4,377 research outputs found

    Analysis and Evaluation of PUF-based SoC Designs for Security Applications

    Get PDF
    This paper presents a critical analysis and statistical evaluation of two categories of Physically Unclonable Functions (PUFs): ring oscillator PUF and a new proposed adapted latch based PUF. The main contribution is that of measuring the properties of PUF which provide the basic information for using them in security applications. The original method involved the conceptual design of adapted latch based PUFs and ring oscillator PUFs in combination with peripheral devices in order to create an environment for experimental analysis of PUF properties. Implementation, testing and analysis of results followed. This approach has applications on high level security

    An Improved Public Unclonable Function Design for Xilinx FPGAs for Hardware Security Applications

    Get PDF
    In the modern era we are moving towards completely connecting many useful electronic devices to each other through internet. There is a great need for secure electronic devices and systems. A lot of money is being invested in protecting the electronic devices and systems from hacking and other forms of malicious attacks. Physical Unclonable Function (PUF) is a low-cost hardware scheme that provides affordable security for electronic devices and systems. This thesis proposes an improved PUF design for Xilinx FPGAs and evaluates and compares its performance and reliability compared to existing PUF designs. Furthermore, the utility of the proposed PUF was demonstrated by using it for hardware Intellectual Property (IP) core licensing and authentication. Hardware Trojan can be used to provide evaluation copy of IP cores for a limited time. After that it disables the functionality of the IP core. A finite state machine (FSM) based hardware trojan was integrated with a binary divider IP core and evaluated for licensing and authentication applications. The proposed PUF was used in the design of hardware trojan. Obfuscation metric measures the effectiveness of hardware trojan. A moderately good obfuscation level was achieved for our hardware trojan

    Physical Unclonable Function Reliability on Reconfigurable Hardware and Reliability Degradation with Temperature and Supply Voltage Variations

    Get PDF
    A hardware security solution using a Physical Unclonable Function (PUF) is a promising approach to ensure security for physical systems. PUF utilizes the inherent instance-specific parameters of physical objects and it is evaluated based on the performance parameters such as uniqueness, reliability, randomness, and tamper evidence of the Challenge and Response Pairs (CRPs). These performance parameters are affected by operating conditions such as temperature and supply voltage variations. In addition, PUF implementation on Field Programmable Gate Array (FPGA) platform is proven to be more complicated than PUF implementation on Application-Specific Integrated Circuit (ASIC) technologies. The automatic placement and routing of logic cells in FPGA can affect the performance of PUFs due to path delay imbalance. In this work, the impact of power supply and temperature variations, on the reliability of an arbiter PUF is studied. Simulation results are conducted to determine the effects of these varying conditions on the CRPs. Simulation results show that ± 10% of power supply variation can affect the reliability of an arbiter PUF by about 51%, similarly temperature fluctuation between -40 0C and +60 0C reduces the PUF reliability by 58%. In addition, a new methodology to implement a reliable arbiter PUF on an FPGA platform is presented. Instead of using an extra delay measurement module, the Chip Planner tool for FPGA is used for manually placement to minimize the path delay misalignment to less than 8 ps

    FPGA-Based PUF Designs: A Comprehensive Review and Comparative Analysis

    Get PDF
    Field-programmable gate arrays (FPGAs) have firmly established themselves as dynamic platforms for the implementation of physical unclonable functions (PUFs). Their intrinsic reconfigurability and profound implications for enhancing hardware security make them an invaluable asset in this realm. This groundbreaking study not only dives deep into the universe of FPGA-based PUF designs but also offers a comprehensive overview coupled with a discerning comparative analysis. PUFs are the bedrock of device authentication and key generation and the fortification of secure cryptographic protocols. Unleashing the potential of FPGA technology expands the horizons of PUF integration across diverse hardware systems. We set out to understand the fundamental ideas behind PUF and how crucially important it is to current security paradigms. Different FPGA-based PUF solutions, including static, dynamic, and hybrid systems, are closely examined. Each design paradigm is painstakingly examined to reveal its special qualities, functional nuances, and weaknesses. We closely assess a variety of performance metrics, including those related to distinctiveness, reliability, and resilience against hostile threats. We compare various FPGA-based PUF systems against one another to expose their unique advantages and disadvantages. This study provides system designers and security professionals with the crucial information they need to choose the best PUF design for their particular applications. Our paper provides a comprehensive view of the functionality, security capabilities, and prospective applications of FPGA-based PUF systems. The depth of knowledge gained from this research advances the field of hardware security, enabling security practitioners, researchers, and designers to make wise decisions when deciding on and implementing FPGA-based PUF solutions.publishedVersio

    Binary object recognition system on FPGA with bSOM

    Get PDF
    Tri-state Self Organizing Map (bSOM), which takes binary inputs and maintains tri-state weights, has been used for classification rather than clustering in this paper. The major contribution here is the demonstration of the potential use of the modified bSOM in security surveillance, as a recognition system on FPGA

    Reliability Enhancement Of Ring Oscillator Based Physically Unclonable Functions

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2012Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2012Bu çalışmada, halka osilatör tabanlı fiziksel klonlanamayan fonksiyon devrelerinin, çeşitli çevresel etkiler karşısında güvenilirliklerin artırılması amaçlanmıştır. Öncelikle, osilatör çiftlerinin ürettiği frekans farklılıklarını ve dinamik etkileri gözlemleyip modelleyebilmek için çeşitli sahada programlanabilir kapı dizilerinin (FPGA) farklı bölgelerinde osilatör çiftleri gerçeklenmiş ve frekans farklılıkları ölçülmüştür. Bu ölçümler sonucunda halka osilatör çiftlerinine ilişkin statik ve dinamik dağılımlar elde edilmiştir. Güvenilirliği artırmak amacıyla halka osilatörleri etiketleyen bir yöntem önerilmiştir. Bu çalışmada ayrıca, bir osilatör çiftinden birden fazla bit elde etme işlemi de incelenmiş ve dinamik etkilere karşı test edilmiştir. Etiketleme yönteminin etkinliğini ve bir osilatör çiftinden birden fazla bit elde etme işlemini gerçek devre üzerinde incelemek amacıyla, fiziksel klonlanamayan fonksiyon devresi FPGA üzerinde gerçeklenmiştir. Sıcaklık odası ile ortamın sıcaklığı 10 – 65 °C arasında değiştirilmiştir. Sonuç olarak, ortam sıcaklığının artmasıyla birlikte güvenilmez bit sayısının arttığı gözlenmiştir. Etiketleme yöntemi kullanıldığında güvenilmez bite rastlanmamıştır. Bir halka osilatör çiftinden birden fazla bit (iki ve üç bit bilgi) elde edilmesi de test edilmiştir. Elde edilen iki ve üç bitlik verilerin küçük bir farklılıkla birlikte eşit dağılımlı olduğu gözlenmiştir. Bir osilatör çiftinden elde edilen bit sayısı arttıkça, güvenilir olmayan bitlerin sayısı da artmıştır. Fakat bir osilatörden iki ve üç bit elde etmede tüm hataların komşu bölgede olduğu gözlenmiştir.In this thesis, it is aimed to enhance the reliability of ring oscillator based Physically Unclonable Functions (PUFs) under different environmental variations. In order to observe and model the frequency difference of ring oscillator pairs and dynamic effects, ring oscillators are realized and measured at different locations of different Field Programmable Gate Arrays (FPGAs). After the measurements, static and dynamic distributions of ring oscillator pairs are obtained. In order to increase the reliability, a new technique that is labeling ring oscillators, is proposed. Also, in this study, the process of obtaining multiple bits from a ring oscillator pair is observed and tested with respect to dynamic effects. In order to analyze the enhancement of labeling technique and multiple bit extraction at the circuit, the PUF circuit is implemented on an FPGA. The ambient temperature is changed between 10 – 65 °C with a temperature chamber. As a result, it is observed that with increasing ambient temperature, the number of unreliable bits are increased. When labeling technique is used, no unreliable bits are observed. Multiple bits extraction (two and three bits extraction) is also tested. It is observed that the distribution of two and three bit wide data are almost equally distributed. The number of unreliable bits are increased with the extracted bit numbers. However, it is seen that all erronous bits are caused by jumping to adjacent region.Yüksek LisansM.Sc

    A Novel Physical Unclonable Function (PUF) Featuring 0.113 FJ/B for IOT Devices

    Get PDF
    A physically unclonable function (PUF) is useful for authentication purposes and is a function created for its inherent uniqueness and inability of adversaries to duplicate it. In this thesis, a PUF is designed, which is a combination of both digital and analog circuits. This PUF could be designed partially based on a semi-automated approach using custom-built P-cells. The PUF is implemented using novel digital circuits, which have been designed using basic digital gates with a minimal number of transistors. The proposed PUF is developed by the introduction of a layer of multiplexers, which is triggered by a novel SR-latch based model for driving the selection lines. For a higher bit stability, the SR latch is combined with four-way asynchronous circuits, which are a class of coincident flip-flops. The resulted PUF consumes very little power and is suitable for sensors and low power applications. The proposed design was implemented in using the Cadence virtuoso IC 5.1.4 and based on the 180nm TSMC transistor models. The energy consumption and area of the proposed PUF is shown to be equal to 0.1132 fJ/bit and 8.03, which is considerably lower than the state of the arts. The uniqueness and reliability of the proposed PUF are estimated to be 48.66% and 99.33%

    Ingress of threshold voltage-triggered hardware trojan in the modern FPGA fabric–detection methodology and mitigation

    Get PDF
    The ageing phenomenon of negative bias temperature instability (NBTI) continues to challenge the dynamic thermal management of modern FPGAs. Increased transistor density leads to thermal accumulation and propagates higher and non-uniform temperature variations across the FPGA. This aggravates the impact of NBTI on key PMOS transistor parameters such as threshold voltage and drain current. Where it ages the transistors, with a successive reduction in FPGA lifetime and reliability, it also challenges its security. The ingress of threshold voltage-triggered hardware Trojan, a stealthy and malicious electronic circuit, in the modern FPGA, is one such potential threat that could exploit NBTI and severely affect its performance. The development of an effective and efficient countermeasure against it is, therefore, highly critical. Accordingly, we present a comprehensive FPGA security scheme, comprising novel elements of hardware Trojan infection, detection, and mitigation, to protect FPGA applications against the hardware Trojan. Built around the threat model of a naval warship’s integrated self-protection system (ISPS), we propose a threshold voltage-triggered hardware Trojan that operates in a threshold voltage region of 0.45V to 0.998V, consuming ultra-low power (10.5nW), and remaining stealthy with an area overhead as low as 1.5% for a 28 nm technology node. The hardware Trojan detection sub-scheme provides a unique lightweight threshold voltage-aware sensor with a detection sensitivity of 0.251mV/nA. With fixed and dynamic ring oscillator-based sensor segments, the precise measurement of frequency and delay variations in response to shifts in the threshold voltage of a PMOS transistor is also proposed. Finally, the FPGA security scheme is reinforced with an online transistor dynamic scaling (OTDS) to mitigate the impact of hardware Trojan through run-time tolerant circuitry capable of identifying critical gates with worst-case drain current degradation
    corecore