
1

A Reinforcement Learning Approach for Virtual
Network Function Chaining and Sharing in

Softwarized Networks
Godfrey Kibalya, Joan serrat, Juan-Luis Gorricho, and Peiying Zhang,

Abstract—Cognizant of the ease with which softwarized func-
tions can be dynamically scaled according to real time resource
requirements, and the fact that multiple services can have
common VNFs in their chaining, this paper tackles the problem of
cost effective deployment of online services from the perspective
of sharing their VNF instances. First, we formally formulate
the deployment problem under VNFs sharing. Secondly, given
the NP-hard nature of the above problem, we propose a rein-
forcement learning (RL) algorithm capable of making intelligent
placement decisions while considering multiple conflicting costs.
Costs of transmission, VNF instantiation or energy consumption,
among others. Thanks to the intelligence of the RL algorithm,
simulation results show that the performance of the proposed
algorithm is within a 14% margin and similar to an optimal
solution in terms of request provisioning cost and acceptance
ratio, respectively. Moreover, the algorithm results in more than
a 20% and a 70% improvement in terms of request deployment
cost and time compared to a state-of-the-art algorithm, and up
to more than a 40% improvement in terms of cost compared to
an algorithm that greedily minimizes the transmission or VNF
activation costs.

Index Terms—VNF Sharing, Reinforcement Learning, Virtual
Network Function Chaining placement, Resource allocation.

I. INTRODUCTION

FUTURE networks, including 5G, are expected to leverage
the flexibility introduced by the Network Function Virtu-

alization (NFV) paradigm in order to cope with the stringent
requirements of future services. The main target behind NFV
comes from decoupling complex network functions (e.g. Fire-
walls, Proxies or Load Balancers) from dedicated hardware
appliances, implementing those services in the form of chained
Virtual Network Functions (VNFs) [1], [2]. In this regard,
future services will be instantiated as customized software
to suit the particular requirements of different applications
[3], [4]. If well implemented, the above approach has high
prospects of reducing its network deployment footprint, as
well as its associated operational cost. This is based on the
ease with which softwarized functions can be activated, scaled,
migrated or shutdown, allowing a more efficient use of the
network resources [5].

With a myriad of network service requests envisaged to
share the scarce substrate resources, innovative approaches for
the deployment of services, in a cost-effective and resource-
efficient manner, without degrading the Quality-of-Service,
are of utmost necessity. Although not well explored, sharing
VNF instances among multiple service requests provides a

good alternative for reducing service deployment costs [6]. In
the majority of existing works addressing Service Function
Chaining (SFC) deployments, such as [7]–[9], each instance
of a VNF only processes the input traffic coming from a single
service request. However, such an approach, although easy to
implement, can result in a low resource utilization, specially
when the input traffic may experience severe fluctuations
[1], [6]. In addition, dedicated VNF assignments may result
in an excessive resource fragmentation, hence, leading to
lower acceptance ratios of service requests, and higher overall
service deployment costs. On the other hand, optimizing the
service deployment cost using VNF sharing is a complex
task due to the need to intelligently trade-off the involved
cost components. Cost components like the transmission cost
along the traversed links, the processing cost at the servers,
the energy cost from both active and idle servers, or the
deployment cost of instantiating new VNFs. This trade-off
appears due to the fact that those costs may conflict in such
a way that lowering one cost component will lead to raising
another one. For instance, minimizing the transmission cost
by naively deploying the service on the shortest path between
the ingress and egress nodes may require the activation of
new servers and VNF instances, resulting in an increase in
VNF instantiation and energy costs, aside from promoting
link bottlenecks. Conversely, minimizing the energy and VNF
instantiation costs by reusing already deployed VNF instances
and servers may result in an increased transmission cost and
a poor node-load balancing, hence, affecting the long term
performance of the acceptance ratio and the fault tolerance.
Fig. 1 shows an example of service deployments with VNF
sharing, considering online service request arrivals. At time
𝑡1, the placement agent receives request 𝑆𝐹𝐶 1 and places the
whole SFC instance on Data Center (DC) 𝐷. Then, at time
𝑡2, the agent receives another request 𝑆𝐹𝐶 2 with ingress and
egress nodes 𝑠2 and 𝑠5 respectively, and requesting the same
sequence of VNFs as in 𝑆𝐹𝐶 1. Considering VNF sharing,
the 𝑆𝐹𝐶 2 would have to be placed on DC 𝐷 to reuse the
VNF instances from 𝑆𝐹𝐶 1, as shown by the blue dotted
line in the figure. This would result in the allocation of three
inter-DC links for 𝑆𝐹𝐶 2, but with the advantage of not
having to activate any new VNF instance. On the other hand,
considering the shortest path routing, 𝑆𝐹𝐶 2 would have to
be placed on DC 𝐵, activating the corresponding new VNF
instances, and using only two inter-DC edges for this request
as shown by the red dotted line. This example illustrates the
need for an approach that intelligently trades off the different

UPCnet
Quadre de text
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

2

DC A

DC D

DC C

DC B

Proxy, FW, IDS

Service

Proxy, FW, IDS

S1

S2

S3

S4

S5

FW NAT LB

Proxy FW IDS

DPI FW NAT
Online

requests

SFC 4

SFC 3

SFC 2

SFC 1 and
SFC 2

SFC 2
Shortest path placement

VNF sharing placement

Switches

Data Center

SFC 2 placement

Placement agent

t=t2

SFC 1

in service requests

t=t1

Fig. 1. An illustration of SFC deployment with VNF instance sharing

cost components if we want to optimize the overall placement
objective. As demonstrated by the results of our simulations,
conventional approaches that greedily target to minimize only
one cost component are less effective in general, since any
request deployment is always conditioned by multiple costs.
With this motivation, this paper argues for a reinforcement
learning approach looking for a cost effective and resource
efficient service deployment, due to its ability to intelligently
infer the effect of each placement decision on the long-term
performance of the network. To the best of the authors’ knowl-
edge, this is the first work adopting reinforcement learning to
the problem of online SFC placement with VNFs sharing. Our
simulation results reveal that the adopted RL approach obtains
near optimal solutions and requires even less execution time
than other greedy approaches. Our contributions in this paper
can be summarized as follows:

1) A formal definition and formulation of the SFC place-
ment problem considering VNF instance sharing among
different service requests.

2) The proposal of a RL algorithm using the policy gradient
technique and targeting a cost-effective and resource-
efficient deployment of SFCs in a feasible execution
time and considering multiple cost components. Sim-
ulation results reveal that the proposed algorithm is able
to find near-optimal solutions while executing in just a
few millisecond per request.

3) The consideration of four different greedy heuristics as
benchmark algorithms for the comparison with our RL
proposal.

4) Extensive simulations considering both online and of-
fline scenarios in order to assess the performance of the
proposed algorithm against the benchmark algorithms.
From the simulation results, the proposed algorithm is
found to be scalable when considering an increasing size
of the tested substrate networks and number of requests.

The rest of the paper is organized as follows: Section II
presents the related work. The network model and problem
description is presented in section III. The proposed RL based
service deployment algorithm is described in section IV. The
performance evaluation of the proposed algorithm, including
a description of the simulation scenarios, and benchmark
algorithms, is presented in section V. The paper is concluded
in section VI.

II. RELATED WORK

There are a number of works in the literature addressing the
SFC problem from the perspective of VNF placement, VNF
scheduling, traffic steering or a joint consideration of these
sub-problems. However, most of the existing works do not
consider VNF sharing, which is pertinent to reduce service
deployment costs and to achieve an efficient utilization of

3

resources. The works in [10]–[13] adopt exact approaches for
the VNF orchestration problem by formulating and solving it
as an Integer Linear Programming problem. However, such
approaches are not well suited for practical delay sensitive
applications due to their high run-time. As a result, most of the
recent proposals in literature are based on heuristic or meta-
heuristic approaches [9], [10], [14]–[19]. For-example, in [10],
a genetic algorithm is proposed to solve the problem of Joint
VNF scheduling and traffic steering with the goal of minimiz-
ing the overall VNF schedule, while [9], [17] and [18] address
the problem of fault-tolerant orchestration of stateful VNFs.
The work in [19] adopts a graph neural network architecture
for SFC orchestration with the objective of minimising the
end-to-end delay of the service request. In [14], the focus is
on the problem of scheduling micro-services across multiple
clouds, including micro-clouds, with the objective of reducing
the overall turnaround time of complete end-to-end service
of SFCs. However, these works do not incorporate the VNF
sharing, which is a key component of our manuscript.

Works using VNF sharing are presented in [1], [2], [6],
[20]–[26]. Considering the case where the VNFs have already
been placed, the works in [1] and [2] focus on the VNF
scheduling problem in such a way that, services deployed on
the same node, not only share the computing resources of that
node, but also their common VNF instances, if possible. In
[2] the scheduling problem is formulated as an ILP problem
with the goal of maximizing the accepted requests, and then,
a genetic algorithm is proposed to solve that ILP problem. In
[1] a VNF scheduling model based on min-plus algebra theory
is proposed. However, all these works do not address directly
the service deployment problem, in spite of the fact that the
cost or the performance resulting from the scheduling stage is
greatly tied to the previous deployment stage.

In [6] the focus is set on investigating the gain that re-
sults from sharing VNFs among different service requests,
concluding that a lower resource consumption and a higher
acceptance ratio is achieved in comparison with the case where
each request is provisioned with dedicated VNF instances.
Moreover, the sharing of VNFs is shown to promote the server
consolidation, resulting in an energy saving at both software
and hardware level. The work in [22] considers the deployment
of premium and best-effort services with the support of VNFs
sharing and migration. The service deployment problem is for-
mulated as an integer quadratically constrained programming
(IQCP) problem. But, aside from not incorporating energy
or VNF deployment costs, the exact approach adopted to
solve the IQCP model is not well suited for delay sensitive
applications due to its high run time complexity. The work
in [23] addresses the VNF sharing problem focusing on the
assignment of priorities to the services sharing VNFs. In
[24] a greedy algorithm based on a goodness factor for the
deployment of end-to-end slices is proposed with the goal
of minimising the amount of bandwidth and computation re-
sources to be used. In all these works, however, the energy and
VNF deployment costs have not been considered, simplifying
the placement decision. Considering a scenario in which VNFs
can be shared across multiple requests, the works in [25]
and [26] focus on the problem of the VNF migration and

the network service (NS) scheduling, respectively. The VNF
migration problem in [25] is solved using a heuristic approach
based on the Technique for Order Preference by Similarity to
an Ideal Solution (TOPSIS), while the NS scheduling problem
in [26] is formulated and solved as an ILP problem with the
objective of maximising the number of admissible network
service requests. The work in [27] formulates the joint problem
of network function mapping, scheduling and routing, while
considering deadline constrained services. This is done with a
Tabu-search based approach being proposed for solving these
sequential problems. In [20] the problem is generalized as a
facility location problem and the authors propose a Mixed
Integer Linear Programming (MILP) model for this problem.
Given the time complexity for solving the MILP problem, the
authors propose a heuristic approach, which is based on the
Steiner tree problem and Markov decision processes, to choose
the nodes for the placement of the SFC requests, based on the
number of shareable VNFs and the forwarding costs across all
requests. However, such an approach is not well suited for the
online scenario in which the requests are not known ahead of
time, since it is not possible to compute the shareable VNFs
of all such requests in advance. Moreover, the remapping
of requests upon the arrival of new requests would result
in service disruptions. The work in [21] addresses the VNF
placement problem with VNF instance sharing. The authors
propose Flex-share, a heuristic approach that exploits the
Hungarian algorithm for the convex optimization of the VNF
placement using priority assignments to the shared VNFs. This
work, however, focuses on scheduling and priority assignments
at shared VNFs without considering service implementation
costs such as energy, traffic forwarding or fragmentation costs.
Similar to our work, the work in [28] considers a detailed
cost modeling incorporating the VNF deployment cost, the
energy cost and the traffic forwarding cost to the problem
of SFC deployment with VNF sharing. First, the problem is
formulated as an Integer Liner Programming (ILP) problem.
Then, a heuristic approach based on a multi-stage graph,
including the Viterbi algorithm, is proposed to overcome
the time complexity of the ILP problem. For the proposed
heuristic, a mapping decision is made considering one request
at a time, hence, it is well suited for both offline and online
scenarios. Moreover, the algorithm is shown to provide near
optimal solutions. For this reason, we use this work as one of
the benchmark algorithms for our proposed algorithm while
adopting a similar cost function and components. However,
the number of layers of the graph, and the number of nodes
per layer, grow with the amount of required VNFs per request
and the number of candidate nodes for each VNF. This
significantly affects the scalability of the approach, especially
when considering large networks. Different from this and other
existing works, we adopt a reinforcement learning approach
oriented to solve the cost-effective and resource-efficient prob-
lem while incorporating multiple concurrent costs such as
energy consumption, data processing, VNF activation and data
transmission. Our approach is shown to be scalable when
increasing both the substrate network size and the number of
required VNFs by the arriving requests.

Machine learning techniques have already been used for

4

v1 v3 v6s tv5
20 15 151520 SFC 1

50 504040

v2 v3 v4s tv6
40 20 201520 SFC 2

50 406070

Fig. 2. An illustration of two SFC requests each with 4 traffic nodes where
traffic nodes 𝑉3 and 𝑉6 are common between the two requests.

solving the problem of the SFC service deployment in [9],
[29]–[37]. For instance, in [32], RL is adopted for VNF-SC
deployment in Elastic optical networks with the objective of
load balancing and minimising service delay. In [33], the focus
is on minimising end-to-end delay in NFV-enabled networks.
The work in [34] incorporates RL and block-chain for cost
effective and secure SFC deployment, while the work in [35]
focuses on traffic forwarding in SFC chains. The work in
[36] adopts DQN for adaptive resource allocation with the
objective of minimising cost. The work in [37] seeks to jointly
maximise load balance and acceptance ratio while minimising
resource consumption. In [9] the focus is set on solving the
fault-tolerant placement problem of stateful VNFs with the
goal of reducing the state update overhead. In [29] the authors
target to exploit the inter-relation between different SFCs by
aggregating multiple requests and admitting them jointly as a
bunch. In [30] the authors target the problem of large network
state spaces, considering a real-time online SFC orchestration
under dynamic network conditions. In [31] the work focuses
on an accelerated approach for learning proper VNF sizing and
placement considering various network conditions. However,
as opposed to the above works, the SFC placement deci-
sion in our work is influenced by multiple conflicting cost
components. Moreover, different from the above works, the
neural network architecture of the policy in charge of making
decisions in our work includes a convolutional layer, allowing
a faster training stage and providing a higher convergence,
since it uses a smaller number of trainable parameters com-
pared to conventional feed forward neural networks. Moreover,
we incorporate innovative approaches which enable the same
policy neural network to be used for substrate network sizes
inferior to that used at the training stage and also for different
cost components without the need for its retraining. In Table II
we present a summary of key distinguishing features of our
work in comparison with previous RL approaches applied to
the problem of SFC orchestration.

III. SERVICE AND NETWORK MODELING WITH PROBLEM
DESCRIPTION

This section describes the request and substrate network
modeling, introducing the mathematical formulation of the
SFC placement problem with VNF instance sharing.

A. SFC Request

Considering a set of 𝑅 requests, each request 𝑟 ∈ 𝑅 is
modeled as a tuple Ψ𝑟= < 𝐺𝑟𝑣 , 𝐶

𝑟
𝑑𝑒𝑚

, 𝜌𝑟 , 𝐷𝑒𝑙𝑟
𝑠𝑑
, 𝜏𝑟𝑠 , 𝜏

𝑟
𝑑
, 𝜏𝑟
𝑓
>

where 𝐺𝑟𝑣 is the SFC graph of the VNFs the user traffic
must traverse, including the virtual links interconnecting those
VNFs. We refer to each of such required VNFs as a request
virtual node, denoted by 𝑛

𝑝
𝑣 ∈ 𝑁𝑣 , where 𝑁𝑣 denotes the

set of all such nodes and 𝑝 ∈ 𝑃 denotes the function type
of this node. In order to improve the readability of the
document, we replace 𝑛𝑝𝑣 by 𝑛𝑣 in the rest of the document.
The parameter 𝜌𝑟 denotes the requested packet rate of the
user input traffic from the ingress node 𝜏𝑟𝑠 to the egress node
𝜏𝑟
𝑑

. 𝐶𝑟
𝑑𝑒𝑚

is a set indicating the CPU resource requirements
at the different request virtual nodes, with 𝐶

𝑛𝑣 ,𝑟

𝑑𝑒𝑚
denoting

the CPU requirement of virtual node 𝑛𝑣 . We assume that
the CPU resources required by a node 𝑛𝑣 are proportional
to the packet rate to be processed by this node, [17], [18], i.e.
𝐶
𝑛𝑣 ,𝑟

𝑑𝑒𝑚
= 𝜌𝑟𝑛𝑣 ×𝐶𝜌, where 𝐶𝑛𝑣 ,𝑟

𝑑𝑒𝑚
is the amount of CPU resources

required by 𝑛𝑣 , with 𝜌𝑟𝑛𝑣 and 𝐶𝜌 denoting the packet rate
traversing 𝑛𝑣 and the amount of CPU resources required to
process each unit of packet rate by this node, respectively. The
terms 𝐷𝑒𝑙𝑟

𝑠𝑑
, 𝜏𝑟𝑠 , 𝜏𝑟

𝑑
, 𝜏𝑟

𝑓
are used to denote the request end-

to-end latency requirement, the ingress node, the egress node
and the request life-time, respectively. Similarly, we denote by
𝑙𝑢𝑣 ∈ 𝐿𝑣 the request virtual link between virtual nodes 𝑢 and
𝑣, and we denote the bandwidth requirement of such a link
by 𝐵𝑤𝑟𝑢𝑣 . Figure 2 shows an example of two SFC requests.
The CPU requirement of each virtual node is shown below the
box, while the bandwidth requirement of each virtual link is
shown on top of the link. Note that the bandwidth requirement
may vary across different links since the packet rates may be
altered by the traversed traffic nodes, for instance, as a result
of filtering or splitting of packets due to applying some kind
of networking functionality.

B. Substrate network

We model the substrate network operated by a cloud
provider as an undirected graph 𝐺𝑠 = (𝑁𝑠 , 𝐸𝑠) where, 𝑁𝑠
denotes the set of physical nodes capable of hosting VNFs,
and 𝐸𝑠 is the set of physical links interconnecting those nodes.
Each node 𝑛𝑠 ∈ 𝑁𝑠 is characterized by a CPU resource
capacity 𝐶

𝑛𝑠
𝑚𝑎𝑥 , its residual CPU resources 𝐶𝑛𝑠𝑟𝑒𝑠 , its power

consumption ^𝑛𝑠 and its provisioning capacity for a given
VNF type [𝑛𝑠𝑝 ∈ {0, 1}, equal to 1 if a VNF of type 𝑝 can
be provisioned by 𝑛𝑠 , zero otherwise. In a similar way, each
interconnecting link 𝑒 ∈ 𝐸 is characterized by its maximum
bandwidth capacity 𝐵𝑒𝑚𝑎𝑥 , a propagation delay 𝑑𝑒𝑙𝑒, and a cost
for transmitting a packet rate unit Z𝑒.

C. Virtual Network Functions

We envisage a NFV environment in which the different
network functions, such as IDs and Firewalls, among others,
have been virtualised and provisioned by the underlying phys-
ical infrastructure, from which they are assigned the required
CPU resources upon activation. Moreover, we assume multiple
instances of a given VNF type and denote by 𝑀 the set of all
VNFs in the system. We consider each VNF 𝑚 ∈ 𝑀 of type
𝑝 to be characterised by assigned resources in terms of CPU,
denoted by 𝐶𝑝𝑢𝑚

𝑣𝑛 𝑓
, a deployment cost which captures the

cost of the image transfer and booting of that VNF, denoted

5

TABLE I
RL RELATED WORK FEATURES

Considered Aspects [9] [29] [30] [31] [32 [33] [34] [35] [36] [37] [38] Our work
VNF sharing consideration x x x x x x x x x x x ✓
Trained Neural network
applicable to different state size x x x x x x x x x x x ✓

Energy cost x x x x x x x x x x x ✓
VNF activation cost x x x x x x x x x x x ✓
Processing cost ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Forwarding cost ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Resource fragmentation cost x x x x x x x x x x ✓ ✓
" ✓" indicates that a given aspect is considered by the corresponding work.
"x" Indicates that a given aspect is not considered by the corresponding work

TABLE II
PARAMETERS

Notation Description
𝐺𝑠 Substrate network graph
𝑟 SFC request
Ψ𝑟 SFC request tuple
𝐺𝑟𝑣 SFC instance graph of request r
𝑛
𝑝
𝑣 Request virtual node of type 𝑝
𝜏𝑟𝑠 Ingress node of request r
𝜏𝑟
𝑑

Egress node of request r
𝜏𝑟
𝑓

Request life time
𝜌𝑟 Average packet rate of request r
𝜌𝑟𝑛𝑣 Packet rate processed by request node 𝑛𝑝𝑣
𝐷𝑒𝑙𝑟

𝑠𝑑
End-to-end request delay

𝑙𝑢𝑣 Virtual link between virtual nodes 𝑢 and 𝑣
𝐵𝑤𝑟𝑢𝑣 Bandwidth requirement for 𝑙𝑢𝑣
𝐶
𝑛𝑣 ,𝑟

𝑑𝑒𝑚
CPU demand by request node 𝑛𝑝𝑣

𝛿
𝑝

𝑣𝑛 𝑓
Deployment cost for a VNF of type p

𝜗𝑚
𝑣𝑛 𝑓

Processing capacity of VNF 𝑚

𝑑𝑒𝑙𝑚
𝑣𝑛 𝑓

Processing delay through VNF 𝑚 ∈ 𝑀
Z
𝑝,𝑛𝑠
𝑣𝑛 𝑓

Cost for processing a packet rate unit by a type 𝑝
VNF when provisioned on substrate node 𝑛𝑠 ∈ 𝑁𝑠

𝐶
𝑛𝑠
𝑚𝑎𝑥 CPU capacity of substrate node 𝑛𝑠 ∈ 𝑁𝑠

𝐶
𝑛𝑠
𝑟𝑒𝑠 Residual CPU resources at substrate node 𝑛𝑠
^𝑛𝑠 Power consumption at node 𝑛𝑠
𝐵𝑒𝑚𝑎𝑥 Bandwidth capacity of substrate link 𝑒 ∈ 𝐸𝑠
𝑑𝑒𝑙𝑒 Propagation delay on link 𝑒 ∈ 𝐸𝑠
Z𝑒 Transmission cost per packet rate unit along edge

𝑒 ∈ 𝐸𝑠
𝛾
𝑛𝑣
𝑐 Charge by NSP for processing a packet rate unit at

traffic node 𝑛𝑝𝑣
𝛾
𝑙𝑢𝑣
𝑏𝑤

Charge by NSP for transmitting a packet rate unit
through 𝑙𝑢𝑣

𝛽𝑤 Cost for each watt of power consumed
𝑒
𝑛𝑠
𝑚𝑎𝑥 Maximum power consumption of 𝑛𝑠
𝛼𝑛𝑠 penalty cost for each unit of unused node CPU
𝛼𝑣𝑛 𝑓 penalty cost for each unit of unused VNF CPU

by 𝛿𝑝
𝑣𝑛 𝑓

, the processing capacity which denotes the maximum
packet rate the VNF can process, denoted by 𝜗𝑚

𝑣𝑛 𝑓
, the cost

for processing each unit of packet rate at this VNF if the VNF
is provisioned on node 𝑛𝑠 ∈ 𝑁𝑠 , denoted by Z𝑚,𝑛𝑠

𝑣𝑛 𝑓
, the average

processing delay experienced by a packet when processed by
the VNF, denoted by 𝑑𝑒𝑙𝑚

𝑣𝑛 𝑓
, and a set of nodes on which such

VNF can be provisioned, denoted by Υ
𝑝

𝑣𝑛 𝑓
.

TABLE III
SETS AND VARIABLES

Notation Description
𝐸𝑠 Set of all substrate edges
𝑁𝑠 Set of all substrate nodes
𝑁𝑉 Set of all virtual nodes of a request
𝑅 Set of all available requests in the system
𝐸𝑣 Set of all request virtual links
𝑃 Set containing types of deployed VNFs
𝑀 Set of all deployed VNFs
Υ
𝑝

𝑣𝑛 𝑓
Set containing all substrate nodes on which a
type 𝑝 VNF can be provisioned.

𝐶𝑟
𝑑𝑒𝑚

Set of CPU requirements of different virtual
nodes of 𝑟 ∈ 𝑅

𝑧𝑚𝑝 ∈ {0, 1} 𝑧𝑚𝑝=1 if VNF m is of type p
𝜎𝑟𝑒 ∈ {0, 1} 𝜎𝑟𝑒=1 if 𝑒 ∈ 𝐸
𝜒𝜏𝑚 ∈ {0, 1} 𝜒𝜏𝑚=1 if the current state of VNF m is different

from that at previous provisioning event
𝑞𝑟
𝑛
𝑝
𝑣 ,𝑚
∈ {0, 1} 𝑞𝑟

𝑛
𝑝
𝑣 ,𝑚

=1 if traffic node is provisioned on VNF
m,zero otherwise

𝑓
𝑝

𝑛
𝑝
𝑣

∈ {0, 1} 𝑓
𝑝

𝑛
𝑝
𝑣

= 1 if 𝑛𝑝𝑣 is of type p, zero otherwise.

𝑦
𝑛𝑠
𝑚 ∈ {0, 1} 𝑦

𝑛𝑠
𝑚 = 1 if VNF 𝑚 is provisioned on 𝑛𝑠

𝜎𝑟𝑢𝑣,𝑒 ∈ {0, 1} 𝜎𝑟𝑢𝑣,𝑒 = 1 if traffic link 𝑙𝑢𝑣 is provisioned on
edge 𝑒 ∈ 𝐸𝑠

[
𝑛𝑠
𝑝 ∈ {0, 1} [

𝑛𝑠
𝑝 = 1 if node 𝑛𝑠 can provision a VNF of

type p

𝛾
𝑛
𝑝
𝑣 ,𝑟
𝑛𝑠 ∈ {0, 1} 𝛾

𝑛
𝑝
𝑣 ,𝑟
𝑛𝑠 =1 if request node 𝑛𝑝𝑣 is provisioned on
𝑛𝑠

𝜒𝑚 ∈ {0, 1} 𝜒𝑚 = 1 if VNF 𝑚 is active, zero otherwise

D. Problem description and Formulation

The SFC provisioning problem involves obtaining a map-
ping from the SFC graph 𝐺𝑟𝑣 to a subset of the substrate
network graph 𝐺𝑠 that optimizes a given provisioning ob-
jective, with the requirement that all the constraints of the
request are satisfied. The goal for us will be to minimize
the operational cost incurred by a NSP thanks to minimizing
the implementation cost of the requests. We consider the
implementation cost of a request to be influenced by the
following cost components: 𝑖) the energy consumption cost
associated with running a VNF on a given node; 𝑖𝑖) the
communication/forwarding/transmission cost of transferring
the user traffic from the ingress node to the egress node along
the intermediate links; 𝑖𝑖𝑖) the processing cost incurred for
processing the user traffic at the different VNFs traversed by
the traffic; 𝑖𝑣) the cost of deploying new VNF instances; and fi-

6

nally, 𝑣) the cost due to the fragmentation of substrate network
resources. This work argues for a selection of substrate nodes
and links provisioning the request in a manner that jointly
considers all the above cost components, since in practice, the
benefit obtained by greedily optimising a single component
may be offset by an increased cost of another component(s).
Therefore, we formulate the placement objective to minimise
the average implementation cost of each request as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 :
1
|𝑅 |

∑︁
𝑟 ∈𝑅

𝐶 (𝐺𝑣)𝑟 (1)

where 𝐶 (𝐺𝑣)𝑟 denotes the implementation cost of request 𝑟 ∈
𝑅, and it is evaluated as:

𝐶 (𝐺𝑣)𝑟 = 𝐶𝑟𝑝𝑟𝑜𝑐 + 𝐶𝑟𝑓 𝑤𝑑 + 𝐶
𝑟
𝑒𝑛𝑟𝑔 + 𝐶𝑟𝑑𝑒𝑝𝑙 + 𝐶

𝑟
𝑓 𝑟𝑎𝑔 (2)

where 𝐶𝑟𝑝𝑟𝑜𝑐, 𝐶
𝑟
𝑓 𝑤𝑑

, 𝐶𝑟𝑒𝑛𝑟𝑔, 𝐶𝑟
𝑑𝑒𝑝𝑙

and 𝐶𝑟
𝑓 𝑟𝑎𝑔

denote the
processing cost, the traffic forwarding cost, the energy cost,
the VNF deployment cost and the resource fragmentation cost,
respectively. Those costs are detailed below.

1) Processing cost: The processing cost 𝐶𝑟𝑝𝑟𝑜𝑐 incurred by
a request 𝑟 ∈ 𝑅 is evaluated as:

𝐶𝑟𝑝𝑟𝑜𝑐 =
∑︁
𝑛𝑣 ∈𝑁𝑣

𝛾𝑛𝑣 ,𝑟𝑛𝑠
× Z𝑚,𝑛𝑠

𝑣𝑛 𝑓
× 𝜌𝑟𝑛𝑣 (3)

where the binary variable 𝛾𝑛𝑣 ,𝑟𝑛𝑠 ∈ {0, 1} is equal to 1 if virtual
node 𝑛𝑣 ∈ 𝑁𝑣 of request 𝑟 ∈ 𝑅 is provisioned on substrate node
𝑛𝑠 , zero otherwise, with 𝜌𝑟𝑛𝑣 and Z𝑚,𝑛𝑠

𝑣𝑛 𝑓
denoting the traffic rate

to be processed by 𝑛𝑣 and the processing cost for each traffic
rate unit at node 𝑛𝑠 respectively. Note that in this work, we
allow the processing cost per unit of traffic rate to be different
across different physical nodes, even for the same VNF type.
The reason for this design choice is twofold; first, this is
permissible in practice since different physical nodes could
belong to different providers who may have different billing
policies. Moreover, different nodes may be characterised by
different QoS guarantees in terms of service reliability and
holding priority, justifying the different billing rates. But most
importantly, such a design choice introduces an extra degree of
freedom for selecting the physical nodes on which to provision
the request virtual nodes. This fact increases the complexity
of the placement problem, and somehow justifies the need to
use RL algorithms in front of greedy approaches in order to
solve the problem in a satisfactory way.

2) VNF deployment Cost: The cost 𝐶𝑟
𝑑𝑒𝑝𝑙

is incurred
whenever new VNFs are activated in order to provision the
request 𝑟 ∈ 𝑅. This cost is evaluated as:

𝐶𝑟𝑑𝑒𝑝𝑙 =
∑︁

𝑚∈𝑀 |𝜒𝑚=1
𝑧𝑚𝑝 × 𝛿𝑝𝑣𝑛 𝑓 × 𝜒

𝜏
𝑚 (4)

where 𝜒𝑚 ∈ {0, 1} is a binary variable, equal to 1 if VNF
𝑚 ∈ 𝑀 is active, zero otherwise; and 𝜒𝜏𝑚 ∈ {0, 1} is a binary
variable, equal to 1 if the state (i.e. active or inactive) of
VNF 𝑚 in the current provisioning event is different from
the previous provisioning event. 𝑧𝑚𝑝 ∈ {0, 1} = 1 if VNF 𝑚

is of type 𝑝 ∈ 𝑃 and 𝛿𝑝
𝑣𝑛 𝑓

is the deployment cost for a VNF
of type 𝑝.

3) Energy cost: In order to evaluate the energy cost 𝐶𝑟𝑒𝑛𝑟𝑔,
we consider the energy consumption of a node to consist of

two components [28]: the active state component, which is
proportional to the amount of node resources being used; and
the idle state component, which is the energy consumption in
the idle state. In this regard, the energy consumption of a node
𝑛𝑠 is computed as:

𝐸𝑛𝑠 =
∑︁
𝑚∈𝑀

𝑦𝑛𝑠𝑚 × 𝜒𝑚 × (𝑒𝑚𝑎𝑥 − 𝑒𝑖𝑑) ×
𝐶𝑝𝑢𝑚

𝑣𝑛 𝑓

𝐶
𝑛𝑠
𝑚𝑎𝑥

+ 𝑒𝑖𝑑 (5)

where 𝑦𝑛𝑠𝑚 ∈ {0, 1} = 1 if VNF 𝑚 is provisioned on physical
node 𝑛𝑠 ∈ 𝑁𝑠 , zero otherwise. 𝐶𝑛𝑠𝑚𝑎𝑥 and 𝐶𝑝𝑢𝑚

𝑣𝑛 𝑓
denote the

CPU capacity of node 𝑛𝑠 and the CPU allocated to VNF
𝑚 from node 𝑛𝑠 respectively. The parameters 𝑒𝑚𝑎𝑥 and 𝑒𝑖𝑑
denote the energy consumption in the peak consumption state
and the idle state, respectively. If we denote by 𝐸

′
𝑛𝑠

the energy
consumption at 𝑛𝑠 prior to provisioning the request 𝑟 ∈ 𝑅, and
denote by 𝐸

′′
𝑛𝑠

the energy consumption at 𝑛𝑠 after provisioning
request 𝑟 , then, the energy consumption at 𝑛𝑠 due to the current
request is evaluated as: 𝐸𝑟𝑛𝑠=𝐸

′′
𝑛𝑠

-𝐸
′
𝑛𝑠

. Therefore, the energy
cost 𝐶𝑟𝑒𝑛𝑟𝑔 across all nodes is evaluated as:

𝐶𝑟𝑒𝑛𝑟𝑔 = 𝛽𝑤

∑︁
𝑛𝑠 ∈𝑁𝑠

𝐸𝑟𝑛𝑠 (6)

where 𝛽𝑤 is the cost per unit of energy consumption.
4) Forwarding cost: This cost is incurred along the substrate

edges traversed by the traffic from the ingress to the egress
nodes of the request. Therefore, this cost component increases
as the number of used substrate edges increases. This is
evaluated as: ∑︁

𝑙𝑢𝑣 ∈𝐿𝑣

∑︁
𝑒∈𝐸

𝜎𝑟𝑢𝑣,𝑒 × 𝜌𝑟𝑢 × Z𝑒 (7)

where the binary variable 𝜎𝑟𝑢𝑣,𝑒 ∈ {0, 1} is equal to 1 if
substrate edge 𝑒 ∈ 𝐸 is part of the substrate path provisioning
the virtual link 𝑢𝑣, zero otherwise. 𝜌𝑟𝑢 and Z𝑒 denote the packet
rate traversing link 𝑒 ∈ 𝐸 and the cost per packet rate unit on
𝑒 ∈ 𝐸 .

5) Resource fragmentation cost: An envisaged key factor
of the use of NFV comes from the flexibility we will have
for sharing different network resources among multiple traffic
flows and services. In this work, we evaluate the resource
sharing capacity of the different algorithms in terms of re-
source fragmentation. Resource fragmentation can occur at
the node level as a result of activating new nodes when
there are others underutilised, or can occur at VNF level by
deploying new VNF instances when there are other active
instances underutilised. The fragmentation cost at node 𝑛𝑠 can
be evaluated as:

𝐶 𝑓 𝑟𝑎𝑔 = 𝐹𝑛𝑠 + 𝐹𝑣𝑛 𝑓 (8)

where 𝐹𝑛𝑠 is the fragmentation cost of the physical servers and
𝐹𝑣𝑛 𝑓 is the fragmentation cost of the VNFs (including their
deployment platforms e.g. virtual machines and containers).
The fragmentation cost across all nodes is evaluated as:

𝐹𝑛𝑠 =
∑︁

𝑛𝑠 ∈𝑁𝑠 |_𝑛𝑠=1
𝛼𝑛𝑠 (𝐶𝑛𝑠𝑚𝑎𝑥 −

∑︁
𝑚∈𝑀

𝜒𝑚𝐶𝑝𝑢𝑚𝑣𝑛 𝑓 𝑦
𝑛𝑠
𝑚) (9)

where 𝛼𝑛𝑠 is the fragmentation penalty for each unit of unused
CPU resource on that node. The binary variable _𝑛𝑠 ∈ {0, 1} =

7

1 if the node 𝑛𝑠 is active, zero otherwise. A node is considered
active if there is at least one active VNF provisioned by that
node, thus : ∑︁

𝑚∈𝑀
𝑦𝑛𝑠𝑚 𝜒

𝑚 ≥ 1 (10)

The VNF fragmentation cost relates to the amount of CPU
resources allocated to the active VNFs that is not used by the
request virtual nodes. This is evaluated as below:

𝐹𝑣𝑛 𝑓 = 𝛼
𝑣𝑛 𝑓

∑︁
𝑚∈𝑀
(𝜒𝑚𝐶𝑝𝑢𝑚𝑣𝑛 𝑓 −

∑︁
𝑟 ∈𝑅

∑︁
𝑛𝑣 ∈𝑁𝑣

𝑞𝑟𝑛𝑣 ,𝑚𝐶𝑑𝑒𝑚𝑛𝑣
𝑟)

(11)
where 𝑞𝑟𝑛𝑣 ,𝑚 ∈ {0, 1} = 1 if virtual node 𝑛𝑣 ∈ 𝑁𝑣 is
provisioned by VNF 𝑚 ∈ 𝑀 . The parameters 𝛼𝑣𝑛 𝑓 , 𝐶𝑝𝑢𝑚

𝑣𝑛 𝑓

and 𝐶𝑑𝑒𝑚𝑛𝑣𝑟 denote the fragmentation penalty for each unit
of unused VNF CPU resource, the amount of CPU allocated
to VNF 𝑚 ∈ 𝑀 and the amount of CPU resources consumed
from VNF 𝑚 by virtual node 𝑛𝑣 of request 𝑟 ∈ 𝑅.
Complementary, the optimization expressed in Eqn. 1 should
adhere to a number of constraints, including the following:
• The CPU consumption by the VNFs provisioned on a
physical node 𝑛𝑠 ∈ 𝑁𝑠 should not exceed the resource capacity
of that node. ∑︁

𝑚∈𝑀 |𝜒𝑚=1
𝐶𝑝𝑢𝑚𝑣𝑛 𝑓 𝑦

𝑛𝑠
𝑚 ≤ 𝐶𝑛𝑠𝑚𝑎𝑥 ∀𝑛𝑠 ∈ 𝑁𝑠 (12)

where 𝑦
𝑛𝑠
𝑚 ∈ {0, 1} = 1 if VNF 𝑚 is provisioned on node

𝑛𝑠 ∈ 𝑁𝑠
• The amount of traffic going through a given VNF 𝑚 ∈ 𝑀
should not exceed the VNF processing capacity:∑︁

𝑟 ∈𝑅

∑︁
𝑛𝑣 ∈𝑁𝑣

𝑞𝑟𝑛𝑣 ,𝑚𝜌
𝑟
𝑛𝑣
≤ 𝜗𝑚𝑣𝑛 𝑓 ∀𝑚 ∈ 𝑀 (13)

where 𝑞𝑟𝑛𝑣 ,𝑚 ∈ {0, 1} = 1 if the virtual node 𝑛𝑣 ∈ 𝑁𝑣 of request
𝑟 is provisioned by VNF 𝑚 ∈ 𝑀 .
• Each VNF of type 𝑝 should be provisioned on a substrate
node capable of supporting that VNF type:

𝑦𝑛𝑠𝑚 × 𝑧𝑚𝑝 = 1 𝑖 𝑓 𝑓 𝑛𝑠 ∈ Υ𝑝𝑣𝑛 𝑓 ∀𝑚 ∈ 𝑀, 𝑝 ∈ 𝑃 (14)

where Υ
𝑝

𝑣𝑛 𝑓
is a set containing all nodes that can provision a

VNF of type 𝑝.
• Similarly, each virtual node must be mapped onto a VNF of
the same type:

𝑓
𝑝
𝑛𝑣 × 𝑞

𝑟
𝑛𝑣 ,𝑚

= 𝑧𝑚𝑝 ∀𝑛𝑣 ∈ 𝑁𝑣 , 𝑟 ∈ 𝑅, 𝑚 ∈ 𝑀, 𝑝 ∈ 𝑃 (15)

where 𝑓
𝑝
𝑛𝑣 ∈ {0, 1} = 1 if virtual node 𝑛𝑣 ∈ 𝑁𝑣 is of type 𝑝,

zero otherwise.
• Every virtual node 𝑛𝑣 ∈ 𝑁𝑣 must be provisioned by exactly
one VNF: ∑︁

𝑚∈𝑀
𝑞𝑟𝑛𝑣 ,𝑚 = 1 ∀𝑛𝑣 ∈ 𝑁𝑣 , 𝑟 ∈ 𝑅, 𝑚 ∈ 𝑀 (16)

• The total bandwidth consumption on a given edge 𝑒 ∈ 𝐸
should not exceed the capacity of that edge:∑︁

𝑟 ∈𝑅

∑︁
𝑢𝑣∈𝐿𝑣

𝜎𝑟𝑢𝑣,𝑒 × 𝐵𝑤𝑟𝑑𝑒𝑚 ≤ 𝐵
𝑒
𝑚𝑎𝑥∀𝑒 ∈ 𝐸 (17)

where 𝜎𝑟𝑢𝑣,𝑒 ∈ {0, 1} = 1 if substrate edge 𝑒 ∈ 𝐸 is used to
provision virtual link 𝑢𝑣, zero otherwise.

• The end-to-end mapping delay should not exceed the ac-
ceptable delay of the request:∑︁
𝑢𝑣∈𝐿𝑣

∑︁
𝑒∈𝐸

𝜎𝑟𝑢𝑣,𝑒𝑑𝑒𝑙
𝑒 +

∑︁
𝑛𝑣 ∈𝑁𝑣

𝑓
𝑝
𝑛𝑣 × 𝑑𝑒𝑙

𝑝

𝑣𝑛 𝑓
≤ 𝐷𝑒𝑙𝑟𝑠𝑑 ∀𝑟 ∈ 𝑅

(18)
where the first and second terms of equation 18 correspond to
the propagation and processing delay, respectively.

The above problem can be solved by means of conventional
solvers, such as Gurobi and CPLEX. However, given the NP-
hard nature of the problem, such approaches are not well
suited for delay sensitive applications envisaged in future
networks due to their high run time even for medium sized
networks. This motivates the use of heuristic approaches such
as those based on node ranking, load balancing, and shortest
paths computation, among others. Although these approaches
can execute in polynomial time, they are not well suited for
scenarios such as the one considered in this work where the
placement objective is jointly influenced by multiple attributes.
This motivates the use of machine learning approaches that are
able to intelligently infer the long term influence of each cost
component to the placement objective, yielding near-optimal
solutions in acceptable run times.

IV. PROPOSED REINFORCEMENT LEARNING BASED VNF
PLACEMENT ALGORITHM

This section describes the proposed SFC placement al-
gorithm including: its MDP modeling, the neural network
architecture of the policy in charge of making the VNF
assignments, and the training procedure of that neural network.
Everything will be discussed below.

A. MDP model

Considering a working scenario in which the state of a given
system is fully observable by an RL agent, we model the
system as a Markovian Decision Process (MDP) defined by the
tuple (𝑆, 𝐴, 𝑃, 𝑅), where: 𝑆 denotes the set of possible states
of the system; 𝐴 denotes the set of possible discrete actions to
be taken, actions for the selection of a physical node to host
a given VNF of any request; 𝑃 = 𝑃(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) denotes the
transition probabilities from state 𝑠𝑡 to state 𝑠𝑡+1 after taking
action 𝑎𝑡 ; and 𝑅 = 𝑅(𝑠𝑡 , 𝑠𝑡+1, 𝑎𝑡) denotes the reward obtained
after taking action 𝑎𝑡 from state 𝑠𝑡 and transiting to state 𝑠𝑡+1.
Considering an entire episode as a sequence of visited states
due to the corresponding sequence of actions, the return of an
episode is defined as the discounted sum of all the rewards
received by the agent during that episode. It is expressed as:

𝑅𝑒𝑡𝑢𝑟𝑛 =

𝑇∑︁
𝑖=𝑡

𝛾𝑖−𝑡𝑅(𝑠𝑖 , 𝑠𝑖+1, 𝑎𝑖) (19)

where 𝑅(𝑠𝑖 , 𝑠𝑖+1, 𝑎𝑖) is the reward received by the agent after
taking action 𝑎𝑖 in state 𝑠𝑖 at step 𝑖. In this problem domain,
the goal of the RL agent is to learn a policy 𝜋 : 𝑆 → 𝐴

which maximizes the expected return, E[𝑅𝑒𝑡𝑢𝑟𝑛], over all
episodes. In this work, we relate the reward signal with the
placement objective expressed in equation 1. Consequently, by
maximizing the reward signal, the RL agent will be able to
minimise the operational expenditures of a NSP.

8

The parameters of the MDP tuple for our working scenario
are discussed below:

1) State space: The state, at any time, is defined by
relevant features of the environment, features that will be
used by the agent to infer the actions that will produce high
rewards. Those features will come from the substrate network
state and the present incoming request, as those features will
impact, directly or indirectly, the upcoming rewards. In order
to conform to the neural network architecture of the policy
selecting the actions, which incorporates a convolutional layer
as shown in Fig. 3, the system state is modelled as an image-
like |𝑁𝑠 | ×𝐾 feature matrix, where 𝑁𝑠 and 𝐾 denote the set of
substrate nodes and the number of relevant features associated
with each substrate node. In order to avoid the need to retrain
the proposed neural network for different test scenarios with
less nodes than those used for the original training, we will use
dummy nodes to assure fixed dimensions of the state matrix,
since in practice, once learned, the internal structure of a neural
network cannot be modified. In order to achieve this, the policy
neural-network is trained using the maximum possible number
of nodes. Then, for the testing phase, when the number of
nodes is less than the ones used for training, we match the
input matrix by appending dummy nodes with dummy feature
vectors to reach the expected state size. For instance, if the
policy network is trained with 𝑁 nodes and the test scenario
has 𝑀 nodes, where 𝑀 < 𝑁 , the number of dummy nodes
created in this case is 𝑁-𝑀 , with each node being assigned a
vector of dummy features. The dummy features are obtained
by providing the worst value of each feature, in order to make
such dummy nodes less likely to be selected by the policy
network. Moreover, in the worst event that a dummy node is
assigned a high probability of being selected to host a given
VNF, the filtering layer that we use at the output end of the
architecture will be able to sieve out such a node.

For each request 𝑟 ∈ 𝑅 to be mapped, the algorithm uses the
neural network to make a placement decision for each VNF of
the request, one at a time, starting with the VNF closest to the
ingress node. Therefore, the number of decision epochs (hence
the actions taken) for each request is equal to the number of
VNFs of the request. For each virtual node 𝑛𝑣 from request
𝑟 ∈ R to be scheduled for placement, the following are the
features associated with each node 𝑛𝐾𝑠 of the substrate network
to form the state matrix:

• the residual computing resources, evaluated as:

𝐶𝑃𝑈𝑖𝑛𝑠 = 𝑚𝑎𝑥(0,
𝐶
𝑛𝑠
𝑟𝑒𝑠 − 𝐶𝑛𝑣 ,𝑟𝑑𝑒𝑚

𝐶
𝑛𝑠
𝑚𝑎𝑥

) (20)

where 𝐶𝑛𝑠𝑟𝑒𝑠 denotes the residual computing resources at
𝑛𝑠 and 𝐶𝑛𝑣 ,𝑟

𝑑𝑒𝑚
denotes the required CPU resources of the

current virtual node. This feature guides the RL agent
in selecting nodes with sufficient CPU resources and
selection of more loaded nodes when beneficial in order
to reduce node resource fragmentation.

• the cost for processing each unit of packet rate through a
VNF provisioned on 𝑛𝑠 , denoted by Z

𝑚,𝑛𝑠
𝑣𝑛 𝑓

. This feature
relates to the processing cost component of the service
deployment cost.

• Deployment cost of a type 𝑝 VNF denoted as 𝛿𝑝
𝑣𝑛 𝑓

. This
feature guides the agent regarding the trade-off between
activation of a new VNF instance and reuse of active ones
in relation to other cost components.

• The cost for transmitting a packet rate unit Z𝑒. This
feature directly relates to the forwarding cost component.

• the number of edges of the shortest path between 𝑛𝑛𝑣−1
𝑠

and 𝑛𝑠 , denoted by 𝐸
𝑛𝑣
𝑛𝑠 . Where 𝑛𝑛𝑣−1

𝑠 denotes the sub-
strate node used to map the virtual node preceding 𝑛𝑣 .
Note that 𝑛𝑛𝑣−1

𝑠 = 𝜏𝑟𝑠 if it is the first virtual node to be
mapped. This feature relates to the suitability of node
𝑛𝑠 in terms of traffic forwarding cost contribution to the
overall cost.

• the node delay computed as the delay of the shortest path
between 𝑛𝑛𝑣−1

𝑠 and 𝑛𝑠 , denoted by 𝐷𝑒𝑙𝑎𝑦𝑛𝑠 . For fairness
and to conform to the approach adopted in the benchmark
algorithm proposed in [28], we distribute the end-to-end
delay requirement of the request among the different
virtual links which we denote as inter-VNF delay. In this
regard, 𝐷𝑒𝑙𝑎𝑦𝑛𝑠 is evaluated as:

𝐷𝑒𝑙𝑎𝑦𝑛𝑠 = 𝑚𝑎𝑥(0,
𝐷𝑒𝑙𝑟 − 𝐷𝑒𝑙𝑛𝑠

𝑠𝑑

𝛿𝑚𝑎𝑥
) (21)

where 𝐷𝑒𝑙𝑛𝑠
𝑠𝑑

is the delay along the path from 𝑛
𝑛𝑣−1
𝑠 to 𝑛𝑠 ,

while 𝐷𝑒𝑙𝑟𝑢𝑣 is the inter-VNF delay of the request. 𝛿𝑚𝑎𝑥
is a normalisation term evaluated as the maximum delay
between 𝑛

𝑛𝑣−1
𝑠 and all the alternative nodes for hosting

the current request virtual node.
• the available (bottleneck) bandwidth on the shortest path

from the source node to the terminal node going through
𝑛𝑠 , denoted by 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑛𝑠 and computed as:

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑛𝑠 = 𝑚𝑎𝑥(0,
𝐵𝑤𝑎𝑣 − 𝐵𝑤𝑡𝑟𝑑𝑒𝑚

𝐵𝑤𝑚𝑎𝑥
) (22)

where 𝐵𝑤𝑎𝑣 denotes the bottleneck bandwidth along the
shortest path between 𝜏𝑟𝑠 and 𝜏𝑟

𝑑
. 𝐵𝑤𝑡𝑟

𝑑𝑒𝑚
and 𝐵𝑤𝑚𝑎𝑥

denote the request desired bandwidth and the maximum
edge bandwidth respectively. This term guides the agent
in selecting nodes that result in feasible paths to the egress
node and also to trade-off between link load balance and
mapping cost.

• A binary variable 𝑘𝑛𝑠𝑝 ∈ {0, 1} = 1 if there is an active
VNF of type 𝑝 at 𝑛𝑠 , zero otherwise. This guides the
agent about the VNF activation status at a given node.

2) Action space: Our algorithm uses the neural network
to select the nodes on which to place each VNF of the
service request. In order to achieve this, each substrate node
is assigned a unique identifier in the range [1, |𝑁𝑠 |], where 𝑁𝑠
denotes the set of all substrate nodes and |𝑁𝑠 | is the cardinality
of this set. Therefore, during each decision epoch, the action of
the policy implemented by the neural network is 𝑎 ∈ 𝐴, where
the action space 𝐴 = {0, 1, 2, 3....|𝑁𝑠 |}. The zero value of 𝑎
corresponds to the case where no substrate node is selected
for hosting a given virtual node, consequently, the request will
be rejected. This will occur, for example, when all the nodes
have been deemed infeasible by the filtering layer of the policy
neural network.

9

ω1

ω2

ωn C
on

vo
lu

ti
on

al
 la

ye
r

S
of

tm
ax

 l
ay

er

F
il

te
ri

ng
 l

ay
er

Decision

State

Reward

DC Network

Policy Neural Network

Environment

Scheduled request
K-1

Feature Extraction

In
pu

t l
ay

er

FW NAT IDS
FW NAT LB

Proxy FW IDS

Proxy FW IDS

SFC k

SFC k+1

SFC |R|

Admission
Control

Action

1 23

Fig. 3. Architecture of the Policy Neural Network Architecture

3) Reward: We formulate the reward signal in such a
manner that by maximising the reward, the agent optimises
the deployment objective given in Eqn. 1. In this regard, the
reward signal is formulated as:

𝑟𝑒𝑤𝑎𝑟𝑑 =
𝑅𝑒𝑣(𝐺𝑣)𝑟
𝐶 (𝐺𝑣)𝑟

(23)

where 𝑅𝑒𝑣(𝐺𝑣)𝑟 denotes the request revenue as given in
Eqn. 24, and 𝐶 (𝐺𝑣)𝑟 denotes the implementation cost of
request 𝑟 ∈ 𝑅 as given by Eqn. 2. Intuitively, Eqn. 23 is
maximised by minimising the implementation cost of each
request as desired by the deployment objective, but accepting
those requests that are associated with high revenues, hence,
increasing the net profit obtained by the service provider. This
is different from the objective of only minimizing implemen-
tation costs. This way, the above reward formulation avoids
biasing the RL agent towards requests with low resource
requirements, in contrast with requests with high resource
requirements, since the former are more likely to be associated
with low provisioning costs, but they will also contribute less
to the overall net profit. If we denote by 𝛾𝑛𝑣𝑐 and 𝛾𝑒𝑣

𝑏𝑤
the price

charged by the service provider for processing and transmitting
a unit of packet rate through virtual node 𝑛𝑣 ∈ 𝑁𝑣 and traffic
link 𝑙𝑢𝑣 , where 𝑙𝑢𝑣 is the inter-VNF path between 𝑢 and 𝑣;
then, the revenue 𝑅𝑒𝑣(𝐺𝑣)𝑟 obtained from provisioning a

request 𝑟 ∈ 𝑅 can be defined as:

𝑅𝑒𝑣(𝐺𝑣)𝑟 =

∑
𝑛𝑣 ∈𝑁 𝑣 𝛾

𝑛𝑣
𝑐 𝜌

𝑟 +∑∀𝑒𝑣 ∈𝐸𝑣
𝛾
𝑒𝑣
𝑏𝑤
𝜌𝑟

if 𝑧𝑟𝜏=1
0 otherwise

(24)

where 𝑧𝑟𝜏 ∈ {0, 1} is a binary variable equal to 1 if request
𝑟 ∈ 𝑅 is assigned resources, zero otherwise.

B. Architecture of the Neural Network for Policy Evaluation

Fig. 3 shows the architecture adopted for our policy neural
network, which consists of four layers: the input layer, a
convolutional layer, a softmax layer and a filtering layer.
The convolutional layer performs a convolution between the
input feature matrix and the internal weights of the layer to
output a numerical vector of size |𝑁𝑠 |. The softmax layer
then transforms the convolutional layer output into a vector of
probabilities, where each element of the vector indicates the
probability of the corresponding substrate node to be selected
for hosting the VNF at hand. The filtering layer is added, at
the end, to avoid infeasible nodes from being selected, for
instance, the dummy nodes. Once such infeasible nodes are
pruned, then, the substrate node with the highest probability
is selected for hosting the corresponding VNF of the request.
The processing of a request can be summarized as follows:

10

Upon arrival of a request to the admission control block
asking for service, each virtual node of the request is processed
at a time with the policy neural network deciding the substrate
node on which such a node is provisioned. This way, for each
arriving request all its virtual nodes are processed sequentially,
one after another, starting with the virtual node next to the
ingress node. This ordering ensures that the VNF order in the
service chain is preserved, and also enables an early detection
of infeasible virtual link mappings on executing the algorithm.
The feature extraction block takes as inputs the current state
of the substrate network and the requirements of the request.
With all that information we compose the system state in the
form of a |𝑁𝑠 | × 𝐾 feature matrix. Then, the feature matrix
is used as input to the neural network, which produces an
action in the form of a node identifier for hosting the virtual
node under consideration. After mapping all virtual nodes, and
based on the obtained mapping solution, the resultant reward
is calculated using Eqn. 23.

C. Neural network training

The training of the neural network has been done using
the maximum number of foreseeable substrate nodes. As
mentioned in the previous section, the placement of a request
is performed virtual node by virtual node, until all the nodes
of the request have been provisioned, or until a given node
cannot be provisioned and the request is rejected. For each
virtual node, the policy neural network is giving the substrate
node with the highest probability for serving that virtual node.
However, since the neural network parameters are initially
assigned randomly, during the training phase we perform a
trade off between exploration and exploitation to determine
the substrate node on which to provision the virtual node [38].

If a virtual node cannot be provisioned, the entire request
is rejected, and a new request is scheduled for placement.
Otherwise, the resultant reward is obtained according to the
mapping decisions made for the different virtual nodes. This
reward is used to calculate all the gradients of all the internal
weights of the neural network applying back propagation.
The gradients from different requests are stored in a buffer
until a given batch size is reached. Then, all the gradients
previously stacked are jointly applied to update the internal
weights of the neural network, that done, the buffer is emptied.
Note that, whereas it is possible to perform a gradient update
for each successfully deployed request, adopting a batch
processing strategy guarantees a faster and more stable training
process. In the resource management domain, attributes, such
as traffic load, residual resources, among others, are usually
characterized by a certain predictable temporal correlation.
Those repetitive patterns enable the agent to learn online as the
system executes or offline by exploiting historical information.
In this manuscript, we adopted the offline option in which the
neural network was trained using offline demand sets of size
600 requests per epoch for a total of 200 epochs, considering a
substrate network of 60 nodes. The results of the policy neural
network training are shown in Fig. 4. From Figs. 4(b) and
Fig. 4(c), the acceptance ratio and execution time per epoch
is seen to increase with the training time. This is because the

policy network accuracy improves on increasing the training
time, thus resulting in a reduction in both wrong placement
decisions and bandwidth resource consumption. Therefore, the
number of admitted requests increases, consequently resulting
in an increase in the execution time per training epoch, since
admitted requests are characterized by additional steps such as
the updating of the substrate resources and the computation of
the mapping cost.

The performance of the CNN and FFN has recently been
investigated in [39]. With a CNN model size which is 68 times
smaller than the FFN, the CNN was found to result in a similar
or better performance than the FFN when applied to the prob-
lem of speech enhancement. Such a good performance, with
fewer trainable parameters, makes CNN based architectures
more memory efficient, making them better candidates for
edge-computing and multi-agent learning scenarios in which
the different service life-cycle management decisions may
need to be executed by distributed resource constrained nodes
[40].

In Fig. 5, we compare the training performance of a convo-
lutional neural network (CNN) with a feed forward network
(FFN) architecture considering 50 substrate nodes and 400
offline demands per epoch. From the obtained results, both
architectures converge to a similar performance in terms of
training time, acceptance rate and reward value. Fig. 5(a)
reveals that CNN converges earlier than FFN by approx. 5
epochs. This explains the slightly higher running time for
the initial epochs in Fig. 5(c), since the number of requests
admitted by CNN is higher than those of FFN during this
stage.

V. PERFORMANCE EVALUATION

This section first explains the metrics considered for the
evaluation of the performance of our proposal. It is followed by
the description of the simulation settings and the introduction
of four benchmark algorithms used for comparison with the
RL algorithm. Finally, we include a discussion of the obtained
results.

A. Performance Metrics

The proposed algorithm will be compared against sev-
eral benchmark algorithms considering different performance
metrics. Those metrics include the average acceptance ratio
of requests (AR), the average deployment cost per accepted
request, the average processing time of a request, and the
average bandwidth utilisation, among others. Some of these
are explained below:

1) Average acceptance ratio, AR: This is computed as
the ratio of the number of successfully accepted requests to
the total number of arriving requests, i.e., the sum of both
accepted and rejected. The AR metric is a direct indicator of
the algorithms efficiency in using the underlying resources.
Therefore, a service deployment algorithm should target to
achieve a high AR performance in order to maximise the
revenue received by a NSP. This is computed as follows:

𝐴𝑅 =
𝑁𝑜. 𝑜 𝑓 𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
(25)

11

0

5

10

15

20

25

30

0 40 80 120 160 200

R
e
w
a
rd

Epoch

(a) Average reward per epoch

0

0.1

0.2

0.3

0.4

0 40 80 120 160 200

N
o

rm
a

li
s

e
d

 A
R

Epoch

(b) Average acceptance ratio

0

100

200

300

0 40 80 120 160 200

T
im

e
 (

s
)

Epoch

(c) Average time per training epoch

Fig. 4. Results of training step of the policy neural network

0

5

10

15

20

0 40 80 120 160 200

R
e
w
a
r
d

Epoch

FFN CNN

(a) Average reward per epoch

0

0.1

0.2

0.3

0.4

0.5

0 40 80 120 160 200

A
c

c
e

p
ta

n
c

e
 r

a
ti

o

Epoch

FFN CNN

(b) Average acceptance ratio

0

50

100

150

0 40 80 120 160 200

T
im

e
 (

s
)

Epoch

FFN CNN

(c) Average time per training epoch

Fig. 5. Results of the training performance of the Feed-forward and convolutional neural networks

2) Average deployment cost, 𝐶𝑜𝑠𝑡𝐷𝑒𝑝: This denotes the
cost of deploying each SFC request on average, and it is
evaluated as:

𝐶𝑜𝑠𝑡𝐷𝑒𝑝 =
1
|𝑅 |

∑︁
𝑟 ∈𝑅

𝐶 (𝐺𝑣)𝑟 (26)

where 𝐶 (𝐺𝑣)𝑟 denotes the implementation cost of request 𝑟 ∈
𝑅 as given in Eqn. 2.

3) Average bandwidth utilisation, 𝐵𝑊𝑢𝑡𝑖𝑙: This metric
quantifies the average substrate edge bandwidth resource uti-
lization as the ratio of consumed bandwidth resources to total
bandwidth resources averaged over all substrate edges. In order
to reduce network congestion and service deployment costs, a
deployment algorithm should target to achieve a low 𝐵𝑊𝑢𝑡𝑖𝑙
value. This is evaluated as follows:

𝐵𝑤𝑢𝑡𝑖𝑙 =
1
|𝐸𝑠 |

∑︁
𝑒∈𝐸𝑠

𝐵𝑤𝑒

𝐵𝑒𝑚𝑎𝑥
(27)

where 𝐵𝑤𝑒 is the total bandwidth consumed on edge 𝑒 ∈ 𝐸𝑠
and 𝐵𝑒𝑚𝑎𝑥 is the bandwidth capacity of this edge.

4) Average request provisioning time, Avg_T: This is the
time taken by the service deployment algorithm to compute
a deployment solution for each admitted request on average.
Aware that future services will have stringent latency require-

ments, a service deployment algorithm should have a low value
of 𝐴𝑣𝑔_𝑇 . This is computed as:

𝐴𝑣𝑔_𝑇 =
1
|𝑅𝐴
|
∑︁
𝑟 ∈𝑅𝐴

𝑡𝑖𝑚𝑟𝑝𝑟𝑜𝑣 (28)

where 𝑅𝐴 ∈ 𝑅 denotes a set of all admitted requests and
𝑡𝑖𝑚𝑟𝑝𝑟𝑜𝑣 denotes the time taken by the algorithm to obtain a
deployment solution for request 𝑟 ∈ 𝑅.

B. Simulation environment and settings

For the evaluation of the proposed algorithms, we consider
both real network topologies, in particular, the Abilene and
BIC networks [9], with 10 and 33 nodes respectively, and
synthetic topologies as adopted in [17], [18]. For the synthetic
topologies, the number of substrate nodes are varied from
30 to 60, depending on the scenario under consideration,
with an inter-node connection probability of 0.2. We consider
the computing resources of each node to range from 60,000
units to 80,000 units, and the bandwidth capacity of each
edge to be in the range of 400 𝑀𝑏𝑝𝑠 to 800 𝑀𝑏𝑝𝑠. The
propagation delay on each substrate edge is in the range
of 2 milliseconds to 5 milliseconds. The above settings are
similar to those adopted in [9]. The cost of processing and
transmitting 1GB of data at each node and link follows
a uniform distribution 𝑈 ($0.15, $0.22) and 𝑈 ($0.05, $0.12)
respectively. The processing delay of a packet at each VNF
follows a uniform distribution 𝑈 (0.045𝑚𝑠, 0.3𝑚𝑠), with the

12

processing delay of a service chain being the sum of the
processing delay of the constituent VNFs.

Each request 𝑟 ∈ 𝑅 is generated with a random source
𝜏𝑟𝑠 and a random destination 𝜏𝑟

𝑑
from 𝐺𝑠 , with 𝜏𝑟𝑠 ≠ 𝜏𝑟

𝑑
,

and with a packet rate 𝜌 measured in packets/s following a
uniform distribution 𝑈 (400, 4000). The delay requirement of
each request follows a uniform distribution 𝑈 (10𝑚𝑠, 30𝑚𝑠).
We consider 5 categories of network functions: Firewalls,
Proxies, NATs, DPIs and Load Balancers, with their com-
puting resource demands adopted from [41]. Similar to [18],
the number of VNFs constituting each SFC instance is varied
depending on the scenario under consideration. The specific
values of the different simulation parameters are shown in
Table IV.

In this work, we consider 2 major kinds of request behaviour
scenarios i.e. offline and online scenarios. In the offline case,
all the requests to be served, including their attributes, are
known in advance, and these, once admitted, do not leave the
system for the entire simulation window time. Therefore, the
resources allocated to these requests cannot be reused by other
demands. The offline consideration gives a clearer insight into
the algorithm’s ability to deal with permanent loading stress
[42]. In the online case, the demands continuously arrive to the
system with a given arrival distribution and with a finite life-
time. In this case, the resources assigned to an admitted request
are reclaimed upon expiry of this demand. We consider the
arrival of such requests to follow a Poisson distribution with a
mean value chosen according to the scenario and experiment
under consideration. The life-time of each online request is
exponentially distributed with a mean value of 500 units of
time.

Moreover, all simulations were conducted on a desktop
computer running the Windows Operating System, and with
the following features: Intel(R) Core(TM) i7-8700K CPU
@ 3.70GHZ and 64GB of RAM. In order to obtain stable
performance values, we consider 10 trials for each arrival rate
/ substrate network size / request size. For each trial, a new
set of requests and network topology are generated.

C. Benchmark Algorithms

The proposed RL-based service deployment algorithm is
compared with a state-of-the-art multi-stage graph based al-
gorithm (denoted as graph-based in this section) proposed in
[28] whose operation was described in section II. In our view,
the choice of this work is justified since the work is recent,
and according to the authors of that work, it was found to give
near-optimal results. In addition, we evaluate our algorithm
against a brute-force algorithm and three greedy algorithms
which are well known in literature. These are discussed below:

1) Brute-force algorithm (Brut): For a given request to
be provisioned, the brute-force algorithm obtains all possible
mapping combinations for that request. This is then followed
by extracting all feasible solutions (i.e. solutions that do
not violate the request and substrate network constraints).
Then, from all feasible solutions, the solution that results in
the least deployment cost is selected for provisioning that
service request. Since such an approach explores all mapping

TABLE IV
SIMULATION PARAMETERS

Substrate Network:
Parameter Value

No. substrate nodes 11-60
Node CPU 𝑈 (60000, 80000)
Edge bandwidth 𝑈 (400, 800) Mbps
Edge propagation delay 𝑈 (2, 5) milliseconds
Processing cost per 1 GB 𝑈 ($0.15, $0.22)
Transmission cost per 1 GB 𝑈 ($0.05, $0.12)
processing delay at each VNF 𝑈 (0.0045, 0.3) milliseconds
𝛽𝑤 $ 0.01
𝑒𝑚𝑎𝑥 2735
𝑒𝑖𝑑𝑙𝑒 80.5

𝛾
𝑛
𝑝
𝑣
𝑐 $ 0.22 and
𝛾
𝑒𝑣
𝑏𝑤

$ 0.12
Fragmentation penalty, 𝛼𝑛𝑠 $0.01
Packet rate 𝑈 (400, 4000)
No.VNFs 𝑈 (2, 10)
Mean arrival rate 20
Life-time exponential with 500 (mean)

possibilities, it results in the optimal solution, albeit with the
penalty of the excessive run-time employed to obtain that one.

2) Bandwidth Greedy Algorithm (BwGA): This algorithm
targets to jointly minimise: the amount of bandwidth resources
used to provision each request, the node resource fragmen-
tation and the VNF deployment cost. This will be done by
provisioning each request on the shortest feasible path between
the ingress and the egress nodes and using the minimum
number of nodes. The pseudo-code of BwGA is shown in
Algorithm 1. First, the algorithm computes the set 𝑃𝑎𝑡ℎ

𝜏𝑟𝑠 ,𝜏
𝑟
𝑑

𝐾

that contains the 𝐾 shortest paths between the ingress and
egress nodes, with the paths being sorted in increasing length
order. Starting from the first path in the sorted list, the
algorithm checks for the validity of that path in terms of
end-to-end delay, available bandwidth and availability of CPU
resources along the path to map the different request virtual
nodes. For a given valid path, the physical nodes along that
path are sorted in increasing order of their residual resources.
Then, the minimum number of nodes with the least amount of
residual resources that are required to support the entire SFC
instance are selected. Then, the VNFs of the request are placed
on the deduced nodes along that path. The choice of the nodes
with the least amount of residual resources for provisioning
the virtual nodes targets to minimise the energy and resource
fragmentation costs, since such nodes are more likely to have
VNFs already active on them, preventing the activation of new
nodes and VNFs.

3) Greedy activation algorithm (GAA): This algorithm
targets to minimize the deployment cost by greedily minimiz-
ing the VNF deployment cost thanks to reusing as much as
possible already active VNF instances. If an instance of a given
VNF is not active or the node resources are not sufficient to
enable its sharing, then, the new virtual node is placed on
a substrate node that is closest to the host of the preceding
virtual node (or the ingress node in case of mapping the first
virtual node). The pseudo-code of this algorithm is shown in

13

Algorithm 1: BwGA Algorithm
Input: 𝐺𝑠 , Ψ𝑟

Initialise: Deployment_solution =𝑁𝑜𝑛𝑒
Compute 𝑃𝑎𝑡ℎ

𝜏𝑟𝑠 ,𝜏
𝑟
𝑑

𝐾
.

if |𝑃𝑎𝑡ℎ𝜏
𝑟
𝑠 ,𝜏

𝑟
𝑑

𝐾
|=0 then

reject request
return

end
for 𝑝𝑎𝑡ℎ𝑘 ∈ 𝑃𝑎𝑡ℎ

𝜏𝑟𝑠 ,𝜏
𝑟
𝑑

𝐾
do

𝑐ℎ𝑒𝑐𝑘_𝑝𝑎𝑡ℎ_𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦(𝑝𝑎𝑡ℎ𝑘)
if 𝑝𝑎𝑡ℎ𝑘 is valid then

Extract_minimum_host_nodes(𝑝𝑎𝑡ℎ𝑘 ,Ψ𝑟)
Map the request
if mapping is feasible then

Deployment solution=𝑝𝑎𝑡ℎ𝑘
Terminate for loop

end
end

end
if 𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛=None then

Reject request
end
else

Return Deployment_solution
end

Algorithm 2. For each traffic node to be mapped, the function
𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠() computes a set 𝐶𝑎𝑛𝑑𝑠𝑛𝑝𝑣 consisting
of the candidate substrate nodes for virtual node 𝑛

𝑝
𝑣 ∈ 𝑁𝑣 .

Then, if there are substrate nodes with already active VNFs
to support 𝑛𝑝𝑣 , among these, the node closest to the host of
the preceding virtual node is chosen to provision the current
virtual node. Otherwise, all candidates are sorted according to
the distance to the host of the preceding virtual node, with the
closest candidate being chosen to provision the current traffic
node. Once all the virtual nodes are provisioned, then the host
for the virtual links are computed using the shortest available
paths between adjacent nodes of the selected substrate nodes.

4) Load balance based algorithm (LBA): For each virtual
node of the request to be provisioned, this algorithm ranks
all candidate nodes according to their resource score, which is
calculated as the product of the node’s computational resources
by the accumulative residual bandwidth of the node’s inbound
links. Then, the candidate node with the highest score is
selected for hosting the current virtual node. In this way,
the algorithm targets to minimise node and link resource
bottlenecks, guaranteeing a good long term acceptance ratio
performance. The score of a given node 𝑛𝑠 ∈ 𝑁𝑠 is computed
as:

𝑆𝑐𝑜𝑟𝑒𝑛𝑠 = 𝐶𝑛𝑠𝑟𝑒𝑠 ×
∑︁

𝑒∈𝐸𝑛𝑠
𝑎𝑑 𝑗

𝐵𝑒𝑟𝑒𝑠 (29)

where 𝐶𝑛𝑠𝑟𝑒𝑠 denotes the available computational resources at
the node and 𝐵𝑒𝑟𝑒𝑠 denotes the residual bandwidth resources
at an inbound edge 𝑒 ∈ 𝐸 . The pseudo-code of this algorithm
is shown in Algorithm 3. Once all virtual nodes have been

Algorithm 2: GAA Algorithm
Input: 𝐺𝑠 , Ψ𝑟

Output: 𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
Initialise: 𝑝𝑟𝑒𝑣_ℎ𝑜𝑠𝑡=𝜏𝑟𝑠 ; 𝑛𝑜𝑑𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = []
for 𝑛𝑝𝑣 ∈ 𝑁𝑣 do

𝐶𝑎𝑛𝑑𝑠𝑛𝑝𝑣 =𝐶𝑜𝑚𝑝𝑢𝑡𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝐺𝑠 ,Ψ𝑟)
if 𝐶𝑎𝑛𝑑𝑠𝑛𝑝𝑣 =∅ then

Reject request
break

end
else

Extract 𝐶𝑎𝑛𝑑𝑠𝑎𝑐𝑡
𝑛
𝑝
𝑣

from 𝐶𝑎𝑛𝑑𝑠𝑛𝑝𝑣
if 𝐶𝑎𝑛𝑑𝑠𝑎𝑐𝑡

𝑛
𝑝
𝑣

≠ ∅ then
𝐶𝑎𝑛𝑑𝑠=𝑆𝑜𝑟𝑡_𝑑𝑖𝑠𝑡 (𝐶𝑎𝑛𝑑𝑠𝑎𝑐𝑡

𝑛
𝑝
𝑣

, 𝑝𝑟𝑒𝑣_ℎ𝑜𝑠𝑡)
𝑛
𝑝
𝑣←Cands[0]

𝑛𝑜𝑑𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.𝑎𝑝𝑝𝑒𝑛𝑑 (𝐶𝑎𝑛𝑑𝑠[0])
𝑝𝑟𝑒𝑣_ℎ𝑜𝑠𝑡=Cands[0]

end
else

Cands=𝑆𝑜𝑟𝑡_𝑑𝑖𝑠𝑡 (𝐶𝑎𝑛𝑑𝑠𝑛𝑝𝑣 , 𝑝𝑟𝑒𝑣_ℎ𝑜𝑠𝑡)
𝑛𝑣←Cands[0]
𝑛𝑜𝑑𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.𝑎𝑝𝑝𝑒𝑛𝑑 (𝐶𝑎𝑛𝑑𝑠[0])
𝑝𝑟𝑒𝑣_ℎ𝑜𝑠𝑡=Cands[0]

end
end

end
Run 𝑙𝑖𝑛𝑘_𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑛𝑜𝑑𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝐺𝑠 ,Ψ𝑟)
if Sucessful then

Deploy request
end
else

Reject request
end

provisioned, then, the end-to-end traffic link is obtained by
running the Dijkstra algorithm in between each pair of the
hosting nodes, while updating the available edge resources.

D. Results and discussion

In this section, we analyze the performance of the pro-
posed algorithm against the benchmark algorithms discussed
in section V-C considering a number of scenarios as discussed
below:

1) Performance with respect to the optimal solution: In
experiment 1, whose results are shown in Fig. 6, we analyse
the performance of the proposed algorithm in comparison
with the optimal (brute-force) algorithm considering an offline
case while varying the number of requests. Due to the high
time consuming of the brute-force algorithm, the comparison
has been done using the Abilene topology with 11 nodes.
The results in Fig. 6(a) show that 𝐵𝑟𝑢𝑡 results in the best
performance in terms of deployment cost per request with
an average value of $23, averaged over all request numbers.
This is followed by 𝑅𝐿, 𝐿𝐵𝐴, 𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑, 𝐵𝑤𝐺𝐴 and
𝐺𝐴𝐴 with average values of $27, $29.38, $30.25, $37.0 and
$40.31, respectively. Therefore, 𝑅𝐿 is within a 14% margin of

14

0

20

40

60

10 20 30 40 50 60 70 80

C
o

s
t

Number of requests

RL Graph-based BwGA GAA LBA Brut

(a) Average deployment cost

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80

A
c

c
e

p
ta

n
c

e
 r

a
ti

o
 i

n
 %

Number of requests

RL Graph-based BwGA GAA LBA Brut

(b) Average acceptance ratio

0

20

40

60

80

100

10 20 30 40 50 60 70 80

B
a

n
d

w
id

th
 u

ti
li

s
a

ti
o

n

Number of requests

RL Graph-based BwGA GAA LBA Brut

(c) Average Bandwidth utilisation

0

40

80

120

160

200

10 20 30 40 50 60 70 80
RL 1.66 0.87 0.84 0.85 0.94 0.91 0.87 0.87

Graph-based 1.34 0.75 0.87 0.97 0.94 0.89 0.91 0.89

BwGA 0.12 0.09 0.05 0.08 0.07 0.08 0.11 0.09

GAA 0.31 0.19 0.26 0.14 0.21 0.15 0.19 0.06

LBA 0.03 0.03 0.03 0.08 0.05 0.04 0.04 0.03

Brut 164.19 77.24 84.04 77.18 78.90 80.04 78.12 76.92

T
im

e
 (

m
s

)

Number of requests

RL Graph-based BwGA GAA LBA Brut

(d) Average request provisioning time

Fig. 6. Results of experiment 1 considering the Abilene topology in which the algorithm performance is evaluated for different numbers of offline requests

the optimal solution and results in more than approx. an 8%
improvement compared to 𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑 and 𝐿𝐵𝐴, 27%
compared to 𝐵𝑤𝐺𝐴 and 33% compared to 𝐺𝐴𝐴.

Moreover, the 𝑅𝐿 performance in terms of AR, as shown in
Fig. 6(b), is within a 1% margin of 𝐵𝑟𝑢𝑡, with an average value
of 39.88% compared to 40.48% from 𝐵𝑟𝑢𝑡. This becomes
a performance improvement of approximately 6% compared
to 𝐵𝑤𝐺𝐴 and 𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑, 21.8% compared to LBA,
and 26.66% compared to GAA, whose average AR values
are 33.45%, 33.40%, 18.06% and 13.22%. 𝐵𝑤𝐺𝐴 emerges
competitive with respect to 𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑, since it maps
requests on the shortest possible paths, resulting in a low band-
width utilization, which was in fact the bottleneck resource,
as reflected from the high bandwidth consumption shown in
Fig. 6(c). However, even with this desirable behaviour, it
remains inferior to 𝑅𝐿 since it may greedily reuse the shortest
paths between any source and destination, which may result
in resource bottlenecks in the long term, yet, 𝑅𝐿 is able
to intelligently trade-off the resource consumption and cost
in order to guarantee a good long term performance. The
greedy nature of 𝐺𝐴𝐴 and 𝐿𝐵𝐴 may result in virtual nodes
being mapped far from each other, which may result in a
high consumption of link resources, leading to link resource
bottlenecks. Moreover, this also increases the likelihood of
failure to obtain a feasible substrate path for hosting the

corresponding virtual links due to delay constraints. This is
evident from Fig. 6(c) where 𝐺𝐴𝐴 and 𝐿𝐵𝐴 result in the
lowest values of bandwidth utilisation with average values of
16.8% and 35.54% respectively, demonstrating that most of
the link resources remain unused due to link bottlenecks and
the failure to meet delay constraints.

From Fig. 6(d), 𝐵𝑟𝑢𝑡 results in more than a 98.9% overhead
in terms of the average time for provisioning each request
compared to the other algorithms, with an average value of
89.58 milliseconds for the considered topology. The rest of
the algorithms are provisioning each request in a fraction
of a millisecond with average values of 0.98, 0.94, 0.10,
0.20 and 0.04 milliseconds for 𝑅𝐿, 𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑, 𝐵𝑤𝐺𝐴,
𝐿𝐵𝐴 and 𝐺𝐴𝐴 respectively, further demonstrating that the
proposed RL-based algorithm is well suited for provisioning
delay sensitive applications in resource constrained networks.

2) Impact of request size: In experiment 2, whose results
are shown in Fig. 7, we analyse the impact of the request size
by varying the number of requested virtual nodes from 1 to
7, and considering BIC network topologies for each request
size. The experiment targets to demonstrate the scalability of
the proposed algorithm as the size of the requests increases.
From the results in Fig. 7(a), 𝑅𝐿 results in an average
value of $186.8 in terms of service deployment cost for
each request, resulting in a 20.72%, 46.93%, 63.71% and

15

0

200

400

600

800

1000

1 2 3 4 5 6 7

C
o

s
t

Number of virtual nodes

RL Graph-based BwGA GAA LBA

(a) Average deployment cost

1 2 3 4 5 6 7

RL 2.0 3.9 5.7 7.7 9.9 11.9 15.8

Graph-based 1.3 7.4 16.1 22.8 28.6 37.1 39.7

BwGA 1.0 1.0 1.0 1.0 1.0 1.0 1.0

GAA 0.5 0.9 1.6 2.5 3.3 4.6 6.3

LBA 0.1 0.2 0.2 0.3 0.2 0.7 0.9

0

10

20

30

40

50

T
im

e
(m

s
)

Number of virtual nodes

RL Graph-based BwGA GAA LBA

(b) Average request provisioning time

0

20

40

60

80

1 2 3 4 5 6 7

A
c

c
e

p
ta

n
c

e
 r

a
ti

o
 i

n
 %

Number of virtual nodes

RL Graph-based BwGA GAA LBA

(c) Average acceptance ratio

Fig. 7. Experiment 2 in which the impact of request size is analysed by varying the number of virtual nodes per request from 1 to 7 considering BIC topology
and 30 offline requests for each number of nodes.

Algorithm 3: LBA Algorithm
Input: 𝐺𝑠 , Ψ𝑟

Output: 𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
Initialise: 𝑝𝑟𝑒𝑣_ℎ𝑜𝑠𝑡=𝜏𝑟𝑠 ; 𝑛𝑜𝑑𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = []
for 𝑛𝑝𝑣 ∈ 𝑁𝑣 do

𝐶𝑎𝑛𝑑𝑠𝑛𝑝𝑣 =𝐶𝑜𝑚𝑝𝑢𝑡𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝐺𝑠 ,Ψ𝑟)
if 𝐶𝑎𝑛𝑑𝑠𝑛𝑝𝑣 =∅ then

Reject request
break

end
else

Cands=𝑆𝑜𝑟𝑡_𝑆𝑐𝑜𝑟𝑒(𝐶𝑎𝑛𝑑𝑠𝑛𝑝𝑣 , 𝐺𝑠)
𝑛
𝑝
𝑣←Cands[0]
𝑛𝑜𝑑𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.𝑎𝑝𝑝𝑒𝑛𝑑 (𝐶𝑎𝑛𝑑𝑠[0])

end
end
Run 𝑙𝑖𝑛𝑘_𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑛𝑜𝑑𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝐺𝑠 ,Ψ𝑟)
if Sucessful then

Deploy request
end
else

Reject request
end

40.65% improvement compared to 𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑, 𝐵𝑤𝐺𝐴,
𝐺𝐴𝐴 and 𝐿𝐵𝐴 respectively, whose average cost values are
$235.62, $352.05, $514.74 and $314.77 respectively. These
results reveal that: 𝑖) the average deployment cost of each
algorithm under the BIC topology is higher than under the
Abilene topology. This is due to the fact that BIC has more
nodes and links, hence, the probability of activating new VNFs
and traversing longer substrate paths increases, resulting in
increased deployment costs; 𝑖𝑖) The greedy algorithms, namely
𝐿𝐵𝐴, 𝐵𝑤𝐺𝐴 and 𝐺𝐴𝐴, result in up to a 40% overhead
in terms of cost, demonstrating the inefficiency of greedy
approaches for solving problems in which the objective is
influenced by multiple attributes; 𝑖𝑖𝑖) even for a medium size
topology such as BIC, 𝑅𝐿 remains superior over the state-
of-the-art multi-layer graph based approach in terms of cost,
service provisioning time and AR.

From the results in Fig. 7(c), the AR performance of all

algorithms tends to decrease with the increase of the request
size. This is partly due to the increased resource consumption,
and partly due to the increased probability of failure to satisfy
the end-to-end constraints of the request. 𝐵𝑤𝐺𝐴 results in
the highest value of AR with an average value of 49.5%
averaged across all request sizes. 𝑅𝐿 and 𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑
result in a similar performance (within a 2% margin) with
average values of 33.52% and 35.3% respectively, followed
by LBA and GAA with 12.22% and 11.68% respectively.
The results demonstrate that, even while achieving above a
20.72% improvement in terms of request provisioning cost
over 𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑, 𝑅𝐿 remains competitive in terms of
AR. The 𝐵𝑤𝐺𝐴 algorithm results in a high AR performance
since it greedily targets to map requests using the least possible
bandwidth resources at the expense of the request provisioning
cost, the objective addressed in this paper. On the other hand,
𝑅𝐿 and 𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑 may need to map virtual nodes
further away from each other in order to minimise the VNF
activation and the resource fragmentation costs, whenever
such a decision results in a lower service deployment cost.
However, this is achieved at the expense of an increased
bandwidth resource consumption, especially as the network
size increases. Moreover, this also explains the slightly higher
performance of 𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑 approach over 𝑅𝐿 in terms
of AR, since RL is more strict in optimizing the placement
objective of provisioning cost compared to 𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑
which may provision requests on shorter paths (hence less
bandwidth consumption and request rejection rate) at the
expense of increased cost.

From the results in Fig. 7(b), 𝑅𝐿 provisions each request
on average in 8.12 milliseconds, which is 62.81% faster than
𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑, whose processing time per request is 21.86
milliseconds. 𝐿𝐵𝐴, 𝐺𝐴𝐴 and 𝐵𝑤𝐺𝐴 result in the lowest
provisioning times, with average values in milliseconds of
0.36, 0.98 and 2.81 respectively, albeit at the expense of a high
request deployment cost. As the number of required VNFs per
request increases, the run time of 𝐺𝑟𝑎𝑝ℎ−𝑏𝑎𝑠𝑒𝑑 experiences
a drastic increase since this increases the number of layers
of its multi-layer graph, increasing the computation steps of
the algorithm. On the contrary, the computational complexity
in 𝑅𝐿 relies on a feature matrix whose size is dependant on

16

the substrate network size, hence, a change in the request size
only affects on the number of such computations.

3) Impact of substrate network size: In experiment 3, we
analyse the impact of the substrate network size on the
algorithms’ performance by varying the substrate nodes from
10 to 60, with the results shown in Fig. 8. The aim of this
experiment is twofold: 𝑖) to assess the impact of the substrate
network size on the performance of the proposed algorithm
regarding the aforementioned performance metrics; and 𝑖𝑖)
to demonstrate the generalization capability of the proposed
policy neural network regarding the use of substrate networks
with sizes different from the one used for training, without
the need of retraining the neural network. From the results in
Fig. 8(a), the average cost for the deployment of each request
tends to decrease as the number of nodes increases, that applies
for most of the algorithms. This is due to an increase in
the availability of resources, which increases the number of
available options for deploying a service request at a lower
cost. Moreover, 𝑅𝐿 results in an average request deployment
cost of $82.19, which becomes a percentage improvement of
26.2%, 65.3%, 34.2% and 58.7% compared to 𝐺𝑟𝑎𝑝ℎ−𝑏𝑎𝑠𝑒𝑑,
𝐵𝑤𝐺𝐴, 𝐺𝐴𝐴 and 𝐿𝐵𝐴, whose average values are $111.40,
$236.87, $124.9 and $199.04 respectively. The results reveal
that the performance gain of using 𝑅𝐿 in terms of cost tends to
increase as the substrate network increases. This is because, as
the network size increases, the number of alternative nodes and
links for provisioning the request increases, which complicates
the decision making for the other algorithms. Thanks to its
intelligence, 𝑅𝐿 is able to select the optimal nodes and
links for the provisioning of the request among the multiple
alternatives.

Moreover, Fig.8(b) reveals that 𝑅𝐿 is only 5% inferior in
terms of AR compared to 𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑, with an average
AR value of 55.4% compared to 60.3% of 𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑.
𝐵𝑤𝐺𝐴, 𝐺𝐴𝐴 and 𝐿𝐵𝐴 result in AR average values of
54.87%, 25.0% and 29.05%, demonstrating the superiority
of 𝑅𝐿 due to intelligently trading-off the service deployment
objective and the resource utilisation efficiency in comparison
with the alternative approaches. Moreover, the policy neural
network is able to make efficient placement decisions, even for
substrate networks whose size is inferior to the one used at
the training stage, demonstrating the generalization capability
of our adopted approach using dummy nodes when needed.

In terms of execution time, 𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑 results in
up to a 86% overhead, with an average processing time
of 53.68 milliseconds per admitted request, compared to an
average value of 7.13 milliseconds for 𝑅𝐿. As the number of
substrate nodes increases, the run time of 𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑
greatly increases, since this fact increases the number of
possible candidates for each virtual node of the request (hence,
increasing the number of nodes at each layer of the multi-layer
graph), and consequently, increasing the time-complexity of
the multi-layer graph.

The above results also demonstrate a good generalization
capability of 𝑅𝐿 for substrate networks whose size is different
from that used at the training stage. For instance, when con-
sidering 50 substrate nodes, 𝑅𝐿 outperforms 𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑
by 52.7% in terms mapping cost and by 53.45% when consid-

ering 60 substrate nodes that are used for training the policy
network. This translates to less than a 1% margin.

A summary of the results from the above simulation scenar-
ios is given in Table. V where a positive("+") indicates that RL
is superior to a given benchmark algorithm by the indicated
percentage value while the negative ("-") indicates that RL
is inferior to the corresponding algorithm by the indicated
percentage value in the corresponding metric.

4) Online behaviour of the algorithms: From the results
of Fig. 9, corresponding to experiment 4 of the performance
analysis, we analyse the behaviour of the algorithms while
considering a Poisson arrival of the requests with a mean
value of 20 requests on each interval of 100 time units, for
a total of 12,000 time units, which corresponds to a total of
2,400 requests. From Fig. 9(a), the deployment cost for the
algorithms tends to decrease along the time, with the decrease
being dominant for 𝐵𝑤𝐺𝐴, 𝐿𝐵𝐴 and 𝐺𝐴𝐴. This is because, as
new requests arrive, most of the VNFs remain activated, which
decreases the VNF activation cost. Moreover, the number of
feasible nodes and links decreases with the arrival of new
requests, which simplifies the mapping decision of the greedy
algorithms. On average, 𝑅𝐿 results in the lowest mapping
cost per request, with an average value of $13.91, followed
by 𝐺𝐴𝐴, 𝐿𝐵𝐴, 𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑 and 𝐵𝑤𝐺𝐴, with average
values of $14.01, $14.61, $15.41 and $16.31 respectively.
Moreover, from the results in Fig. 9(c), the performance gain
in terms of AR for 𝐵𝑤𝐺𝐴 and 𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑 with respect
to 𝑅𝐿 decreases. This is due to the fact that, for the online
case, resources are returned back to the network upon expiry
of admitted requests, making the bandwidth resource usage
not as much constrained as the offline scenario which is
characterized by a permanent loading. The average AR values
of the algorithms are; 90.50%, 88.82%, 92.90%, 68.57%, and
84.82% for 𝑅𝐿, 𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑, 𝐵𝑤𝐺𝐴, 𝐺𝐴𝐴,and 𝐿𝐵𝐴

respectively.
From Fig. 9(b), 𝑅𝐿 provisions each request in less than

8.52 milliseconds, which is 70.3% faster than the alternative
𝐺𝑟𝑎𝑝ℎ − 𝑏𝑎𝑠𝑒𝑑 algorithm. The running time of 𝐺𝑟𝑎𝑝ℎ −
𝑏𝑎𝑠𝑒𝑑 decreases along the time due to a reduction in the num-
ber of feasible nodes for provisioning each virtual node of the
request. This results in a reduction in the number of candidate
nodes at each layer of the multi-layer graph, decreasing the
time-complexity for obtaining a mapping solution.

VI. CONCLUSION

This paper has addressed the problem of cost-effective
and resource-efficient deployment of service requests with the
possibility of sharing VNFs among multiple service requests,
and under multiple conflicting cost components, including:
resource fragmentation, VNF activation, energy consumption,
packet processing and traffic forwarding. This paper has
proposed a RL-based algorithm whose policy neural network
can be adopted for making deployment decisions for substrate
networks of different size, as long as that size is smaller
than the one used for training the neural network. From the
simulation results, the proposed algorithm has been found
to be optimal in terms of acceptance ratio, placement cost

17

0

50

100

150

200

250

300

350

10 20 30 40 50 60

C
o

s
t

No. of substrate nodes

RL Graph-based BwGA GAA LBA

(a) Average deployment cost

0

20

40

60

80

100

120

10 20 30 40 50 60

A
c

c
e

p
ta

n
c

e
 r

a
ti

o
 i

n
 %

No. of substrate nodes

RL Graph-based BwGA GAA LBA

(b) Average acceptance ratio

0

50

100

150

200

10 20 30 40 50 60

T
im

e
 (

m
s

)

No. of substrate nodes

RL Graph-based BwGA GAA LBA

(c) Average request provisioning time

Fig. 8. Experiment 3 in which the impact of substrate network size is analysed by varying the number substrate nodes from 10 to 60 considering synthetic
network topologies with the number of offline requests fixed at 200

0

10

20

30

40

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
1

0
0

0

1
2

0
0

0

C
o

s
t

Time units

RL Graph-based BwGA GAA LBA

(a) Average deployment cost

0

20

40

60

80

100

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
1

0
0

0

1
2

0
0

0
T

im
e

 (
m

s
)

Time units

RL Graph-based BwGA GAA LBA

(b) Average request provisioning time

0

30

60

90

120

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
1

0
0

0

1
2

0
0

0

A
c

c
e

p
ta

n
c

e
 r

a
ti

o
 i

n
 %

Time units

RL Graph-based BwGA GAA LBA

(c) Average acceptance ratio

Fig. 9. Experiment 4 analysing the online behaviour of algorithms considering 10 arrivals per 100 time units for a total of 12000 time units considering BIC

TABLE V
HIGHLIGHTS OF THE SIMULATION RESULTS

Performance metricsSimulation scenarios Algorithm AR Time Cost
Brut -1% +98.9% -14/%
Graph based +6% -4% +8%
BwGA +6% -89% +27%
GAA +26.6% -96.7% +33%

Performance with
respect to
optimal solution

LBA +21% -79.5% +8%
Graph based -2% +62.8% +20.7%,
BwGA -16% -64.8% +46.9%
GAA +21.9% -87.8% +64.7%Impact of request size

LBA +21.5% -95.5% +40.6%
Graph based -5% +86% 26.2%
BwGA +1% -98.8% 65.3%
GAA +30.4% -92.9% 34.2%

Impact of substrate
network size

LBA +25.4% -99.8% 58.7%

and request provisioning time. The algorithm results in a
performance similar to the brute-force algorithm in terms of
AR while executing in less than 98% of the time required by
the brute-force algorithm. In terms of service deployment cost,
the proposed algorithm obtains solutions which are within a
14% margin of the optimal one; and results in up to a 20%
and a 40% improvement in comparison with a state-of-the-
art algorithm and a set of algorithms that greedily target to
minimise only one cost component, respectively. Moreover, in
some scenarios, the proposed algorithm is found to provision
each request within up to 70% less time compared to a

state-of-the-art multi-layer graph based algorithm. Moreover,
the proposed algorithm has been found to be scalable under
changes in both network and request size, exhibiting good
generalized properties. Thanks to the intelligence of the pro-
posed algorithm, the above results have demonstrated that the
proposed algorithm is well suited for the deployment of delay
sensitive service requests under resource constrained networks,
and where the placement objective is jointly influenced by
multiple conflicting costs.

Traditional heuristic approaches target to solve optimisation
problems at the current time, without regarding the impact
of the taken decisions on the future network state and per-
formance. This is because, unlike AI based techniques, such
approaches are devoid of the intelligence necessary to infer
the long term impact of the different parameters influencing
the network performance. Aware that network and service
management problems are usually constrained by multiple
conflicting and sometimes dynamic parameters, artificial in-
telligence techniques, such as RL, are promising approaches
to be applied in this problem domain.

This work has considered the various service requests to
have fixed requirements in terms of node and link resources
throughout their lifetime. However, in practice, the resource
requirements of any service may experience temporal varia-
tions, making it necessary to scale up or down some of its
shared VNFs and/or migrate the service when such scaling

18

can not be performed. This will result in additional costs
related to VNF scaling to be considered, service migration
or service level agreement violation costs, among others,
which directly impact the net profit obtained by the service
provider. As part of our future work, we target to address the
deployment of SFCs with the appropriate elasticity behaviour
by exploiting the predictive capability of machine learning
techniques for making service deployment decisions that are
cognizant of future scaling and migration requirements of the
service requests.

REFERENCES

[1] B. Yi, X. Wang, and M. Huang, “A Generalized VNF Sharing Approach
for Service Scheduling,” IEEE Communications Letters, vol. 22, no. 1,
pp. 73–76, 2018.

[2] Y. Zhang, F. He, T. Sato, and E. Oki, “Network Service Scheduling with
Resource Sharing and Preemption,” IEEE Transactions on Network and
Service Management, vol. 17, no. 2, pp. 764–778, 2020.

[3] G. Kibalya, J. Serrat, J. L. Gorricho, R. Pasquini, H. Yao, and P. Zhang,
“A Reinforcement Learning Based Approach for 5G Network Slicing
across Multiple Domains,” in 15th International Conference on Network
and Service Management, CNSM 2019, 2019.

[4] A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines, “5G network
slicing using SDN and NFV: A survey of taxonomy, architectures and
future challenges,” Computer Networks, vol. 167, no. November, 2020.

[5] P. Kaliyammal Thiruvasagam, V. J. Kotagi, and C. S. R. Murthy, “The
More the Merrier: Enhancing Reliability of 5G Communication Services
With Guaranteed Delay,” IEEE Networking Letters, vol. 1, no. 2, pp.
52–55, 2019.

[6] A. Mohamad, “On Demonstrating the Gain of SFC Placement with VNF
Sharing at the Edge,” 2019.

[7] G. Sun, Z. Xu, H. Yu, X. Chen, V. Chang, and A. V. Vasilakos, “Low-
latency and Resource-efficient Service Function Chaining Orchestration
in Network Function Virtualization,” IEEE Internet of Things Journal,
vol. PP, no. c, pp. 1–1, 2019.

[8] G. Sun, Y. Li, D. Liao, and V. Chang, “Service function chain orchestra-
tion across multiple domains: A full mesh aggregation approach,” IEEE
Transactions on Network and Service Management, vol. 15, no. 3, pp.
1175–1191, 2018.

[9] W. Mao, L. Wang, J. Zhao, and Y. Xu, “Online Fault-tolerant VNF
Chain Placement: A Deep Reinforcement Learning Approach,” IFIP
Networking 2020 Conference and Workshops, Networking 2020, pp.
163–171, 2020.

[10] L. Qu, C. Assi, and K. Shaban, “Delay-Aware Scheduling and Resource
Optimization with Network Function Virtualization,” IEEE Transactions
on Communications, vol. 64, no. 9, pp. 3746–3758, 2016.

[11] D. Dietrich, A. Rizk, and P. Papadimitriou, “Multi-domain virtual
network embedding with limited information disclosure,” 2013 IFIP
Networking Conference, IFIP Networking 2013, vol. 12, no. 2, pp. 188–
201, 2013.

[12] ——, “Multi-Provider Virtual Network Embedding With Limited In-
formation Disclosure,” IEEE Transactions on Network and Service
Management, vol. 12, no. 2, pp. 188–201, 2015.

[13] D. Dietrich, A. Abujoda, A. Rizk, and P. Papadimitriou, “Multi-Provider
Service Chain Embedding With Nestor,” IEEE Transactions on Network
and Service Management, vol. 14, no. 1, pp. 91–105, 2017.

[14] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A.
Chan, “Multi-objective scheduling of micro-services for optimal service
function chains,” IEEE International Conference on Communications,
2017.

[15] G. Kibalya, J. Serrat, J.-l. Gorricho, J. Serugunda, and P. Zhang,
“A multi-stage graph based algorithm for survivable Service
Function Chain orchestration with backup resource sharing,” Computer
Communications, vol. 174, no. December 2020, pp. 42–60, 2021.
[Online]. Available: https://doi.org/10.1016/j.comcom.2021.04.008

[16] T. A. Q. Pham, Y. Hadjadj-aoul, and A. Outtagarts, “VNF-FG embed-
ding: A deep reinforcement learning approach,” IEEE Transactions on
Network and Service Management, pp. 1–10, 2019.

[17] B. Yang, Z. Xu, W. K. Chai, W. Liang, D. Tuncer, A. Galis, and
G. Pavlou, “Algorithms for fault-tolerant placement of stateful virtu-
alized network functions,” IEEE International Conference on Commu-
nications, vol. 2018-May, 2018.

[18] G. Yuan, Z. Xu, B. Yang, W. Liang, W. Koong, D. Tuncer,
A. Galis, G. Pavlou, and G. Wu, “Fault tolerant placement of
stateful VNFs and dynamic fault recovery in cloud networks,”
Computer Networks, vol. 166, p. 106953, 2020. [Online]. Available:
https://doi.org/10.1016/j.comnet.2019.106953

[19] D. N. Heo, S. Lange, H. G. Kim, and H. Choi, “Graph neural net-
work based service function chaining for automatic network control,”
APNOMS 2020 - 2020 21st Asia-Pacific Network Operations and
Management Symposium: Towards Service and Networking Intelligence
for Humanity, pp. 7–12, 2020.

[20] H. Guo, Y. Wang, Z. Li, X. Qiu, H. An, P. Yu, and N. Yuan, “Cost-aware
Placement and Chaining of Service Function Chain with VNF Instance
Sharing,” Proceedings of IEEE/IFIP Network Operations and Manage-
ment Symposium 2020: Management in the Age of Softwarization and
Artificial Intelligence, NOMS 2020, 2020.

[21] F. Malandrino, C. F. Chiasserini, G. Einziger, and G. Scalosub, “Re-
ducing service deployment cost through VNF sharing,” IEEE/ACM
Transactions on Networking, vol. 27, no. 6, pp. 2363–2376, 2019.

[22] A. Mohamad, “PSVShare : A Priority-based SFC placement with VNF
Sharing,” pp. 25–30, 2020.

[23] F. Malandrino and C.-f. Chiasserini, “Getting the Most Out of Your
VNFs : Flexible Assignment of Service Priorities in 5G,” pp. 1–9.

[24] T. Truong-huu, P. M. Mohan, and M. Gurusamy, “Service Chain
Embedding for Diversified 5G Slices With Virtual Network Function
Sharing,” vol. 23, no. 5, pp. 2019–2022, 2019.

[25] B. Yi, X. Wang, M. Huang, and A. Dong, “A multi-criteria decision
approach for minimizing the influence of VNF migration,” vol. 159, pp.
51–62, 2019.

[26] Y. Zhang, F. He, T. Sato, and E. Oki, “Optimization of Network Service
Scheduling with Resource Sharing and Preemption,” 2019.

[27] H. A. Alameddine, L. Qu, and C. Assi, “Scheduling service function
chains for ultra-low latency network services,” 2017 13th International
Conference on Network and Service Management, CNSM 2017, vol.
2018-Janua, pp. 1–9, 2017.

[28] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, O. Carlos, and
M. Bandeira, “Orchestrating Virtualized Network Functions,” vol. 13,
no. 4, pp. 725–739, 2016.

[29] H. Chai, J. Zhang, Z. Wang, J. Shi, and T. Huang, “A Parallel Place-
ment Approach for Service Function Chain Using Deep Reinforcement
Learning,” 2019 IEEE 5th International Conference on Computer and
Communications, ICCC 2019, pp. 2123–2128, 2019.

[30] Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, and J. Zhang,
“NFVdeep: Adaptive online service function chain deployment with
deep reinforcement learning,” Proceedings of the International Sympo-
sium on Quality of Service, IWQoS 2019, no. 1, 2019.

[31] M. Nakanoya, Y. Sato, and H. Shimonishi, “Environment-adaptive sizing
and placement of NFV service chains with accelerated reinforcement
learning,” 2019 IFIP/IEEE Symposium on Integrated Network and
Service Management, IM 2019, pp. 36–44, 2019.

[32] H. Xuan, X. Zhao, J. Fan, Y. Xue, F. Zhu, and Y. Li, “VNF Service
Chain Deployment Algorithm,” vol. 48, no. 1, 2021.

[33] R. Wang, J. Li, K. Wang, X. Liu, and X. Li, “Service function chaining in
NFV-enabled edge networks with natural actor-critic deep reinforcement
learning,” 2021 IEEE/CIC International Conference on Communications
in China, ICCC 2021, no. Iccc, pp. 1095–1100, 2021.

[34] S. Guo, Y. Qi, Y. Jin, W. Li, X. Qiu, and L. Meng, “Endogenous
Trusted DRL-Based Service Function Chain Orchestration for IoT,”
IEEE Transactions on Computers, vol. 71, no. 2, pp. 397–406, 2022.

[35] S. R. de Araújo Júnior and R. A. C. Bianchi, “A Model for Traffic For-
warding through Service Function Chaining using Deep Reinforcement
Learning Techniques,” pp. 619–630, 2021.

[36] A. Nouruzi, A. Zakeri, M. R. Javan, N. Mokari, R. Hussain, and A. S.
Kazmi, “Online Service Provisioning in NFV-enabled Networks Using
Deep Reinforcement Learning,” pp. 1–13, 2021. [Online]. Available:
http://arxiv.org/abs/2111.02209

[37] J. J. A. Esteves, A. Boubendir, F. Guillemin, and P. Sens, “A Heuris-
tically Assisted Deep Reinforcement Learning Approach for Network
Slice Placement,” IEEE Transactions on Network and Service Manage-
ment, vol. 4537, no. c, pp. 1–12, 2021.

[38] R. Amiri, H. Mehrpouyan, L. Fridman, R. K. Mallik, A. Nallanathan,
and D. Matolak, “A Machine Learning Approach for Power Allocation
in HetNets Considering QoS,” IEEE International Conference on Com-
munications, vol. 2018-May, 2018.

[39] S. R. Park and J. W. Lee, “A fully convolutional neural network for
speech enhancement,” Proceedings of the Annual Conference of the
International Speech Communication Association, INTERSPEECH, vol.
2017-Augus, no. 2, pp. 1993–1997, 2017.

19

[40] S. T. Arzo, D. Scotece, R. Bassoli, D. Barattini, F. Granelli, L. Foschini,
and F. H. P. Fitzek, “MSN: A Playground Framework for Design and
Evaluation of MicroServices-Based sdN Controller,” Journal of Network
and Systems Management, vol. 30, no. 1, pp. 1–31, 2022.

[41] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
F. Huici, and I. Nsdi, “ClickOS and the Art of Network Function
Virtualization This paper is included in the Proceedings of the,” 2014.

[42] G. Kibalya, J. Serrat, J. L. Gorricho, H. Yao, and P. Zhang,
“A novel dynamic programming inspired algorithm for embedding
of virtual networks in future networks,” Computer Networks,
vol. 179, no. May, p. 107349, 2020. [Online]. Available:
https://doi.org/10.1016/j.comnet.2020.107349

Godfrey Kibalya received a BSc. degree in
Telecommunications Engineering in 2010 from
Makerere University Uganda and a MSc. degree
in Telecommunications Engineering from the Uni-
versity of Trento, Italy. Currently, he is a Ph.D.
candidate at the Technical University of Catalonia
(UPC), Spain under the Department of Network
Engineering. His research interests include Network
function virtualization, and application of Artificial
Intelligence in network management. He also an
assistant lecturer at Kabale University, Uganda under

the Department of Electrical Engineering.

Joan Serrat-Fernández received the degree of
Telecommunication Engineer in 1977, and the Doc-
tor degree in Telecommunication Engineering in
1983, both from Universitat Politècnica de Catalunya
-UPC-. Currently he is Full Professor at UPC
where he has been involved in several collaborative
projects with different European research groups,
both through bilateral agreements or through par-
ticipation in European funded projects. His topics
of interest are in the field of autonomic networking
and service and network management.

Juan-Luis Gorricho received a Telecommunication
Engineering degree in 1993, and a Ph.D. degree in
1998, both of them from the Technical University of
Catalonia (UPC). Since 1994 he joined the Depart-
ment of Network Engineering at the UPC, as asso-
ciate professor since 2001. His most recent research
interests have been focused on the management of
resources for virtualized networks and functions,
cloud computing and software defined networks.

Peiying Zhang PEIYING ZHANG is currently
an Associate Professor with the College of Com-
puter Science and Technology, China University
of Petroleum (East China). He received his Ph.D.
in the School of Information and Communication
Engineering at University of Beijing University of
Posts and Telecommunications in 2019. He has pub-
lished multiple IEEE/ACM Trans./Journal/Magazine
papers since 2016, such as IEEE TVT, IEEE
TNSE, IEEE TNSM, IEEE TETC, IEEE Network,
IEEE Access, IEEE IoT-J, ACM TALLIP, COMPUT

COMMUN, IEEE COMMUN MAG, and etc. He served as the Technical
Program Committee of ISCIT 2016, ISCIT 2017, ISCIT 2018, ISCIT 2019,
Globecom 2019, COMNETSAT 2020, SoftIoT 2021, IWCMC- Satellite
2019, and IWCMC-Satellite 2020. His research interests include semantic
computing, future internet architecture, network virtualization, and artificial
intelligence for networking.

