233 research outputs found

    Fatias de rede fim-a-fim : da extração de perfis de funções de rede a SLAs granulares

    Get PDF
    Orientador: Christian Rodolfo Esteve RothenbergTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Nos últimos dez anos, processos de softwarização de redes vêm sendo continuamente diversi- ficados e gradativamente incorporados em produção, principalmente através dos paradigmas de Redes Definidas por Software (ex.: regras de fluxos de rede programáveis) e Virtualização de Funções de Rede (ex.: orquestração de funções virtualizadas de rede). Embasado neste processo o conceito de network slice surge como forma de definição de caminhos de rede fim- a-fim programáveis, possivelmente sobre infrastruturas compartilhadas, contendo requisitos estritos de desempenho e dedicado a um modelo particular de negócios. Esta tese investiga a hipótese de que a desagregação de métricas de desempenho de funções virtualizadas de rede impactam e compõe critérios de alocação de network slices (i.e., diversas opções de utiliza- ção de recursos), os quais quando realizados devem ter seu gerenciamento de ciclo de vida implementado de forma transparente em correspondência ao seu caso de negócios de comu- nicação fim-a-fim. A verificação de tal assertiva se dá em três aspectos: entender os graus de liberdade nos quais métricas de desempenho de funções virtualizadas de rede podem ser expressas; métodos de racionalização da alocação de recursos por network slices e seus re- spectivos critérios; e formas transparentes de rastrear e gerenciar recursos de rede fim-a-fim entre múltiplos domínios administrativos. Para atingir estes objetivos, diversas contribuições são realizadas por esta tese, dentre elas: a construção de uma plataforma para automatização de metodologias de testes de desempenho de funções virtualizadas de redes; a elaboração de uma metodologia para análises de alocações de recursos de network slices baseada em um algoritmo classificador de aprendizado de máquinas e outro algoritmo de análise multi- critério; e a construção de um protótipo utilizando blockchain para a realização de contratos inteligentes envolvendo acordos de serviços entre domínios administrativos de rede. Por meio de experimentos e análises sugerimos que: métricas de desempenho de funções virtualizadas de rede dependem da alocação de recursos, configurações internas e estímulo de tráfego de testes; network slices podem ter suas alocações de recursos coerentemente classificadas por diferentes critérios; e acordos entre domínios administrativos podem ser realizados de forma transparente e em variadas formas de granularidade por meio de contratos inteligentes uti- lizando blockchain. Ao final deste trabalho, com base em uma ampla discussão as perguntas de pesquisa associadas à hipótese são respondidas, de forma que a avaliação da hipótese proposta seja realizada perante uma ampla visão das contribuições e trabalhos futuros desta teseAbstract: In the last ten years, network softwarisation processes have been continuously diversified and gradually incorporated into production, mainly through the paradigms of Software Defined Networks (e.g., programmable network flow rules) and Network Functions Virtualization (e.g., orchestration of virtualized network functions). Based on this process, the concept of network slice emerges as a way of defining end-to-end network programmable paths, possibly over shared network infrastructures, requiring strict performance metrics associated to a par- ticular business case. This thesis investigate the hypothesis that the disaggregation of network function performance metrics impacts and composes a network slice footprint incurring in di- verse slicing feature options, which when realized should have their Service Level Agreement (SLA) life cycle management transparently implemented in correspondence to their fulfilling end-to-end communication business case. The validation of such assertive takes place in three aspects: the degrees of freedom by which performance of virtualized network functions can be expressed; the methods of rationalizing the footprint of network slices; and transparent ways to track and manage network assets among multiple administrative domains. In order to achieve such goals, a series of contributions were achieved by this thesis, among them: the construction of a platform for automating methodologies for performance testing of virtual- ized network functions; an elaboration of a methodology for the analysis of footprint features of network slices based on a machine learning classifier algorithm and a multi-criteria analysis algorithm; and the construction of a prototype using blockchain to carry out smart contracts involving service level agreements between administrative systems. Through experiments and analysis we suggest that: performance metrics of virtualized network functions depend on the allocation of resources, internal configurations and test traffic stimulus; network slices can have their resource allocations consistently analyzed/classified by different criteria; and agree- ments between administrative domains can be performed transparently and in various forms of granularity through blockchain smart contracts. At the end of his thesis, through a wide discussion we answer all the research questions associated to the investigated hypothesis in such way its evaluation is performed in face of wide view of the contributions and future work of this thesisDoutoradoEngenharia de ComputaçãoDoutor em Engenharia ElétricaFUNCAM

    A flexible network architecture for 5G systems

    Get PDF
    In this paper, we define a flexible, adaptable, and programmable architecture for 5G mobile networks, taking into consideration the requirements, KPIs, and the current gaps in the literature, based on three design fundamentals: (i) split of user and control plane, (ii) service-based architecture within the core network (in line with recent industry and standard consensus), and (iii) fully flexible support of E2E slicing via per-domain and cross-domain optimisation, devising inter-slice control and management functions, and refining the behavioural models via experiment-driven optimisation. The proposed architecture model further facilitates the realisation of slices providing specific functionality, such as network resilience, security functions, and network elasticity. The proposed architecture consists of four different layers identified as network layer, controller layer, management and orchestration layer, and service layer. A key contribution of this paper is the definition of the role of each layer, the relationship between layers, and the identification of the required internal modules within each of the layers. In particular, the proposed architecture extends the reference architectures proposed in the Standards Developing Organisations like 3GPP and ETSI, by building on these while addressing several gaps identified within the corresponding baseline models. We additionally present findings, the design guidelines, and evaluation studies on a selected set of key concepts identified to enable flexible cloudification of the protocol stack, adaptive network slicing, and inter-slice control and management.This work has been performed in the framework of the H2020 project 5G-MoNArch co-funded by the E

    A Cloud Native Solution for Dynamic Auto Scaling of MME in LTE

    Get PDF
    Due to rapid growth in the use of mobile devices and as a vital carrier of IoT traffic, mobile networks need to undergo infrastructure wide revisions to meet explosive traffic demand. In addition to data traffic, there has been a significant rise in the control signaling overhead due to dense deployment of small cells and IoT devices. Adoption of technologies like cloud computing, Software Defined Networking (SDN) and Network Functions Virtualization (NFV) is impressively successful in mitigating the existing challenges and driving the path towards 5G evolution. However, issues pertaining to scalability, ease of use, service resiliency, and high availability need considerable study for successful roll out of production grade 5G solutions in cloud. In this work, we propose a scalable Cloud Native Solution for Mobility Management Entity (CNS-MME) of mobile core in a production data center based on micro service architecture. The micro services are lightweight MME functionalities, in contrast to monolithic MME in Long Term Evolution (LTE). The proposed architecture is highly available and supports auto-scaling to dynamically scale-up and scale-down required micro services for load balancing. The performance of proposed CNS-MME architecture is evaluated against monolithic MME in terms of scalability, auto scaling of the service, resource utilization of MME, and efficient load balancing features. We observed that, compared to monolithic MME architecture, CNS-MME provides 7% higher MME throughput and also reduces the processing resource consumption by 26%

    A reinforcement learning approach for Virtual Network Function Chaining and sharing in softwarized networks

    Get PDF
    ​© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Cognizant of the ease with which softwarized functions can be dynamically scaled according to real time resource requirements, and the fact that multiple services can have common VNFs in their chaining, this paper tackles the problem of cost effective deployment of online services from the perspective of sharing their VNF instances. First, we formally formulate the deployment problem under VNFs sharing. Secondly, given the NP-hard nature of the above problem, we propose a reinforcement learning (RL) algorithm capable of making intelligent placement decisions while considering multiple conflicting costs. Costs of transmission, VNF instantiation or energy consumption, among others. Thanks to the intelligence of the RL algorithm, simulation results show that the performance of the proposed algorithm is within a 14% margin and similar to an optimal solution in terms of request provisioning cost and acceptance ratio, respectively. Moreover, the algorithm results in more than a 20% and a 70% improvement in terms of request deployment cost and time compared to a state-of-the-art algorithm, and up to more than a 40% improvement in terms of cost compared to an algorithm that greedily minimizes the transmission or VNF activation costs.Postprint (author's final draft

    NFV Platforms: Taxonomy, Design Choices and Future Challenges

    Get PDF
    Due to the intrinsically inefficient service provisioning in traditional networks, Network Function Virtualization (NFV) keeps gaining attention from both industry and academia. By replacing the purpose-built, expensive, proprietary network equipment with software network functions consolidated on commodity hardware, NFV envisions a shift towards a more agile and open service provisioning paradigm. During the last few years, a large number of NFV platforms have been implemented in production environments that typically face critical challenges, including the development, deployment, and management of Virtual Network Functions (VNFs). Nonetheless, just like any complex system, such platforms commonly consist of abounding software and hardware components and usually incorporate disparate design choices based on distinct motivations or use cases. This broad collection of convoluted alternatives makes it extremely arduous for network operators to make proper choices. Although numerous efforts have been devoted to investigating different aspects of NFV, none of them specifically focused on NFV platforms or attempted to explore their design space. In this paper, we present a comprehensive survey on the NFV platform design. Our study solely targets existing NFV platform implementations. We begin with a top-down architectural view of the standard reference NFV platform and present our taxonomy of existing NFV platforms based on what features they provide in terms of a typical network function life cycle. Then we thoroughly explore the design space and elaborate on the implementation choices each platform opts for. We also envision future challenges for NFV platform design in the incoming 5G era. We believe that our study gives a detailed guideline for network operators or service providers to choose the most appropriate NFV platform based on their respective requirements. Our work also provides guidelines for implementing new NFV platforms

    Use of a virtualization in the transition of a telecommunication networks toward 5G

    Get PDF
    We are in the front of the next big step of a new generation of the telecommunications networks, called 5G. The 5G in still in the preparation, but the actual wide spread use is nearby. The move toward 5G is not possible without use of a cloud and a virtualization. In the paper we are dealing with the issues how to incorporate existing fixed networks to the mobile 5G network and how to use a virtualization technology when moving to 5G. From the example of a real telecommunication system we defined issues, dilemmas and suggestions when moving toward 5G networks using virtualization
    corecore