6 research outputs found

    Combining stochastic process algebras and queueing networks for software architecture analysis

    Get PDF

    On the relations between Markov chain lumpability and reversibility

    Get PDF
    In the literature, the notions of lumpability and time reversibility for large Markov chains have been widely used to efficiently study the functional and non-functional properties of computer systems. In this paper we explore the relations among different definitions of lumpability (strong, exact and strict) and the notion of time-reversed Markov chain. Specifically, we prove that an exact lumping induces a strong lumping on the reversed Markov chain and a strict lumping holds both for the forward and the reversed processes. Based on these results we introduce the class of λρ-reversible Markov chains which combines the notions of lumping and time reversibility modulo state renaming. We show that the class of autoreversible processes, previously introduced in Marin and Rossi (Proceedings of the IEEE 21st international symposium on modeling, analysis and simulation of computer and telecommunication systems MASCOTS, pp. 151–160, 2013), is strictly contained in the class of λρ-reversible chains

    Studying the effects of adding spatiality to a process algebra model

    No full text
    We use NetLogo to create simulations of two models of disease transmission originally expressed in WSCCS. This allows us to introduce spatiality into the models and explore the consequences of having different contact structures among the agents. In previous work, mean field equations were derived from the WSCCS models, giving a description of the aggregate behaviour of the overall population of agents. These results turned out to differ from results obtained by another team using cellular automata models, which differ from process algebra by being inherently spatial. By using NetLogo we are able to explore whether spatiality, and resulting differences in the contact structures in the two kinds of models, are the reason for this different results. Our tentative conclusions, based at this point on informal observations of simulation results, are that space does indeed make a big difference. If space is ignored and individuals are allowed to mix randomly, then the simulations yield results that closely match the mean field equations, and consequently also match the associated global transmission terms (explained below). At the opposite extreme, if individuals can only contact their immediate neighbours, the simulation results are very different from the mean field equations (and also do not match the global transmission terms). These results are not surprising, and are consistent with other cellular automata-based approaches. We found that it was easy and convenient to implement and simulate the WSCCS models within NetLogo, and we recommend this approach to anyone wishing to explore the effects of introducing spatiality into a process algebra model

    Towards a Product Form Solution for Stochastic Process Algebras

    No full text
    corecore