9,487 research outputs found

    Sustainable Construction

    Get PDF
    Construction is one of the main sectors that generates greenhouse gases. This industry consumes large amounts of raw materials, such as stone, timber, water, etc. Additionally, infrastructure should provide service over many years without safety problems. Therefore, their correct design, construction, maintenance, and dismantling are essential to reducing economic, environmental, and societal consequences. That is why promoting sustainable construction has recently become extremely important. To help address and resolve these types of questions, this book explores new ways of reducing the environmental impacts caused by the construction sector, as well promotes social progress and economic growth. The chapters collect the papers included in the “Sustainable Construction” Special Issue of the Sustainability journal. The papers cover a wide spectrum of issues related to the use of sustainable materials in construction, the optimization of designs based con sustainable indicators, the life-cycle assessment, the decision-making processes that integrate economic, social, and environmental aspects, and the promotion of durable materials that reduce future maintenance

    Econometric framework for electricity infrastructure modernization in Saudi Arabia, An

    Get PDF
    2017 Summer.Includes bibliographical references.The electricity infrastructure in Saudi Arabia is facing several challenges represented by demand growth, high peak demand, high level of government subsidies, and system losses. This dissertation aims at addressing these challenges and proposing a multi-dimensional framework to modernize the electricity infrastructure in Saudi Arabia. The framework proposes four different scenarios—identified by two dimensions—for the future electric grid. The first and second dimensions are characterized by electricity market deregulation and Smart Grid technologies (SGTs) penetration, respectively. The framework analysis estimates global welfare (GW) and economic feasibility of the two dimensions. The first dimension quantifies the impact of deregulating the electricity market in Saudi Arabia. A non-linear programming (NLP) algorithm optimizes consumers surplus, producers surplus, and GW. The model indicates that deregulating the electricity market in Saudi Arabia will improve market efficiency. The second dimension proposes that allowing the penetration of SGTs in the Saudi electricity infrastructure is expected to mitigate the technical challenges faced by the grid. The dissertation examines the priorities of technologies for penetration by considering some key performance indicators (KPIs) identified by the Saudi National Transformation Program, and Saudi Vision 2030. A multi-criteria decision making (MCDM) algorithm—using the fuzzy Analytic Hierarchy Process (AHP)—evaluates the prioritization of SGTs to the Saudi grid. The algorithm demonstrates the use of triangular fuzzy numbers to model uncertainty in planning decisions. The results show that advanced metering infrastructure (AMI) technologies are the top priority for modernizing the Saudi electricity infrastructure; this is followed by advanced assets management (AAM) technologies, advanced transmission operations (ATO) technologies, and advanced distribution operations (ADO) technologies. SGTs prioritization is followed by a detailed cost benefit analysis (CBA) conducted for each technology. The framework analysis aims at computing the economic feasibility of SGTs and estimating their outcomes and impacts in monetary values. The framework maps Smart Grid assets to their functions and benefits to estimate the feasibility of each Smart Grid technology and infrastructure. Discounted cash flow (DCF) and net present value (NPV) models, benefit/cost ratio, and minimum total cost are included in the analysis. The results show that AAM technologies are the most profitable technologies of Smart Grid to the Saudi electricity infrastructure, followed by ADO technologies, ATO technologies, and AMI technologies. Considering the weights resulting from the fuzzy AHP and the economic analysis models for each infrastructure, the overall ranking places AAM technologies as the top priority of SGTs to the Saudi electricity infrastructure, followed by AMI technologies, ADO technologies, and ATO technologies. This dissertation has contributed to the existing body of knowledge in the following areas: • Proposing an econometric framework for electricity infrastructure modernization. The framework takes into account technical, economic, environmental, societal, and policy factors. • Building an NLP algorithm to optimize a counterfactual deregulation of a regulated electricity market. The algorithm comprises short run price elasticity of electricity demand (ε), level of technical efficiency improvement, and discount rate (r). • Proposing an MCDM model using AHP and fuzzy set theory to prioritize SGTs to electricity infrastructures. • Adapting a Smart Grid asset-function-benefit linkage model that maps SGTs to their respected benefits. • Conducting a detailed CBA to estimate the economic feasibility of SGTs to the Saudi electricity infrastructure, This work opens avenues for more analysis on electricity infrastructure modernization. Measuring risk impact and likelihood is one area for future research. In fact, risk assessment is an important factor in determining the economic feasibility of the modernization. Probabilistic economic analysis can be applied to assess the risk associated with the implantation of the previously mentioned dimensions. The parameters used for the economic analysis, such as economic life of a project, and the discount rate, are usually deterministic. However, a probabilistic method can be applied to capture the uncertainty of the parameters. Another area for future research is the integration of both dimensions into one model in which GW resulted from market deregulation and SGTs insertion are summed

    Scientometric analysis of BIM-based research in construction engineering and management

    Get PDF
    The purpose of this paper is to summarize the latest research of BIM adoption in construction engineering and management (CEM) and propose research directions for future scholarly work. During the recent decade, building information modeling (BIM) has gained increasing applications and research interest in the construction industry. Although there have been review-based studies that summarized BIM-based research in the overall architecture, engineering and construction (AEC) area, there is limited review that evaluates the current stage of BIM-based research specifically in the CEM sub-area. Design/methodology/approach CEM falls into the scope of AEC. It involves construction-related tasks, activities and processes (e.g. scheduling and cost estimates), issues (e.g. constructability), as well as human factors (e.g. collaboration). This study adopted a holistic literature review approach that incorporates bibliometric search and scientometric analysis. A total of 276 articles related to BIM applied in CEM were selected from Scopus as the literature sample for the scientometric analysis. Findings Some key CEM research areas (e.g. CEM pedagogy, integrated project delivery, lean and off-site construction) were identified and evaluated. Research trends in these areas were identified, and analyses were carried out with regard to how they could be integrated with BIM. For example, BIM, as a data repository for ACE facilities, has substantial potential to be integrated with a variety of other digital technologies, project delivery methods and innovative construction techniques throughout the whole process of CEM. Practical implications As BIM is one of the key technologies and digital platforms to improve the construction productivity and collaboration, it is important for industry practitioners to be updated of the latest movement and progress of the academic research. The industry, academics and governmental authorities should work with joint effort to fill the gap by first recognizing the current needs, limitations and trends of applying BIM in the construction industry. For example, it needs more understanding about how to address technical interoperability issues and how to introduce the integrated design and construction delivery approach for BIM implementation under the UK BIM Level 2/3 framework. This study contributed to the body of knowledge in BIM by proposing a framework leading to research directions including the differences of BIM effects between design-bid-build and other fast-track project delivery methods; the integration of BIM with off-site construction; and BIM pedagogy in CEM. It also addressed the need to investigate the similarities and differences between academia and industry toward perceiving the movement of BIM in construction field work

    2019 EC3 July 10-12, 2019 Chania, Crete, Greece

    Get PDF

    Tradition and Innovation in Construction Project Management

    Get PDF
    This book is a reprint of the Special Issue 'Tradition and Innovation in Construction Project Management' that was published in the journal Buildings

    Artificial Intelligence Applied to Conceptual Design. A Review of Its Use in Architecture

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] Conceptual architectural design is a complex process that draws on past experience and creativity to generate new designs. The application of artificial intelligence to this process should not be oriented toward finding a solution in a defined search space since the design requirements are not yet well defined in the conceptual stage. Instead, this process should be considered as an exploration of the requirements, as well as of possible solutions to meet those requirements. This work offers a tour of major research projects that apply artificial intelligence solutions to architectural conceptual design. We examine several approaches, but most of the work focuses on the use of evolutionary computing to perform these tasks. We note a marked increase in the number of papers in recent years, especially since 2015. Most employ evolutionary computing techniques, including cellular automata. Most initial approaches were oriented toward finding innovative and creative forms, while the latest research focuses on optimizing architectural form.This project was supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia (Ref. ED431G/01, ED431D 2017/16), and the Spanish Ministry of Economy and Competitiveness via funding of the unique installation BIOCAI (UNLC08-1E-002, UNLC13-13-3503) and the European Regional Development Funds (FEDER)Xunta de Galicia; ED431G/01Xunta de Galicia; ED431D 2017/1

    Concepts and tools to improve the thermal energy performance of buildings and urban districts - diagnosis, assessment, improvement strategies and cost-benefit analyses

    Get PDF
    Retrofitting existing buildings to optimize their thermal energy performance is a key factor in achieving climate neutrality by 2045 in Germany. Analyzing buildings in their current condition is the first step toward preparing effective and efficient energy retrofit measures. A high-quality building analysis helps to evaluate whether a building or its components are suitable for retrofitting or replacement. Subsequently, appropriate combinations of retrofit measures that create financial and environmental synergies can be determined. This dissertation is a cumulative work based on nine papers on the thermal analysis of existing buildings. The focus of this work and related papers is on thermography with drones for building audits, intelligent processing of thermographic images to detect and assess thermal weaknesses, and building modeling approaches to evaluate thermal retrofit options. While individual buildings are usually the focus of retrofit planning, this dissertation also examines the role of buildings in the urban context, particularly on a district level. Multiple adjacent buildings offer numerous possibilities for further improving retrofits, such as the economies of scale for planning services and material procurement, neighborhood dynamics, and exchange of experiences between familiar building owners. This work reveals the opportunities and obstacles for panorama drone thermography for building audits. It shows that drones can contribute to a quick and structured data collection, particularly for large building stocks, and thus complement current approaches for district-scale analysis. However, the significant distance between the drone camera and building, which is necessary for automated flight routes, and varying recording angles limit the quantitative interpretability of thermographic images. Therefore, innovative approaches were developed to process image datasets generated using drones. A newly designed AI-based approach can automate the detection of thermal bridges on rooftops. Using generalizations about certain building classes as demonstrated by buildings from the 1950s and 1960s, a novel interpretation method for drone images is suggested. It enables decision-making regarding the need to retrofit thermal bridges of recorded buildings. A novel optimization model for German single-family houses was developed and applied in a case study to investigate the financial and ecological benefits of different thermal retrofit measures. The results showed that the retrofitting of building façades can significantly save energy. However, they also revealed that replacing the heating systems turns out to be more cost-effective for carbon dioxide savings. Small datasets, limited availability of technical equipment, and the need for simplified assumptions for building characteristics without any information were the main challenges of the approaches in this dissertation
    • …
    corecore