3,269 research outputs found

    Software support for multitouch interaction: the end-user programming perspective

    Get PDF
    Empowering users with tools for developing multitouch interaction is a promising step toward the materialization of ubiquitous computing. This survey frames the state of the art of existing multitouch software development tools from an end-user programming perspective.This research has been partially funded by the EUFP7 project meSch (grant agreement 600851 and CREAx grant (Spanish Ministry of Economy and Competitivity TIN2014-56534-R

    A Framework For Abstracting, Designing And Building Tangible Gesture Interactive Systems

    Get PDF
    This thesis discusses tangible gesture interaction, a novel paradigm for interacting with computer that blends concepts from the more popular fields of tangible interaction and gesture interaction. Taking advantage of the human innate abilities to manipulate physical objects and to communicate through gestures, tangible gesture interaction is particularly interesting for interacting in smart environments, bringing the interaction with computer beyond the screen, back to the real world. Since tangible gesture interaction is a relatively new field of research, this thesis presents a conceptual framework that aims at supporting future work in this field. The Tangible Gesture Interaction Framework provides support on three levels. First, it helps reflecting from a theoretical point of view on the different types of tangible gestures that can be designed, physically, through a taxonomy based on three components (move, hold and touch) and additional attributes, and semantically, through a taxonomy of the semantic constructs that can be used to associate meaning to tangible gestures. Second, it helps conceiving new tangible gesture interactive systems and designing new interactions based on gestures with objects, through dedicated guidelines for tangible gesture definition and common practices for different application domains. Third, it helps building new tangible gesture interactive systems supporting the choice between four different technological approaches (embedded and embodied, wearable, environmental or hybrid) and providing general guidance for the different approaches. As an application of this framework, this thesis presents also seven tangible gesture interactive systems for three different application domains, i.e., interacting with the In-Vehicle Infotainment System (IVIS) of the car, the emotional and interpersonal communication, and the interaction in a smart home. For the first application domain, four different systems that use gestures on the steering wheel as interaction means with the IVIS have been designed, developed and evaluated. For the second application domain, an anthropomorphic lamp able to recognize gestures that humans typically perform for interpersonal communication has been conceived and developed. A second system, based on smart t-shirts, recognizes when two people hug and reward the gesture with an exchange of digital information. Finally, a smart watch for recognizing gestures performed with objects held in the hand in the context of the smart home has been investigated. The analysis of existing systems found in literature and of the system developed during this thesis shows that the framework has a good descriptive and evaluative power. The applications developed during this thesis show that the proposed framework has also a good generative power.Questa tesi discute l’interazione gestuale tangibile, un nuovo paradigma per interagire con il computer che unisce i principi dei più comuni campi di studio dell’interazione tangibile e dell’interazione gestuale. Sfruttando le abilità innate dell’uomo di manipolare oggetti fisici e di comunicare con i gesti, l’interazione gestuale tangibile si rivela particolarmente interessante per interagire negli ambienti intelligenti, riportando l’attenzione sul nostro mondo reale, al di là dello schermo dei computer o degli smartphone. Poiché l’interazione gestuale tangibile è un campo di studio relativamente recente, questa tesi presenta un framework (quadro teorico) che ha lo scopo di assistere lavori futuri in questo campo. Il Framework per l’Interazione Gestuale Tangibile fornisce supporto su tre livelli. Per prima cosa, aiuta a riflettere da un punto di vista teorico sui diversi tipi di gesti tangibili che possono essere eseguiti fisicamente, grazie a una tassonomia basata su tre componenti (muovere, tenere, toccare) e attributi addizionali, e che possono essere concepiti semanticamente, grazie a una tassonomia di tutti i costrutti semantici che permettono di associare dei significati ai gesti tangibili. In secondo luogo, il framework proposto aiuta a concepire nuovi sistemi interattivi basati su gesti tangibili e a ideare nuove interazioni basate su gesti con gli oggetti, attraverso linee guida per la definizione di gesti tangibili e una selezione delle migliore pratiche per i differenti campi di applicazione. Infine, il framework aiuta a implementare nuovi sistemi interattivi basati su gesti tangibili, permettendo di scegliere tra quattro differenti approcci tecnologici (incarnato e integrato negli oggetti, indossabile, distribuito nell’ambiente, o ibrido) e fornendo una guida generale per la scelta tra questi differenti approcci. Come applicazione di questo framework, questa tesi presenta anche sette sistemi interattivi basati su gesti tangibili, realizzati per tre differenti campi di applicazione: l’interazione con i sistemi di infotainment degli autoveicoli, la comunicazione interpersonale delle emozioni, e l’interazione nella casa intelligente. Per il primo campo di applicazione, sono stati progettati, sviluppati e testati quattro differenti sistemi che usano gesti tangibili effettuati sul volante come modalità di interazione con il sistema di infotainment. Per il secondo campo di applicazione, è stata concepita e sviluppata una lampada antropomorfica in grado di riconoscere i gesti tipici dell’interazione interpersonale. Per lo stesso campo di applicazione, un secondo sistema, basato su una maglietta intelligente, riconosce quando due persone si abbracciano e ricompensa questo gesto con uno scambio di informazioni digitali. Infine, per l’interazione nella casa intelligente, è stata investigata la realizzazione di uno smart watch per il riconoscimento di gesti eseguiti con oggetti tenuti nella mano. L’analisi dei sistemi interattivi esistenti basati su gesti tangibili permette di dimostrare che il framework ha un buon potere descrittivo e valutativo. Le applicazioni sviluppate durante la tesi mostrano che il framework proposto ha anche un valido potere generativo

    Computational interaction techniques for 3D selection, manipulation and navigation in immersive VR

    Get PDF
    3D interaction provides a natural interplay for HCI. Many techniques involving diverse sets of hardware and software components have been proposed, which has generated an explosion of Interaction Techniques (ITes), Interactive Tasks (ITas) and input devices, increasing thus the heterogeneity of tools in 3D User Interfaces (3DUIs). Moreover, most of those techniques are based on general formulations that fail in fully exploiting human capabilities for interaction. This is because while 3D interaction enables naturalness, it also produces complexity and limitations when using 3DUIs. In this thesis, we aim to generate approaches that better exploit the high potential human capabilities for interaction by combining human factors, mathematical formalizations and computational methods. Our approach is focussed on the exploration of the close coupling between specific ITes and ITas while addressing common issues of 3D interactions. We specifically focused on the stages of interaction within Basic Interaction Tasks (BITas) i.e., data input, manipulation, navigation and selection. Common limitations of these tasks are: (1) the complexity of mapping generation for input devices, (2) fatigue in mid-air object manipulation, (3) space constraints in VR navigation; and (4) low accuracy in 3D mid-air selection. Along with two chapters of introduction and background, this thesis presents five main works. Chapter 3 focusses on the design of mid-air gesture mappings based on human tacit knowledge. Chapter 4 presents a solution to address user fatigue in mid-air object manipulation. Chapter 5 is focused on addressing space limitations in VR navigation. Chapter 6 describes an analysis and a correction method to address Drift effects involved in scale-adaptive VR navigation; and Chapter 7 presents a hybrid technique 3D/2D that allows for precise selection of virtual objects in highly dense environments (e.g., point clouds). Finally, we conclude discussing how the contributions obtained from this exploration, provide techniques and guidelines to design more natural 3DUIs

    An empirical characterization of touch-gesture input force on mobile devices

    Get PDF
    Designers of force-sensitive user interfaces lack a ground-truth characterization of input force while performing common touch gestures (zooming, panning, tapping, and rotating). This paper provides such a characterization firstly by deriving baseline force profiles in a tightly-controlled user study; then by examining how these profiles vary in different conditions such as form factor (mobile phone and tablet), interaction position (walking and sitting) and urgency (timed tasks and untimed tasks). We conducted two user studies with 14 and 24 participants respectively and report: (1) force profile graphs that depict the force variations of common touch gestures, (2) the effect of the different conditions on force exerted and gesture completion time, (3) the most common forces that users apply, and the time taken to complete the gestures. This characterization is intended to aid the design of interactive devices that integrate force-input with common touch gestures in different conditions

    A design pattern for multimodal and multidevice user interfaces

    Get PDF
    In this paper, we introduce the MVIC pattern for creating multidevice and multimodal interfaces. We discuss the advantages provided by introducing a new component to the MVC pattern for those interfaces which must adapt to different devices and modalities. The proposed solution is based on an input model defining equivalent and complementary sequence of inputs for the same interaction. In addition, we discuss Djestit, a javascript library which allows creating multidevice and multimodal input models for web applications, applying the aforementioned pattern. The library supports the integration of multiple devices (Kinect 2, Leap Motion, touchscreens) and different modalities (gestural, vocal and touch). Copyright is held by the owner/author(s)

    COMPASS: A Formal Framework and Aggregate Dataset for Generalized Surgical Procedure Modeling

    Full text link
    Purpose: We propose a formal framework for the modeling and segmentation of minimally-invasive surgical tasks using a unified set of motion primitives (MPs) to enable more objective labeling and the aggregation of different datasets. Methods: We model dry-lab surgical tasks as finite state machines, representing how the execution of MPs as the basic surgical actions results in the change of surgical context, which characterizes the physical interactions among tools and objects in the surgical environment. We develop methods for labeling surgical context based on video data and for automatic translation of context to MP labels. We then use our framework to create the COntext and Motion Primitive Aggregate Surgical Set (COMPASS), including six dry-lab surgical tasks from three publicly-available datasets (JIGSAWS, DESK, and ROSMA), with kinematic and video data and context and MP labels. Results: Our context labeling method achieves near-perfect agreement between consensus labels from crowd-sourcing and expert surgeons. Segmentation of tasks to MPs results in the creation of the COMPASS dataset that nearly triples the amount of data for modeling and analysis and enables the generation of separate transcripts for the left and right tools. Conclusion: The proposed framework results in high quality labeling of surgical data based on context and fine-grained MPs. Modeling surgical tasks with MPs enables the aggregation of different datasets and the separate analysis of left and right hands for bimanual coordination assessment. Our formal framework and aggregate dataset can support the development of explainable and multi-granularity models for improved surgical process analysis, skill assessment, error detection, and autonomy.Comment: 22 pages, 6 figures, 12 table

    Two Hand Gesture Based 3D Navigation in Virtual Environments

    Get PDF
    Natural interaction is gaining popularity due to its simple, attractive, and realistic nature, which realizes direct Human Computer Interaction (HCI). In this paper, we presented a novel two hand gesture based interaction technique for 3 dimensional (3D) navigation in Virtual Environments (VEs). The system used computer vision techniques for the detection of hand gestures (colored thumbs) from real scene and performed different navigation (forward, backward, up, down, left, and right) tasks in the VE. The proposed technique also allow users to efficiently control speed during navigation. The proposed technique is implemented via a VE for experimental purposes. Forty (40) participants performed the experimental study. Experiments revealed that the proposed technique is feasible, easy to learn and use, having less cognitive load on users. Finally gesture recognition engines were used to assess the accuracy and performance of the proposed gestures. kNN achieved high accuracy rates (95.7%) as compared to SVM (95.3%). kNN also has high performance rates in terms of training time (3.16 secs) and prediction speed (6600 obs/sec) as compared to SVM with 6.40 secs and 2900 obs/sec

    Brave New GES World:A Systematic Literature Review of Gestures and Referents in Gesture Elicitation Studies

    Get PDF
    How to determine highly effective and intuitive gesture sets for interactive systems tailored to end users’ preferences? A substantial body of knowledge is available on this topic, among which gesture elicitation studies stand out distinctively. In these studies, end users are invited to propose gestures for specific referents, which are the functions to control for an interactive system. The vast majority of gesture elicitation studies conclude with a consensus gesture set identified following a process of consensus or agreement analysis. However, the information about specific gesture sets determined for specific applications is scattered across a wide landscape of disconnected scientific publications, which poses challenges to researchers and practitioners to effectively harness this body of knowledge. To address this challenge, we conducted a systematic literature review and examined a corpus of N=267 studies encompassing a total of 187, 265 gestures elicited from 6, 659 participants for 4, 106 referents. To understand similarities in users’ gesture preferences within this extensive dataset, we analyzed a sample of 2, 304 gestures extracted from the studies identified in our literature review. Our approach consisted of (i) identifying the context of use represented by end users, devices, platforms, and gesture sensing technology, (ii) categorizing the referents, (iii) classifying the gestures elicited for those referents, and (iv) cataloging the gestures based on their representation and implementation modalities. Drawing from the findings of this review, we propose guidelines for conducting future end-user gesture elicitation studies
    • …
    corecore