80 research outputs found

    A Framework for Orchestration and Federation of 5G Services in a Multi-Domain Scenario

    Get PDF
    First International Workshop on Experimentation and Measurements in 5G (EM-5G).This paper presents the design of the 5GT Service Orchestrator (SO), which is one of the key components of the 5G-TRANSFORMER (5GT) system for the deployment of vertical services. Depending on the requests from verticals, the 5GT-SO offers service or resource orchestration and federation. These functions include all tasks related to coordinating and providing the vertical with an integrated view of services and resources from multiple administrative domains. In particular, service orchestration entails managing end-to-end services that are split into various domains based on requirements and availability. Federation entails managing administrative relations at the interface between the SOs belonging to different domains and handling abstraction of services. The SO key functionalities, architecture, interfaces, as well as two sample use cases for service federation and service and resource orchestration are presented. Results for the latter use case show that a vertical service is deployed in the order of minutes.This work has been partially funded by the EC H2020 5G-TRANSFORMER Project (grant no. 761536)

    Towards Efficient and Adaptable Monitoring of Softwarized Mobile Networks

    Get PDF

    Orchestration in the Cloud-to-Things Compute Continuum: Taxonomy, Survey and Future Directions

    Full text link
    IoT systems are becoming an essential part of our environment. Smart cities, smart manufacturing, augmented reality, and self-driving cars are just some examples of the wide range of domains, where the applicability of such systems has been increasing rapidly. These IoT use cases often require simultaneous access to geographically distributed arrays of sensors, and heterogeneous remote, local as well as multi-cloud computational resources. This gives birth to the extended Cloud-to-Things computing paradigm. The emergence of this new paradigm raised the quintessential need to extend the orchestration requirements i.e., the automated deployment and run-time management) of applications from the centralised cloud-only environment to the entire spectrum of resources in the Cloud-to-Things continuum. In order to cope with this requirement, in the last few years, there has been a lot of attention to the development of orchestration systems in both industry and academic environments. This paper is an attempt to gather the research conducted in the orchestration for the Cloud-to-Things continuum landscape and to propose a detailed taxonomy, which is then used to critically review the landscape of existing research work. We finally discuss the key challenges that require further attention and also present a conceptual framework based on the conducted analysis.Comment: Journal of Cloud Computing Pages: 2

    Design and validation of a multi-service 5G network with QoE-aware orchestration

    Get PDF
    Proceeding of: WiNTECH '18: 12th International Workshop on Wireless Network Testbeds, Experimental Evaluation & CharacterizationWhile the work on architectural and algorithmic solutions for 5G has reached a good maturity level, the experimental work lags behind, in particular on the development of open source solutions. In this paper, we describe our implementation experiences when deploying a small-scale multi-service network prototype, used to demonstrate some selected advanced features of 5G Networking. We describe our implementation experiences supporting two heterogeneous services over two independent slices, namely, video streaming and augmented reality, showcasing key features such as multi-slice orchestration, RAN slicing and support for local breakout. While the applications running the services rely on proprietary code, the core of our implementation is completely open-source.This work was supported by the H2020 5G-MoNArch project (grant agreement no. 761445), by the Spanish Ministry of Economy and Competitiveness through the 5G-City project (TEC2016-76795-C6-3-R) and by the Madrid Regional Government through the TIGRE5-CM Program under Grant S2013/ICE-2919

    End-to-End Data Analytics Framework for 5G Architecture

    Get PDF
    Data analytics can be seen as a powerful tool for the fifth-generation (5G) communication system to enable the transformation of the envisioned challenging 5G features into a reality. In the current 5G architecture, some first features toward this direction have been adopted by introducing new functions in core and management domains that can either run analytics on collected communication-related data or can enhance the already supported network functions with statistics collection and prediction capabilities. However, possible further enhancements on 5G architecture may be required, which strongly depend on the requirements as set by vertical customers and the network capabilities as offered by the operator. In addition, the architecture needs to be flexible in order to deal with network changes and service adaptations as requested by verticals. This paper explicitly describes the requirements for deploying data analytics in a 5G system and subsequently presents the current status of standardization activities. The main contribution of this paper is the investigation and design of an integrated data analytics framework as a key enabling technology for the service-based architectures (SBAs). This framework introduces new functional entities for application-level, data network, and access-related analytics to be integrated into the already existing analytics functionalities and examines their interactions in a service-oriented manner. Finally, to demonstrate predictive radio resource management, we showcase a particular implementation for application and radio access network analytics, based on a novel database for collecting and analyzing radio measurements

    Network Slicing

    Get PDF
    Network slicing is emerging as a key enabling technology to support new service needs, business cases, and the evolution of programmable networking. As an end-to-end concept involving network functions in different domains and administrations, network slicing calls for new standardization efforts, design methodologies, and deployment strategies. This chapter aims at addressing the main aspects of network slicing with relevant challenges and practical solutions

    Orchestration in the Cloud-to-Things compute continuum: taxonomy, survey and future directions

    Get PDF
    IoT systems are becoming an essential part of our environment. Smart cities, smart manufacturing, augmented reality, and self-driving cars are just some examples of the wide range of domains, where the applicability of such systems have been increasing rapidly. These IoT use cases often require simultaneous access to geographically distributed arrays of sensors, heterogeneous remote, local as well as multi-cloud computational resources. This gives birth to the extended Cloud-to-Things computing paradigm. The emergence of this new paradigm raised the quintessential need to extend the orchestration requirements (i.e., the automated deployment and run-time management) of applications from the centralised cloud-only environment to the entire spectrum of resources in the Cloud-to-Things continuum. In order to cope with this requirement, in the last few years, there has been a lot of attention to the development of orchestration systems in both industry and academic environments. This paper is an attempt to gather the research conducted in the orchestration for the Cloud-to-Things continuum landscape and to propose a detailed taxonomy, which is then used to critically review the landscape of existing research work. We finally discuss the key challenges that require further attention and also present a conceptual framework based on the conducted analysis
    corecore