9,156 research outputs found

    Teleosemantics and Productivity

    Get PDF
    There has been much discussion of so-called teleosemantic approaches to the naturalisation of content. Such discussion, though, has been largely confined to simple, innate mental states with contents such as There is a fly here. Even assuming we can solve the issues that crop up at this stage, an account of the content of human mental states will not get too far without an account of productivity: the ability to entertain indefinitely many thoughts. \ud The best-known teleosemantic theory, Millikan’s biosemantics, offers an account of productivity in thought. This paper raises a basic worry about this account: that the use of mapping functions in the theory is unacceptable from a naturalistic point of view

    Semantic data mining and linked data for a recommender system in the AEC industry

    Get PDF
    Even though it can provide design teams with valuable performance insights and enhance decision-making, monitored building data is rarely reused in an effective feedback loop from operation to design. Data mining allows users to obtain such insights from the large datasets generated throughout the building life cycle. Furthermore, semantic web technologies allow to formally represent the built environment and retrieve knowledge in response to domain-specific requirements. Both approaches have independently established themselves as powerful aids in decision-making. Combining them can enrich data mining processes with domain knowledge and facilitate knowledge discovery, representation and reuse. In this article, we look into the available data mining techniques and investigate to what extent they can be fused with semantic web technologies to provide recommendations to the end user in performance-oriented design. We demonstrate an initial implementation of a linked data-based system for generation of recommendations

    Relational Algebra for In-Database Process Mining

    Get PDF
    The execution logs that are used for process mining in practice are often obtained by querying an operational database and storing the result in a flat file. Consequently, the data processing power of the database system cannot be used anymore for this information, leading to constrained flexibility in the definition of mining patterns and limited execution performance in mining large logs. Enabling process mining directly on a database - instead of via intermediate storage in a flat file - therefore provides additional flexibility and efficiency. To help facilitate this ideal of in-database process mining, this paper formally defines a database operator that extracts the 'directly follows' relation from an operational database. This operator can both be used to do in-database process mining and to flexibly evaluate process mining related queries, such as: "which employee most frequently changes the 'amount' attribute of a case from one task to the next". We define the operator using the well-known relational algebra that forms the formal underpinning of relational databases. We formally prove equivalence properties of the operator that are useful for query optimization and present time-complexity properties of the operator. By doing so this paper formally defines the necessary relational algebraic elements of a 'directly follows' operator, which are required for implementation of such an operator in a DBMS

    Scientific Realism without the Wave-Function: An Example of Naturalized Quantum Metaphysics

    Get PDF
    Scientific realism is the view that our best scientific theories can be regarded as (approximately) true. This is connected with the view that science, physics in particular, and metaphysics could (and should) inform one another: on the one hand, science tells us what the world is like, and on the other hand, metaphysical principles allow us to select between the various possible theories which are underdetermined by the data. Nonetheless, quantum mechanics has always been regarded as, at best, puzzling, if not contradictory. As such, it has been considered for a long time at odds with scientific realism, and thus a naturalized quantum metaphysics was deemed impossible. Luckily, now we have many quantum theories compatible with a realist interpretation. However, scientific realists assumed that the wave-function, regarded as the principal ingredient of quantum theories, had to represent a physical entity, and because of this they struggled with quantum superpositions. In this paper I discuss a particular approach which makes quantum mechanics compatible with scientific realism without doing that. In this approach, the wave-function does not represent matter which is instead represented by some spatio-temporal entity dubbed the primitive ontology: point-particles, continuous matter fields, space-time events. I argue how within this framework one develops a distinctive theory-construction schema, which allows to perform a more informed theory evaluation by analyzing the various ingredients of the approach and their inter-relations

    Spatio-Temporal Multiway Data Decomposition Using Principal Tensor Analysis on k-Modes: The R Package PTAk

    Get PDF
    The purpose of this paper is to describe the R package {PTAk and how the spatio-temporal context can be taken into account in the analyses. Essentially PTAk() is a multiway multidimensional method to decompose a multi-entries data-array, seen mathematically as a tensor of any order. This PTAk-modes method proposes a way of generalizing SVD (singular value decomposition), as well as some other well known methods included in the R package, such as PARAFAC or CANDECOMP and the PCAn-modes or Tucker-n model. The example datasets cover different domains with various spatio-temporal characteristics and issues: (i)~medical imaging in neuropsychology with a functional MRI (magnetic resonance imaging) study, (ii)~pharmaceutical research with a pharmacodynamic study with EEG (electro-encephaloegraphic) data for a central nervous system (CNS) drug, and (iii)~geographical information system (GIS) with a climatic dataset that characterizes arid and semi-arid variations. All the methods implemented in the R package PTAk also support non-identity metrics, as well as penalizations during the optimization process. As a result of these flexibilities, together with pre-processing facilities, PTAk constitutes a framework for devising extensions of multidimensional methods such ascorrespondence analysis, discriminant analysis, and multidimensional scaling, also enabling spatio-temporal constraints.

    Data modelling for emergency response

    Get PDF
    Emergency response is one of the most demanding phases in disaster management. The fire brigade, paramedics, police and municipality are the organisations involved in the first response to the incident. They coordinate their work based on welldefined policies and procedures, but they also need the most complete and up-todate information about the incident, which would allow a reliable decision-making.\ud There is a variety of systems answering the needs of different emergency responders, but they have many drawbacks: the systems are developed for a specific sector; it is difficult to exchange information between systems; the systems offer too much or little information, etc. Several systems have been developed to share information during emergencies but usually they maintain the nformation that is coming from field operations in an unstructured way.\ud This report presents a data model for organisation of dynamic data (operational and situational data) for emergency response. The model is developed within the RGI-239 project ‘Geographical Data Infrastructure for Disaster Management’ (GDI4DM)

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth
    corecore