40,540 research outputs found

    Characterization and Classification of Collaborative Tools

    Get PDF
    Traditionally, collaboration has been a means for organizations to do their work. However, the context in which they do this work is changing, especially in regards to where the work is done, how the work is organized, who does the work, and with this the characteristics of collaboration. Software development is no exception; it is itself a collaborative effort that is likewise affected by these changes. In the context of both open source software development projects and communities and organizations that develop corporate products, more and more developers need to communicate and liaise with colleagues in geographically distant places about the software product they are conceiving, designing, building, testing, debugging, deploying and maintaining. Thus, work teams face sizeable collaborative challenges, for which they have need of tools that they can use to communicate and coordinate their Work efficiently

    Web-based support for managing large collections of software artefacts

    Get PDF
    There has been a long history of CASE tool development, with an underlying software repository at the heart of most systems. Usually such tools, even the more recently web-based systems, are focused on supporting individual projects within an enterprise or across a number of distributed sites. Little support for maintaining large heterogeneous collections of software artefacts across a number of projects has been developed. Within the GENESIS project, this has been a key consideration in the development of the Open Source Component Artefact Repository (OSCAR). Its most recent extensions are explicitly addressing the provision of cross project global views of large software collections as well as historical views of individual artefacts within a collection. The long-term benefits of such support can only be realised if OSCAR is widely adopted and various steps to facilitate this are described

    Enacting global competition in local supply chain environments: German ā€œChemieparksā€ and the micro-politics of employment relations in a CME

    Get PDF
    Drawing upon the debate on institutional mediation of macro processes, we examine how multinational enterprises (MNEs) engage with global competition through restructuring their operations situated in local supply chain environments and how employment relations (ER) of coordinated market economies are reconfigured in the course of this restructuring process. Our empirical setting is the German chemical industry which is both an exemplar of coordinated labour-management-collaboration and highly exposed to global competition. Using a comparative case study design, we observe how MNEs re-structure two local production sites into ā€˜Chemieparksā€™. Our empirical data suggest that local agency diverges in the extent to which the social partnership type of ER is maintained or disrupted. Furthermore, we highlight the importance of micro-political practices for understanding the restructuring outcome as well as the local enactment and change of macro institutions within production networks as meso-level arenas for institutional mediation

    Coordination approaches and systems - part I : a strategic perspective

    Get PDF
    This is the first part of a two-part paper presenting a fundamental review and summary of research of design coordination and cooperation technologies. The theme of this review is aimed at the research conducted within the decision management aspect of design coordination. The focus is therefore on the strategies involved in making decisions and how these strategies are used to satisfy design requirements. The paper reviews research within collaborative and coordinated design, project and workflow management, and, task and organization models. The research reviewed has attempted to identify fundamental coordination mechanisms from different domains, however it is concluded that domain independent mechanisms need to be augmented with domain specific mechanisms to facilitate coordination. Part II is a review of design coordination from an operational perspective

    Support for collaborative component-based software engineering

    Get PDF
    Collaborative system composition during design has been poorly supported by traditional CASE tools (which have usually concentrated on supporting individual projects) and almost exclusively focused on static composition. Little support for maintaining large distributed collections of heterogeneous software components across a number of projects has been developed. The CoDEEDS project addresses the collaborative determination, elaboration, and evolution of design spaces that describe both static and dynamic compositions of software components from sources such as component libraries, software service directories, and reuse repositories. The GENESIS project has focussed, in the development of OSCAR, on the creation and maintenance of large software artefact repositories. The most recent extensions are explicitly addressing the provision of cross-project global views of large software collections and historical views of individual artefacts within a collection. The long-term benefits of such support can only be realised if OSCAR and CoDEEDS are widely adopted and steps to facilitate this are described. This book continues to provide a forum, which a recent book, Software Evolution with UML and XML, started, where expert insights are presented on the subject. In that book, initial efforts were made to link together three current phenomena: software evolution, UML, and XML. In this book, focus will be on the practical side of linking them, that is, how UML and XML and their related methods/tools can assist software evolution in practice. Considering that nowadays software starts evolving before it is delivered, an apparent feature for software evolution is that it happens over all stages and over all aspects. Therefore, all possible techniques should be explored. This book explores techniques based on UML/XML and a combination of them with other techniques (i.e., over all techniques from theory to tools). Software evolution happens at all stages. Chapters in this book describe that software evolution issues present at stages of software architecturing, modeling/specifying, assessing, coding, validating, design recovering, program understanding, and reusing. Software evolution happens in all aspects. Chapters in this book illustrate that software evolution issues are involved in Web application, embedded system, software repository, component-based development, object model, development environment, software metrics, UML use case diagram, system model, Legacy system, safety critical system, user interface, software reuse, evolution management, and variability modeling. Software evolution needs to be facilitated with all possible techniques. Chapters in this book demonstrate techniques, such as formal methods, program transformation, empirical study, tool development, standardisation, visualisation, to control system changes to meet organisational and business objectives in a cost-effective way. On the journey of the grand challenge posed by software evolution, the journey that we have to make, the contributory authors of this book have already made further advances
    • ā€¦
    corecore