motion of the complex parallel

185

structures that may result in self-collision. Developing self-collision-free motion plans is

difficult due to the large number of DOFs leading to large search space.

Geometry reconfiguration involves the motions of multiple nodes. However, the arrange-

ment of edge modules in a VTT can result in a complicated configuration space even for a

single node while keeping the others rigid, and motions of multiple nodes are strongly cou-

pled, namely moving one node can significantly affect the configuration space of other nodes.

In a topology reconfiguration process, a single node controlled by enough edge modules can

be split into a pair of nodes so that they can go around some internal blocking members and

then merge back to an individual node. This process also requires motion planning for two

nodes at the same time. In addition, a number of physical constraints need to be considered.

This chapter presents a new framework for the reconfiguration planning of an arbitrary

VTT. This method dramatically reduces the search space when planning for multiple node

motions greatly improving efficiency. Furthermore, a fast method to compute the config-

uration space which is often not fully connected can explicitly answer whether a topology

reconfiguration action is required for a motion goal. An algorithm to compute a sequence

of topology reconfiguration actions is then introduced, if required, for a motion task.

13.2 Related Work

Some approaches have been developed for VGT systems that are similar to VTT systems but

without topology reconfiguration capability. Hamlin and Sanderson [41] presented a kine-

matic control but is limited to tetrahedrons or octahedrons. Usevitch et al. [148] introduced

linear actuator robots (LARs) as well as a shape morphing algorithm. These systems are in

mesh graph topology constructed by multiple convex hulls, and therefore self-collision can

be avoided easily. However, this does not apply to VTT systems because edge modules span

the workspace in a very non-uniform manner. There has been some work on VTT motion

planning. The retraction-based RRT algorithm was developed in [52] in order to handle

this high dimensional problem with narrow passage difficulty that is a well-known issue in

sampling-based planning approaches; nevertheless, this approach is not efficient because it

samples the whole workspace for every node and collision checking needs to be done for

186

every pair of members. Also, sometimes waypoints have to be assigned manually.

Chapter 11 discusses the advantage of topology reconfiguration and presents a recon-

figuration planning framework inspired by the DNA replication process — the topology of

DNA can be changed by cutting and resealing strands as tanglements form. This work is

based on a new method to discretize the workspace depending on the space density and

an efficient way to check self-collision. Both topology reconfiguration actions and geometry

reconfiguration actions are involved if needed. However, only a single node is involved in

each step and the transition model is more complicated, which makes the algorithm limited

in efficiency. Chapter 12 develops an algorithm to compute the configuration space of a

given node which can be used to plan a path for this node efficiently. However, multiple

nodes are usually involved in shape morphing. In this chapter, the approach is extended to

compute the obstacles for multiple nodes so that the search space can be decreased signif-

icantly. In addition, only the collision among a small number of edge modules needs to be

considered when moving multiple nodes at the same time. Hence, sampling-based planners

can be applied efficiently. This idea has been discussed briefly in [77]. For some motion

tasks, topology reconfiguration is required. An updated algorithm is developed to compute

the whole not fully connected free space and required topology reconfiguration actions can

then be generated using a hybrid planning framework (sampling-based and search-based)

which can achieve behaviors that are similar to the DNA replication process.

13.3 Problem Statement

Given a node v ∈ V in G = (V,E), its obstacle region is defined in Eq. (12.1) and its

free space is defined in Eq. (12.2). However, Cvfree may not be fully connected and may be

partitioned by Cvobs. Only the enclosed subspace containing qv which is denoted as Cvfree(q
v)

is free for node v to move. The algorithm to compute the boundary of this subspace is

shown in Chapter 12. For example, given the VTT in Figure 12.2a, Cv0
obs — the obstacle

region of v0 — is shown in Figure 12.2b, Cv0
free — the free space of v0 — is just the leftover

configurations, and the enclosed subspace Cv0
free(q

v0) is shown in Figure 12.6.

Cvfree is usually partitioned by Cvobs into multiple enclosed subspaces, and it is impossible

187

to move v from one enclosed subspace to another one without topology reconfiguration.

The physical system constraints from [132] allow two atomic actions on nodes that enable

topology reconfiguration: Split and Merge. Since the physical system must be statically

determinate with all nodes of degree three, a node v must be composed of six or more edge

modules to undock and split into two new nodes v′ and v′′, and both nodes should still have

three or more members. This process is called Split. Two separate nodes are able to merge

into an individual one in a Merge action. The simulation of these two actions is shown in

Figure 10.1. Hence, in a topology reconfiguration process, the number of nodes can change,

but the number of members that are physical elements remains constant.

In this work, given a VTT G = (V,E), the reconfiguration planning problem can be

stated as the following:

• Geometry Reconfiguration. For a set of n nodes {vt ∈ V |t = 1, 2, · · · , n}, compute

paths τt : [0, 1] → Cvtfree such that τt(0) = qvti and τt(1) = qvtg in which t = 1, 2 · · · , n,

qvti is the initial position of vt and qvtg is the goal position of vt, while satisfying all

constraints.

• Topology Reconfiguration. Compute the topology reconfiguration actions, Merge

and Split, and find collision-free path(s) to move a node v from its initial position qvi

to its goal position qvg , while satisfying all constraints.

13.4 Hardware and Environmental Constraints

A VTT has to maintain some hardware constraints during its motion, and this includes the

limitations from the hardware, and the stability and controllability of the system.

13.4.1 Length Constraints

In a VTT, each edge module has an active prismatic joint called Spiral Zipper [24] and this

joint is able to achieve a high extension ratio as well as form a high strength-to-weight-

ratio column. The mechanical components determine the minimum member length and the

total material determines the maximum member length. Hence, in a VTT G = (V,E),

188

∀e = (vi, vj) ∈ E, the following constraint can be obtained:

L
2
min ≤ ‖qvi − qvj‖ ≤ L

2
max (13.1)

13.4.2 Collision Avoidance

During the motion of a VTT, the collision between members have to be avoided. The

distance between every two members have to be greater than d̄min, the diameter of an edge

module which is a cylinder (or the sum of the radius of a node and the radius of an edge

module). The minimum distance between member (vi, vj) and (vm, vn) can be expressed as

min ‖(qvi + α(qvj − qvi))− (qvm + γ(qvn − qvm))‖ (13.2)

in which α, γ ∈ (0, 1). This is not easy to compute and can be more complicated when both

members are actuating. In Section 13.5, the presented approach that doesn’t need to solve

this problem is shown. Also the angle between connected members has to remain above

a certain value due to the mechanical design of the node. The angle constraint between

member (vi, vj) and (vi, vk) can be expressed as

arccos

(
(qvj − qvi) • (qvk − qvi)
‖qvj − qvi‖‖qvk − qvi‖

)
≥ θ̄min (13.3)

13.4.3 Stability

The truss structure of a VTT is meant to be statically stable under gravity when interacting

with the environment and sufficient constraints between the robot and the environment must

be satisfied to ensure the location of the structure is fully defined. At least three still nodes

should be on the ground in order to form a valid support polygon. For the VTT shown in

Figure 10.2, v0, v2, v3, and v5 are stationary on the ground to form the current support

polygon. In addition, the center of mass of a VTT as represented on the ground has to be

inside this support polygon. Furthermore, no collision is allowed between a VTT and the

environment, and the simplest condition is that all nodes have to be above the ground.

189

13.4.4 Manipulability

In order to control the motions of nodes, a VTT has to maintain an amount of manipula-

bility for these moving nodes. Given a VTT G = (V,E) and the current controlled node

set VC , the Jacobian JAB can be derived as shown in Eq. (10.6b). By applying singular

value decomposition on JAB, its maximum singular value σmax(JAB) and minimum singular

value σmin(JAB) can be derived, and the manipulability of the current moving nodes can be

constrained as

µ =
σmin(JAB)

σmax(JAB)
≥ µ̄min (13.4)

13.5 Geometry Reconfiguration

The overall shape of a VTT is altered by moving nodes around in the workspace. For an

individual node, its configuration space is R3. Apparently, the configuration space for n

nodes is R3n. When multiple nodes are involved, the motion planning problem will be in

high-dimensional space. The strategy to avoid this high dimensionality is to divide the

moving nodes into multiple groups and each group contains one or a pair of nodes. The

motion planning space for each group is either in R3 or R6. Even with lower-dimensional

space, it is still a challenge to search for a valid solution. First, it is not efficient to search the

whole R3 or R6 and narrow passage is a significant problem when applying sampling-based

algorithms, e.g. RRT. In addition, it is difficult to guarantee the collision avoidance for a

given motion by simply discretizing the motion to some resolution and checking states at

that resolution because of the case that a member goes across another member may not be

detected, or very fine resolution has to be used which will slow down the planner significantly.

These issues are overcome by computing the free space of the group in advance so that the

sampling space is decreased significantly.

13.5.1 Obstacle Region and Free Space

A group can contain either one node or a pair of nodes. Given a VTT G = (V,E), for an

individual node v ∈ V , an efficient algorithm to compute Cvobs and Cvfree(q
v) with its boundary

190

is introduced in Chapter 12. If there are two nodes vi ∈ V and vj ∈ V in a group, then

any collision among members in Evi and Evj is treated as self-collision inside the group,

and all the members in E \ (Evi ∪ Evj) define the obstacle region of this group denoted as

Ĉviobs (the obstacle region of vi in the group) and Ĉvjobs (the obstacle region of vj in the group)

respectively, namely

Ĉviobs =
{
qvi ∈ R3|Avi(qvi) ∩ Ovi,vj 6= ∅

}
Ĉvjobs =

{
qvj ∈ R3|Avj (qvj) ∩ Ovi,vj 6= ∅

}
in which Ovi,vj is formed by ∀e ∈ E \ (Evi ∪ Evj).

Then the free space of vi and vj in the group can be derived as

Ĉvifree = R3 \ Ĉviobs (13.5)

Ĉvjfree = R3 \ Ĉvjobs (13.6)

Using the same boundary search approach in Section 12.2.2, the boundary of Ĉvifree(q
vi) — the

enclosed subspace containing the current position of node vi — can be obtained efficiently.

Similarly, the boundary of Ĉvjfree(q
vj) can be obtained. For example, given the VTT shown in

Figure 13.1, if node v0 and v1 form a group, then Ĉv0
free(q

v0) and Ĉv1
free(q

v1) can be computed

and shown in Figure 13.2. Cv0
free(q

v0) contains some space on the right side of v1 because

Ev1 is ignored. This space informs that it is possible to move v0 to some locations which

are currently blocked by v1 since v1 can be moved away. It is guaranteed that as long as

v0 is moving inside Ĉv0
free(q

v0) (the space shown in Figure 13.2a), there must be no collision

between any member in Ev0 and any member in E \ (Ev0 ∪ Ev1). Similarly, no collision

between any member in Ev1 and any member in E \ (Ev0 ∪Ev1) can happen if v1 is moving

inside Ĉv1
free(q

v1) (the space shown in Figure 13.2b). In this way, when planning the motion of

node v0 and v1 using RRT, the sample will only be generated inside Ĉv0
free(q

v0) and Ĉv1
free(q

v1),

and only self-collision in the group needs to be considered, namely the collision can only

happen among members in Ev0 ∪ Ev1 . There is a special case when these two nodes in

191

Figure 13.1: A VTT is composed of 21 edge modules with 10 nodes among which v0 and v1

form a group.

(a) (b)

Figure 13.2: (a) Ĉv0
free(q

v0) is computed with all members controlling v1 ignored. (b) Ĉv1
free(q

v1)
is computed with all members controlling v0 ignored.

the group are connected by a member. Both ends of the member are moving which is not

considered by the obstacle model. This is an extra case when doing collision check.

The previous free space and the obstacle region are derived by ignoring the physical size

of members and nodes, such as the obstacle polygon shown in Figure 12.2a that is derived

by regarding node v1 as a point and member (v6, v8) as a line segment without thickness.

In practice, a node is a sphere and a member is a cylinder, so it is not guaranteed that the

192

minimum distance among members (Eq. 13.2) is greater than the diameter of an edge module

(or the sum of the radius of a node and the radius of an edge module) even the involved

node is not inside its obstacle region. This difficulty is overcome through increasing the

derived obstacle region by considering the physical size of VTT components. In the obstacle

region, every polygon is converted into a polyhedron. For example, for the VTT shown in

Figure 12.2a, the purple polygon defined by node v1 and edge module (v6, v8) is one obstacle

polygon for node v0, and this polygon is converted into a polyhedron shown in Figure 13.3.

The boundary of this obstacle polyhedron is composed of five polygons that can be obtained

as follows:

The current locations of nodes v1, v6, and v8 are qv1 , qv6 , and qv8 respectively, and the

unit vector normal to the plane formed by these three nodes is n̂p (−n̂p is also a normal

unit vector but in opposite direction). As shown in Figure 13.4b, first adjust qv6 and qv8 by

moving them along n̂p and −n̂p respectively:

q̂v6
1 = qv6 + λn̂p

q̂v6
2 = qv6 − λn̂p

q̂v8
1 = qv8 + λn̂p

q̂v8
2 = qv8 − λn̂p

where λ is the growing size that is taken to be the sum of the radius of the node and the

radius of the edge. Then, the four rays shown in Figure 13.4a can be easily derived as

r̂16
1 =

q̂v6
1 − qv1

‖q̂v6
1 − qv1‖

r̂16
2 =

q̂v6
2 − qv1

‖q̂v6
2 − qv1‖

r̂18
1 =

q̂v8
1 − qv1

‖q̂v8
1 − qv1‖

r̂18
2 =

q̂v8
2 − qv1

‖q̂v8
2 − qv1‖

n̂m is the unit vector perpendicular to the edge (v6, v8), pointing to v1 and lying on the

193

Figure 13.3: One obstacle polygon of Cv0
obs shown in Figure 12.2a becomes a polyhedron

bounded by five polygons if the size of VTT components is considered.

(a) (b)

Figure 13.4: (a) Detailed illustration of the formation of the obstacle polyhedron. (b) Close
view of the obstacle polyhedron.

194

plane formed by v1, v6, and v8. Then q̂v6
1 , q̂v6

2 , q̂v8
1 , and q̂v8

2 are moved by distance λ/2

projected on n̂m along −r̂16
1 , −r̂16

2 , −r̂18
1 , and −r̂18

2 , respectively:

q̄v6
1 = q̂v6

1 −
λ

2
∣∣n̂m · r̂16

1

∣∣ r̂16
1

q̄v6
2 = q̂v6

2 −
λ

2
∣∣n̂m · r̂16

2

∣∣ r̂16
2

q̄v8
1 = q̂v8

1 −
λ

2
∣∣n̂m · r̂18

1

∣∣ r̂18
1

q̄v8
2 = q̂v8

2 −
λ

2
∣∣n̂m · r̂18

2

∣∣ r̂18
2

With all the information, the boundary of the polyhedron that is composed of five polygons

shown in Figure 13.4a can be encoded in the following:

P1 =
{
V = (q̄v6

1 , q̄
v6
2) , R =

(
r̂16

1 , r̂
16
2

)}
P2 =

{
V = (q̄v8

1 , q̄
v8
2) , R =

(
r̂18

1 , r̂
18
2

)}
P3 =

{
V = (q̄v6

1 , q̄
v8
1) , R =

(
r̂16

1 , r̂
18
1

)}
P4 =

{
V = (q̄v6

2 , q̄
v8
2) , R =

(
r̂16

2 , r̂
18
2

)}
P5 = {V = (q̄v6

1 , q̄
v6
2 , q̄

v8
1 , q̄

v8
2)}

Note that P5 consists of no rays.

Every obstacle polygon in Figure 12.2b can be converted into an obstacle polyhedron

(bounded by five polygons) in this way, and then process these polygons by Polygon Inter-

section and Boundary Search from Section 12.2.2 to derive Cv0
free(q

v0) shown in Figure 13.5.

The Boundary Search step can be simplified and the modified boundary search algorithm

is shown in Algorithm 8. Recall that the free space of a node is usually partitioned by its

obstacle region into multiple enclosed subspaces, and given an obstacle polygon Ps and the

set of all obstacle polygons Pobs generated by Polygon Intersection step, this algorithm can

find the enclosed subspace with Ps being part of the boundary. Note that after Polygon

Intersection, each polygon in Pobs can only bound one enclosed subspace because every ob-

195

Figure 13.5: Cv0
free(q

v0) with physical size of the robot components being considered.

Algorithm 8: Boundary Search Algorithm
Input: One obstacle polygon Ps, the set of obstacle polygons Pobs

Output: The set of boundary polygons Pb
1 Pb ← ∅;
2 QP ← ∅;
3 QP .enqueue(Ps);
4 while QP 6= ∅ do
5 Pi ← QP .dequeue();
6 Pb ← Pb ∪ {Pi};
7 foreach sij ∈ Si do
8 P ij ← the innermost polygon in Nij ;
9 if P ij /∈ Pb ∧ P ij /∈ QP then

10 QP .enqueue(P ij);
11 end
12 end
13 end

stacle polygon is the boundary between the free space and the obstacle region. In order to

find the boundary of Cv0
free(q

v0), set Ps to be the obstacle polygon that is closest to qv0 . In

the algorithm, Si is the set of all edges of polygon Pi, sij is the jth edge of Pi, and Nij
is the set of all polygons that share sij with Pi. For each obstacle polygon Pi, its normal

vector pointing outward the obstacle region is computed, and P ij in Line 8 is the innermost

polygon in Nij along the normal vector of Pi.

The new Cv0
free(q

v0) is smaller and bounded by more polygons. In addition to considering

196

(a) (b)

Figure 13.6: (a) Ĉv0
free(q

v0) is computed with all members controlling v1 ignored. (b) Ĉv1
free(q

v1)
is computed with all members controlling v0 ignored.

the physical size of the robot components, for a single node, it is easy to find the region

when the node is in a singular configuration. For a single node, if all of its neighbor nodes

are on the same plane, then this node cannot traverse this plane, or it will be in a singular

configuration. In such a case, add this plane to the obstacle polygon set when running

the boundary search algorithm. By taking these constraints into consideration, Ĉv0
free(q

v0)

and Ĉv1
free(q

v1) can be derived for the group containing v0 and v1 in the VTT shown in

Figure 13.1 and the result is shown in Figure 13.6. Compared with the space shown in

Figure 13.2, Cv0
free(q

v0) becomes smaller and v0 cannot go beyond the plane formed by v2,

v3, v6, and v7 due to the singularity constraint. In the rest of this chapter, the free space

ignoring the physical size of the robot components is used for illustration purposes.

13.5.2 Path Planning for a Group of Nodes

If there is only one node v in the group and the motion task is to move the node from its

initial position qvi to its goal position qvg where qvi ∈ Cvfree(q
v
i) and qvg ∈ Cvfree(q

v
i) (qvi and qvg

are in the same enclosed subspace), then it is straightforward to apply RRT approach in

Cvfree(q
v
i) and no collision can happen as long as the motion of each step is inside Cvfree(q

v
i)

since this space is usually not convex.

When moving two nodes vi and vj in a group, sampling will only happen inside Ĉvifree(q
vi)

197

and Ĉvjfree(q
vj) for vi and vj respectively. If there is no edge module connecting vi and vj , then

when applying RRT approach, the collision between moving members and fixed members

can be ignored as long as the motion of both nodes in each step are inside Ĉvifree(q
vi) and

Ĉvjfree(q
vj) respectively. Only self-collision inside the group — the collision among members

in Evi∪Evj — needs to be considered. If there is an edge module e = (vi, vj) which connects

vi and vj , since this case is not included in the obstacle model when computing the obstacle

region for the group, it is also necessary to check the collision between e = (vi, vj) and every

edge module in E \ (Evi ∪ Evj).

In summary, when planning node vi and vj in a VTT G = (V,E), for each step, in order

to avoid collision, it is required to ensure the following:

1. The motion of both node vi and vj are inside Ĉvifree(q
vi) and Ĉvjfree(q

vj) respectively;

2. No collision happens among edge modules in Evi ∪ Evj ;

3. No collision happens between edge module e = (vi, vj) and every member in E \(Evi ∪

Evj) if e = (vi, vj) exists.

It is difficult to check the second and third collision case during the motion if both nodes

are moving simultaneously. But since the step size for each node is limited and both of them

are moving in straight lines, the planner can first check the collision during the motion of vi

while keeping vj fixed, and then check the motion of vj . By doing so, the collision can be

checked efficiently using the approach presented in Section 11.2.3. Every edge module can

be modeled as a line segment in space, thus, when moving node v, every e ∈ Ev sweeps a

triangle area, and if this member collides with another member ē ∈ E, then ē must intersect

with the triangle generated by e (Figure 11.4). Similar to the approach in Section 13.5.1,

buffer this triangle area in order to consider the size of physical components. Another way

is to compute the local obstacle region of vi by only taking Evj into account when moving

vi, and similarly compute the local obstacle region of vj by only taking Evi into account

when moving vj . The local obstacle region of each node can be derived easily. For vi, given

NG(vi) that is the neighbors of vi and Evj , the local obstacle region of vi is simply the union

198

of all the obstacle polyhedron defined by ∀(v, e) ∈ NG(vi)×Evj . If the trajectory of vi that

is a line segment intersects with its local obstacle region, then collision happens. Repeat

the same procedures when moving vj . If edge module (vi, vj) exists, when moving vi, it is

also necessary to consider the obstacle polyhedron defined by vj and e ∈ E \ (Evi ∪ Evj),

and similarly consider the obstacle polyhedron defined by vi and e ∈ E \ (Evi ∪ Evj) when

moving vj . By this approach, there is no need to solve Eq. (13.2) for collision avoidance.

In addition to this constraint that the distance between every pair of members has to

be greater than some value, a discrete motion also needs to satisfy the length constraint

(Eq. 13.1), the angle constraint (Eq. 13.3), the manipulability constraint (Eq. 13.4), and

the stability constraint when interacting with the environment. For these constraints, it is

straightforward to discretize the motion in the current step to some resolution and check

the states for validity at this resolution. When checking the stability constraint, first find all

supporting nodes by checking the height of every node, and if its height is close enough to

the ground, then this node is regarded as a supporting node. There have to be at least three

supporting nodes all the time. Otherwise, this VTT cannot be stable. Then the center of

mass of the current truss is computed and projected onto the ground. Given this projected

center of mass and all the supporting nodes on the ground, the convex hull of them (the

smallest convex polygon that contains all these points) can be computed efficiently using

either Jarvis’s march [51] or Graham’s scan [37]. If the projected center of mass is not on

the boundary of the convex hull, then it is inside the support polygon that is the convex

hull determined only by the support nodes. Otherwise, this VTT is not stable.

With all these works, the state validity and the motion validity can be checked effi-

ciently, and RRT-type approaches can be applied easily. Open Motion Planning Library

(OMPL) [137] is used to implement RRT for this path planning problem.

13.5.3 Geometry Reconfiguration Planning

Assuming there are n nodes {vt ∈ V |t = 1, 2 · · · , n} that should be moved from their initial

positions qv1
i , q

v2
i , · · · , qvni to their goal positions qv1

g , q
v2
g , · · · , qvng respectively, these nodes

are first divided into dn/2e groups. Each group contains at most two nodes. Then the

199

motion task is achieved by moving nodes one group by one group. Then this geometry

reconfiguration problem results in finding a sequence of groups that can achieve the task. If

failed, try another grouping and find the corresponding sequence. Repeat this process until

the task is finished, otherwise failed. With this approach, this geometry reconfiguration

planning problem can be solved much faster than the approach in Section 12.4 and the

detailed test results are in Section 13.7.

13.6 Topology Reconfiguration

Topology reconfiguration involves changing the connectivity among edge modules and there

are two atomic actions: Split and Merge. The undocking and docking process is difficult for

modular robotic systems, but sometimes necessary for some motion tasks. It is necessary to

verify whether the geometry reconfiguration process is enough or topology reconfiguration

actions are needed. Recall that the free space of a node is usually not a single connected

component and if a motion task has the initial configuration and the goal configuration in

separated enclosed subspaces, topology reconfiguration actions are needed.

13.6.1 Enclosed Subspace in Free Space

As mentioned before, each polygon after Polygon Intersection in Cvobs is bounding only one

enclosed subspace. Therefore all the enclosed subspaces can be computed by repeatedly

applying Algorithm 8 as shown in Algorithm 9.

The algorithm first obtains the set of all obstacle polygons Pvobs by Polygon Intersection.

Then, search for the enclosed subspace containing the current node configuration — Cvfree(q
v)

— from a starting polygon Ps that is the nearest one to the node (Section 12.2.2). Afterward,

all other enclosed subspaces in Cvfree are computed by searching the boundary starting from

any polygon that has not been used. Figure 13.7 shows two enclosed subspaces of node v0

in a simple cubic truss. In total, there are 33 enclosed subspaces in Cv0
free above the ground.

13.6.2 Topology Reconfiguration Actions

There are two topology reconfiguration actions: Split and Merge. A node constructed by

six or more edge modules can be split into two separate nodes, and two separate nodes

200

Algorithm 9: Enclosed Subspace Search
Input: VTT G = (V,E), node v ∈ V
Output: The set of all enclosed subspaces Cvfree

1 Compute Pobs;
2 Ps ←polygon closest to node v;
3 Cvfree(q

v)← BoundarySearch(Ps, Pobs);
4 Cvfree ← {Cvfree(q

v)};
5 foreach Pi ∈ Pvobs do
6 if Pi /∈ C ∀C ∈ Cvfree then
7 Cnew ← BoundarySearch(Pi, Pobs);
8 Cvfree ← Cvfree ∪ {Cnew};
9 end

10 end

(a) (b)

Figure 13.7: (a) Enclosed subspace Cv0
free(q

v0) contains the current position of v0. (b) Another
enclosed subspace is separated from Cv0

free(q
v0) by obstacles.

can merge into an individual node. These actions can significantly affect the motions of the

involved nodes and there are several constraints when applying them. For the VTT shown in

Figure 13.1, Cv0
free(q

v0) that is the enclosed subspace containing the current location of node

v0 is shown in Figure 13.8a. This node can move to some locations outside the truss but its

motion is also blocked in some directions. The members attached with node v1 blocked the

motion of node v0 on this side, and the plane formed by node v2, v3, v6, and v7 also blocks

the motion of v0 due to: 1. collision avoidance with member (v2, v3), (v2, v6), (v3, v7), and

201

(a) (b)

Figure 13.8: (a) Enclosed subspace Cv0
free(q

v0) when v0 and v1 are separated; (b) Enclosed
subspace Cv0

free(q
v0) after merging v1 with v0.

(v6, v7); 2. singularity avoidance that v0 cannot move through the square formed by v2, v3,

v6, and v7. If merging v1 and v0 as v0 shown in Figure 13.8b, Cv0
free(q

v0) will be changed.

The boundary originally blocked by members attached with node v1 disappears because all

members controlling v0 and v1 are combined into a single set. In addition, this Merge action

increases the motion manipulability of node v0 that can move through the square formed

by v2, v3, v6, and v7. However, the side effect is that some originally reachable locations

become not reachable, such as the space above the truss and around the member (v4, v8).

This is because Ev0 contains more members leading to the increase of the obstacle region of

node v0.

When executing a Split action on a node, the basic requirement is that this node has to

be constructed by at least six edge modules. In the process, a node needs to be physically

split into a pair which then be moved away. In order to guarantee motion controllability,

singularity should be avoided during the whole process. In some situations, it is necessary

to carefully consider if it is feasible to execute this action. For example, when node v0 is on

the same plane with node v2, v3, v6, and v7 shown in Figure 13.9a, it is not allowed to split

node v0 in the way shown in Figure 13.9b, because one of the newly generated nodes (v0 in

this case) will be in a singular configuration. In comparison, if node v0 is outside the truss

202

(a) (b)

Figure 13.9: (a) Node v0, v2, v3, v6, and v7 are on the same plane. (b) Splitting node v0

in this way to separate Ev0 into two sets is not valid, because node v0 will be in singular
configuration. Similarly, it is not valid to merge v1 with v0.

(a) (b)

Figure 13.10: (a) Node v0 is outside the truss. (b) It is possible to split node v0 in this way
to generate v1. Reversely, v0 and v1 can be merged.

203

shown in Figure 13.10a, then it is feasible to apply the same Split action to generate two

new nodes shown in Figure 13.10b. This constraint also applies for Merge. In Figure 13.9b,

since node v0 is in singular configuration, it is not allowed to merge v1 with v0 to become a

new truss shown in Figure 13.9a. However, it is feasible to merge v0 and v1 in Figure 13.10b

to become v0 in Figure 13.10a.

After splitting a node, the members attached to this node are separated into two groups

that can be controlled independently. However, it is still necessary to consider how to move

the two newly generate nodes away from each other. In Figure 13.11a, after splitting v0 into

v0 and v1, v1 is moved to the right side of v0 and this motion can separate these involved

members without any collision. However, in Figure 13.11b, for the same Split action, v1

is moved to the left side of v0 and this motion is in fact not feasible because members will

collide. This is also important for Merge. When merging two nodes, they first need to move

to some locations that are close to each other. If the new locations are not selected correctly,

it is impossible to move them there and execute Merge action.

(a) (b)

Figure 13.11: Split node v0 into v0 and v1: (a) a right way to move node v1 away from node
v0; (b) a wrong way to move node v1 away from node v0.

204

13.6.3 Topology Reconfiguration Planning

Given a VTT G = (V,E) and the motion task that is to move node v from qvi to qvg , if qvi and

qvg belong to the same enclosed subspace, then geometry reconfiguration planning is able to

handle this problem by either the approach in Section 12.3 or the approach introduced in

Section 13.5.2. Otherwise, topology reconfiguration is needed. The node has to execute a

sequence of Split and Merge in order to avoid collision with other members.

There are multiple ways for a node v to split into nodes v′ and v′′ as there are multiple

ways to take the members into two groups, and it is straightforward to compute all possible

ways to split Ev into two groups in which both sets contain at least three edge modules.

Let A be the set of all possible ways to separate Ev into two groups. If v is split into v′

and v′′, then Ev is separated into Ev′ and Ev
′′ accordingly. This split process is denoted

as (Ev
′
, Ev

′′
). Not all possible ways in A can be applied on node v. Given a valid VTT

G = (V,E) and a node v, a Split action can be encoded as a tuple (Ev
′
, Ev

′′
, qv

′
s , q

v′′
s) where

v′ and v′′ are the newly generated node after splitting, and qv′s and qv′′s are the locations of

these two new nodes. For simplicity, qv′s = qv and v′′ is moved away from v′ along a unit

vector dv so that there is no collision introduced after this process. The direction of dv is

determined by qv′s (the current location of v′) and NG(v′) (the neighbors of v′), and can be

derived by normalizing the following vector:

∑
v̂∈NG(v′)

qv
′

s − qv̂
‖qv′s − qv̂‖

(13.7)

and the distance moved along vector dv can be tried iteratively until there is no collision in

this VTT. In addition to the collision-free requirement, the resulted VTT should satisfy all

other hardware constraints described in Section 13.4 after splitting, and let VC = {v′, v′′}

when checking the motion manipulability by Eq. 13.4.

Given a location of node v and one way to split Ev into Ev′ and Ev′′ , Function Compute-

SplitAction is used to check and compute this Split action. In this function, G is the given

VTT, a ∈ A is a possible split way, and D, ∆D, and Dmax are three parameters. Function

205

Function ComputeSplitAction(G, qv, a ∈ A)
Data: D, ∆D, Dmax

1 Move node v to qv;
2 if VTTValidation(G) = False then
3 return Null;
4 end
5 Split node v into v′ and v′′ according to a ∈ A;
6 qv

′
s ← qv, qv′′s ← qv;

7 Compute dv;
8 repeat
9 qv

′′
s = qv +Ddv;

10 Move node v′′ to qv′′ ;
11 if VTTCollisionCheck (G) = True then
12 D ← (D + ∆D)dv;
13 else
14 if VTTValidation(G) = True then
15 return (Ev

′
, Ev

′′
, qv

′
s , q

v′′
s);

16 else
17 return Null;
18 end
19 end
20 until D ≤ Dmax;
21 return Null;

VTTValidation returns true if a given VTT satisfies all hardware constraints, otherwise

returns false. Function VTTCollisionCheck returns false if there is no collision among all

members, otherwise returns true. The basic idea is to move v′′ gradually away from v′ until

a valid VTT is found. The maximum distance between v′ and v′′ for searching is Dmax that

should be a small value. Within this small range, member collision is a more significant

constraint, such as the case shown in Figure 13.11b. Hence initially only checking collision

among members, and once a collision-free location for v′′ is found, check other hardware

constraints. Reversely, if merging v′ and v′′ as v at a location qv, with this computed Split

action (Ev
′
, Ev

′′
, qv

′
s , q

v′′
s), first check if qv′s = qv ∈ Cv′free(q

v′) and qv′′s ∈ Cv
′′

free(q
v′′), and if true,

move v′ to qv′s and move v′′ to qv′′s , and then merge them at qv.

Given qv, the current position of node v, and Cvfree = {tCvfree|t = 1, 2, · · · , T} that contains

T enclosed subspaces in the free space of node v, apply a valid Split action on this node to

206

separate Ev into Ev′ and Ev′′ and generate two new nodes v′ and v′′. qv′ and qv′′ are the

locations of v′ and v′′, and Cv′free(q
v′) and Cv′′free(q

v′′) can be computed accordingly. Assuming

there is a position q ∈ tCvfree where node v can also be split in the same way (Ev can be

separated into Ev′ and Ev
′′ with Split action (Ev

′
, Ev

′′
, qv

′
s , q

v′′
s)), if qv′s ∈ Cv

′
free(q

v′) and

qv
′′

s ∈ Cv
′′

free(q
v′′), namely v′ and v′′ can navigate to qv′s and qv′′s respectively and merge at q,

then this node v can navigate from Cvfree(q
v) to tCvfree by a pair of Split and Merge actions,

and these two enclosed subspaces can be connected under this action pair. This is the

transition model when applying topology reconfiguration actions. From Section 13.6.2, it

is shown that the possible ways to split a node are highly dependent on the location of

the node, and the resulted enclosed subspaces of the newly generated nodes can be very

different when splitting the node at different locations. So multiple samples are needed

for every enclosed subspace. When applying the transition model described above, it is

necessary to compute Cv′free(q
v′) and Cv′′free(q

v′′) many times (for every sample and every valid

split action) and can be time-consuming. An alternative is to regard v′ and v′′ as a group

and compute their group free space Ĉv′free(q
v′) and Ĉv′′free(q

v′′) respectively for every possible

way to split v in advance. If qv′s ∈ Ĉv
′

free(q
v′) and qv′′s ∈ Ĉv

′′
free(q

v′′), then these two enclosed

subspaces can be connected. This transition model based on the group free space can be

much more efficient but may cause failures when applying the path planning for a group of

nodes since it is less strict than the previous one.

There are two phases in the topology reconfiguration planning: sample generation and

graph search. In sample generation, multiple samples are generated for every enclosed sub-

space. These samples are expected to provide valid Split actions as many as possible and

also cover the space as much as possible. Algorithm 10 is introduced to sample a given

enclosed subspace. S is the set containing all generated valid samples and AS stores the

Split actions for every sample. Nmax is the maximum number of samples for a given en-

closed subspace tCvfree and it is determined by the size of the space: a larger space is expected

to have more samples. In the current setup, it is easy to find the range of a given space

along x-axis, y-axis, and z-axis denoted as xrange, yrange, and zrange respectively, then Nmax

207

Algorithm 10: Sample Generation
Input: tCvfree, G, A
Output: S, AS

1 S ← ∅;
2 Initialize an empty map AS ;
3 Initialize dmin;
4 Nmax ← SampleNumber(tCvfree);
5 for k = 1 to K do
6 Avalid ← ∅;;
7 qrand ← RandomPosition(tCvfree);
8 foreach a ∈ A do
9 â = ComputeSplitAction(G, q, a);

10 if â is not Null then
11 Avalid = Avalid ∪ {â};
12 end
13 end
14 Sclose ← {q|q ∈ S ∧ ‖q − qrand‖ ≤ dmin};
15 if Sclose = ∅ ∧ |S| < Nmax then
16 S ← S ∪ {qrand};
17 AS [q] = Avalid;
18 else if Sclose 6= ∅ ∧ |S| < Nmax then
19 if |Avalid| = |A| then
20 foreach q ∈ Sclose do
21 del AS [q];
22 end
23 S ← S \ Sclose + {qrand};
24 AS [qrand] = Avalid;
25 else
26 UpdateFlag← False;
27 foreach q ∈ Sclose do
28 if AS [q] ⊂ Avalid then
29 del AS [q];
30 S ← S \ {q};
31 Nmax ← Nmax − 1;
32 UpdateFlag← True;
33 else if Avalid \ AS [q] 6= ∅ then
34 UpdateFlag← True;
35 end
36 end
37 if UpdateFlag = True then
38 S ← S + {q};
39 AS [qrand] = Avalid;
40 Nmax ← Nmax + 1;
41 end
42 end
43 end
44 end

208

is simply
⌈√

x2
range + y2

range + z2
range

/
dmin

⌉
in which dmin is the minimum distance between

every pair of samples. K is the maximum number of iterations set by users and can be

related to Nmax. For each iteration, first randomly generate a sample qrand that is inside the

given enclosed subspace, then find all valid Split actions stored in Avalid (Line 6 — 13).

Then find all previous valid samples that are close to qrand (Line 14). If qrand is far from all

previous valid samples and the size of S is less than Nmax, add this new sample and store

its valid Split actions (Line 15—17). If qrand is close to some previous valid samples, there

are two cases for consideration. If this new sample provides all possible Split actions, then

remove all valid nearby samples and only keep this new sample for this area since this is the

best option (Line 19—24). Otherwise, check two conditions: 1. whether there exists any

valid nearby sample that has fewer number of valid Split actions than qrand; 2. whether

the new sample qrand introduces any knew Split actions compared with all valid nearby

samples. If the first condition is true, remove the old sample and add the new sample to S.

If the second condition is true, add the new sample to S (Line: 26—41). Run Algorithm 10

for every enclosed subspace to generate enough samples, and then add qvi (the initial location

of node v) to the sample set of Cvfree(q
v
i) and add qvg (the goal location of node v) to the

sample set of Cvfree(q
v
g). After the sample generation phase, CS and the corresponding Split

actions for all samples CAS are obtained for every enclosed subspace C ∈ Cvfree.

Then enter the graph search phase to generate a sequence of topology reconfiguration

actions. With the transition model discussed before, a graph search algorithm can be ap-

plied to compute a sequence of enclosed subspaces starting from Cvfree(q
v
i) to Cvfree(q

v
g) while

exploring the topology connections among these enclosed subspaces. An example is shown

in Figure 13.12. Here, the graph has enclosed subspaces as vertices. An edge in this graph

connecting two enclosed subspaces denotes that node v can move from a sample in one en-

closed subspace to a sample in the other. The graph is built from Cvfree(q
v), grows as valid

transitions among enclosed subspaces are found, and stops when the enclosed subspace con-

taining qvg is visited. A graph search algorithm designed based on Dijkstra’s framework is

shown in Algorithm 11.

209

Figure 13.12: Topology connections among three enclosed subspaces of node v.

Line 1 — 5 : If qvi and qvg are in the same enclosed subspace, then no topology reconfig-

uration is needed. Otherwise, make two sets Q and Q where Q contains all newly checked

or non-visited enclosed subspaces and Q contains all visited enclosed subspaces. The size of

these two sets will change as the algorithm explores Cvfree. Initially, only the enclosed sub-

space containing qvi that is Cvfree(q
v
i) and the enclosed subspace containing qvg that is Cvfree(q

v
g)

are in Q, and the algorithm starts with Cvfree(q
v
i). The value g(C) is the cost of the path from

qgi to the enclosed subspace C, so g(Cvfree(q
v
i)) = 0 and g(Cvfree(q

v
g)) =∞ at the beginning.

Line 7 — 9 : Every iteration starts with the enclosed subspace that has the lowest cost

g(C) in Q. At the beginning, Cvfree(q
v
i) has the lowest cost. After selecting an enclosed

subspace, update Q and Q.

Line 10 — 26 : Iterate every enclosed subspace C except C in Cvfree and check if it is already

visited. If so, then this potential transition is not a new transition. Otherwise, check if there

exists a valid motion to move the node from any sample in C that is the enclosed subspace

with the lowest cost to any sample in C handled by Function ValidMotion. Both transition

models are implemented and compared in the test scenarios. If this is true, then there are

two cases: this subspace is not checked for the first time namely that there is already a

connection between this enclosed subspace and another enclosed subspace, or this subspace

has never been checked which means it has no connection before. For the first case, it is

necessary to further check whether its cost needs to be updated. c(Cq, Cq) is the cost of the

210

Algorithm 11: Topology Reconfiguration Planning
Input: G, qvi , q

v
g , Cvfree, {(CS, CAS)|C ∈ Cvfree}

Output: Tree of enclosed subspaces p
1 if Cvfree(q

v
i) = Cvfree(q

v
g) then

2 return Null;
3 end
4 Q ←

{
Cvfree(q

v
i), Cvfree(q

v
g)
}
, Q ← ∅;

5 g(Cvfree(q
v
i))← 0, g(Cvfree(q

v
g))←∞;

6 while Cvfree(q
v
g) ∈ Q do

7 C ← arg min
C∈Q

g(C);

8 Q ← Q \ {C};
9 Q ← Q∪ {C};

10 foreach C ∈ Cvfree \ {C} ∧ C /∈ Q do
11 foreach (Cq, Cq) ∈ CS × CS do
12 if ValidMotion(Cq, Cq) = True then
13 if C ∈ Q then
14 if g(C) + c(Cq, Cq) < g(C) then
15 g(C)← g(C) + c(Cq, Cq);
16 p(C)← C;
17 end
18 else
19 Q ← Q+ {C};
20 g(C)← g(C) + c(Cq, Cq);
21 p(C)← C;
22 end
23 end
24 break;
25 end
26 end
27 end

motion from Cq to Cq. This cost can be related to the estimated distance or other factors. In

the current setup, all valid motions from one enclosed subspace to another one have the same

cost. If its cost is updated, then its parent p(C) should also be updated accordingly. For the

second case, initialize the cost and the parent of this newly checked enclosed subspace, and

update set Q. There can be multiple ways to transit between two enclosed subspaces. For

example, there are two edges between t2Cvfree and
t3Cvfree shown in Figure 13.12. In the current

setup, only the first one being found is saved. Since CS and CS are randomly generated, it

211

is possible that the condition in Line 12 is failed although there does exist Cq and Cq that

can pass this condition.

Once Cvfree(q
v
g) is visited, the algorithm ends. With p, a tree with visited enclosed sub-

spaces as vertices, it is straightforward to find the optimal path connecting Cvfree(q
v
i) and

Cvfree(q
v
g) as well as all the samples the node need to traverse. For example, in Figure 13.12,

when node v traverses from t1qv1 to t3qv1 , it first moves to t1qv2 , then Split and Merge at t3qv2 ,

and finally move to t3qv1 . Moving a node inside one of its enclosed subspaces can be solved

easily by geometry reconfiguration planning. After splitting the node into a pair, geometry

reconfiguration planning can also be applied to move them to the computed positions in the

next enclosed subspace for merging.

13.7 Test Scenarios

The motion planning framework is implemented in C++. Three example scenarios were

conducted to measure the effectiveness of the approach. The performance of the framework

is compared with the approach from [52] and Section 11.2. These experiments are also

tested under different constraints and with different parameters to show the universality of

the presented framework. All tests run on a laptop computer (Intel Core i7-8750H CPU,

16GB RAM) and the workspace is a cuboid.

13.7.1 Geometry Reconfiguration

The geometry reconfiguration planning test changes the cube shape of a VTT, Figure 12.10a,

to a tower shape, Figure 12.10b. Recall that this VTT is composed of 21 members with

initial positions of nodes listed in the following:

qv0 = [−1.605,−0.771, 2.075]ᵀ qv1 = [0.7779,−0.7642, 2.075]ᵀ

qv2 = [−0.4756,−2.022, 0.075]ᵀ qv3 = [−0.4142, 0.4228, 2.175]ᵀ

qv4 = [−1.605,−0.771, 0.075]ᵀ qv5 = [0.3819,−0.3707, 0.125]ᵀ

qv6 = [−0.4314,−0.9559, 1.2321]ᵀ qv7 = [−0.4756,−2.022, 2.075]ᵀ

qv8 = [0.1819,−0.1707, 0.075]ᵀ

212

The constraints for this task are Lmin = 1.0 m, Lmax = 3.5 m, θ̄min = 0.3 rad, and µ̄min = 0.1.

Four nodes v1, v3, v5, and v6 are involved in this motion task and their goal posi-

tions in the tower VTT are qv1
g = [0.1819,−0.1707, 4.125]ᵀ, qv3

g = [−1.605,−0.771, 4.075]ᵀ,

qv5
g = [−0.4756,−2.022, 4.075]ᵀ, and qv6

g = [0.1819,−0.1707, 2.125]ᵀ. These four nodes are

separated into two groups {v3, v5} and {v1, v6} which is randomly selected. First compute

Ĉv3
free(q

v3
i) and Ĉv5

free(q
v5
i), and then do planning for these two nodes. The motions of node v3

and v5 is shown in Figure 13.13. Most of the obstacle region in this step is surrounded by the

subspace Ĉv3
free(q

v3
i) and Ĉv5

free(q
v5
i), hence it is easier for them to extend outward first in order

to navigate to the goal positions. This motion process moves the projected center of mass

toward one edge of the support polygon but the planner can constrain the projected center

of mass within the support polygon. After planning for v3 and v5, the truss is updated, and

Ĉv1
free(q

v1
i) and Ĉv6

free(q
v6
i) are computed accordingly. Finally the planning for v1 and v6 finishes

this motion task with the result shown in Figure 13.14. For v1 and v6 in this updated truss,

(a) (b) (c) (d) (e)

Figure 13.13: v3 and v5 firstly extend outward, and then move upward to their goal positions.
The support polygon is formed by three nodes (v2, v4, v5) on the ground shown as the aqua
region (N) and the green dot (•) is the center of mass represented on the ground.

(a) (b) (c)

Figure 13.14: v1 and v6 can navigate to their goal positions easily since Ĉv1
free(q

v1
i) and

Ĉv6
free(q

v6
i) almost cover the whole workspace.

213

0 1000 2000 3000
Time Sequence

1.0

1.5

2.0

L
m

in
(m

)

0 1000 2000 3000
Time Sequence

2.0

2.5

3.0

3.5

L
m

ax
(m

)

0 1000 2000 3000
Time Sequence

0.3

0.5

0.7

θ m
in

(r
ad

)

0 1000 2000 3000
Time Sequence

0.10

0.25

0.40

µ

Figure 13.15: The minimum length (Lmin) and the maximum length (Lmax) of all moving
edge modules, the minimum angle between every pair of edge modules (θmin), and the
motion manipulability (µ) are measured throughout the geometry reconfiguration process
in Figure 13.13 and Figure 13.14.

the enclosed subspace Ĉv1
free(q

v1
i) and Ĉv6

free(q
v6
i) almost covers the whole workspace so it is

also easy for them to navigate to the goal positions. The minimum length (Lmin) and the

maximum length (Lmax) of all moving edge modules, the minimum angle between every pair

of edge modules (θmin), and the motion manipulability (µ) are shown in Figure 13.15. Note

that Lmin, Lmax, and µ are not necessarily to be continuous because nodes that are under

control are changing. This motion task is also demonstrated by [52] using the retraction-

based RRT algorithm. This algorithm cannot solve this motion planning task in 100 trials

unless an intermediate waypoint is manually specified to mitigate the narrow passage issue.

The success rate for the planning from the initial to the waypoint is 99% and 98% from the

waypoint to the goal. In comparison, the presented algorithm doesn’t need any additional

waypoints, and for 1000 trials, the mean running time is 4.294 s with a standard deviation of

214

1.992 s and the success rate is 100%. In these trials, the maximum planning time is 7.556 s

and the minimum is 1.014 s.

13.7.2 Topology Reconfiguration

Scenario 1

The VTT configuration used for this topology reconfiguration example is similar to the

configuration shown in Figure 11.6 with the following nodes’ positions:

qv0 = [0.05, 0, 0.075]ᵀ qv1 = [0.1, 1.8, 0.075]ᵀ

qv2 = [2.1, 1.9, 0.075]ᵀ qv3 = [2.1, 0, 0.075]ᵀ

qv4 = [0, 2.1, 3.225]ᵀ qv5 = [1.95, 0.9, 3]ᵀ

qv6 = [0, 0, 3.025]ᵀ

The constraints for this task are Lmin = 1.0 m, Lmax = 5.0 m, θ̄min = 0.2 rad, and µ̄min = 0.1.

The motion task is to move v5 from its initial position qv5
i = [1.95, 0.9, 3]ᵀ to a goal po-

sition qv5
g = [1, 1.2, 0.9]ᵀ (Figure 11.9). This motion cannot be executed with only geometry

reconfiguration because Cv5
free(q

v5
i) and Cv5

free(q
v5
g) shown in Figure 13.16 are separated by the

Figure 13.16: Cv5
free(q

v5
i) is the yellow space on the upper left and Cv5

free(q
v5
g) is the green space

on the lower right. They are not connected and separated by the obstacle region generated
from edge (v3, v4).

215

obstacle region generated from edge module (v3, v4). For this task, the minimum distance

between two nodes is dmin = 1.0 m and Nmax is constrained to be greater than or equal to

3, namely it is expected to have at least 3 samples for every enclosed subspace, and the

maximum number of iterations K = 5Nmax.

With the topology reconfiguration planning algorithm (Algorithm 11), one pair of Split

and Merge actions is sufficient. v5 is moved to a new location, then split into a pair of nodes

(v′5 and v′′5) so that both of these two newly generated nodes can navigate to Cv5
free(q

v5
g) and

merge into a single node. Then the geometry motion planning is used to plan the motions

of v′5 and v′′5 and control them to the target positions for merging. Finally, merge them

back to an individual node and then move the node to qv5
g . The detailed process is shown in

Figure 13.17. The minimum length (Lmin) and the maximum length (Lmax) of all moving

edge modules, the minimum angle between every pair of edge modules (θmin), and the motion

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 13.17: The sequence to move v5 from qv5
i to qv5

g is shown. The support polygon is
the aqua region (�) and the green dot (•) is the center of mass represented on the ground.
(a) — (c) First move v5 to a new location. (d) Split v5 into a pair. (e) — (h) Move these
two newly generated nodes in different directions to go around the edge module (v3, v4). (i)
— (j) Merge them into an individual node and move this node to qv5

g .

216

0 500 1000 1500
Time Sequence

1.0

1.5

2.0

L
m

in
(m

)

0 500 1000 1500
Time Sequence

2.0

3.5

5.0

L
m

ax
(m

)

0 500 1000 1500
Time Sequence

0.2

0.3

0.4
θ m

in
(r

ad
)

0 500 1000 1500
Time Sequence

0.1

0.4

0.7

µ

Figure 13.18: The minimum length (Lmin) and the maximum length (Lmax) of all moving
edge modules, the minimum angle between every pair of edge modules (θmin), and the
motion manipulability (µ) are measured throughout the topology reconfiguration process in
Figure 13.17.

manipulability (µ) are shown in Figure 13.18.

This motion task has been solved in Section 11 with the graph search algorithm exploring

8146 VTT configurations with a more complex action model in order to find a valid sequence

of motion actions. With the proposed framework, the free space of v5 is partitioned into

53 enclosed subspaces and it takes on average 56.614 s to solve this motion task when using

the first transition model with a standard deviation of 5.654 s in 1000 trials, including the

enclosed subspace computation, topology reconfiguration planning, and two-node geometry

reconfiguration planning, and the success rate is 100%. In these trials, the maximum plan-

ning time is 77.880 s and the minimum is 38.973 s. With the transition model based on the

group free space, the average planning time can be as fast as 20 s.

217

(a) (b)

Figure 13.19: (a) A VTT is constructed from 19 members with 9 nodes. (b) The task is to
move v0 from its initial position to a position outside the cubic truss.

Scenario 2

Another motion task in which topology reconfiguration actions are involved is shown in

Figure 13.19 that is to move v0 from a position qv0
i inside the cubic truss (Figure 13.19a) to

a new position qv0
g (Figure 13.19b). The initial positions of all nodes are

qv0 = [0, 0, 1.075]ᵀ qv1 = [1, 1, 0.075]ᵀ

qv2 = [−1, 1, 2.075]ᵀ qv3 = [−1,−1, 2.075]ᵀ

qv4 = [1,−1, 2.075]ᵀ qv5 = [1, 1, 0.075]ᵀ

qv6 = [−1, 1, 0.075]ᵀ qv7 = [−1,−1, 0.075]ᵀ

qv8 = [1,−1, 0.075]ᵀ

The constraints for this task are Lmin = 0.5 m, Lmax = 5.0 m, θ̄min = 0.15 rad, and µ̄min =

0.1.

In this task, qv0
g = [−0.64,−2.19, 2.78]ᵀ. Similarly, qv0

i and qv0
g are in two separated

enclosed subspaces, and one solution is to apply topology reconfiguration actions twice to

traverse three enclosed subspaces in Cvfree shown in Figure 13.20. For this task, dmin = 0.5,

Nmax is constrained to be greater than or equal to 3, and K = 8Nmax.

The detailed planning result is shown in Figure 13.21. The planner first moves the

node v0 to a location outside the cubic truss (Figure 13.21a — Figure 13.21c), and then

218

Figure 13.20: v has to move from Cvfree(q
v
i) that is the yellow enclosed subspace to the green

enclosed subspace, and then Cvfree(q
v
g) that is the blue enclosed subspace.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 13.21: The sequence to move v0 from qv0
i to qv0

g by traversing three enclosed subspaces
in Cvfree is shown. The support polygon is the aqua region (�) and the green dot (•) is the
center of mass represented on the ground. (a) — (c) Move v0 to traverse the plane formed by
v3, v4, v7, and v8. (d) Split v0 into a pair here so that both newly generated nodes can move
around edge module (v3, v7) while avoiding singular configuration. (e) — (h) Two newly
generated nodes are moved to a location inside the green enclosed subspace and merge. (i)
— (j) Move the merged node to a new location and split it in a different way to generate
two new nodes. (k) — (n) One node traverses the space inside the cubic truss to go to the
blue enclosed subspace, and the other node moves upward. Then these two nodes merge at
a location inside the blue enclosed subspace. (o) Move the node to the target location.

219

0 1000 2000 3000 4000 5000
Time Sequence

0.5

2.0

3.5

L
m

in
(m

)

0 1000 2000 3000 4000 5000
Time Sequence

2.0

3.5

5.0

L
m

ax
(m

)

0 1000 2000 3000 4000 5000
Time Sequence

0.15

0.45

0.80

θ m
in

(r
ad

)

0 1000 2000 3000 4000 5000
Time Sequence

0.10

0.45

0.80

µ

Figure 13.22: The minimum length (Lmin) and the maximum length (Lmax) of all moving
edge modules, the minimum angle between every pair of edge modules (θmin), and the
motion manipulability (µ) are measured throughout the topology reconfiguration process in
Figure 13.21.

split it into two. If the node is split inside the cubic truss, there is no way to merge

them inside the green enclosed subspace (Figure 13.21h) because one node has to traverse a

region formed by node v3, v4, v7, and v8 resulting in singular configurations. After this Split

action, do geometry reconfiguration planning to control them to the green enclosed subspace

(Figure 13.21d — Figure 13.21g) and merge them back. Then move the node to a different

location inside the green enclosed subspace (Figure 13.21i) and then split the node in a

different way (Figure 13.21j) in order to navigate these two nodes to Cvfree(q
v0
g) (Figure 13.21k

— Figure 13.21m) and merge them back (Figure 13.21n). Eventually move the node to

qv0
g (Figure 13.21o). The minimum length (Lmin) and the maximum length (Lmax) of all

moving edge modules, the minimum angle between every pair of edge modules (θmin), and

the motion manipulability (µ) are shown in Figure 13.22. Using the strict transition model,

220

the average planning time is 319.825 s with a standard deviation being 21.312 s in 1000 trials,

and the success rate is 74%. In these trials, the maximum planning time is 392.466 s and

the minimum is 172.051 s. The search space is larger and more samples are generated in

order to find the sequence of topology reconfiguration actions which consumes more time.

All the failures are from the graph search phase, and more samples can solve this issue

but also make the search process more time consuming. With the same parameters, when

using the other transition model based on the group free space, the average planning time is

86.482 s with a standard deviation being 2.048 s in 1000 trials, and the success rate is 95.9%.

The maximum planning time is 92.853 s and the minimum planning time is 79.978 s. The

performance is improved a lot. All the failures in these trials are from the path planning for

a group of node, namely even the transition model between two enclosed subspace is valid,

but it is not guaranteed for the planner to find the solution.

13.8 Conclusion

A reconfiguration planning framework for VTT robots is presented in this chapter. The

configuration space of a node is studied considering the physical size of the robot compo-

nents and singularity avoidance constraints. Geometry reconfiguration planning involves the

motions of multiple nodes which are strongly coupled. An efficient algorithm to compute

the obstacle regions and free space of a group is developed so that RRT can be applied

to solve the geometry reconfiguration planning problem easily with all physical constraints

considered. A fast algorithm to compute all enclosed subspaces in the free space of a node

is presented so that whether topology reconfiguration actions are needed can be verified.

A sample generation method is introduced to generate samples that can efficiently provide

valid topology reconfiguration actions over a wide space. With the topology reconfiguration

planning algorithm based on Dijkstra’s algorithm, a sequence of topology reconfiguration

actions can then be computed with geometry reconfiguration planning for a group of nodes,

and the motion tasks requiring topology reconfiguration can then be solved efficiently.

221

Chapter 14

Locomotion

This chapter presents an approach for VTTs to perform locomotion tasks which can also

be extended to other truss robots. This locomotion planner allows a VTT to navigate in

an environment without receiving impacts from the ground. This chapter excerpts heavily

from [83].

Locomotion capability is important for VTTs to perform tasks. While a VTT is loco-

moting, it is crucial to avoid impact from the environment in order to protect the mechanical

components of the robot. This chapter presents a non-impact rolling locomotion planner

for an arbitrary VTT by making use of the geometry reconfiguration actions. During the

locomotion process, the motions of nodes are computed automatically so that a VTT first

expands its support polygon and then tumbles in a stable manner. Some experiments are

shown in the end.

14.1 Introduction

Self-reconfiguration enables a VTT to be better suited for a variety of tasks by dramatically

changing its shape and topology and locomotion is one important task in many scenarios.

For example, in a search and rescue mission, a VTT may need to flexibly locomote over

some terrain to reach a destination and then reconfigure into a tower for shoring. The

locomotion process can be achieved by moving nodes sequentially that can interact with the

environment. One way to move would be quasi-statically to reduce potentially damaging

222

impacts with the ground [107].

The VTT locomotion process is similar to a locomotion mode of some VGTs which is

accomplished by tipping and contacting the ground. Lee and Sanderson [68] simulated the

rolling locomotion for TETROBOT systems with generated paths for moving nodes. Abra-

hantes et al. [1] designed the gait for a cubic truss. These works divide the locomotion gait

into several steps, but they have to compute the motion of nodes beforehand which cannot be

applied to arbitrary configurations. Optimization approaches have been used for locomotion

planning. Usevitch et al. [148] formulates the locomotion process as a quadratic program

by constraining the motion of the center of mass. The objective function is related to the

velocity of each node. A more complete quadratic programming approach to locomotion is

presented in [149] to generate discrete motions of nodes in order to follow a given trajectory

or compute a complete gait cycle. More hardware constraints were considered, including

length and collision avoidance. However, the approach has to solve an optimization problem

in high dimensional space, and it also has to deal with non-convex and nonlinear constraints

which may cause numerical issues and is limited to a fully connected five-node graph in or-

der to avoid incorporating the manipulability constraints into the quadratic program. Park

et al. [107] extends this optimization-based approach by preventing a robot from receiving

impacts from the ground. Incorporated with a polygon-based random tree search algorithm

to output a sequence of supporting polygons in [106], a VTT can execute a locomotion

task in an environment. However, in these quadratic programs, numerical differentiation

is required to relate some physical constraints with these optimized parameters whenever

solving the problem. A locomotion step has to be divided into multiple phases leading to

more constraints. Also, these approaches are not guaranteed to provide feasible solutions

and they are also time-consuming to solve.

This chapter presents a new locomotion planning solution based on the efficient geometry

reconfiguration planning algorithm. The solution can solve the problem much faster and

more reliably under several hardware constraints compared with previous works. In addition,

this approach can be applied to any arbitrary VTT. The shape of a VTT G = (V,E) can be

223

regarded as a polyhedron with flat polygonal facets formed by members. This polyhedron

consists of vertices (a subset of V), edges EG, facets FG, and an incidence relation on them

(e.g. every edge is incident to two vertices and every edge is incident to two facets [60]).

One of the facets f ∈ FG is the current support polygon. In a rolling locomotion step, the

support polygon is changed from f to an adjacent facet f ′. As mentioned, impact from the

ground can damage the robot, so the stability criterion has to be maintained during the

whole process. The locomotion problem for a given VTT G = (V,E) can be stated as the

following:

• Non-impact Rolling Locomotion. Compute the motions of a set of nodes in V to

change the support polygon from f ∈ FG to a desired adjacent facet f ′ ∈ FG without

receiving impacts from the ground while satisfying all constraints.

14.2 Locomotion

Unlike the previous reconfiguration planning, the center of mass during locomotion moves

over a large range by continuously interacting with the environment. In a rolling locomotion

step, a VTT rolls from one support polygon to an adjacent support polygon (Figure 14.1a).

(a) (b) (c)

Figure 14.1: A VTT in octahedron configuration executes a single rolling locomotion step.
(a) Initially node v0, v1, and v2 forms the support polygon shown as the aqua region (N),
and the center of mass projected onto the ground (•) is within this support polygon. The
truss wants to roll from its current support polygon to an adjacent support polygon formed
by node v1, v2, and the new tipping location. (b) v3 and v5 are moved so that the support
polygon is expanded and the center of mass projected onto the ground is on member (v1, v2).
(c) v0 and v4 are moved to their destinations to finish this locomotion step, and the center
of mass projected onto the ground is within the new support polygon formed by node v1,
v2, and v3.

224

In this process, it is useful to maintain statically stable locomotion to prevent the system

from receiving impacts from the ground as repeated impacts may damage the reconfiguration

nodes. Due to this requirement, a rolling locomotion step has to be manually divided into

several phases to have control over the center of mass [106, 149]. The approach presented

here can deal with this issue automatically while planning the motion of nodes that need

to be moved. A high-level path planner can generate a support polygon trajectory given

an environment and a locomotion task, and the locomotion planner can ensure that the

truss can follow this support polygon trajectory without violating constraints and receiving

impacts from the ground.

14.2.1 Truss Polyhedron

The boundary representation of a VTT is modeled as a convex polyhedron which can be

either defined initially or obtained from the set of node positions by computing the convex

hull of them using existing computational geometry algorithms, such as Quickhull [6]. Given

a VTT G = (V,E), its polyhedron representation can be fully defined as PG = (EG, FG) in

which FG is the set of facets forming the boundary of this VTT and EG is the set of edges

forming all facets, namely each facet is composed of multiple edge members in EG and each

edge of EG is incident to two facets. For example, the boundary representation of the VTT

in Figure 14.1a is an octahedron in which edge (v1, v2) is incident to facet (v1, v2, v3) and

facet (v0, v1, v2). In this example, all edges are contained in its polyhedron representation.

However, for the VTT in Figure 13.7, v0 and its corresponding edges in Ev0 are not involved

in its polyhedron representation.

Suppose the set of edges forming a facet f ∈ FG is EGf ⊂ EG, and ∀e ∈ EGf , the other

incident facet of edge e is fe ∈ FG. Every facet can be a support polygon as long as all of

its vertices are on the ground. Assume f ∈ FG is the current support polygon and a single

rolling locomotion step is equivalent to rotating the truss with respect to an edge of this

facet e ∈ EGf until the other incident facet of this edge fe becomes the new support polygon.

An example of this process is shown in Figure 14.1. Initially facet f = (v0, v1, v2) is the

support polygon, and the other incident facet of edge e = (v1, v2) ∈ EGf is fe = (v1, v2, v3).

225

If the objective is to control the robot to do locomotion from Figure 14.1a to Figure 14.1c,

the result of this process is equivalent to rotating the truss with respect to the fixed edge

e = (v1, v2) until the support polygon becomes fe. This means the input command for each

locomotion step can be simply an edge of the current support polygon, e.g. (v1, v2) for the

scenario in Figure 14.1.

14.2.2 Locomotion Planning

Given a VTT G = (V,E), its truss polyhedron model PG = (EG, FG) and its current

support polygon f ∈ FG can be derived. Given a locomotion command e ∈ f , fe can be

found and its normal vector nfe pointing inward PG can be computed (e.g. vector n for

facet (v1, v2, v3) in Figure 14.1a), then the rotation angle α between nfe and the normal

vector of the ground [0, 0, 1]ᵀ is simply

α = arccos

(
nfe • [0, 0, 1]ᵀ

‖nfe‖

)
(14.1)

The rotation axis is along edge e = (ve1, v
e
2) and its direction can be easily determined by

the right-hand rule. For the example shown in Figure 14.1, the rotation axis is simply
qv1−qv2
‖qv1−qv2‖ , namely the unit vector pointing from node v2 to node v1. Assume the rotation

axis is pointing from ve1 to ve2, then the rotation angle and the rotation axis determine a

rotation matrix Re, and for every node v ∈ V \ {ve1, ve2} during this locomotion process, its

initial position qvi is known as qv and its goal position qvg can be derived as

qvg = Re(qv − qve1) + qv
e
1 (14.2)

Then the approach presented in Section 13.5 can be used to plan the motion for all of

these involved nodes to execute the locomotion step. Due to the stability constraint that

at least three nodes need to contact the ground to form a support polygon and the center

of mass represented on the ground has to be within this support polygon, the planner will

automatically move nodes first to expand the support polygon so that the center of mass

can be moved in a larger range. An example of this non-impact rolling locomotion planning

226

result is shown in Figure 14.1. In this task, the initial support polygon is facet (v0, v1, v2)

and the task is to roll the truss so that facet (v1, v2, v3) becomes the new support polygon.

The locomotion command is simply (v1, v2), the rotation axis and the rotation angle can be

computed as mentioned, and four nodes (v0, v3, v4, and v5) have to move to new locations

which can be derived from Eq. (14.2). Because of the stability constraint, node v0 cannot

be moved at the beginning, or the robot won’t be stable since there will be no support

polygon. The planner chooses to move v3 and v5 first to expand the support polygon which

is formed by node v0, v1, v2, and v3, and the center of mass is moved toward the target

support polygon (Figure 14.1b). The center of mass projected onto the ground is always

within the initial support polygon. After the support polygon is expanded, v0 and v4 are

moved, and, in the meantime, the projected center of mass enters the target support polygon

(Figure 14.1c).

14.3 Test Scenarios

The VTT used for the locomotion test is shown in Figure 14.2a that is an octahedron with

three additional edge modules internally. The initial locations of all nodes are

qv0 = [−0.7217, 0, 0.075]ᵀ qv1 = [0.3608, 0.6250, 0.075]ᵀ

qv2 = [0.3608,−0.6250, 0.075]ᵀ qv3 = [0.7217, 0, 1.0956]ᵀ

qv4 = [0.7217, 0, 1.0956]ᵀ qv5 = [−0.3608,−0.6250, 1.0956]ᵀ

qv6 = [0, 0, 0.5853]ᵀ

The constraints for this locomotion task are Lmin = 0.3 m, Lmax = 5.0 m, θ̄min = 0.3 rad,

and µ̄min = 0.1. The task is to roll this VTT to an adjacent support polygon shown in

Figure 14.2b, and the locomotion command is (v1, v2). Five nodes (v0, v3, v4, v5, v6) are

involved in this process and their goal locations can be computed by Eq. (14.2).

The detailed locomotion process is shown in Figure 14.3. Five nodes are divided into

three groups and the whole process is also divided into three phases automatically. In the

first phase, v3 and v5 are moved to expand the support polygon (Figure 14.3c). Then v0 and

227

(a) (b)

Figure 14.2: The locomotion task is to roll the truss from (a) to (b).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 14.3: The planned motion for this locomotion task is shown. (a) — (c) Move node v3

and v5 to first expand the support polygon that is the aqua region. (d) Move v0 and v4 to
move the center of mass represented on the ground (•) toward the target support polygon.
(e) — (h) Once the center of mass represented on the ground is inside the target support
polygon, lift v0 and move both v0 and v4 to their target locations. (i) — (j) Finally move
v6 to its target location to finish the locomotion process.

v4 are moved gradually to move the center of mass toward the adjacent support polygon

shown in Figure 14.3d. Once the center of mass represented on the ground is inside the

target support polygon, v0 can be lifted off the ground and both v0 and v4 can be moved

to their target locations (Figure 14.3e—Figure 14.3h). Finally, move node v6 to its target

location shown in Figure 14.3j to finish the whole process.

228

0 250 500 750 1000 1250
Time Sequence

0.3

0.8

1.3

L
m

in
(m

)

0 250 500 750 1000 1250
Time Sequence

0.7

1.5

2.3

L
m

ax
(m

)

0 250 500 750 1000 1250
Time Sequence

0.3

0.6

0.9

θ m
in

(r
ad

)

0 250 500 750 1000 1250
Time Sequence

0.1

0.5

0.9

µ

Figure 14.4: The minimum length (Lmin) and the maximum length (Lmax) of all moving edge
modules, the minimum angle between every pair of edge modules (θmin), and the motion
manipulability (µ) are measured throughout the locomotion process in Figure 14.3.

The minimum length (Lmin) and the maximum length (Lmax) of all moving edge modules,

the minimum angle between every pair of edge modules (θmin), and the motion manipula-

bility (µ) are shown in Figure 14.4. This rolling step is tested with 1000 trials and the

average planning time is 8.297 s with the standard deviation being 5.935 s in 1000 trials,

and the success rate is 100%. In these trials, the maximum planning time is 24.459 and the

minimum planning time is 0.473 s. The locomotion of this VTT is also tested in [106] and

the performance comparison is shown in Table 14.1. The presented planner here has better

performance in terms of both efficiency and robustness.

An octahedron rolling gait is computed based on an optimization approach by [149].

Impacts are not considered in this approach and it takes 166 s to compute the whole pro-

cess. The octahedron configuration is also tested with the presented framework and the

comparison is shown in Table 14.2. The solution (Figure 14.1) can be derived as fast as

229

Table 14.1: Comparison with the optimization approach from [106].

Average Planning Time Success Rate

Optimization 18.834 s 38.3% (820 trials)
Sampling-Based 8.297 s 100% (1000 trials)

Table 14.2: Comparison with the optimization approach from [149].

Average Planning Time Success Rate

Optimization 166 s Not provided
Sampling-Based 1.181 s 100% (1000 trials)

1.181 s in average with a standard deviation being 1.033 s in 1000 trials, and the success rate

is 100%. In these trials, the maximum planning time is 3.437 s and the minimum planning

time is 0.103 s.

14.4 Conclusion

A non-impact rolling locomotion algorithm is presented to move an arbitrary VTT easily

by a simple command with the efficient geometry reconfiguration planner. This locomotion

algorithm outperforms other approaches in terms of efficiency and robustness. This approach

can also be applied to other truss robots.

230

Part V

Conclusions

231

Chapter 15

Contributions and Future Work

15.1 Contributions

Self-reconfigurable modular robots are promising to handle a much wider range of tasks

through self-adaption in which they can reconfigure their morphologies whenever needed.

This reconfiguration capability benefits the robot flexibility significantly but also complicates

the design, control, and planning of these robots. This thesis focuses on a hierarchy frame-

work to deploy a modular robotic system, including configuration modeling and recognition,

morphology transformation, and task execution.

Modular robot morphologies are modeled as graphs, and several algorithms are presented

for efficient configuration identification and comparison. Mobile-style reconfiguration behav-

iors are explored and shown to be efficient to achieve dexterous morphology transformation

in which modules can alter existing connections to form a new morphology or several sepa-

rated modules are able to join together into a connected morphology. The reconfiguration

actions during a morphology transformation process are guaranteed by the phased docking

controller and executed in parallel for efficiency. Manipulation tasks can be executed by

modular robots using the proposed real-time trajectory planner in which the control and

motion planning can be handled simultaneously. This is particularly useful for whole-body

manipulation in which kinematic chains may share DOFs.

This thesis also contributes to the development of VTTs which are reconfigurable truss

232

systems. The modeling approach and the control framework are developed for an arbitrary

VTT or truss robot. The complex configuration space is studied and can be computed by a

fast computational geometry solution leading to efficient motion planning by manipulating

truss nodes. The reconfiguration strategy is developed to transform a VTT significantly

through geometry reconfiguration and topology reconfiguration. A non-impact rolling lo-

comotion behavior can be computed by the presented planner to navigate a VTT in an

environment. This locomotion planner outperforms other locomotion strategies for truss

robots in efficiency and robustness.

These works are built for SMORES-EP, CKBot, and VTT, but can be generalized for

other robots. The graph model of SMORES-EP can be applied to other modular robots with

minor modifications, and the algorithm for configuration recognition can be used to identify

a robot morphology. The morphology transformation strategy is useful for modular robotic

systems as long as modules can move independently. The manipulation planning framework

introduces a universal kinematics model and a motion planning tool for modular robots in

chain structures for manipulation tasks. This manipulation planning tool can also be applied

to whole-body manipulation with multi-limb robots. The modeling and motion control for

VTT can be applied to other truss robots. The reconfiguration planning framework is able

to handle the shape morphing tasks for truss robots by not only changing member lengths

but also rearranging the connections of members. The locomotion planner is also a general

tool for truss robots to achieve non-impact locomotion activities.

15.2 Future Work

Self-reconfigurable modular robots are promising and their flexibility is demonstrated in this

thesis. However, it is still a challenge to come up with a good hardware design solution for

this type of robot. For example, the docking interface is important, but it is usually limited

to provide strong connection and robust communication between modules. Individual mod-

ule dexterity also needs to be considered. Very dexterous module design can increase the

flexibility of the system, but usually requires larger space and results in a more complicated

mechanism. The SMORES-EP system is a new hybrid self-reconfigurable modular robot

233

which has been used in a variety of applications. However, the versatility of the hardware

morphologies is limited due to the docking force of the EP-Face connectors. The VTT sys-

tem brings about the topology reconfiguration capability for truss robots but the design of

the reconfigurable node is complicated that also makes the topology reconfiguration process

difficult.

In addition to the hardware design, task-driven morphology transformation is the fun-

damental to make use of the reconfiguration capability. This requires the motion capability

evaluation of a morphology, the understanding of the environment, and also the compatibil-

ity between the task and the given morphology. There are several challenges. The number

of possible morphologies can be very large and it is necessary to search this large space effi-

ciently. The environment can be very different in different scenarios and characterizing an

environment for morphology selection is challenging. This is also true for tasks. Additionally,

the compatibility evaluation between a task and a morphology is hard to be general.

An important theme in this work is robot-to-robot collaboration. In this thesis, a robot

is a module and several modules can work together. They can behave independently and

execute tasks by collaboration, such as carrying an object. Furthermore, these modules can

execute “fusion” behavior to be a more powerful individual. This capability can significantly

improve their performance in an unstructured environment to handle unknown tasks. This

can be very useful not just for modular robots but also for other types of robots and exploring

this new collaboration behavior for robotic systems can be exciting future work.

234

Bibliography

[1] M. Abrahantes, L. Nelson, and P. Doorn, “Modeling and gait design of a 6-tetrahedron
walker robot,” in 2010 42nd Southeastern Symposium on System Theory (SSST),
2010, pp. 248–252.

[2] S. K. Agrawal, L. Kissner, and M. Yim, “Joint solutions of many degrees-of-freedom
systems using dextrous workspaces,” in Proceedings 2001 ICRA. IEEE International
Conference on Robotics and Automation (Cat. No.01CH37164), vol. 3, 2001, 2480–
2485 vol.3.

[3] N. M. Amato and Y. Wu, “A randomized roadmap method for path and manipu-
lation planning,” in Proceedings of IEEE International Conference on Robotics and
Automation, vol. 1, 1996, 113–120 vol.1.

[4] M. Asadpour, M. H. Z. Ashtiani, A. Sproewitz, and A. Ijspeert, “Graph signature
for self-reconfiguration planning of modules with symmetry,” in 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2009, pp. 5295–5300.

[5] J. Baca, B. Woosley, P. Dasgupta, and C. Nelson, “Real-time distributed configu-
ration discovery of modular self-reconfigurable robots,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), 2015, pp. 1919–1924.

[6] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex
hulls,” ACM Trans. Math. Softw., vol. 22, no. 4, 469–483, Dec. 1996.

[7] J. Barraquand and J.-C. Latombe, “Robot motion planning: A distributed repre-
sentation approach,” The International Journal of Robotics Research, vol. 10, no. 6,
pp. 628–649, 1991.

[8] C. Bererton and P. K. Khosla, “Towards a team of robots with repair capabilities:
A visual docking system,” in Experimental Robotics VII, D. Rus and S. Singh, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 333–342.

[9] S. Bonardi, M. Vespignani, R. Moeckel, J. V. den Kieboom, S. Pouya, A. Sproewitz,
and A. Ijspeert, “Automatic generation of reduced CPG control networks for locomo-
tion of arbitrary modular robot structures,” in Proceedings of Robotics: Science and
Systems, Berkeley, USA, 2014.

[10] G. Bradshaw and C. O’Sullivan, “Adaptive medial-axis approximation for sphere-tree
construction,” ACM Trans. Graph., vol. 23, no. 1, 1–26, 2004.

[11] O. Brock and O. Khatib, “Elastic strips: A framework for motion generation in hu-
man environments,” The International Journal of Robotics Research, vol. 21, no. 12,
pp. 1031–1052, 2002.

235

[12] H. B. Brown, J. M. Vande Weghe, C. A. Bererton, and P. K. Khosla, “Millibot trains
for enhanced mobility,” IEEE/ASME Transactions on Mechatronics, vol. 7, no. 4,
pp. 452–461, 2002.

[13] Z. Butler, R. Fitch, D. Rus, and Y. Wang, “Distributed goal recognition algorithms
for modular robots,” in Proceedings 2002 IEEE International Conference on Robotics
and Automation (Cat. No.02CH37292), vol. 1, 2002, 110–116 vol.1.

[14] Z. Butler, K. Kotay, D. Rus, and K. Tomita, “Generic decentralized control for a class
of self-reconfigurable robots,” in Proceedings 2002 IEEE International Conference on
Robotics and Automation (Cat. No.02CH37292), vol. 1, 2002, 809–816 vol.1.

[15] A. Casal and M. H. Yim, “Self-reconfiguration planning for a class of modular robots,”
in Sensor Fusion and Decentralized Control in Robotic Systems II, G. T. McKee and
P. S. Schenker, Eds., International Society for Optics and Photonics, vol. 3839, SPIE,
1999, pp. 246 –257.

[16] A. Castano, A. Behar, and P. M. Will, “The Conro modules for reconfigurable robots,”
IEEE/ASME Transactions on Mechatronics, vol. 7, no. 4, pp. 403–409, 2002.

[17] A. Castano and P. Will, “Representing and discovering the configuration of Conro
robots,” in Proceedings 2001 ICRA. IEEE International Conference on Robotics and
Automation (Cat. No.01CH37164), vol. 4, 2001, 3503–3509 vol.4.

[18] J. J. Champoux, “DNA topoisomerases: Structure, function, and mechanism,” Annual
Review of Biochemistry, vol. 70, no. 1, pp. 369–413, 2001, PMID: 11395412.

[19] B. Chazelle, “Convex partitions of polyhedra: A lower bound and worst-case optimal
algorithm,” SIAM Journal on Computing, vol. 13, no. 3, pp. 488–507, 1984.

[20] I. Chen and J. W. Burdick, “Enumerating the nonisomorphic assembly configura-
tions of modular robotic systems,” in Proceedings of 1993 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS ’93), vol. 3, 1993, 1985–1992
vol.3.

[21] G. S. Chirikjian, “Kinematics of a metamorphic robotic system,” in Proceedings of
the 1994 IEEE International Conference on Robotics and Automation, 1994, 449–455
vol.1.

[22] G. S. Chirikjian and J. W. Burdick, “A geometric approach to hyper-redundant ma-
nipulator obstacle avoidance,” Journal of Mechanical Design, vol. 114, no. 4, pp. 580–
585, Dec. 1992.

[23] D. T. Coleman, I. A. Sucan, S. Chitta, and N. Correll, “Reducing the barrier to entry
of complex robotic software: A MoveIt! case study,” Journal of Software Engineering
for Robotics, vol. 5, no. 4, pp. 3–16, 2014.

[24] F. Collins and M. Yim, “Design of a spherical robot arm with the spiral zipper
prismatic joint,” in 2016 IEEE International Conference on Robotics and Automation
(ICRA), 2016, pp. 2137–2143.

[25] J. Daudelin, G. Jing, T. Tosun, M. Yim, H. Kress-Gazit, and M. Campbell, “An
integrated system for perception-driven autonomy with modular robots,” Science
Robotics, vol. 3, no. 23, 2018.

236

[26] J. Davey, N. Kwok, and M. Yim, “Emulating self-reconfigurable robots — design of
the SMORES system,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2012, pp. 4464–4469.

[27] A. Dutta, P. Dasgupta, and C. Nelson, “Distributed configuration formation with
modular robots using (sub)graph isomorphism-based approach,” Autonomous Robots,
vol. 43, no. 4, pp. 837–857, 2019.

[28] N. Eckenstein and M. Yim, “Modular robot connector area of acceptance from config-
uration space obstacles,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017, pp. 3550–3555.

[29] ——, “The X-Face: An improved planar passive mechanical connector for modular
self-reconfigurable robots,” in 2012 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2012, pp. 3073–3078.

[30] R. Fitch and Z. Butler, “Million module march: Scalable locomotion for large self-
reconfiguring robots,” The International Journal of Robotics Research, vol. 27, no. 3-4,
pp. 331–343, 2008.

[31] M. Fromherz, T. Hogg, Y. Shang, and W. Jackson, “Modular robot control and
continuous constraint satisfaction,” in Proceedings of IJCAI Workshop on Modelling
and Solving Problems with Contraints, Seatle, WA, 2001, pp. 47–56.

[32] T. Fukuda, M. Buss, H. Hosokai, and Y. Kawauchi, “Cell structured robotic system
cebot: Control, planning and communication methods,” Robotics and Autonomous
Systems, vol. 7, no. 2, pp. 239 –248, 1991, Special Issue Intelligent Autonomous
Systems.

[33] D. A. Furcy, “Speeding up the convergence of online heuristic search and scaling up
offline heuristic search,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta,
GA, 2004.

[34] K. Gilpin, A. Knaian, and D. Rus, “Robot pebbles: One centimeter modules for pro-
grammable matter through self-disassembly,” in 2010 IEEE International Conference
on Robotics and Automation, 2010, pp. 2485–2492.

[35] K. Gilpin, K. Kotay, and D. Rus, “Miche: Modular shape formation by self-
dissasembly,” in Proceedings 2007 IEEE International Conference on Robotics and
Automation, 2007, pp. 2241–2247.

[36] A. Giusti and M. Althoff, “Automatic centralized controller design for modular and
reconfigurable robot manipulators,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2015, pp. 3268–3275.

[37] R. Graham, “An efficient algorith for determining the convex hull of a finite planar
set,” Information Processing Letters, vol. 1, no. 4, pp. 132 –133, 1972.

[38] R. Groß, M. Bonani, F. Mondada, and M. Dorigo, “Autonomous self-assembly in
a swarm-bot,” in Proceedings of the 3rd International Symposium on Autonomous
Minirobots for Research and Edutainment (AMiRE 2005), K. Murase, K. Sekiyama,
T. Naniwa, N. Kubota, and J. Sitte, Eds., Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2006, pp. 314–322.

237

[39] Gurobi Optimization. “Gurobi Optimizer.” version 9.1, [Online]. Available: https:
//www.gurobi.com/products/gurobi-optimizer/.

[40] B. Haghighat, E. Droz, and A. Martinoli, “Lily: A miniature floating robotic platform
for programmable stochastic self-assembly,” in 2015 IEEE International Conference
on Robotics and Automation (ICRA), 2015, pp. 1941–1948.

[41] G. J. Hamlin and A. C. Sanderson, “TETROBOT: A modular approach to parallel
robotics,” IEEE Robotics Automation Magazine, vol. 4, no. 1, pp. 42–50, 1997.

[42] ——, “TETROBOT modular robotics: Prototype and experiments,” in Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS ’96,
vol. 2, 1996, 390–395 vol.2.

[43] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic de-
termination of minimum cost paths,” IEEE Transactions on Systems Science and
Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[44] M. Herman, “Fast, three-dimensional, collision-free motion planning,” in Proceed-
ings. 1986 IEEE International Conference on Robotics and Automation, vol. 3, 1986,
pp. 1056–1063.

[45] S. Hirose, T. Shirasu, and E. F. Fukushima, “Proposal for cooperative robot “Gun-
ryu” composed of autonomous segments,” Robotics and Autonomous Systems, vol. 17,
no. 1, pp. 107 –118, 1996.

[46] P. Holmes, S. Kousik, B. Zhang, D. Raz, C. Barbalata, M. J. Roberson, and R.
Vasudevan, “Reachable sets for safe, real-time manipulator trajectory design,” in
Proceedings of Robotics: Science and Systems, Corvalis, Oregon, USA, 2020.

[47] F. Hou, “Self-reconfiguration planning for modular robots,” Ph.D. dissertation, Uni-
versity of Southern California, Los Angeles, CA, 2011.

[48] F. Hou and W.-M. Shen, “Distributed, dynamic, and autonomous reconfiguration
planning for chain-type self-reconfigurable robots,” in 2008 IEEE International Con-
ference on Robotics and Automation, 2008, pp. 3135–3140.

[49] ——, “Graph-based optimal reconfiguration planning for self-reconfigurable robots,”
Robotics and Autonomous Systems, vol. 62, no. 7, pp. 1047 –1059, 2014, Reconfig-
urable Modular Robotics.

[50] D. Hsu, J. Latombe, and R. Motwani, “Path planning in expansive configuration
spaces,” in Proceedings of International Conference on Robotics and Automation,
vol. 3, 1997, 2719–2726 vol.3.

[51] R. Jarvis, “On the identification of the convex hull of a finite set of points in the
plane,” Information Processing Letters, vol. 2, no. 1, pp. 18 –21, 1973.

[52] S. Jeong, B. Kim, S. Park, E. Park, A. Spinos, D. Carroll, T. Tsabedze, Y. Weng, T.
Seo, M. Yim, F. C. Park, and J. Kim, “Variable topology truss: Hardware overview,
reconfiguration planning and locomotion,” in 2018 15th International Conference on
Ubiquitous Robots (UR), 2018, pp. 610–615.

[53] G. Jing, T. Tosun, M. Yim, and H. Kress-Gazit, “An end-to-end system for accom-
plishing tasks with modular robots,” in Proceedings of Robotics: Science and Systems,
AnnArbor, Michigan, 2016.

238

https://www.gurobi.com/products/gurobi-optimizer/
https://www.gurobi.com/products/gurobi-optimizer/

[54] M. W. Jorgensen, E. H. Ostergaard, and H. H. Lund, “Modular ATRON: Modules
for a self-reconfigurable robot,” in 2004 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 2, 2004, 2068–
2073 vol.2.

[55] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “STOMP:
Stochastic trajectory optimization for motion planning,” in 2011 IEEE International
Conference on Robotics and Automation, 2011, pp. 4569–4574.

[56] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal
of Basic Engineering, vol. 82, no. 1, pp. 35–45, Mar. 1960.

[57] A. Kamimura, H. Kurokawa, E. Yoshida, S. Murata, K. Tomita, and S. Kokaji,
“Automatic locomotion design and experiments for a modular robotic system,”
IEEE/ASME Transactions on Mechatronics, vol. 10, no. 3, pp. 314–325, 2005.

[58] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion plan-
ning,” The International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894,
2011.

[59] L. E. Kavraki, P. Svestka, J. Latombe, and M. H. Overmars, “Probabilistic roadmaps
for path planning in high-dimensional configuration spaces,” IEEE Transactions on
Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[60] L. Kettner, “Using generic programming for designing a data structure for polyhedral
surfaces,” Computational Geometry, vol. 13, no. 1, pp. 65–90, 1999.

[61] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” The
International Journal of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.

[62] B. T. Kirby, B. Aksak, J. D. Campbell, J. F. Hoburg, T. C. Mowry, P. Pillai,
and S. C. Goldstein, “A modular robotic system using magnetic force effectors,” in
2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007,
pp. 2787–2793.

[63] E. Klavins, R. Ghrist, and D. Lipsky, “A grammatical approach to self-organizing
robotic systems,” IEEE Transactions on Automatic Control, vol. 51, no. 6, pp. 949–
962, 2006.

[64] A. N. Knaian, “Electropermanent magnetic connectors and actuators: Devices and
their application in programmable matter,” Ph.D. dissertation, Massachusetts Insti-
tute of Technology, Boston, 2010.

[65] H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji, T. Hasuo, and S. Murata, “Dis-
tributed self-reconfiguration of M-TRAN III modular robotic system,” The Interna-
tional Journal of Robotics Research, vol. 27, no. 3-4, pp. 373–386, 2008.

[66] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge University Press,
2006, Available at http://planning.cs.uiuc.edu/.

[67] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” in Pro-
ceedings 1999 IEEE International Conference on Robotics and Automation (Cat.
No.99CH36288C), vol. 1, 1999, pp. 473–479.

239

[68] W. H. Lee and A. C. Sanderson, “Dynamic rolling locomotion and control of modular
robots,” IEEE Transactions on Robotics and Automation, vol. 18, no. 1, pp. 32–41,
2002.

[69] H. Li, T. Wang, and G. S. Chirikjian, “Self-assembly planning of a shape by regular
modular robots,” in Advances in Reconfigurable Mechanisms and Robots II, X. Ding,
X. Kong, and J. S. Dai, Eds., Cham: Springer International Publishing, 2016, pp. 867–
877.

[70] M. Likhachev, G. J. Gordon, and S. Thrun, “ARA∗ : Anytime A∗ with provable
bounds on sub-optimality,” in Advances in Neural Information Processing Systems,
S. Thrun, L. Saul, and B. Schölkopf, Eds., vol. 16, MIT Press, 2004.

[71] M. Likhachev and A. Stentz, “R* search,” in Proceedings of the 23rd National Con-
ference on Artificial Intelligence - Volume 1, ser. AAAI’08, Chicago, Illinois: AAAI
Press, 2008, 344–350.

[72] C. Liu, A. Bera, T. Tsabedze, D. Edgar, and M. Yim, “Spiral zipper manipulator for
aerial grasping and manipulation,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2019, pp. 3179–3184.

[73] C. Liu, M. Whitzer, and M. Yim, “A distributed reconfiguration planning algorithm
for modular robots,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4231–
4238, 2019.

[74] C. Liu and M. Yim, “A quadratic programming approach to modular robot control
and motion planning,” in 2020 Fourth IEEE International Conference on Robotic
Computing (IRC), Taichung, Taiwan, 2020, pp. 1–8.

[75] ——, “Reconfiguration motion planning for variable topology truss,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2019, pp. 1941–1948.

[76] C. Liu, S. Yu, and M. Yim, “A fast configuration space algorithm for variable topol-
ogy truss modular robots,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 8260–8266.

[77] ——, “Shape morphing for variable topology truss,” in 2019 16th International Con-
ference on Ubiquitous Robots (UR), Jeju, Korea, 2019.

[78] C. Liu, Q. Lin, H. Kim, and M. Yim, “SMORES-EP, a modular robot with parallel
self-assembly,” arXiv preprint arXiv:2104.00800, 2021.

[79] C. Liu, T. Tosun, and M. Yim, “A low-cost, highly customizable solution for position
estimation in modular robots,” Journal of Mechanisms and Robotics, vol. 13, no. 6,
2021.

[80] C. Liu and M. Yim, “A quadratic programming approach to manipulation in real-
time using modular robots,” The International Journal of Robotic Computing, vol. 3,
no. 1, pp. 121–145, 2021.

[81] C. Liu and M. Yim, “Configuration recognition with distributed information for mod-
ular robots,” in IFRR International Symposium on Robotics Research, Puerto Varas,
Chile, 2017.

240

[82] C. Liu, S. Yu, and M. Yim, “Motion planning for variable topology truss modular
robot,” in Proceedings of Robotics: Science and Systems, Corvalis, Oregon, USA, 2020.

[83] ——, “Motion planning for variable topology trusses: Reconfiguration and locomo-
tion,” arXiv preprint arXiv:2108.00309, 2021.

[84] G. Liu, S. Abdul, and A. A. Goldenberg, “Distributed control of modular and recon-
figurable robot with torque sensing,” Robotica, vol. 26, no. 1, 75–84, 2008.

[85] W. Liu and A. F. T. Winfield, “Self-assembly in heterogeneous modular robots,”
in Distributed Autonomous Robotic Systems, M. Ani Hsieh and G. Chirikjian, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 219–232.

[86] A. Lyder, R. F. M. Garcia, and K. Stoy, “Mechanical design of Odin, an extendable
heterogeneous deformable modular robot,” in 2008 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2008, pp. 883–888.

[87] A. A. Maciejewski and C. A. Klein, “Obstacle avoidance for kinematically redundant
manipulators in dynamically varying environments,” The International Journal of
Robotics Research, vol. 4, no. 3, pp. 109–117, 1985.

[88] G. L. McColm, “On the structure of random unlabelled acyclic graphs,” Discrete
Math., vol. 277, no. 1, 147–170, 2004.

[89] W. W. Melek and A. A. Goldenberg, “Neurofuzzy control of modular and reconfig-
urable robots,” IEEE/ASME Transactions on Mechatronics, vol. 8, no. 3, pp. 381–
389, 2003.

[90] G. Mermoud, M. Mastrangeli, U. Upadhyay, and A. Martinoli, “Real-time automated
modeling and control of self-assembling systems,” in 2012 IEEE International Con-
ference on Robotics and Automation, 2012, pp. 4266–4273.

[91] K. Miura, “Design and operation of a deployable truss structure,” in NASA. Goddard
Space Flight Center The 18th Aerospace Mech. Symp., Greenbelt, Maryland, May
1984, pp. 49–63.

[92] T. Möller and B. Trumbore, “Fast, minimum storage ray-triangle intersection,” Jour-
nal of Graphics Tools, vol. 2, no. 1, pp. 21–28, 1997.

[93] K. Motomura, A. Kawakami, and S. Hirose, “Development of arm equipped sin-
gle wheel rover: Effective arm-posture-based steering method,” Autonomous Robots,
vol. 18, pp. 215–229, 2005.

[94] S. Murata, K. Kakomura, and H. Kurokawa, “Docking experiments of a modular
robot by visual feedback,” in 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2006, pp. 625–630.

[95] S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, and S. Kokaji, “A 3-D self-
reconfigurable structure,” in Proceedings. 1998 IEEE International Conference on
Robotics and Automation (Cat. No.98CH36146), vol. 1, 1998, 432–439 vol.1.

[96] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji, “M-
TRAN: Self-reconfigurable modular robotic system,” IEEE/ASME Transactions on
Mechatronics, vol. 7, no. 4, pp. 431–441, 2002.

241

[97] R. M. Murray, S. S. Sastry, and L. Zexiang, A Mathematical Introduction to Robotic
Manipulation. USA: CRC Press, Inc., 1994.

[98] L. E. Navarro-Serment, R. Grabowski, C. J. J. Paredis, and P. K. Khosla, “Modularity
in small distributed robots,” in Sensor Fusion and Decentralized Control in Robotic
Systems II, G. T. McKee and P. S. Schenker, Eds., International Society for Optics
and Photonics, vol. 3839, SPIE, 1999, pp. 297 –306.

[99] A. Naz, B. Piranda, J. Bourgeois, and S. C. Goldstein, “A distributed self-
reconfiguration algorithm for cylindrical lattice-based modular robots,” in 2016
IEEE 15th International Symposium on Network Computing and Applications
(NCA), 2016, pp. 254–263.

[100] C. A. Nelson, “A framework for self-reconfiguration planning for unit-modular
robots,” Ph.D. dissertation, Purdue University, West Lafayette, IN, 2005.

[101] M. Nilsson, “Heavy-duty connectors for self-reconfiguring robots,” in Proceedings 2002
IEEE International Conference on Robotics and Automation (Cat. No.02CH37292),
vol. 4, 2002, 4071–4076 vol.4.

[102] I. O’Hara, J. Paulos, J. Davey, N. Eckenstein, N. Doshi, T. Tosun, J. Greco, J. Seo,
M. Turpin, V. Kumar, and M. Yim, “Self-assembly of a swarm of autonomous boats
into floating structures,” in 2014 IEEE International Conference on Robotics and
Automation (ICRA), 2014, pp. 1234–1240.

[103] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in 2011 IEEE
International Conference on Robotics and Automation, 2011, pp. 3400–3407.

[104] C. Park, J. Pan, and D. Manocha, “ITOMP: Incremental trajectory optimization for
real-time replanning in dynamic environments,” in Proceedings of the Twenty-Second
International Conference on International Conference on Automated Planning and
Scheduling, ser. ICAPS’12, Atibaia, São Paulo, Brazil: AAAI Press, 2012, pp. 207–
215.

[105] M. Park, S. Chitta, A. Teichman, and M. Yim, “Automatic configuration recognition
methods in modular robots,” The International Journal of Robotics Research, vol. 27,
no. 3-4, pp. 403–421, 2008.

[106] S. Park, J. Bae, S. Lee, M. Yim, J. Kim, and T. Seo, “Polygon-based random tree
search planning for variable geometry truss robot,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 813–819, 2020.

[107] S. Park, E. Park, M. Yim, J. Kim, and T. W. Seo, “Optimization-based nonimpact
rolling locomotion of a variable geometry truss,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 747–752, 2019.

[108] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning and control,”
in [1993] Proceedings IEEE International Conference on Robotics and Automation,
1993, 802–807 vol.2.

[109] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP: Gradient optimiza-
tion techniques for efficient motion planning,” in 2009 IEEE International Conference
on Robotics and Automation, 2009, pp. 489–494.

242

[110] E. Rimon and D. E. Koditschek, “Exact robot navigation using cost functions: The
case of distinct spherical boundaries in En,” in Proceedings. 1988 IEEE International
Conference on Robotics and Automation, 1988, 1791–1796 vol.3.

[111] “Rosbridge,” [Online]. Available: https://wiki.ros.org/rosbridge_suite.

[112] M. Rubenstein, C. Ahler, and R. Nagpal, “Kilobot: A low cost scalable robot system
for collective behaviors,” in 2012 IEEE International Conference on Robotics and
Automation, 2012, pp. 3293–3298.

[113] M. Rubenstein, K. Payne, P. Will, and Wei-Min Shen, “Docking among independent
and autonomous CONRO self-reconfigurable robots,” in IEEE International Confer-
ence on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004, vol. 3, 2004,
2877–2882 Vol.3.

[114] D. Rus and M. Vona, “Crystalline robots: Self-reconfiguration with compressible unit
modules,” Autonomous Robots, vol. 10, no. 1, pp. 107–124, 2001.

[115] S1791-42r customer information sheet, Harwin Inc., 2016.

[116] D. Saldaña, B. Gabrich, G. Li, M. Yim, and V. Kumar, “ModQuad: The flying mod-
ular structure that self-assembles in midair,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA), 2018, pp. 691–698.

[117] D. Saldaña, B. Gabrich, M. Whitzer, A. Prorok, M. F. M. Campos, M. Yim, and V.
Kumar, “A decentralized algorithm for assembling structures with modular robots,” in
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2017, pp. 2736–2743.

[118] D. Saldaña, P. M. Gupta, and V. Kumar, “Design and control of aerial modules
for inflight self-disassembly,” IEEE Robotics and Automation Letters, vol. 4, no. 4,
pp. 3410–3417, 2019.

[119] B. Salemi, M. Moll, and W. Shen, “SUPERBOT: A deployable, multi-functional,
and modular self-reconfigurable robotic system,” in 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2006, pp. 3636–3641.

[120] B. Salemi, Wei-Min Shen, and P. Will, “Hormone-controlled metamorphic robots,” in
Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation
(Cat. No.01CH37164), vol. 4, 2001, 4194–4199 vol.4.

[121] T. Schouwenaars, B. De Moor, E. Feron, and J. How, “Mixed integer programming
for multi-vehicle path planning,” in 2001 European Control Conference (ECC), 2001,
pp. 2603–2608.

[122] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K.
Goldberg, and P. Abbeel, “Motion planning with sequential convex optimization and
convex collision checking,” The International Journal of Robotics Research, vol. 33,
no. 9, pp. 1251–1270, 2014.

[123] J. Seo, M. Yim, and V. Kumar, “Assembly sequence planning for constructing planar
structures with rectangular modules,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA), 2016, pp. 5477–5482.

243

https://wiki.ros.org/rosbridge_suite

[124] J. Seo, S. Gray, V. Kumar, and M. Yim, “Reconfiguring chain-type modular robots
based on the Carpenter’s Rule Theorem,” in Algorithmic Foundations of Robotics
IX: Selected Contributions of the Ninth International Workshop on the Algorithmic
Foundations of Robotics, D. Hsu, V. Isler, J.-C. Latombe, and M. C. Lin, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 105–120.

[125] J. Seo, J. Paik, and M. Yim, “Modular reconfigurable robotics,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 2, no. 1, pp. 63–88, 2019.

[126] J. Seo, M. Yim, and V. Kumar, “A theory on grasping objects using effectors with
curved contact surfaces and its application to whole-arm grasping,” The International
Journal of Robotics Research, vol. 35, no. 9, pp. 1080–1102, 2016.

[127] H. Seraji, “Configuration control of redundant manipulators: Theory and implemen-
tation,” IEEE Transactions on Robotics and Automation, vol. 5, no. 4, pp. 472–490,
1989.

[128] K. Shankar, J. W. Burdick, and N. H. Hudson, “A quadratic programming approach
to quasi-static whole-body manipulation,” in Algorithmic Foundations of Robotics XI:
Selected Contributions of the Eleventh International Workshop on the Algorithmic
Foundations of Robotics, H. L. Akin, N. M. Amato, V. Isler, and A. F. van der
Stappen, Eds. Cham: Springer International Publishing, 2015, pp. 553–570.

[129] W. Shen, R. Kovac, and M. Rubenstein, “SINGO: A single-end-operative and gender-
less connector for self-reconfiguration, self-assembly and self-healing,” in 2009 IEEE
International Conference on Robotics and Automation, 2009, pp. 4253–4258.

[130] Z. Shiller and S. Dubowsky, “On computing the global time-optimal motions of
robotic manipulators in the presence of obstacles,” IEEE Transactions on Robotics
and Automation, vol. 7, no. 6, pp. 785–797, 1991.

[131] M.-C. Shiu, L.-C. Fu, and Y.-J. Chia, “Graph isomorphism testing method in a self-
recognition Velcro strap modular robot,” in 2010 5th IEEE Conference on Industrial
Electronics and Applications, 2010, pp. 222–227.

[132] A. Spinos, D. Carroll, T. Kientz, and M. Yim, “Variable topology truss: Design and
analysis,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), 2017, pp. 2717–2722.

[133] A. Sproewitz, R. Moeckel, J. Maye, and A. J. Ijspeert, “Learning to move in modular
robots using central pattern generators and online optimization,” The International
Journal of Robotics Research, vol. 27, no. 3-4, pp. 423–443, 2008.

[134] A. Spröwitz, R. Moeckel, M. Vespignani, S. Bonardi, and A. Ijspeert, “Roombots: A
hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous
modular robot,” Robotics and Autonomous Systems, vol. 62, no. 7, pp. 1016 –1033,
2014, Reconfigurable Modular Robotics.

[135] K. Stoy, D. Brandt, and D. Christensen, Self-Reconfigurable Robots. Cambridge, MA:
The MIT Press, 2010.

[136] K. Stoy, Wei-Min Shen, and P. M. Will, “Using role-based control to produce locomo-
tion in chain-type self-reconfigurable robots,” IEEE/ASME Transactions on Mecha-
tronics, vol. 7, no. 4, pp. 410–417, 2002.

244

[137] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning library,” IEEE
Robotics Automation Magazine, vol. 19, no. 4, pp. 72–82, 2012.

[138] J. W. Suh, S. B. Homans, and M. Yim, “Telecubes: Mechanical design of a module
for self-reconfigurable robotics,” in Proceedings 2002 IEEE International Conference
on Robotics and Automation (Cat. No.02CH37292), vol. 4, 2002, 4095–4101 vol.4.

[139] “The Boost Graph Library (BGL).” (2019), [Online]. Available: https://www.boost.
org/doc/libs/1_71_0/libs/graph/doc/index.html.

[140] “The computational geometry algorithms library.” (2019), [Online]. Available: https:
//www.cgal.org/.

[141] “The robot operating system (ros),” [Online]. Available: https://www.ros.org/.
[142] M. T. Tolley and H. Lipson, “On-line assembly planning for stochastically recon-

figurable systems,” The International Journal of Robotics Research, vol. 30, no. 13,
pp. 1566–1584, 2011.

[143] T. Tosun, J. Davey, C. Liu, and M. Yim, “Design and characterization of the EP-Face
connector,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2016, pp. 45–51.

[144] T. Tosun, D. Edgar, C. Liu, T. Tsabedze, and M. Yim, “PaintPots: Low cost, accurate,
highly customizable potentiometers for position sensing,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), 2017, pp. 1212–1218.

[145] Total ground carbon conductive coating 838 technical data sheet, Ver. 1.04, MG Chem-
icals, 2013.

[146] M. Turpin, N. Michael, and V. Kumar, “Concurrent assignment and planning of
trajectories for large teams of interchangeable robots,” in 2013 IEEE International
Conference on Robotics and Automation, 2013, pp. 842–848.

[147] “Unity,” [Online]. Available: https://unity.com/.
[148] N. Usevitch, Z. Hammond, S. Follmer, and M. Schwager, “Linear actuator robots: Dif-

ferential kinematics, controllability, and algorithms for locomotion and shape morph-
ing,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2017, pp. 5361–5367.

[149] N. S. Usevitch, Z. M. Hammond, and M. Schwager, “Locomotion of linear actuator
robots through kinematic planning and nonlinear optimization,” IEEE Transactions
on Robotics, pp. 1–18, 2020.

[150] S. Vassilvitskii, M. Yim, and J. Suh, “A complete, local and parallel reconfiguration
algorithm for cube style modular robots,” in Proceedings 2002 IEEE International
Conference on Robotics and Automation (Cat. No.02CH37292), vol. 1, 2002, 117–
122 vol.1.

[151] E. A. Wan and R. Van Der Merwe, “The unscented kalman filter for nonlinear es-
timation,” in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing,
Communications, and Control Symposium (Cat. No.00EX373), 2000, pp. 153–158.

[152] H. Wei, Y. Chen, J. Tan, and T. Wang, “Sambot: A self-assembly modular robot
system,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 4, pp. 745–757,
2011.

245

https://www.boost.org/doc/libs/1_71_0/libs/graph/doc/index.html
https://www.boost.org/doc/libs/1_71_0/libs/graph/doc/index.html
https://www.cgal.org/
https://www.cgal.org/
https://www.ros.org/
https://unity.com/

[153] J. Werfel, D. Ingber, and R. Nagpal, “Collective construction of environmentally-
adaptive structures,” in 2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2007, pp. 2345–2352.

[154] J. Werfel and R. Nagpal, “Three-dimensional construction with mobile robots and
modular blocks,” The International Journal of Robotics Research, vol. 27, no. 3-4,
pp. 463–479, 2008.

[155] P. J. White, K. Kopanski, and H. Lipson, “Stochastic self-reconfigurable cellular
robotics,” in IEEE International Conference on Robotics and Automation, 2004. Pro-
ceedings. ICRA ’04. 2004, vol. 3, 2004, 2888–2893 Vol.3.

[156] P. White, V. Zykov, J. Bongard, and H. Lipson, “Three dimensional stochastic re-
configuration of modular robots,” in Proceedings of Robotics: Science and Systems,
Cambridge, USA, 2005.

[157] M. Yim, “A reconfigurable modular robot with many modes of locomotion,” in Porc.
of JSME Intl. Conf. on Advanced Mechatronics, Tokyo, Japan, 1993.

[158] M. Yim, “New locomotion gaits,” in Proceedings of the 1994 IEEE International
Conference on Robotics and Automation, 1994, 2508–2514 vol.3.

[159] M. Yim, D. G. Duff, and K. D. Roufas, “PolyBot: A modular reconfigurable robot,”
in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 1,
2000, 514–520 vol.1.

[160] M. Yim, W. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, and G. S.
Chirikjian, “Modular self-reconfigurable robot systems [grand challenges of robotics],”
IEEE Robotics Automation Magazine, vol. 14, no. 1, pp. 43–52, 2007.

[161] M. Yim, B. Shirmohammadi, J. Sastra, M. Park, M. Dugan, and C. J. Taylor, “To-
wards robotic self-reassembly after explosion,” in 2007 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2007, pp. 2767–2772.

[162] M. Yim, Ying Zhang, K. Roufas, D. Duff, and C. Eldershaw, “Connecting and dis-
connecting for chain self-reconfiguration with PolyBot,” IEEE/ASME Transactions
on Mechatronics, vol. 7, no. 4, pp. 442–451, 2002.

[163] M. Yim, P. White, M. Park, and J. Sastra, “Modular self-reconfigurable robots,” in
Encyclopedia of Complexity and Systems Science, R. A. Meyers, Ed. New York, NY:
Springer New York, 2009, pp. 5618–5631.

[164] M. H. Yim, D. Goldberg, and A. Casal, “Connectivity planning for closed-chain re-
configuration,” in Sensor Fusion and Decentralized Control in Robotic Systems III,
G. T. McKee and P. S. Schenker, Eds., International Society for Optics and Photon-
ics, vol. 4196, SPIE, 2000, pp. 402 –412.

[165] Ying Zhang, M. Yim, C. Eldershaw, D. Duff, and K. Roufas, “Phase Automata:
A programming model of locomotion gaits for scalable chain-type modular robots,”
in Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2003) (Cat. No.03CH37453), vol. 3, 2003, 2442–2447 vol.3.

246

[166] E. Yoshida, S. Murata, A. Kamimura, K. Tomita, H. Kurokawa, and S. Kokaji, “A
self-reconfigurable modular robot: Reconfiguration planning and experiments,” The
International Journal of Robotics Research, vol. 21, no. 10-11, pp. 903–915, 2002.

[167] Y. Zhao, H. Lin, and M. Tomizuka, “Efficient trajectory optimization for robot motion
planning,” in 2018 15th International Conference on Control, Automation, Robotics
and Vision (ICARCV), 2018, pp. 260–265.

[168] W. Zhu, T. Lamarche, E. Dupuis, D. Jameux, P. Barnard, and G. Liu, “Precision
control of modular robot manipulators: The VDC approach with embedded FPGA,”
IEEE Transactions on Robotics, vol. 29, no. 5, pp. 1162–1179, 2013.

[169] Y. Zhu, G. Li, X. Wang, and X. Cui, “Automatic function-isomorphic configuration
recognition and control for ubot modular self-reconfigurable robot,” in 2012 IEEE
International Conference on Mechatronics and Automation, 2012, pp. 451–456.

[170] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M. Dellin,
J. A. Bagnell, and S. S. Srinivasa, “CHOMP: Covariant hamiltonian optimization for
motion planning,” The International Journal of Robotics Research, vol. 32, no. 9-10,
pp. 1164–1193, 2013.

247

	Modular Robots Morphology Transformation And Task Execution
	Recommended Citation

	Modular Robots Morphology Transformation And Task Execution
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	Acknowledgments
	Abstract
	Contents
	List of Tables
	List of Figures
	I Preliminaries
	Introduction
	Motivation
	SMORES-EP
	Variable Topology Truss
	Thesis Contributions and Outline

	Overview of Related Work
	Modular Robotic Systems
	Control and Motion Planning

	II System Design and Architecture
	Modular Robot Hardware
	SMORES-EP
	Variable Topology Truss

	Software Architecture
	Hybrid Architecture
	Architecture Design
	Configuration
	Robot Interface
	User Interface
	Implementation

	III SMORES-EP
	Introduction
	Module Control
	Introduction
	PaintPot Sensor in SMORES-EP
	Manufacturing Overview
	Performance Characteristics
	Wheel and Tilt PaintPots in SMORES-EP
	Cost

	Sensor Characterization
	Position Estimation
	Transition Model
	Observation Model
	Kalman Filter

	DOF Control
	Experiments
	Conclusion

	Docking and Undocking
	Introduction
	Docking Control
	Navigation
	Pose Adjustment
	Approach

	Experiment
	Conclusion

	Graph Model and Configuration Recognition
	Introduction
	Related Work
	Graph Representation and Library Design
	Algorithms for Configuration Recognition
	Configuration Discovery
	Root Module
	Matching and Mapping

	Test Scenario
	Conclusion

	Morphology Transformation
	Introduction
	Related Work
	Self-reconfiguration Planning
	Configuration Decomposition
	Module Mapping
	Reconfiguration Actions
	Hardware Execution

	Parallel Self-assembly Planning
	Task Assignment
	Parallel Assembly Actions

	Experiments
	Self-reconfiguration
	Self-assembly

	Conclusion

	Manipulation Planning
	Introduction
	Related Work
	Motion Planning for Manipulation
	Modular Robot Control and Planning

	Kinematics For Modular Robots
	Kinematics Graph
	Kinematics for Modules
	Kinematics for Chains

	Control and Motion Planning
	Control
	Motion Planning
	Integrated Control and Motion Planning
	Iterative Algorithm for Manipulation Planning

	Experiments
	Real-Time Control
	Whole-Body Manipulation

	Conclusion

	IV Variable Topology Truss
	Introduction
	Configuration, Kinematics, and Control
	Introduction
	Configuration
	Kinematics
	Control
	Experiments
	Conclusion

	Topology Reconfiguration Advantage
	Introduction
	Motion Planning Algorithm
	Grid Space Model
	Node Motion Model and Reconfiguration Actions
	Collision
	Transition Model
	Graph Search Algorithm

	Test Scenarios
	Scenario 1
	Scenario 2

	Conclusions

	Node Configuration Space
	Introduction
	Single Node Configuration Space
	Obstacle Region and Free Space
	Free Space Boundary

	Single Node Path Planning
	Cell Decomposition
	Path Planning
	Completeness for Single Node Planning

	Shape Morphing Approach
	Experiments
	Single-Node Experiment
	Multi-Node Experiment

	Conclusion

	Reconfiguration
	Introduction
	Related Work
	Problem Statement
	Hardware and Environmental Constraints
	Length Constraints
	Collision Avoidance
	Stability
	Manipulability

	Geometry Reconfiguration
	Obstacle Region and Free Space
	Path Planning for a Group of Nodes
	Geometry Reconfiguration Planning

	Topology Reconfiguration
	Enclosed Subspace in Free Space
	Topology Reconfiguration Actions
	Topology Reconfiguration Planning

	Test Scenarios
	Geometry Reconfiguration
	Topology Reconfiguration

	Conclusion

	Locomotion
	Introduction
	Locomotion
	Truss Polyhedron
	Locomotion Planning

	Test Scenarios
	Conclusion

	V Conclusions
	Contributions and Future Work
	Contributions
	Future Work

	Bibliography

