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ABSTRACT
We propose an integrated approach to the functional and
performance analysis of Software Architectures (SAs) based
on Stochastic Process Algebras (SPAs) and Queueing Net-
works (QNs), in order to combine their main advantages:
formal techniques for the verification of functional proper-
ties of systems for SPAs, and efficient performance analysis
for QNs. We first introduce Æmilia, a SPA based archi-
tectural description language for the compositional, graph-
ical and hierarchical modeling of SAs, which is equipped
with suitable checks for the detection of architectural mis-
matches. Then we present a systematic approach to derive
QN models from Æmilia specifications. This is based on the
identification of three different classes of QN basic elements
– arrival processes, buffers, and service processes – and on
syntactic restrictions to be imposed to Æmilia specifications,
so that each architectural component directly falls into one
of the three classes. Although performance analysis could
be carried out directly on the Markov chain (MC) under-
lying an Æmilia specification, having a QN model allows
performance indices to be evaluated possibly by exact prod-
uct form solutions or by well known approximate methods.
Furthermore, unlike the underlying MC, the high level of
abstraction of the QN model should ease the interpretation
of the performance results at the architectural description
level.

1. INTRODUCTION
Software Architecture (SA) is an emerging field within

software engineering aiming at describing both the struc-
ture and the behavior of software systems at a high level
of abstraction [18, 17]. The static and behavioral descrip-
tions characterize, at an early stage of development, the ba-
sic design choices on the system under consideration, which
clearly influence the subsequent development and deploy-
ment phases. Appropriate languages and tools are then re-
quired, in order to support SA with a suitable formalization
of the architecture descriptions and the automatic analysis
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of their functional properties.
There is moreover a growing interest in quantitative anal-

ysis of software systems, and it has been recognized in the
last years that performance analysis should be integrated
in the software development life cycle since the early stages
(see, e.g., [20, 21]). In particular, SAs have been devised
as the appropriate design level to conduct early predictive
performance analysis, thus allowing for a choice among al-
ternative architectures on the basis of quantitative aspects.

In this paper we propose an integrated approach to the
functional and performance analysis of SAs based on Stochas-
tic Process Algebras (SPAs) and Queueing Networks (QNs).
The idea is to combine the main advantages of the two
frameworks: formal techniques for system specification and
verification of functional properties for SPAs, and efficient
performance analysis for QNs.

SPA (see, e.g., [11, 10, 6]) is a well known formal spec-
ification technique for concurrent and distributed systems.
Its main features, i.e. composability – which allows system
descriptions to be built in a modular and hierarchical way
– and abstraction – which allows the internal details of a
system description to be hidden at analysis time – make
SPA suited to work with at the architectural level of de-
sign. Compared to classical process algebra (see, e.g., [16]),
besides the purely functional aspects with SPA it is possi-
ble to express activity durations by using random variables.
In addition to functional verification (e.g. via model check-
ing [7]), this permits the quantitative analysis of the mod-
eled system through the construction and solution of the
underlying stochastic process.

QNs (see, e.g., [15, 14, 13]) have been widely applied as
system performance models. Classical QNs represent re-
source sharing systems and can be solved by efficient algo-
rithms, which do not require the construction of the under-
lying stochastic process. Moreover, extensions of classical
QNs have been introduced in order to represent other inter-
esting features of real systems, such as synchronization and
concurrency constraints, finite capacity queue and memory
constraints, and simultaneous resource possession. Some ap-
proximate solution techniques have been defined for several
types of extended QNs.

The presentation of our integrated approach starts with
the introduction of Æmilia, an architectural description lan-
guage (ADL) based on an expressive SPA called EMPAgr [6].
Æmilia provides a formal framework for the compositional,
graphical, and hierarchical modeling of software systems,
which is equipped with some checks inspired by [3, 4] for the
detection of possible architectural mismatches. The timing
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of the durational actions is mainly expressed by exponential
random variables, so that the underlying stochastic process
yields a Markov Chain (MC). Although performance anal-
ysis could be carried on directly by Æmilia, this requires
the construction and solution of the underlying MC, whose
state space explosion soon makes the analysis unfeasible.
Moreover the MC is a flat model that does not reflect the
structure of the specified SA, thus hampering the interpreta-
tion of the performance analysis results at the architectural
description level.

In order to overcome these two drawbacks related to the
efficient evaluation of performance indices and with the pos-
sibility of getting some feedback at the architectural de-
scription level in case of poor performance, we propose an
approach to derive QN models from Æmilia specifications.
More precisely, we define a mapping from Æmilia to QNs
based on the identification of three different classes of QN
basic elements – arrival processes, buffers, and service pro-
cesses – and on some restrictions to the Æmilia specifica-
tions, so that each architectural component directly falls
into one of the three classes. Such restrictions can easily be
verified at the syntax level. Our translation of Æmilia spec-
ifications leads to classical open or closed QNs, with general
(or phase-type) arrival and service time distributions and
FIFO buffers with finite or infinite capacity. This allows us
to apply efficient performance evaluation methods possibly
by exact product form solutions or by well known approx-
imate methods. Furthermore, the high level of abstraction
of the QN model should ease the interpretation of the per-
formance results at the architectural description level.

We illustrate an example of application of the combined
approach to a compiler system. More precisely, we consider
three different SAs allowing the compilation phases to work
sequentially, in a pipeline fashion, and in parallel, respec-
tively. We present their Æmilia graphical representations
and formal specifications, and the mapping to the corre-
sponding QN models. The MC models associated with the
Æmilia specification of these three SAs are infinite state and
require numeric approximate solutions. On the other hand,
the translation of the Æmilia specifications leads to simple
QN models admitting either product form or approximate
solutions. The SAs modeling the three variants of the com-
piler system have been already presented in [1], where the
authors propose a methodology to derive a QN model from
a labeled transition system describing the behavior of a SA.
The QN models obtained for the three considered SAs by us-
ing the methodology in [1] and the ones obtained by using
our mapping coincide. Using transition systems as a SA for-
mal specification model allows the independence from any
specific architectural description language. In our approach,
however, by considering Æmilia as specification language we
can define a direct mapping to QNs that avoids the explicit
construction of the underlying transition system.

The paper is organized as follows. In Sect. 2 we introduce
syntax, semantics, and architectural checks for Æmilia. In
Sect. 3 we describe a QN semantics for Æmilia by provid-
ing a mapping from Æmilia specifications to QN models.
The example about the pipeline and concurrent SAs for the
compiler system are described in Sect. 4 by providing their
Æmilia graphical representations and formal specifications
and by showing their corresponding QNs. Concluding re-
marks about related and future work are given in Sect. 5.

2. ÆMILIA: A SPA BASED ADL
In this section we introduce the syntax, the semantics,

and the architectural checks for Æmilia, a performance ori-
ented ADL. Æmilia is the result of the integration of two
formalisms: PADL [3, 4] and EMPAgr [6]. 1 The former
is a process algebra based ADL equipped with some archi-
tectural checks for the detection of deadlock related archi-
tectural mismatches. The latter is an expressive process
algebra allowing for the performance modeling and analysis
of concurrent and distributed systems.

In essence, with Æmilia the description of a complex sys-
tem can be built compositionally and hierachically through
a graphical support. First, we have to define the behavior of
the types of components in the system and their interactions
with the other components. The functional and performance
aspects of the behavior are described through a family of
EMPAgr terms, while the interactions are described through
actions occurring in such terms. Then, we have to declare
the instances of each type of component present in the sys-
tem and the way in which their interactions are attached
to each other in order to allow the instances to communi-
cate. For the sake of ease, this can be accomplished with
the support of a flow graph [16], where the nodes represent
the component instances and the links represent the inter-
action attachments. Whenever some component is in turn
made out of several subcomponents, the procedure is sim-
ply repeated at the subcomponent level. Afterwards, the
consistency of the attachments w.r.t. deadlock freedom (in
case the building components are deadlock free) and the
completeness of the performance related information is ver-
ified through some architectural checks. Finally, the whole
behavior of the Æmilia description is a family of EMPAgr

terms automatically obtained by composing in parallel the
behavior of the declared instances according to the speci-
fied attachments. From the whole behavior, state transition
based models can be automatically derived on which func-
tional verification and performance evaluation can be carried
out.

2.1 Syntax
Æmilia is based on the stochastic process algebra EMPAgr,

whose syntax is briefly recalled below.

Definition 2.1. The set of terms of EMPAgr is gener-
ated by the following syntax

E ::= 0 | <a, λ̃>.E | E/L | E[ϕ] | E + E | E ‖S E | A
where a belongs to a set AType of action types including a
distinguished action τ for unobservable activities, λ̃ belongs
to a set ARate of action rates including generative expo-
nential rates λ ∈ RI +, immediate rates of the form ∞l,w

where l ∈ NI + is a generative priority level and w ∈ RI + is a
generative weight, and passive rates of the form ∗l,w where
l ∈ NI + is a reactive priority level and w ∈ RI + is a reactive
weight, 2 L, S ⊆ AType−{τ}, ϕ belongs to a set ATRFun of
action type relabeling functions preserving observability (i.e.,
ϕ−1(τ) = {τ}), and A belongs to a set Const of constants
each possessing a (possibly recursive) defining equation of

the form A
∆
= E. We denote by Act the set of actions and

by G the set of closed and guarded terms.

1An earlier, not fully integrated version of Æmilia, called
ÆMPA, can be found in [2].
2If omitted, the value of a priority level or weight is intended
to be 1.



In the syntax above, “0” is the term that cannot execute
any action. Term <a, λ̃>.E can execute action <a, λ̃> and
then behaves as term E. Term E/L behaves as term E with

each executed action <a, λ̃> turned into <τ, λ̃> whenever
a ∈ L. Term E[ϕ] behaves as term E with each executed

action <a, λ̃> turned into <ϕ(a), λ̃>. Term E1 + E2 be-
haves as either term E1 or term E2 depending on whether
an action of E1 or an action of E2 is executed. If the choice
involves exponentially timed actions, the race policy applies
and each involved action is selected with a probability pro-
portional to its rate. If the choice involves immediate ac-
tions, they take precedence over exponentially timed ones
and the generative preselection policy applies: each involved
immediate action with the highest priority level is selected
with a probability proportional to its weight. If the choice
involves passive actions, the reactive preselection policy ap-
plies: for every action type, each involved passive action of
that type with the highest priority level is selected with a
probability proportional to its weight (the choice among in-
volved passive actions of different types is nondeterministic).
Term E1 ‖S E2 asynchronously executes actions of E1 or E2

not belonging to S and synchronously executes equal actions
of E1 and E2 belonging to S provided that one of them is
passive. In case of synchronization, the resulting action has
the same type as the two original actions, while its rate is
given by the rate of the original nonpassive action multiplied
by the reactive execution probability of the original passive
action (or is passive in case of synchronization of two pas-
sive actions). The action prefix operator and the alternative
composition operator are called dynamic operators, whereas
the hiding operator, the relabeling operator, and the paral-
lel composition operator are called static operators. A term
is called sequential if it is composed of dynamic operators
only.

A description in Æmilia represents an architectural type.
The description of an architectural type starts with the name
of the architectural type and its numeric parameters, which
often are values for exponential rates and weights. Each ar-
chitectural type is defined as a function of its architectural
element types (AETs) and its architectural topology. An
AET is defined as a function of its behavior, specified either
as a family of EMPAgr sequential terms or through an in-
vocation of a previously defined architectural type, and its
interactions, specified as a set of EMPAgr action types occur-
ring in the behavior that act as interfaces for the AET. The
architectural topology is specified through the declaration of
a set of architectural element instances (AEIs) representing
the system components, a set of architectural (as opposed
to local) interactions given by some interactions of the AEIs
that act as interfaces for the whole architectural type, and
a set of directed architectural attachments among the inter-
actions of the AEIs. Every interaction is declared to be an
input interaction or an output interaction and the attach-
ments must respect such a classification: every attachment
must involve an output interaction and an input interaction
of two different AEIs. An AEI can have different types of in-
teractions (input/output, local/architectural); it must have
at least one local interaction. Every local interaction must
be involved in at least one attachment, while every architec-
tural interaction must not be involved in any attachment. In
order to allow several AEIs to synchronize, every local inter-
action can be involved in several attachments provided that
no autosynchronization arises, i.e. no chain of attachments

is created that starts from a local interaction of an AEI and
terminates on a local interaction of the same AEI. On the
performance side, we have two additional requirements. For
the sake of modeling consistency, all the occurrences of an
action type in the behavior of an AET must have the same
kind of rate (exponential, or immediate with the same pri-
ority level, or passive with the same priority level). In order
to comply with the synchronization discipline of EMPAgr,
every chain of attachments must contain at most one inter-
action whose associated rate is exponential or immediate.

We show in Table 1 an Æmilia textual description for an
architectural type representing a compiler system. We as-
sume that programs to be compiled arrive according to a
Poisson process, that the compiler examines one source pro-
gram at a time taken from a FIFO buffer, that every compi-
lation phase (lexical analysis, parsing, type checking, opti-
mization, code generation) has an exponentially distributed
duration, and that the optimization is carried out with a
certain probability. The same compiler system is depicted
in Fig. 1 through the Æmilia graphical notation. In a flow
graph, the boxes denote the AEIs, the black circles denote
the local interactions, the white squares denote the archi-
tectural interactions, and the directed edges denote the at-
tachments.

2.2 Translation Semantics
The semantics of an Æmilia specification is given by trans-

lation into EMPAgr. Since the semantics for EMPAgr yields
state transition based models, an Æmilia specification is
eventually equipped with such models, which can be used
to assess functional properties, via model checking [7] and
equivalence/preorder checking [8], as well as performance
properties, via Markovian/simulation analysis, with the tool
TwoTowers [5]. The semantics of E ∈ G is a state transi-
tion graph I[[E]] called the integrated semantic model, whose
states are represented by terms and whose transitions are la-
beled with actions. After pruning the lower priority transi-
tions from I[[E]], it is possible to derive a functional semantic
model F [[E]] by removing action rates from the transitions,
and a performance semantic model M[[E]] by essentially re-
moving action types from the transitions. M[[E]], which is
defined only if I[[E]] has no passive transitions, is a continu-
ous time or a discrete time MC depending on whether I[[E]]
has exponentially timed transitions or not.

This section provides the detailed definition of the trans-
lation semantics from Æmilia to EMPAgr; it can be safely
skipped by the reader interested in the queueing network
semantics only. The translation semantics proceeds in two
steps. In the first step, the semantics of all the instances of
each AET is defined to be the behavior of the AET projected
onto its interactions. Such a projected behavior is obtained
from the family of sequential EMPAgr terms representing
the behavior of the AET by applying a hiding operator on
all the actions that are not interactions. In this way, we
abstract from all the internal details of the behavior of the
instances of the AET.

Definition 2.2. Let C be an AET with behavior E and
interaction set IS. The semantics of C and its instances is
defined by [[C]] = E/(AType − {τ} − IS).

For our compiler system example we have

[[ProgramGeneratorT ]] = [[PG]] = ProgramGenerator/
{generate program}



archi type CompilerSystem(exp rate λprog, µlexer, µparser, µchecker, µoptimizer, µgenerator;
weight proboptimizer)

archi elem types

elem type ProgramGeneratorT (exp rate λ)

behavior ProgramGenerator
∆
= <generate program, λ>.

<deliver program,∞>.ProgramGenerator
interactions output deliver program

elem type ProgramBufferT

behavior ProgramBuffer0
∆
= <get program, ∗>.ProgramBuffer1

ProgramBuffer i
∆
= <get program, ∗>.ProgramBuffer i+1 +

<put program, ∗>.ProgramBuffer i−1 i ≥ 1
interactions input get program

output put program

elem type CompilerT (exp rate µl, µp, µc, µo, µg;
weight po)

behavior Compiler
∆
= <select program,∞>.<recognize tokens, µl>.<parse phrases, µp>.

<check phrases, µc>.(<opt yes,∞1,po>.<optimize, µo>.
<generate code, µg>.Compiler +

<opt no,∞1,1−po>.
<generate code, µg>.Compiler)

interactions input select program

archi topology

archi elem instances PG : ProgramGeneratorT (λprog)
PB : ProgramBufferT
C : CompilerT (µlexer, µparser, µchecker, µoptimizer, µgenerator; proboptimizer)

archi interactions

archi attachments from PG.deliver program to PB .get program
from PB .put program to C.select program

end

Table 1: Textual description of CompilerSystem

PG
put_programdeliver_program get_program

CPB
select_program

Figure 1: Flow graph of CompilerSystem

[[ProgramBufferT ]] = [[PB ]] = ProgramBuffer0

[[CompilerT ]] = [[C]] = Compiler/
{recognize tokens,
parse phrases,
check phrases,
opt yes, opt no,
optimize,
generate code}

In the second step, the semantics of an architectural type
is obtained by composing in parallel the semantics of its
AEIs according to the specified attachments, possibly after
relabeling to the same type the interactions whose types are
involved in the same chain of attachments. For our compiler
system example we have

[[CompilerSystem]] = [[PG]][deliver program 7→ a] ‖{a}
[[PB ]][get program 7→ a,

put program 7→ b] ‖{b}
[[C]][select program 7→ b]

In order to define the semantics of an arbitrary architec-
tural type, first we have to determine the number of fresh
action types that we need in order to make the AEIs inter-
act according to the attachments. To achieve that, we have
to single out all the chains of attachments, as each of them
corresponds to a maximal set of synchronizing interactions,
all of which must therefore be relabeled to the same fresh ac-
tion. Given an architectural type A, let C1, . . . , Cn be some
of its AEIs and let i, j, k range over {1, . . . , n}. For each AEI
Ci, let ISCi be the set of its interactions, AICi ⊆ ISCi be
the set of its interactions declared as being architectural,
and LICi;C1,...,Cn ⊆ ISCi −AICi be the set of its local in-
teractions attached to local interactions of C1, . . . , Cn. We
say that a set LI of local interactions of C1, . . . , Cn is con-
nected if it is maximal w.r.t. the following property: for
each pair (Ci.a1, Cj .a2) of interactions of LI, either there
is an attachment between them, or there exists an interac-
tion Ck.a3 of LI such that there is an attachment between



Ci.a1 and Ck.a3 and Ck.a3 is connected to Cj .a2. Once we
have identified the connected sets of local interactions, we
construct a set S(C1, . . . , Cn) composed of as many fresh ac-
tion types as there are connected sets of local interactions.
Then we relabel all the local interactions in the same con-
nected set to the same fresh action type. This is achieved by
defining a set of injective action type relabeling functions of
the form ϕCi;C1,...,Cn : LICi;C1,...,Cn −→ S(C1, . . . , Cn) in
such a way that ϕCi;C1,...,Cn(a1) = ϕCj ;C1,...,Cn(a2) iff Ci.a1

and Cj .a2 belong to the same connected set. Based on these
relabeling functions that prepare the AEIs to interact, we
now define two semantics for Ci restricted to its local in-
teractions attached to local interactions of C1, . . . , Cn. The
closed semantics will be used in the definition of the architec-
tural checks. It abstracts from the architectural interactions
of Ci as these must not come into play when checking for
deadlock related architectural mismatches. Since the open
semantics will be used instead in the definition of the se-
mantics of an architectural type, it does not abstract from
the architectural interactions of Ci as these must be observ-
able. If Ci has no architectural interactions, then the two
semantics coincide.

Definition 2.3. The closed and the open interacting se-
mantics of Ci restricted to C1, . . . , Cn are defined by

[[Ci]]
c
C1,...,Cn

= [[Ci]]/(AType − {τ} − LICi;C1,...,Cn)
[ϕCi;C1,...,Cn ]

[[Ci]]
o
C1,...,Cn

= [[Ci]]/(AType − {τ} − LAICi;C1,...,Cn)
[ϕCi;C1,...,Cn ]

where LAICi;C1,...,Cn = LICi;C1,...,Cn ∪ AICi .

If we compare Def. 2.2 and Def. 2.3, we observe that the lat-
ter gives rise to a further projection on the local interactions
attached to local interactions of C1, . . . , Cn and relabel such
local interactions in order to make it possible the synchro-
nization among C1, . . . , Cn. Finally, we define the closed
and the open interacting semantics of C1, . . . , Cn by putting
in parallel the closed and the open interacting semantics of
each of the considered AEIs, respectively. To do that, we
need to define the synchronization sets. Let us preliminar-
ily define for each AEI and pair of AEIs in C1, . . . , Cn the
subset of fresh action types to which their local interactions
are relabeled:

S(Ci; C1, . . . , Cn) = ϕCi;C1,...,Cn(LICi;C1,...,Cn)
S(Ci, Cj ; C1, . . . , Cn) = S(Ci; C1, . . . , Cn) ∩

S(Cj ; C1, . . . , Cn)
Recalled that the parallel composition operator is left as-
sociative, the synchronization set between the interacting
semantics of C1 and C2 is given by S(C1, C2; C1, . . . , Cn),
the synchronization set between the interacting semantics
of C2 and C3 is given by the union of S(C1, C3; C1, . . . , Cn)
and S(C2, C3; C1, . . . , Cn), and so on.

Definition 2.4. The closed and the open interacting se-
mantics of C1, . . . , Cn are defined by
[[C1, . . . , Cn]]c = [[C1]]

c
C1,...,Cn

‖S(C1,C2;C1,...,Cn)

[[C2]]
c
C1,...,Cn

‖∪2
i=1S(Ci,C3;C1,...,Cn) . . .

. . . ‖∪n−1
i=1 S(Ci,Cn;C1,...,Cn)

[[Cn]]cC1,...,Cn

[[C1, . . . , Cn]]o = [[C1]]
o
C1,...,Cn

‖S(C1,C2;C1,...,Cn)

[[C2]]
o
C1,...,Cn

‖∪2
i=1S(Ci,C3;C1,...,Cn) . . .

. . . ‖∪n−1
i=1 S(Ci,Cn;C1,...,Cn)

[[Cn]]oC1,...,Cn

Definition 2.5. The semantics of an architectural type
A with AEIs C1, . . . , Cn is [[A]] = [[C1, . . . , Cn]]o.

2.3 Architectural Checks
Æmilia is equipped with some architectural checks that

the designer can use to verify the well formedness of the
architectural types and, in case a mismatch is detected, to
identify the components that cause it. Most of such checks
are based on the weak bisimulation equivalence [16], denoted
≈B, which captures the ability of the integrated semantic
models of two terms to simulate each other behaviors up to
τ actions when ignoring action rates.

This section provides the detailed description of the ar-
chitectural checks; it can be safely skipped by the reader
interested in the queueing network semantics only. The first
two checks, which are a variant of two checks defined for
PADL, take care of verifying whether the deadlock free AEIs
of an architectural type fit together well, i.e. do not lead to
system blocks. The first check (compatibility) is concerned
with architectural types whose topology is acyclic. For an
acyclic architectural type, if we take an AEI K and we con-
sider all the AEIs C1, . . . , Cn attached to it, we can observe
that they form a star topology whose center is K, as the
absence of cycles prevents any two AEIs among C1, . . . , Cn

from communicating via an AEI different from K. It can
easily be recognized that an acyclic architectural type is just
a composition of star topologies. In the case of PADL, an
efficient compatibility check based on the weak bisimula-
tion equivalence ≈B ensures the absence of deadlock within
a star topology whose center K is deadlock free, and this
check scales to the whole acyclic architectural type. The
basic condition to check is that every Ci is compatible with
K, i.e. the parallel composition of their closed interacting
semantics is weakly bisimulation equivalent to the closed in-
teracting semantics of K itself. Intuitively, this means that
attaching Ci to K does not alter the behavior of K, i.e. K
is designed in such a way that it suitably coordinates with
Ci.

The compatibility result for PADL stems from the fact
that ≈B, besides preserving deadlock freedom, is a congru-
ence for the static operators of a classical process algebra.
In order to get a similar result in the framework of Æmilia,
where priorities come into play, we observe that ≈B still is a
congruence for the static operators when applied to the inte-
grated semantics for EMPAgr, because this semantics retains
the lower priority transitions. However, to make sure that
no deadlock arises, we have to get rid of lower priority tran-
sitions, i.e. we have to reason on the functional semantics
of an Æmilia description. Here deadlocks can actually arise
in the presence of choices among nonpassive actions hav-
ing different priority levels within the behavior of an AEI.
The reason is that, when we consider the AEI in isolation,
the functional semantics of the AEI contains only the tran-
sitions related to the highest priority actions occurring in
the choices. Instead, the functional semantics of the AEI in
parallel with an attached AEI may expose some transitions
related to lower priority actions occurring in the choices,
as the highest priority ones may be prevented from being
executed in the case they are interactions due to some syn-
chronization constraint. In order to be able to define a com-
positional compatibility check on the functional semantics,
it suffices to assume that every sequential EMPAgr term rep-
resenting the behavior of an AEI is equally prioritized. This
means that, in every alternative composition of the formPn

h=1 <ah, λ̃h>.Eh occurring in the behavior of an AEI:



• the initial nonpassive actions are all either exponential
or immediate with the same priority level;

• every initial passive interaction can synchronize with
a nonpassive interaction of another AEI whose rate is
of the same kind as the rates of the initial nonpassive
actions.

The constraint above can simply be checked at the syntax
level (no state space construction is required).

Definition 2.6. Given an acyclic architectural type, let
C1, . . . , Cn be the AEIs attached to AEI K. Ci is compatible
with K iff [[K]]cK,C1,...,Cn

‖S(K;K,C1,...,Cn) [[Ci]]
c
K,C1,...,Cn

≈B

[[K]]cK,C1,...,Cn
.

Theorem 2.7. Given an acyclic architectural type, let
C1, . . . , Cn be the AEIs attached to AEI K. If the behavior
of K, C1, . . . , Cn is equally prioritized, the functional seman-
tics of [[K]]cK,C1,...,Cn

is deadlock free, and Ci is compatible
with K for all i = 1, . . . , n, then the functional semantics of

[[K; C1, . . . , Cn]] = [[K]]cK,C1,...,Cn
‖S(K;K,C1,...,Cn)

[[C1]]
c
K,C1,...,Cn

‖S(K;K,C1,...,Cn) . . .
. . . ‖S(K;K,C1,...,Cn) [[Cn]]cK,C1,...,Cn

is deadlock free.

Corollary 2.8. Given an acyclic architectural type, if
the behavior of each AET is equally prioritized, the func-
tional semantics of each AET with the architectural interac-
tions being hidden is deadlock free, and every AEI is com-
patible with each AEI attached to it, then the functional se-
mantics of the architectural type is deadlock free.

Since the compatibility check is not sufficient for cyclic ar-
chitectural types, the second check (interoperability) deals
with cycles. In the case of PADL, a suitable interoperability
check based on ≈B ensures the absence of deadlock within a
cycle C1, . . . , Cn of AEIs in the case that at least one of such
AEIs is deadlock free. The basic condition to check is that
at least one deadlock free Ci interoperates with the other
AEIs in the cycle, i.e. the parallel composition of the closed
interacting semantics of the AEIs in the cycle projected on
the interactions with Ci only is weakly bisimulation equiv-
alent to the closed interacting semantics of Ci. Intuitively,
this means that inserting Ci into the cycle does not alter the
behavior of Ci, i.e. that the behavior of the cycle assumed
by Ci matches the actual behavior of the cycle.

Definition 2.9. Given an architectural type, let C1, . . . ,
Cn be AEIs forming a cycle. Ci interoperates with C1, . . . ,
Ci−1, Ci+1, . . . , Cn iff [[C1, . . . , Cn]]c/(AType − {τ} − S(Ci;
C1, . . . , Cn)) ≈B [[Ci]]

c
C1,...,Cn

.

Theorem 2.10. Given an architectural type, let C1, . . . ,
Cn be AEIs forming a cycle. If the behavior of C1, . . . , Cn

is equally prioritized, and there exists Ci such that the func-
tional semantics of [[Ci]]

c
C1,...,Cn

is deadlock free and Ci in-
teroperates with C1, . . . , Ci−1, Ci+1, . . . , Cn, then the func-
tional semantics of [[C1, . . . , Cn]]c is deadlock free.

On the performance side, we introduce for Æmilia a third
check to detect architectural mismatches resulting in perfor-
mance underspecification. This check (performance closure)
ensures that the performance semantic model underlying an
architectural type exists in the form of a continuous or dis-
crete time MC.

Definition 2.11. An architectural type A is performance
closed iff I[[[[A]]]] has no passive transitions.

Theorem 2.12. An architectural type A is performance
closed iff no AET behavior contains a passive action whose
type is not an interaction, and every connected set of local
interactions contains one interaction whose associated rate
is exponential or immediate.

An Æmilia description represents a family of software ar-
chitectures called an architectural type. All the members
of the family must have the same observable functional be-
havior and topology, while the internal behavior and the
performance characteristics can vary. An instance of an ar-
chitectural type can be obtained by invoking the architec-
tural type and passing actual AETs preserving the observ-
able functional behavior of the formal AETs, actual names
for the architectural interactions, and actual values for the
numeric parameters. Similarly to PADL, Æmilia is equipped
with an efficient, ≈B based check to verify whether an archi-
tectural type invocation conforms to an architectural type
definition, in the sense that the architectural type invocation
and the architectural type definition have the same observ-
able semantics up to some relabeling. This ensures that
all the correct instances of an architectural type possess
the same compatibility, interoperability, and performance
closure properties. The Æmilia conformity check actually
strengthens the PADL one, since it additionally requires the
rate preservation between corresponding interactions of ac-
tual and formal AETs.

Definition 2.13. Let A(C′1, . . . , C′m; a′1, . . . , a
′
l; v

′
1, . . . , v

′
h)

be an invocation of the architectural type A defined with
formal AETs C1, . . . , Cm, formal architectural interactions
a1, . . . , al, and formal numeric parameters v1, . . . , vh. C′i
conforms to Ci iff there exist an injective relabeling func-
tion ϕ′i for the interactions of C′i and an injective relabeling
function ϕi for the interactions of Ci such that

[[C′i]][ϕ′i] ≈B [[Ci]]{v′1/v1, . . . , v
′
h/vh}[ϕi]

where the curly braces enclose a syntactical substitution and
the interactions equally relabeled by ϕ′i and ϕi occur with the
same kind of rate in the behavior of both C′i and Ci.

Definition 2.14. Let A(C′1, . . . , C′m; a′1, . . . , a
′
l; v

′
1, . . . , v

′
h)

be an invocation of the architectural type A defined with
formal AETs C1, . . . , Cm, formal architectural interactions
a1, . . . , al, and formal numeric parameters v1, . . . , vh. If C′i
conforms to Ci for all i = 1, . . . , m, then the semantics of
the architectural type invocation is defined by

[[A(C′1, . . . , C′m; a′1, . . . , a
′
l; v

′
1, . . . , v

′
h)]] =

[[A]]{v′1/v1, . . . , v
′
h/vh}[a1 7→ a′1, . . . , al 7→ a′l]

Theorem 2.15. Let A(C′1, . . . , C′m; a′1, . . . , a
′
l; v

′
1, . . . , v

′
h) be

an invocation of the architectural type A defined with formal
AETs C1, . . . , Cm, formal architectural interactions a1, . . . , al,
and formal numeric parameters v1, . . . , vh. Let C′1, . . . , C

′
n

be the AEIs of the architectural type invocation. If C′i con-
forms to Ci for all i = 1, . . . , m, then there exist an injective
relabeling function ϕ′ for the interactions of the architectural
type invocation and a relabeling function ϕ for the interac-
tions of the architectural type definition, with ϕ being injec-
tive at least on the local interactions, such that

[[C′1, . . . , C
′
n]]o[ϕ′] ≈B [[A]]{v′1/v1, . . . , v

′
h/vh}[ϕ]



where the interactions equally relabeled by ϕ′ and ϕ occur
with the same kind of rate in the semantics of both the ar-
chitectural type invocation and definition.

Corollary 2.16. Let A(C′1, . . . , C′m; a′1, . . . , a
′
l; v

′
1, . . . , v

′
h)

be an invocation of the architectural type A defined with
formal AETs C1, . . . , Cm, formal architectural interactions
a1, . . . , al, and formal numeric parameters v1, . . . , vh. If,
for all i = 1, . . . , m, C′i conforms to Ci, C′i is equally prior-
itized iff so is Ci, and C′i contains in its behavior a passive
action whose type is not an interaction iff so does Ci, then
the architectural type invocation and the architectural type
definition have the same compatibility, interoperability and
performance closure properties.

The proofs of the results presented in this section are simple
reworking of those for PADL.

3. A QUEUEING NETWORK SEMANTICS
FOR ÆMILIA

As seen in the previous section, each Æmilia description
of a performance closed architectural type is provided with
a MC model on which we can compute the performance
metrics for the system under consideration. Unfortunately,
such a MC model has two drawbacks. First, it suffers from
the state space explosion problem, i.e. the number of states
of the MC grows exponentially with the number of AEIs.
Second, it is a flat model, i.e. it does not keep track of the
architectural structure, thus hampering altogether the in-
terpretation of the performance figures at the architectural
level, and in particular the identification of the AEIs respon-
sible for poor performance.

In order to overcome these two problems related to the
efficient computation of performance figures and their inter-
pretation on the architectural description, in this section we
provide a mapping from Æmilia to QNs. The reason why
we consider QNs as target model for the mapping is that
they are endowed with efficient solution techniques that do
not require the construction of the underlying state space,
and that they preserve the structure of the system under
study. The basic idea underlying this mapping is to iden-
tify three classes of QN basic elements – arrival processes,
buffers, and service processes – and impose some restrictions
on the syntax of the AETs, so that each of their instances
exactly falls into one of the three classes. The mapping is
then accomplished by translating each AEI into the corre-
sponding QN basic element and composing the QN basic
elements according to the attachments.

3.1 QN Basic Elements
An arrival process is a generator of requests of a certain

type, whose generation times follow a certain phase type dis-
tribution (which is an exponential distribution in the sim-
plest case). Algebraically, an arrival process is composed
of several exponentially timed and immediate actions repre-
senting the various phases of the generation, followed by an
immediate action representing the arrival of the request at a
buffer or a service process. Below is an example of behavior
of an AET that is an exponential arrival process:

Arrival
∆
= <generate, λ>.<deliver ,∞>.Arrival

where deliver is an output interaction.
A buffer is a repository of requests of different types that

are waiting to be served. Algebraically, a buffer is composed

only of passive actions representing the arrival or the depar-
ture of requests according to a certain discipline, where ac-
tions concerned with different types of requests are distinct.
Below is an example of behavior of an AET that is a buffer
with n positions for a single type of requests, following a
FIFO discipline on the departure side:

Queue0
∆
= <arrive, ∗>.Queue1

Queuei
∆
= <arrive, ∗>.Queuei+1+

<depart , ∗>.Queuei−1, 0 < i < n

Queuen
∆
= <depart , ∗>.Queuen−1

where arrive is an input interaction whereas depart is an
output interaction.

A service process is a server for requests of different types
that are served one at a time, whose service times follow
a certain phase type distribution. Algebraically, a service
process is composed of a choice among several immediate
actions representing the selection from some buffers of the
next request to be served, followed by several exponentially
timed and immediate actions representing the various phases
of the service, possibly followed by an immediate action rep-
resenting the leave of the served request. Below is an exam-
ple of behavior of an AET that is an exponential service
process for a single type of requests:

Server
∆
= <select ,∞>.<serve, µ>.<leave,∞>.Server

where select is an input interaction whereas leave is an out-
put interaction. Since a service process may represent a
server within a system with no buffer capacity, we also admit
the case in which the algebraic description of the service pro-
cess starts with a choice among several passive actions rep-
resenting the selection from some arrival/service processes
of the next request to be served. In such a case, the term
above should be changed as follows:

Server
∆
= <select , ∗>.<serve, µ>.<leave,∞>.Server

As can be noted, exponentially timed actions are used to
model the generation and service times for the requests. Im-
mediate actions are used to model the output of the arrival
processes, the input of the service processes through possi-
ble selections, the possible selection among parallel phases
within the arrival and service processes, and the possible
output of the service processes. Finally, passive actions are
used to model the input and the output of the buffers and
the input of the service processes whenever they are included
in systems with no buffer capacity.

The graphical representation of the three classes of QN
basic elements is shown in Fig. 2 for the examples considered
above. Their graphical representation is consistent with the
usual graphical representation adopted for QNs.

3.2 Æmilia Syntax Restrictions
Given the three classes of QN basic elements identified

above, we have to make sure that every AET described in
Æmilia falls into one of the three classes. Recalled that an
AET models a sequential software component running on
a single computational resource, we impose the following
syntax restrictions:

1. The first restriction aims at easing the identification of
those AETs that represent arrival or service processes,
which are built around exponentially timed actions. It
establishes that the interactions cannot be exponen-
tially timed.
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Figure 2: Graphical representation of the exemplified QN basic elements

2. The second restriction aims at avoiding the unnatural
application of the race policy to several distinct activi-
ties within the same sequential AET, thus causing the
architect to separately model the computational ele-
ments of the system (i.e. arrival and service processes)
with different AEIs. It establishes that an exponen-
tially timed action cannot be alternative to another
exponentially timed action.

3. The third restriction aims at allowing the precise com-
putation of the probability distribution associated with
every arrival or service process. It establishes that an
exponentially timed action cannot be alternative to a
passive or immediate action.

4. The fourth restriction aims at easing the identification
of those AETs that represent buffers or service pro-
cesses with no buffer capacity. It establishes that ei-
ther all the actions in the behavior of an AET are pas-
sive, or only all the actions in an initial choice are. A
consequence of this restriction is that choices between
passive actions and immediate actions are forbidden
as well.

5. The fifth restriction establishes the structure of an
arrival process, thus making it possible to correctly
model the generation of a single request at a time –
on a software component running on a single compu-
tational resource – according to a certain phase type
distribution. The behavior of an AET that repre-
sents an arrival process must start with a possibly
empty choice among several noninteracting immedi-
ate actions. Every branch must then continue with
a sequence of distinct phases whose unit element is
an exponentially timed action followed by a possibly
empty choice among several noninteracting immedi-
ate actions and output immediate interactions. Every
branch must terminate with an output immediate in-
teraction whose following behavior must be the same
as that of the whole AET. A consequence of this re-
striction is that AETs representing arrival processes
cannot have input interactions.

6. The sixth restriction establishes the structure of a ser-
vice process, thus making it possible to correctly model
the service of a single request at a time – on a soft-
ware component running on a single computational
resource – according to a certain phase type distri-
bution. The behavior of an AET that represents a
service process must start with a choice among sev-
eral input immediate interactions or several input pas-

sive interactions, with each alternative possibly fol-
lowed by a choice among several noninteracting imme-
diate actions. Every branch must then continue with
a sequence of distinct phases whose unit element is
an exponentially timed action followed by a possibly
empty choice among several noninteracting immediate
actions and output immediate interactions. The be-
havior after an output immediate interaction must be
the same as that of the whole AET. A consequence of
this restriction is that choices between noninteracting
immediate actions or output immediate interactions
and input immediate interactions are forbidden.

The restrictions above are easily enforceable because they
can be checked at the syntax level (no state space construc-
tion is required). For instance, for our compiler system ex-
ample we can strightforwardly verify that all the restrictions
above are satisfied, with PG representing an arrival process,
PB representing a buffer, and C representing a service pro-
cess. As far as expressiveness is concerned, the syntax re-
strictions are reasonable, as they preserve much of the power
that Æmilia inherits from EMPAgr. Additionally, they are
consistent with the way systems are usually modeled, and do
not hamper the description of typical situations like prob-
abilistic/prioritized choices as well as activities whose du-
ration is phase type. A limitation to the original modeling
capabilities that such syntax restrictions introduce is that
they do not allow for preemption, i.e. the fact that the ser-
vice of a request of a certain type can be interrupted by the
arrival of a request of another type having higher service
priority. We conclude by pointing out that the restrictions
above have not been imposed directly on the syntax that
Æmilia inherits from EMPAgr, because this would leave out
system descriptions that can be analyzed (on a MC model)
without resorting to a QN model.

3.3 Mapping AEIs to QN Basic Elements
The first step of the translation of a performance closed

architectural type into a QN consists of mapping every AEI
to a QN basic element, which is carried out through several
functions to be applied to the AEI behavior. In the follow-
ing, we denote by STG the set of state transition graphs
labeled with EMPAgr actions, by PTDistr the set of phase
type distributions, by Gseq the set of sequential EMPAgr

terms, by Gseq,buf the set of sequential EMPAgr terms con-
taining only passive actions, and by STG ′ the set of state
transition graphs labeled with EMPAgr actions augmented
with an additional piece of information specifying whether
the corresponding action type is declared to be an input or
an output interaction.



The first (partial) function, input : Gseq −→o 2Act, docu-
ments the classes of requests accepted by a buffer or served
by a service process by recording the corresponding actions.
If we consider Fig. 2, the application of function input re-
sults in the set of actions labeling the incoming arcs of the
buffer and the service process. Given an AEI representing a
buffer or a service process with behavior E, input(E) is the
set of actions occurring in E whose type is declared to be
an input interaction for that AEI. In the compiler system
example of Table 1 we have

input(ProgramBuffer0) = {<get program, ∗>}
input(Compiler) = {<select program,∞>}

The second (partial) function, s policy : Gseq −→o STG ,
describes the policy according to which the next request is
selected from a buffer by a service process. Given an AEI
representing a service process with behavior E, s policy(E)
is the initial state of I[[E]] together with its outgoing transi-
tions and destination states. In the compiler system exam-
ple of Table 1 we have that s policy(Compiler) is as depicted
below:

get_program,

which means that there is no actual selection to be carried
out.

The third (partial) function, process : Gseq −→o 2AType,
documents the phases of the generation or service of a re-
quest by recording the corresponding action types. If we
consider Fig. 2, the application of function process results
in the set of action types labeling the triangle of the arrival
process and the circle of the service process. Given an AEI
representing an arrival or service process with behavior E,
process(E) is the set of action types occurring in E that are
not declared to be interactions for that AEI. In the compiler
system example of Table 1 we have

process(ProgramGenerator) = {generate program}
process(Compiler) = {recognize tokens,

parse phrases,
check phrases,
opt yes, opt no,
optimize, generate code}

The fourth (partial) function, ptdistr : Gseq −→o PTDistr ,
computes the phase type distribution associated with the
generation or service of a request. If we consider Fig. 2,
the application of function ptdistr results in the probability
distribution labeling the triangle of the arrival process and
the circle of the service process. Given an AEI represent-
ing an arrival or service process with behavior E, ptdistr(E)
is defined as the smallest phase type distribution satisfying
the equalities depicted in Table 2, where exp stands for an
exponential distribution, hypoexp stands for a hypoexponen-
tial distribution, and hyperexp stands for a hyperexponential
distribution. In the compiler system example of Table 1 we
have

ptdistr(ProgramGenerator) = exp(λ)
ptdistr(Compiler) = hypoexp(exp(µl),

exp(µp),
exp(µc),
hyperexp(po, hypoexp(exp(µo),

exp(µg));
1− po, exp(µg)))

The fifth function, b policy : Gseq,buf −→ STG ′, describes
the policy according to which the requests are accepted and

delivered by a buffer. Given an AEI representing a buffer
with behavior E, b policy(E) is I[[E]] where each transi-
tion label is augmented with an additional piece of informa-
tion specifying whether the corresponding action type is de-
clared to be an input or an output interaction. For the com-
piler system example of Table 1, b policy(ProgramBuffer0)
is given by the following STG ′:

put_program, *, o put_program, *, o put_program, *, o

get_program, *, iget_program, *, iget_program, *, i

The STG ′ above has the typical structure of a birth-death
process, thus abstracting from the identity of the individual
requests. This is a typical situation with the buffers of the
classical QNs, therefore we can assume that the buffer above
is governed by the FIFO discipline.

The sixth (partial) function, b capacity : Gseq,buf ×AType
−→o NI ∪ {∞}, describes the capacity of a buffer w.r.t. all
the classes of requests that it accepts. Given an AEI rep-
resenting a buffer with behavior E and an input interac-
tion ain of the AEI whose related output interaction is aout,
b capacity(E, ain) is computed on the basis of b policy(E) as
follows. If b policy(E) contains a cycle composed of only in-
put interactions among which ain, then b capacity(E, ain) =
∞. If this is not the case, we consider every maximal sim-
ple 3 path in b policy(E) starting from the initial state and
containing occurrences of ain and aout, and we compute the
maximum between the length of the longest sequence of oc-
currences of ain with no intervening occurrences of aout and
the algebraic sum of the occurrences of ain (+1) and aout

(−1). b capacity(E, ain) is then given by the maximum of
such values. In the compiler system example of Table 1 we
have

b capacity(ProgramBuffer0, get program) = ∞
The seventh function, output : Gseq −→ 2Act, documents

the classes of requests that can leave a buffer or a service
process by recording the corresponding actions. If we con-
sider Fig. 2, the application of function output results in the
set of actions labeling the outgoing arcs of the QN basic el-
ements. Given an AEI with behavior E, output(E) is the
set of actions occurring in E whose type is declared to be
an output interaction for that AEI. In the compiler system
example of Table 1 we have

output(ProgramGenerator) = {<deliver program,∞>}
output(ProgramBuffer0) = {<put program, ∗>}

output(Compiler) = ∅
We conclude this section by showing in Fig. 3 the three QN

basic elements resulting from the first step of the translation
of the performance closed architectural type representing the
compiler system of Table 1.

3.4 Connecting QN Basic Elements
The second step of the translation of a performance closed

architectural type into a QN simply consists of connecting
the basic QN elements (stemming from the translation of
the AEIs) according to the attachments. Graphically, this
amounts to superposing the arrow headed arcs correspond-
ing to attached interactions, with the weights of the imme-
diate interactions labeling the arcs leaving the arrival and
service processes used to determine the routing probabili-
ties. In the case of our compiler system example we obtain
the QN depicted in Fig 4.
3Traversing each state at most once.



ptdistr(0) = ∅
ptdistr(<a, λ>.F ) = hypoexp(exp(λ), ptdistr(F ))

ptdistr(<a,∞l,w>.F ) =


ptdistr(F ) if a not interaction or input interaction
∅ if a output interaction

ptdistr(<a1,∞l1,w1>.F1 + <a2,∞l2,w2>.F2) =

8
>>>>>>>>>><
>>>>>>>>>>:

hyperexp( w1
w1+w2

, ptdistr(F1);
w2

w1+w2
, ptdistr(F2))

if a1, a2 not interactions or input interactions
hyperexp( w1

w1+w2
, ∅; w2

w1+w2
, ptdistr(F2))

if a1 output interaction and a2 not interaction
hyperexp( w1

w1+w2
, ptdistr(F1);

w2
w1+w2

, ∅)
if a1 not interaction and a2 output interaction

∅
if a1, a2 output interactions

ptdistr(<a1, ∗l1,w1>.F1 + <a2, ∗l2,w2>.F2) = hyperexp( w1
w1+w2

, ptdistr(F1);
w2

w1+w2
, ptdistr(F2))

ptdistr(A) = ptdistr(F ) if A
∆
= F

Table 2: Definition of function ptdistr

λ ptdistr(Compiler)

process(Compiler)

FIFO
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exp(  )

generate_program
deliver_program, get_program, * put_program, * select_program,

Figure 3: QN basic elements of CompilerSystem

4. MODELING TWO ALTERNATIVE COM-
PILER ARCHITECTURES

In this section we illustrate the proposed approach by de-
scribing with Æmilia two alternative architectures for the
compiler system and building the associated QN models
through the semantics described in Sect. 3.

The compiler component shown in Table 1 examines one
source program at a time, i.e. it is a completely sequential
compiler. An alternative architecture allows the compila-
tion of a program to start before the previous one has been
completed. This is achieved through a pipeline like struc-
ture obtained by splitting the various phases of the compiler
into different AETs for the lexer, parser, checker, optimizer,
and generator, and by connecting them in such a way that
each phase can work on one single source program at a time.
W.r.t. the compiler system depicted in Table 1, we replace
CompilerT with the following one, whose behavior is ruled
by the new architectural type PipelineCompiler :

elem type CompilerT (exp rate µl, µp, µc, µo, µg;
weight po)

behavior Compiler
∆
=

PipelineCompiler(; select program;
µl, µp, µc, µo, µg; po)

interactions input select program

where the absence of actual AETs in the architectural type
invocation means that they coincide with the formal ones.
The Æmilia graphical representation of PipelineCompiler is
shown in Fig. 5, while its Æmilia specification is shown in
Table 3. The pipeline stream between the different compiler
phases is realized by directly connecting their corresponding
AETs. By applying to each AEI of Table 3 the functions de-
fined in Sect. 3, we get the corresponding QN basic elements.
By connecting such elements according to the attachments,
we obtain the QN model depicted in Fig. 6 for the whole

pipeline compiler system. The weights of the output imme-
diate actions associated with the checker service process are
used to determine the routing probabilities of the two follow-
ing branches. Note that the QN structure closely resembles
the structure of the flow graph in Fig. 5, which should make
it easier to interpret at the SA level the performance results
obtained at the QN level.

We now consider a second alternative architecture of the
compiler system that allows the parsing, checking, opti-
mizing and generating phases to proceed in parallel. This
is achieved by providing ParserT , CheckerT , OptimizerT ,
and GeneratorT of PipelineCompiler with their own (infi-
nite) buffers, in such a way that they can concurrently work
on different source programs. W.r.t. Table 1, we replace
CompilerT with the following one, whose behavior is ruled
by the new architectural type ConcurrentCompiler :
elem type CompilerT (exp rate µl, µp, µc, µo, µg;

weight po)

behavior Compiler
∆
=

ConcurrentCompiler(; select program;
µl, µp, µc, µo, µg; po)

interactions input select program
The Æmilia graphical representation of ConcurrentCompiler
is shown in Fig. 7, while its Æmilia specification can easily be
derived from the one of PipelineCompiler by adding buffer
AETs to ParserT , CheckerT , OptimizerT , and GeneratorT .
The QN model associated with the Æmilia specification of
the concurrent compiler system is very similar to the one
representing the pipeline compiler system in Fig. 6. The
main difference is that the buffer capacity of the P , C, O
and G service centers changes from zero to infinity.

It is easy to verify that the MCs associated with the
Æmilia specifications of the three variants of the compiler
system are infinite (hence they cannot be built automatically
from the Æmilia specifications). On the other hand, the



archi type PipelineCompiler(exp rate µlexer, µparser, µchecker, µoptimizer, µgenerator;
weight proboptimizer)

archi elem types

elem type LexerT (exp rate µl)

behavior Lexer
∆
= <select program,∞>.<recognize tokens, µl>.

<send token seq ,∞>.Lexer
interactions input select program

output send token seq

elem type ParserT (exp rate µp)

behavior Parser
∆
= <get token seq , ∗>.<parse phrases, µp>.

<send phrase seq ,∞>.Parser
interactions input get token seq

output send phrase seq

elem type CheckerT (exp rate µc;weight po)

behavior Checker
∆
= <get phrase seq , ∗>.<check phrases, µc>.

(<send checked seq1 ,∞1,po>.Checker +
<send checked seq2 ,∞1,1−po>.Checker)

interactions input get phrase seq
output send checked seq1 , send checked seq2

elem type OptimizerT (exp rate µo)

behavior Optimizer
∆
= <get checked seq1 , ∗>.<optimize, µo>.

<send optimized seq ,∞>.Optimizer
interactions input get checked seq1

output send optimized seq

elem type GeneratorT (exp rate µg)

behavior Generator
∆
= <get checked seq2 , ∗>.<generate code, µg>.Generator +

<get optimized seq , ∗>.<generate code, µg>.Generator
interactions input get checked seq2 , get optimized seq

archi topology

archi elem instances L : LexerT (µlexer)
P : ParserT (µparser)
C : CheckerT (µchecker; proboptimizer)
O : OptimizerT (µoptimizer)
G : GeneratorT (µgenerator)

archi interactions input L.select program

archi attachments from L.send token seq to P.get token seq
from P.send phrase seq to C.get phrase seq
from C.send checked seq1 to O.get checked seq1
from C.send checked seq2 to G.get checked seq2
from O.send optimized seq to G.get optimized seq

end

Table 3: Textual description of PipelineCompiler
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corresponding QN models can be solved either by product-
form algorithms or by approximate methods avoiding the
construction of the MC.

The three variants of the compiler system have already
been presented in [1], where the authors propose a method-
ology to derive a QN model from a labeled transition system
describing the behavior of a SA. The QN models obtained for
the three variants of the compiler system using the method-
ology in [1] and our semantics coincide. Steady state analysis
can be performed on such QN models in order to calculate
performance indices like the mean number of customers in
the system, throughput, system utilization, and mean sys-
tem response time. The detailed evaluation and comparison
of the obtained QN models is out of the scope of this paper:
a discussion can be found in [1]. We just want to point out
that, under the hypothesis of exponential service time distri-
bution at each service center, FIFO service discipline, Pois-
son arrivals, and independence between services and arrival
times, the QNs of the sequential and concurrent compilers
show a product-form solution, while the QN of the pipeline
compiler can be solved by approximate methods.

5. CONCLUSION
In this paper we have proposed the integration of SPAs

and QNs at the software architecture level of design, in order
to take advantage of their complementary strengths in terms
of functional and quantitative analysis. Such an integration
has been achieved by introducing Æmilia, an EMPAgr based
ADL for the compositional, graphical and hierarchical mod-
eling of SAs, which is equipped with some checks for the
detection of architectural mismatches. For Æmilia we have
defined a semantics based on QNs, with the goals of exploit-
ing the efficient solution methods of QNs and enabling the
interpretation at the SA level of the performance figures ob-
tained at the QN level. Our QN based translation is linear
in the number of components of the SA and can deal with
unbounded buffers. Therefore, it is clearly advantageous
w.r.t. the usual MC based translation, as this results in a
state space whose size grows exponentially with the number
of components of the SA.

Our semantics based on QNs is inspired by [1], where a
methodology has been proposed to derive a QN model from
a transition system description of a SA. With our approach
centered on Æmilia, we lose the independence from the ADL,
but we gain in terms of efficiency, because we avoid the con-
struction of the transition system altogether. On the SPA

side, it is worth recalling that several papers, like e.g. [9, 19,
12], have addressed the issue of characterizing at the syntax
level the terms whose underlying MC admits a product-form
solution. Our approach is different, in the sense that it maps
an Æmilia specification to a QN independently of the sat-
isfaction of a product-form condition. The only constraint
that must be satisfied is given by the six syntax restrictions
in Sect. 3.2, which do not severely limit the expressive power.

Our translation maps Æmilia specifications to open or
closed QNs with an arbitrary topology, general arrival and
service distributions (approximated with phase typed ones
whenever necessary), and FIFO buffers with finite or infinite
capacity. We have focussed on basic QNs to take advantage
of their efficient analytical methods, such as product-form
solution algorithms. However, in principle we may consider
extended QNs [15, 14, 13], which can contain some other
element types such as fork and join nodes, subnetwork pop-
ulation constraints, finite queue capacity and various block-
ing mechanisms, multiple classes of customers, and various
scheduling disciplines including preemption, which we do
not currently permit. A translation of Æmilia specifications
into extended QN models is left for future work.

We also plan to deepen the investigation of the issue of in-
terpreting at the SA level the performance figures calculated
at the QN level. Similarly to the architectural checks for the
detection of deadlock related architectural mismatches, we
would like to develop suitable techniques that allow us to
identify the software components that are responsible for
the achievement of poor performance.
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