
A Design Pattern for Multimodal and
Multidevice User Interfaces

Alessandro Carcangiu
Department of Electrical and

Electronic Engineering,
University of Cagliari
Via Marengo 2, 09123

Cagliari, Italy
alessandro.carcangiu@diee.unica.it

Gianni Fenu
Department of Mathematics

and Computer Science,
University of Cagliari

Via Ospedale 72, 09124,
Cagliari, Italy
fenu@unica.it

Lucio Davide Spano
Department of Mathematics

and Computer Science,
University of Cagliari

Via Ospedale 72, 09124,
Cagliari, Italy

davide.spano@unica.it

ABSTRACT
In this paper, we introduce the MVIC pattern for creating mul-
tidevice and multimodal interfaces. We discuss the advantages
provided by introducing a new component to the MVC pat-
tern for those interfaces which must adapt to different devices
and modalities. The proposed solution is based on an input
model defining equivalent and complementary sequence of
inputs for the same interaction. In addition, we discuss Djestit,
a javascript library which allows creating multidevice and
multimodal input models for web applications, applying the
aforementioned pattern. The library supports the integration
of multiple devices (Kinect 2, Leap Motion, touchscreens) and
different modalities (gestural, vocal and touch).

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User Interfaces; Input devices and strategies (e.g., mouse,
touchscreen).

Author Keywords
Input Modelling; User Interface Engineering; Design Pattern;
Multimodal Interfaces; Device Independence

INTRODUCTION
In later years, we witnessed the introduction in the mass-
market of different interaction devices that made it feasible to
transform into interactive environments different places that
usually had no interactive capabilities. In this category, we
can remember for instance Microsoft Kinect1, which has been
employed in different settings such as home environments,
interactive showcases, artistic installations etc. However, even
if the Kinect is one of the most famous, there are also other
devices that lately provided new interaction capabilities to a
wider audience: the Leap Motion2, which provides an accurate
1http://www.microsoft.com/en-us/kinectforwindows/
2https://www.leapmotion.com/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
EICS’16, June 21–24, 2016, Brussels, Belgium
ACM 978-1-4503-4322-0/16/06.
DOI: http://dx.doi.org/10.1145/2933242.2935876

tracking of the hand and fingers position in 3D at an affordable
price, head-mounted displays such as the Oculus Rift3 or even
mobile phones mounted inside an headset (e.g. Samsung Gear
VR4), which allow to create virtual reality experiences at a
consumer level.

The currently increasing popularity of the aforementioned de-
vices allows interaction designers to exploit them for creating
new experiences outside the game environment, in particular
using the web for reaching a wider audience. However, as
usual in the web, it is difficult to select a particular device for
an application since the same input may be provided by differ-
ent devices or by different combinations of devices. Therefore,
if a designer focus on one particular device (or one particular
setting), a portion of the potential audience is lost.

In this paper, we propose a variation of the Model View Con-
troller (MVC) pattern that allows developers to redefine equiv-
alent inputs for different devices, decoupling the input sources
from their interpretation inside the application. We called this
pattern Model View Input Controller (MVIC). We first detail
our contribution abstracting from a particular implementation
technology, discussing how it is possible to add to the classical
MVC pattern a new component that translates input events
from a particular device into more abstract events, which may
be related to commands or manipulations. We consider that
there may be more than one modality that can be exploited by
the user for conveying the same information. After that, we dis-
cuss the implementation of a proof-of-concept library, called
Djestit, which supports the pattern for the web environment.

THE MVIC PATTERN
In this section we detail the main contribution of this paper,
which is a pattern for defining a set of input events that ab-
stract from a particular device. This allows to map events
coming from different devices and provided through different
modalities into high-level interaction events, isolating the re-
configuration of the underlying interaction according to the
available devices, without handling this aspect in different
parts of the source code.

3http://www.oculus.com/
4http://www.samsung.com/global/galaxy/wearables/gear-vr/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Cagliari

https://core.ac.uk/display/54613325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.microsoft.com/en-us/kinectforwindows/
https://www.leapmotion.com/
http://dx.doi.org/10.1145/2933242.2935876
http://www.oculus.com/
http://www.samsung.com/global/galaxy/wearables/gear-vr/

The Input Management Problem
Before introducing the scheme of the general solution, we
introduce the input management problem through a small
example. We consider a web interface that enables the user
to select a video inside a collection. The user interface can
be organised as a grid of tiles (e.g. 4 columns and 3 rows),
and the user can watch a video selecting one of the tiles. In
addition, if the video list has more entries than the grid, the
results are paginated and the user can sequentially explore the
different pages.

If we consider a classical desktop setting, it is quite trivial to
support the selection mechanism through mouse pointing and
the page switching through dedicated buttons. We can add the
keyboard support through e.g. navigating sequentially the grid
through the TAB key and providing a short-cut for changing
the page (e.g. using the arrow keys).

Applying the MVC pattern, this simple application should be
described through three components:

1. The Model, which manages the data and models the appli-
cation domain, contains the data and the metadata of the
different videos.

2. The View, which manages the information visualization,
defines the grid and the pagination layout.

3. The Controller, which interprets the user’s input, manipu-
lates the model and selects the view accordingly, is respon-
sible for reacting to mouse and keyboard events.

We may want to add the support for the gestural modality into
this simple interface. We can use for instance the Leap Motion,
which support easily the screen pointing through a 3D finger
tracking. In this case, we have modify the controller in order to
add some listeners to the Leap events. And what about adding
the support also for Microsoft Kinect? The device supports
(hand) pointing through the skeleton tracking, which again
requires a controller extension.

In our idea, what is missing in our application is a more ab-
stract concept of pointer, whose events are handled by the
controller for defining the UI reaction to the input, indepen-
dently from the actual used device. Therefore, we isolate the
definition of the mapping between the different devices and
the pointer abstraction into a new component, that we call
Input. Such mapping can be very simple, as happens in this
case, or it may be more complex. For instance, it may involve
a complete change of modality (e.g. mapping the same com-
mand associated to a button on a vocal command) or activating
an abstract event through the tracking a sequence of inputs
(e.g. for recognizing a gesture).

Pattern Description
As we anticipated in the previous section, we propose to de-
fine a dedicated component that manages the input coming
from different devices. The component diagram for the MVIC
pattern is shown in Figure 1. The components with a gray
background are derived from the MVC pattern in its original
version. They maintain their responsibilities in the proposed
pattern: the Model manages the behaviour and the data of
the application domain, the View renders the information con-
tained in the model in a way that is both comprehensible for

Figure 1. MVCI component diagram

the user and appropriate for the considered task, while the
Controller glues these two components, interpreting user’s
manipulations on the view reflecting such modifications on
the model, and updating views according to model changes.

In our variant of the pattern, the Controller does not directly
receive notifications about the user’s actions from the View,
but such events are mediated by the Input component, which
acts as a façade for the Controller towards the different input
devices and modalities. In this way, the interface between the
Input and the Controller components defines the set of abstract
events that can be generated by different devices and through
different modalities, which are exploited by the application.

Internally, the Input applies a Strategy pattern [3] for raising
the abstract events, which is represented in Figure 2 by the
InputStrategy class. The component may select one among the
different available strategies according to both the available
devices and a developer-defined policy for the particular ap-
plication. As we better detail discussing the proof of concept
implementation, the selection of the strategy can be specified
either through programming code or in a declarative way (e.g.
using a domain specific language).

In addition, each concrete strategy may exploit one or more
data sources, coming from the same and/or different devices
in order to raise one abstract event. This is modelled in Fig-
ure 2 applying the Composite pattern [3] among different
refinements of the BaseStrategy class, which are responsible
to track the input coming from a specific data source (e.g. one
the touch surface of a multitouch screen, one for the audio
source and one for the skeleton tracking source provided by
the Kinect etc.). A generic composition is represented in the
UML diagram by the CompositeStrategy class.

Considering the different techniques for composing the input
coming from different data sources, we propose already in
the pattern definition four composition techniques, according
to the well-know CARE properties for multimodal interac-
tion [1]:

• Complementarity: two (or more) data sources must be used
for triggering the abstract event, but none of them is able to
complete the change individually.

• Assignment: a specific abstract event can be triggered ex-
clusively using a specific data source. In order to model

this property, there is no need to introduce a CompositeIn-
putStrategy subclass, since a BaseInputStrategy subclass is
sufficient if no other InputStrategy raises the same abstract
event.

• Redundancy: an abstract event is triggered providing the
same information through more than one modality (e.g.
pointing plus vocal confirmation of the same selection).
More than one input is needed for concluding the action.

• Equivalence: the same abstract event can be triggered
through different data sources. The user can select one
among them for completing the interaction.

Pattern Application
Adding a component in the structure of the MVC pattern helps
in solving the problem of managing different input devices
and to reconfigure the input strategy according to the available
resources. However, the proposed solution has a cost in terms
of complexity, which is adding different classes that manage
the abstract events and implement the composition strategies.

It is worth pointing out that it is not always reasonable to pay
such cost. First of all, it is obvious that for applications that
require only mouse and keyboard for receiving input from
the user, there is no need to introduce the new abstraction
level. The same applies if the application designers decide to
focus on one particular device for supporting the interaction,
in case it is not possible or feasible to receive the same input
from different devices. Therefore, the need of adapting the
input management strategy to different devices or modalities
is the primary criterion we suggest to consider for applying
the pattern: if there is not such need, developers should not
pay the additional complexity cost.

Moreover, considering the structure of the proposed pattern,
it is easy to refactor the structure of an existing application
that is compliant with the MVC pattern in order to support
the adaptation: the View input events that are observed by the
Controller are the starting point for defining the abstract events
that should be raised by the new Input component. Once the
Input defines the adaptation strategies, there is only the need
to connect them with the View. No other operations on the
Controller or the Model are needed.

The Input component in other UI patterns
Even if this paper focus on the MVC pattern, it is worth point-
ing out that a similar solution can be included also in ap-
plications that exploit different structures for separating the
presentation from definition of the domain logic in a user inter-
face. The following is a brief list of widely-known alternatives
to MVC, together with some hints on how it would be possi-
ble to take advantage of the Input component also with these
patterns.

The Model-View-Presenter (MVP) [11] differs from MVC
since it assigns more responsibilities to the View and removes
the Controller, introducing a Presenter component which
maintains the View’s state and defines a set of commands.
In this case, the Input component can be connected with the
Presenter that, as happens for the Controller in MVC, reacts
to abstract events rather than the ones raised by the View.

The Presentation Model [2] applies a double view-model
mechanism: the Model has different views called Presentation
Models, which are in turn considered as models for the Views.
In this way, it is possible to e.g. persist the state of a View
without committing the changes in the domain Model. In this
case, the Presentation Model should receive updates from the
Input component that, in turn, receives the updates from the
View, separating the appearance from the input interpretation.

The Model-View-View Model (MVVM) [13] has been inspired
by the Presentation Model pattern and it is exploited by recent
Microsoft UI technologies such as WPF. It enforces the View
to contain only the layout declaration (e.g. using XAML),
while the behaviour part is delegated to the View Model, which
is nearly equivalent to the Presentation Model in the previ-
ous pattern. The schema for adding the Input component is
therefore equivalent to the previous case.

JAVASCRIPT IMPLEMENTATION
In this section, we provide some details on Djestit5 proof-of-
concept library that allows to create web interfaces applying
the MVIC pattern introduced in this paper. First of all, we dis-
cuss the general abstractions provided by the library, then we
present the extension mechanism that allows to introduce the
support for different interaction devices. Finally, we provide
the description of a sample UI.

Djestit is javascript library that provides support for web de-
velopers that want to apply the MVIC design patter to their
web application. The library models the input (coming from
different devices) through an expression that defines the in-
put temporal sequencing. The expression is defined through
the composition of two different types of terms: ground or
composed.

The ground terms represent atomic events, which are notifica-
tions that cannot be further decomposed in smaller ones. In
general, they are associated to a change in a specific data field
tracked by an input device. For instance, we can consider a
ground term the current mouse pointer position, the key press
on a keyboard, the position of a skeleton joint tracked by MS
Kinect or, in the vocal modality, the recognition of an utter-
ance. Ground terms can be associated to boolean functions,
in order filter the atomic events that do not fulfil a specific
condition (e.g. tracking the position of a hand only if it is
open).

It is possible to define composed terms connecting starting
from ground terms and connecting expression through a set
of temporal operators. The following is the set supported by
Djestit:

• Iterative: recognizes an input expression an indefinite num-
ber of times. It is also possible to specify a minimum and/or
a maximum number of repetitions.

• Sequence: connects two or more input expressions that must
be recognized in sequence, in the specified order.

• Parallel: connects two or more expression that can be rec-
ognized at the same time.

5The library is publicly available at the following URL:
https://github.com/davidespano/DjestIT

https://github.com/davidespano/DjestIT

Figure 2. Class diagram for the Input and the Controller component

• Choice: allows the user to select one among the connected
input expression for completing the recognition.

• Disabling: defines that the right input expression stops
the recognition of the left one (usually exploited as exit
conditions for loops).

• Order Independence: the connected input expression must
be all recognized, without any constraint on which order.

Such composition mechanism provides a domain specific lan-
guage (DSL) for the device and modality independent event
definition. Indeed, the library raises events for the completion
of each term included in the input expression (both ground or
composed). In addition, the library raises error events when
the received input sequence does not match the expression.
Usually, such events are used for undoing uncompleted ac-
tions.

Input expressions
In order to show how it is possible to define the strategy mod-
elling the input with the temporal expression, we consider
the example in section 2.1. In this case, we want to support
the selection of a tile in the video grid using i) the mouse, ii)
the Leap Motion and iii) the Kinect. All of them support the
pointing task. Abstracting from the device, what the controller
needs is a point in the screen coordinates for highlighting one
of the tiles while pointing, and a notification when the user
confirms that the focused tiles is the one she wants to select.

In Djestit, it is possible to create input expressions simply
defining a javascript object as shown in Table 1, which defines
the pointing support for the sample application considering
mouse pointing, Leap Motion and Kinect. Each ground term
(gt) has a type that specifies the device feature it tracks. For
instance the type kinect.skeleton.handLeft refers to the
left hand point of the skeleton tracked by the Kinect. In addi-
tion, a ground term can specify a further condition (a boolean
function) for notifying the input, which is useful for tracking
trajectories or other input characteristics. The composite ex-
pressions are defined choosing a composition operator (e.g.
choice) and recursively defining the operands.

After the input expression has been defined, it is possible
to invoke a library function that tracks the user’s input and

raises the completion and error events related to the different
expression terms. The support for the different devices is
provided by different extension modules, one for each device,
each one adding a group of ground terms types that can be
tracked.

In Table 1, the expression is a choice among three sub-
expressions, each one corresponding to a device. Lines 2
to 5 define the input expression for the mouse pointing: the
user can move iteratively the mouse until (disabling) she
presses the left button. Lines 6 to 17 define the pointing with
the Leap Motion. The user points either with the left or right
hand, therefore we first define a choice between two sub-
expressions: one related to the left (line 7 to 11) and the right
hand (line 12 to 16). The two definitions are symmetrical,
both track the index fingertip iteratively until the user com-
pletes a screen tap (a rapid movement of the finger towards the
screen, recognized natively by the Leap SDK). The lines 18
to 31 define the pointing using the Kinect: the user can again
use either one or the other hand, moving it while it is open
(which is a boolean function, defined through plain javascript
code) and closing it for confirming the selection. Finally, the
lines from 32 to 42 define a combination between the input
provided by the Leap motion for moving the pointer either
with the left (line 34) or the right hand (line 36), which is
confirmed vocally using the Kinect voice recognition features
(line 39). The ground term definition provides the grammar
for recognizing the vocal command, which is the word ’select’
in our case.

It is worth pointing out that the choice at the top level
is ambiguous, since there are two ground terms of type
leap.handLeft.index.4 and leap.handRight.index.4
(respectively the left and right fingertips tracked by the Leap
Motion). The library is able to handle such ambiguous defini-
tions with the techniques described in [15].

Attaching the behaviour
While the javascript object defines what input sequence is
relevant for the application, it does not define how the Input
component reacts to such sequence. In order to decouple the
definition of the temporal sequence from the definition of the

1 var exp = {choice :[
2 {disabling:[
3 {gt: "mouse.move", iterative : true},
4 {gt: "mouse.leftButton"}
5]},
6 {choice :[
7 {disabling:[
8 {gt: "leap.handLeft.index.4",
9 iterative: true},

10 {gt: "leap.handLeft.screenTap"}
11]},
12 {disabling:[
13 {gt: "leap.handRight.index.4",
14 iterative: true},
15 {gt: "leap.handRight.screenTap"}
16]}
17]},
18 {choice :[
19 {disabling:[
20 {gt: "kinect.skeleton.handLeft",
21 condition: open
22 iterative: true },
23 {gt: "kinect.skeleton.handLeft.closed"}
24]},
25 {disabling:[
26 {gt: "kinect.skeleton.handRight",
27 condition: open,
28 iterative: true},
29 {gt: "kinect.skeleton.handRight.closed"}
30]}
31]},
32 {disabling :[
33 {choice :[
34 {gt: "leap.handLeft.index.4",
35 iterative: true},
36 {gt: "leap.handRight.index.4",
37 iterative: true},
38]},
39 {gt: "kinect.voice",
40 grammar="select"}
41]}
42]};

Table 1. Screen pointing input definition in Djestit (mouse, Leap Motion
and Kinect)

behaviour, we chose to provide a term selection mechanism for
attaching handlers to the completion and error events related to
the recognition of an input expression. The mechanism works
similarly to the specification of CSS properties for HTML
elements: first we write a selector for choosing a set of el-
ements (input expressions) we want to modify and then we
specify their properties. For selecting the expressions we use
the javascript library JSON Select6, while the properties to be
set are the Input component reactions to specific user input
sequences.

In our example, we define as interface between the
Input and the Controller components two functions:
pointingMoved(point) which notifies that the user has
changed the pointing location and selectionConfirmed for
selecting the currently pointed object. The first abstract event
should be raised when the user completes the terms at line
3, 8, 13, 20, 26, 34 and 36 in Table 1. All we have to do is
transforming map the point tracked in the device space into
a 2D screen point. This is trivial for mouse pointing, while
for the Leap Motion and the Kinect this can be achieved with
different techniques (e.g. head to hand ray tracing). Instead,
the selection confirmation, which is the second abstract event,

6http://jsonselect.org/

1 djestit.onComplete(exp,
2 [":has(:root > .gt:val(\"mouse.move\"))",
3 ":has(:root > .gt:val(\"leap.handLeft.index.4\"))",
4 ":has(:root > .gt:val(\"leap.handRight.index.4\"))",
5 ":has(:root > .gt:val(\"kinect.skeleton.handLeft\"))",
6 ":has(:root > .gt:val(\"kinect.skeleton.handRight\"))"

],
7 function(args) {
8 var point = pointToScreen(args);
9 pointingMoved(point);

10 });
11

12 djestit.onComplete(exp,
13 [":has(:root > .gt:val(\"mouse.leftButton\"))",
14 ":has(:root > .gt:val(\"leap.handLeft.screenTap\"))",
15 ":has(:root > .gt:val(\"leap.handRight.screenTap\"))",
16 ":has(:root > .gt:val(\"kinect.skeleton.handLeft.closed

\"))",
17 ":has(:root > .gt:val(\"kinect.skeleton.handRight.

closed\"))",
18 ":has(:root > .gt:val(\"kinect.voice\"))"],
19 function(args) {
20 selectionConfirmed();
21 });

Table 2. Behaviour attachment to different input model subexpressions

should be raised by the ground terms defined at lines 4, 10, 15,
23, 29 and 39.

The Djestit library allows to attach handlers to an expression
through two functions: onComplete and onError. Both take
as parameter an input expression, an array of JSON Selectors
that specify to which ground and/or complex terms the han-
dler should be attached and the handler function. The code in
Table 2 shows the javascript code needed for attaching the be-
haviour at the expression in Table 1, according to the previous
description.

Discussion
We summarize here the advantages provided by the Djestit
library. First of all, it helps web developers in being compliant
with the MVIC pattern proposed in this paper, separating the
detection of the input sequences received by different devices
from their semantics. In particular, the proposed composition
operators are able to support the CARE [1] properties for mul-
timodal input. Considering a generic abstract event eventA
that should be notified to the Controller by the Input com-
ponent, the assignment is supported associating the abstract
event only to expressions that exploit the same data source
(e.g. kinect.voice). The equivalence can be supported as-
sociating the eventA to a choice between expressions each one
exploiting different data sources, as happens for instance in
Table 1. In order to support the redoundancy we use the order
independence operator following the same scheme. Finally the
Complementarity can be achieved connecting the expressions
with all operators but choice or order independence.

Besides the MVIC pattern advantages, the Djestit implemen-
tation provides two other advantages. The first one is the
modularity with respect to the devices: each one has a dedi-
cated plugin and the developer can, including the script in a
HTML page, load only those needed by the application. Each
plugin registers a set of ground terms to the core support. In
order to extend the library for supporting a new device, there
is only the need to write the javascript code for recognizing its
ground terms.

http://jsonselect.org/

The second advantage is that Djestit supports the definition
of reusable input sequences, that can be shipped with a given
plugin, for recognizing common inputs (e.g. multitouch or
full-body gestures). Such advantage derives from the separa-
tion between the declaration of the temporal sequence and the
mechanism for attaching the behaviour to ground and com-
posite terms. Since the same input sequence (e.g. a gesture)
can be used in different contexts and may produce different
effects on the UI, the separation allows decoupling the input
description from its effects.

RELATED WORK
The idea of providing a model for describing the different
input sources has been widely investigated in literature, espe-
cially exploiting formal notations. For instance, already My-
ers [10] defined a set of reusable interactors that encapsulate
the interactive behaviour, hiding the details of the underlin-
ing window-manager events. Such description needed more
complex interfaces for having a good exploitation: Jacob et
al. [6] applied FSM to non-WIMP user interfaces, separating
two aspects of such kind of interfaces. The first one is the
response to continuous input, which is managed by data-flow
oriented variables. The second aspect is the connection among
these continuous variables that can change according to dif-
ferent discrete events. Another application was the bimanual
interaction [4], where Petri Nets provided a simple model for
parallel manipulation.

More recently, the increasing popularity of multitouch and
full-body gestures reopened the quest for a more structured
input modelling. Considering multitouch input modelling,
Kammer et al. [7] introduced GeForMT, a formalization of
multitouch gestures that aimed to fill the gap between the
high level complex-gestures (such as pinch to zoom) and the
low level touch events provided by different toolkits. The
description language is based on grammars. Khandkar et
al. [8] proposed GDL (Gesture Description Language), which
separated the gesture recognition code from the definition
of the UI behaviour. Proton++ [9] decoupled the definition
of the multitouch gesture (described as regular expression)
and its behaviour, which is attached to the expression terminal
characters. GISMO [12] is a gesture definition domain-specific
language, which allows to simulate and execute the behaviour
of an application separating interaction controls and gestures
definition.

Considering a multimodal setting, Hoste et al. [5] introduced
Mudra, a rule language able to unify the input stream coming
from different devices, which exploits even different modali-
ties. It supports facts coming from different modalities (e.g.
voice and hand movements), but its structure still mix the
recognition and the behaviour definition. Spano et al. [14,
15] proposed a gesture modelling technique which abstracts
from the recognition technology, decoupling the description
of the temporal sequence from the UI behaviour. In this paper,
we extend the approach for supporting generic input devices,
enlarging the scope of previous work. We allow to manage
different devices and modalities with a single input model,
explaining how to integrate it in the MVC controller patter,
which is widely applied to the development of user interfaces.

CONCLUSION AND FUTURE WORK
In this paper we described a variant of the MVC pattern for
supporting different equivalent input device and modalities
configuration for the same interactive application. We de-
scribed how it is possible decouple the device management
providing an abstraction of the user input towards the Con-
troller component. In addition, we discussed the implementa-
tion of a proof of concept library which helps developers in
applying the pattern for creating web applications.

In future work, we want to explore the possibility to automati-
cally check properties on the input model, such as the access
to all UI functionalities if one device or modality cannot be
used. In addition, we want to provide an explicit support for
input uncertainty, which may derive from the analysis of the
voice signal or gesture trajectories.

REFERENCES
1. J. Coutaz, L. Nigay, D. Salber, A. Blandford, J. May, and R. Young. Four

easy pieces for assessing the usability of multimodal interaction: the
CARE properties. In Proc. of INTERACT’95, pages 115–120, 1995.

2. M. Fowler. Presentation model, 2004. Retrieved from:
http://goo.gl/Yx1PCW, Accessed: 2016-05-17.

3. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Pearson Education, 1994.

4. K. Hinckley, M. Czerwinski, and M. Sinclair. Interaction and modeling
techniques for desktop two-handed input. In Proc. of UIST’98, pages
49–58. ACM, 1998.

5. L. Hoste, B. Dumas, and B. Signer. Mudra: a unified multimodal
interaction framework. In Proc. of ICMI ’11, pages 97–104. ACM, 2011.

6. R. J. K. Jacob, L. Deligiannidis, and S. Morrison. A software model and
specification language for non-WIMP user interfaces. ACM Transactions
in Computer-Human Interaction, 6(1):1–46, 1999.

7. D. Kammer, J. Wojdziak, M. Keck, R. Groh, and S. Taranko. Towards a
formalization of multi-touch gestures. In Proc. of ITS’10, pages 49–58.
ACM, 2010.

8. S. H. Khandkar and F. Maurer. A domain specific language to define
gestures for multi-touch applications. In Proc. of the DSM’10 workshop,
DSM ’10, pages 1–6. ACM, 2010.

9. K. Kin, B. Hartmann, T. DeRose, and M. Agrawala. Proton++ : A
Customizable Declarative Multitouch Framework. In Proc. of UIST’12,
pages 477–486. ACM, 2012.

10. B. A. Myers. A new model for handling input. ACM Transactions in
Information Systems, 8(3):289–320, 1990.

11. M. Potel. MVP: Model-view-presenter the taligent programming model
for C++ and Java, 1996. Retrieved from: http://goo.gl/VBu7Ap,
Accessed: 2016-05-17.

12. D. Romuald and T. Mens. GISMO: A Domain-specific Modelling
Language for Executable Prototyping of Gestural Interaction. In Proc. of
EICS’15, pages 34–43. ACM, 2015.

13. J. Smith. WPF Apps With the Model-View-ViewModel Design Pattern,
2009. Retrieved from: https://goo.gl/Kn3gCN, Accessed:
2014-10-08.

14. L. D. Spano, A. Cisternino, and F. Paternò. A Compositional Model for
Gesture Definition. In Proc. of IFIP HCSE’12, pages 34–52. Springer,
2012.

15. L. D. Spano, A. Cisternino, F. Paternò, and G. Fenu. GestIT: A
Declarative and Compositional Framework for Multiplatform Gesture
Definition. In Proc. of EICS’13, pages 187–196. ACM, 2013.

	Introduction
	The MVIC pattern
	The Input Management Problem
	Pattern Description
	Pattern Application
	The Input component in other UI patterns

	Javascript Implementation
	Input expressions
	Attaching the behaviour
	Discussion

	Related Work
	Conclusion and Future Work
	References

