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Abstract

The purpose of this paper is to describe the R package PTAk and how the spatio-
temporal context can be taken into account in the analyses. Essentially PTAk() is a mul-
tiway multidimensional method to decompose a multi-entries data-array, seen mathemat-
ically as a tensor of any order. This PTAk-modes method proposes a way of generalizing
SVD (singular value decomposition), as well as some other well known methods included
in the R package, such as PARAFAC or CANDECOMP and the PCAn-modes or Tucker-n
model. The example datasets cover different domains with various spatio-temporal char-
acteristics and issues: (i) medical imaging in neuropsychology with a functional MRI
(magnetic resonance imaging) study, (ii) pharmaceutical research with a pharmacody-
namic study with EEG (electro-encephaloegraphic) data for a central nervous system
(CNS) drug, and (iii) geographical information system (GIS) with a climatic dataset that
characterizes arid and semi-arid variations. All the methods implemented in the R package
PTAk also support non-identity metrics, as well as penalizations during the optimization
process. As a result of these flexibilities, together with pre-processing facilities, PTAk
constitutes a framework for devising extensions of multidimensional methods such as cor-
respondence analysis, discriminant analysis, and multidimensional scaling, also enabling
spatio-temporal constraints.

Keywords: multiway analysis, multi-entries data, spatio-temporal data, variance decomposi-
tion, multiway interaction, tensor decomposition, PTAk, R programming.

1. Introduction

Multiway data are common in different scientific and non-scientific domains where modelling
interactions is crucial for better understanding of the studied phenomena. By “multiway” it is
understood that observations are described by a series of characteristics dependent within the
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design. The different characteristics are also called the entries, domains or modes of the data;
their expressions can be called items, modalities, traits, variables and may be issued after
a selected or a random sample within the domain represented. Multiway data occur when
“repeated” measurements are made because of the design and/or because of the nature of
the measurements. A typical example of multiway data are spatio-temporal data where some
variables (1st mode) are measured (or evaluated) at a set of spatial locations (2nd mode) at
different dates (3rd mode) (the choice of mode number being arbitrary). Besides testing an
hypothesis or a model, on a multiway dataset, one may also be interested to “look at the data
itself” and have a descriptive approach at least to formulate future hypotheses. Extracting
and describing interactions of the data-modes is of prime interest, for example to derive the
dynamics of a multivariate spatio-temporal dataset.

Another classical situation where multiway data are to be analyzed, is within a multidimen-
sional scaling (MDS) approach, where a matrix of similarities (or dissimilarities) between a
set of variables, objects or items is available for each subject or sub-samples of a given sam-
ple. Then the interest is not only on mapping the proximities of the variables, but also on
the pattern of the subjects or associated sub-samples. To do this, the INDSCAL method,
for example, uses the multiway decomposition CANDECOMP (Carroll and Chang 1970), see
also Borg and Groenen (2005) and De Leeuw and Mair (2009) for recent descriptions of MDS:
three-way and other multidimensional scaling methods.

Dealing with multiway data using multidimensional methods may be restrictive. As when
analysing two-way tables, the multi-way table has to be collapsed or unfolded in a table with
two modes, thereby looking at interactions of order 2 in a multiple fashion instead of looking
at multiple interactions. This is the case, for example, for multiple correspondence analysis
(MCA), see for example Le Roux and Rouanet (2004), as compared to simple correspondence
analysis (CA or FCA). The former is not a stricto sensu extension of the latter when dealing
with more than 2 categorical variables, but rather a “flatter” extension of it, where only
2-way marginals lack of independence are considered. The R (R Development Core Team
2009) package PTAk, available from the Comprehensive R Archive Network at http://CRAN.
R-project.org/package=PTAk, aims at decomposing interactions of order k > 2 (Leibovici
and Sabatier 1998; Leibovici 2001, 2009). For example, the method FCAk() within the package
decomposes the lack of independence measured by a χ2 for the k variables in the k-way table.
This particular PTAk-modes model will be described in Section 7, for general purposes but
also for analyzing spatial patterns of categories from local occurrences of their associations.

Beforehand, the algebraic background extending matrix calculus will be shortly described in
Section 2 along with the multiway methods implemented in the R package PTAk. In Section 3
the optimization procedure of the main method of the R package will be detailed: PTAk().
A brief comparison with some other well known multiway methods will also be made in this
section. Sections 4 and 5 will give an overview of using the R package, whilst Sections 6, 7,
and 8 will describe some generic approaches to derive decomposition models useful in a spatio-
temporal context. The framework used within the PTAk-modes model and so within the R
package PTAk extends some duality principles (Cailliez and Pagès 1976; Escoufier 1987; Dray
and Dufour 2007), therefore extending the approaches of multidimensional analysis focusing
on spatial-temporal data, such as the methods decomposing local and global variances as in
ade4 (Chessel et al. 2007). We may use indifferently the notations PTAk-modes and PTAk
to describe the same model, decomposition or statistical method.

http://CRAN.R-project.org/package=PTAk
http://CRAN.R-project.org/package=PTAk
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2. Basics of multiway data analysis

Spatio-temporal measurements are naturally linked to multiway data. For example, Tunisian
climatic data, analyzed in further sections, deals with 10 climatic indicators measured on a
spatial domain, a pixel grid of size 2599, and summarized by their 12 monthly average over
50 years.

In R this can be stored in a multiple-entries table, an “array” object, here of dimension
2599 × 12 × 10, where the first entry refers to space, the second to month, and the third to
indicator. Multiway data can occur in other contexts and appear usually when repeating the
same measurements on some statistical units, spatially, at different times, and/or different
conditions. For the CNS drug data one can obtain an array with 5 entries: subject, drug-
dose, time, electrode, and EEG spectral band ; the interest for this pharmaco-dynamic study is
about identifying differences in doses with a spatial zone of activation for a specific EEG band
pattern. Multiway data, stored in an “array” object, can be collapsed to a “matrix” object,
allowing the use of multivariate methods, inferential or descriptive such as multidimensional
analysis, or even into a single “vector” to use univariate models such as ANOVA taking in
account the complex design as covariates in the inferential procedure.

2.1. Models for multiway interactions

Multiway data analysis acknowledges the multiple interactions of the data. ANOVA (anal-
ysis of variance) which deals with decomposition and interaction is not a multidimensional
method; pursuing this kind of approach FANOVA methods (F for factorial) added nonetheless
a factorial decomposition for two modes (Gollob 1968).

In mathematical algebra, an array can be seen as a multilinear form or tensor (Lang 1984).
The properties of tensor algebra enable to derive multiple-entries table calculus, therefore
extending matrix calculus (Franc 1992; Leibovici 1993; Dauxois et al. 1994; Leibovici and
Sabatier 1998). A multiway multidimensional method or multiway method for short, deals
directly with the multilinear aspects of multiple-entries array data by proposing a tensorial
decomposition, i.e., a multilinear decomposition of the form:

A(x, y) =
r∑
u

Pu(x, y) + ε (1)

for a matrix A (a tensor of order 2) acting as a bilinear form on vectors x, y of appropriate
dimensions, which extends as:

B(x, y, z) =

r∑
v

Tv(x, y, z) + ε (2)

for the three-way array B (a tensor of order 3) acting as a trilinear form. The structures
of Pu and Tv express the model by being some “simple element” of the tensor space, usually
rank-one tensors, see further. The number of components r is part of the model in terms of
approximation level and ε is the “residual”.

According to different model optimizations and constraints, one gets different forms of de-
composition and properties for the elementary tensors (the Pu or the Tv). For example in
PCA optimization, the components will have the form Pu = σuψu

tφu where ψu is a principal
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components normed to 1 and φu is the corresponding factor loadings or factor component
also normed to 1 (notation: tv is the “row” vector, transpose of a “column” vector v). The σu
value correspond to the square root of the variance associated with this principal component,
and we have:

Pu(x, y) = σu( txψu)( tφuy) = tx(σuψu
tφu)y (3)

which is equal to σu if x = ψu and y = φu. Equation 3 enables the study of the properties of
Â =

∑r
u σuψu

tφu as an approximation of A. For trilinear or higher order forms, the notation
used in Equation 3 becomes:

Tu(x, y, z, t) = σu( txψu)( tφuy)( tϕuw)( tξuz) (4)

= σu(ψu ⊗ φu ⊗ ϕu ⊗ ξu)..(x⊗ y ⊗ z ⊗ t)
= σu[(ψu ⊗ φu ⊗ ϕu ⊗ ξu)..x]..(y ⊗ z ⊗ t)

where ⊗ and .. are respectively called tensor product and contraction. The tensor product
is also known as the outer product and the contraction generalizes the operation performed
when transforming a vector by a matrix.

The models PARAFAC/CANDECOMP (refer to Carroll and Chang 1970; Harshman 1970),
PARAFAC-orthogonal and PTAk-modes (Leibovici 1993; Leibovici and El Maâche 1997)
follow this generic presentation as well as PCAn-modes (or Tucker-n model) (Kroonenberg
and De Leeuw 1980; Kroonenberg 1983; Kaptein et al. 1986) but the latter is usually presented
in a condensed way using tensor product of matrices, see further, Equation 10. The estimation
procedure is usually an alternating least squares (ALS) optimization, i.e., after initialization,
optimizing one set of components at a time, the other being fixed by the previous optimization.

Setting no particular constraints between vector components within each mode or entry of the
table, PARAFAC/CANDECOMP, where the number of components for each mode has to be
equal, performs the optimization by alternating multivariate regression techniques. Generic
PCAn-modes will not impose equality of number of components for each mode but stating
orthogonality within each mode, performs optimization by alternating eigen-decomposition
of a particular symmetric matrix (Leibovici 1993). PARAFAC-orthogonal can be seen as
a PARAFAC/CANDECOMP where orthogonality between the components of each mode is
imposed, or as a PCAn-modes where the core tensor C (see Equation 10) expressing cross-links
between components is imposed to be hyper-diagonal (only Ciii 6= 0). PARAFAC-orthogonal
can be obtained using a PTAk-modes, by keeping only “main” principal tensors (see further).
PTAk-modes proceeds also using ALS (alternating least squares) technique but step by step
instead of optimizing the full set of components at each optimization. The algorithm involved
in the PTAk-modes model is explained in more detail in Section 3, in Equations 8, 9 and 11;
the expression of the CANDECOMP/PARAFAC model and the PCAn-modes model are also
explicit in Equation 9 and 10.

2.2. Manipulation of tensors in R

Within R, the tensor product can be performed using the outer product (%o%) or using the
Kronecker product (%x%). As the tensor is an algebraic operation, it is up to the computational
step to choose one or the other:

R> c(1, 2, 3) %x% c(4, 5)



Journal of Statistical Software 5

[1] 4 5 8 10 12 15

The result with the outer product is an array, here a matrix emphasized the bilinear property.
The vectorization of the array is a permuted version of the Kronecker product:

R> c(1, 2, 3) %o% c(4, 5)

[, 1] [, 2]

[1, ] 4 5

[2, ] 8 10

[3, ] 12 15

R> dim(c(1, 2, 3) %o% c(4, 5) %o% c(3, 1))

[1] 3 2 2

R> all(as.vector(t(c(1, 2, 3) %o% c(4, 5))) == c(1, 2, 3) %x% c(4, 5))

[1] TRUE

Notice the above matrix is of rank one. The tensor product of any number of vectors gives
what is called a rank-one tensor, as in fact any bilinear function resulting from collapsing the
array into a matrix will be always of rank one.

When storing a dataset into an “array” object it is also essential to know that the left index
runs faster: try array(1:24, c(2, 3, 4)). Performing a contraction of tensor of dimension
(30, 10, 4, 2) by a vector of dimension 4 can be done by collapsing the tensor into a matrix
of dimension (600, 4), then performing the multiplication of the vector by the matrix, then
by reforming the array of dimension (30, 10, 2). This kind of operation is facilitated by the
packages tensor (Rougier 2002) and tensorA (van den Boogaart 2007).

The outer product concatenates dimensions and multiplies the left matrix by each element of
the right matrix; the Kronecker product multiplies dimensions and multiplies the right matrix
by each element of the left matrix:

R> A <- matrix(1:8, 4, 2)

R> B <- matrix(c(1, 2, 0, 1), 2, 2)

R> class(B %o% A)

[1] "array"

R> dim(B %o% A)

[1] 2 2 4 2

R> class(A %x% A)

[1] "matrix"
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R> dim(A %x% A)

[1] 16 4

Note the essential tool for data analysis is the array() function to store the dataset and
its related methods such as aperm() to permute the dimensions of the array. The operators
briefly described above will be used within the methods to decompose the multi-entry table.

3. Extension of PCA as proposed by PTAk-modes

The PTAk model approach is similar to a step by step PCA, but for tensors. In order to
describe the generalization proposed with the PTAk-modes model, let us first rewrite the
PCA method within a tensorial framework.

3.1. PCA of tensor of order 2

For a given matrix X of dimension n×p, the first principal component is a linear combination
(given by a p-dimensional vector ϕ1) of the p columns ensuring maximum sum of squares of
the coordinates of the n-dimensional vector obtained. The square root of this sum of squares
is called the first singular value σ1. One has: t(Xϕ1)(Xϕ1) = σ21 and Xϕ1/σ1 is the principal
component normed to 1. This maximization problem can be written either in matrix or tensor
form:

σ1 = max
‖ψ‖n=1

‖ϕ‖p=1

(tψXϕ) = max
‖ψ‖n=1

‖ϕ‖p=1

X..(ψ ⊗ ϕ) (5)

= tψ1Xϕ1 = X..(ψ1 ⊗ ϕ1)

In Equation 5, X represents either the data matrix or the data tensor of the same data table.
Another easy way of understanding computationally the algebraic operators “..” and “⊗” is to
see them as the following operations: ψ1 ⊗ ϕ1 is a np vector of the n blocks of the p vectors
ψ1iϕ1, i = 1, ...n (this is the computational description using the Kronecker product); “..”
called a contraction, generalizes the multiplication of a matrix by a vector and in the case
of equal dimensions (as above), it corresponds to the natural inner product (X is then also
seen an np vector). ψ1 is termed first principal component, ϕ1 first principal axis, (ψ1 ⊗ ϕ1)
is called first principal tensor.

Notice here the description of a tensor of order 2, a bilinear map, as associated to a matrix is
usually associated to one linear map. The duality diagram (Cailliez and Pagès 1976; Escoufier
1987; Dray and Dufour 2007) comes to complete the association with another linear map on
the dual spaces involved to define the other linear map: expressed by the transposed matrix.

The contraction, “..”, is implemented within the function CONTRACTION() and it uses the R
package tensor (Rougier 2002).

3.2. PTAk-modes of a tensor of order k > 2

Now if X is a tensor of higher order, say 3 here we can look for the first principal tensor
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Figure 1: Illustrative comparison between PCA and PTAk (here with k = 3) when computing
singular values by Complete Contractions given in the Equations 5 and 6: the basis of the
RPVSCC algorithm.

associated with the singular value with the optimization form:

σ1 = max
‖ψ‖s=1

‖ϕ‖v=1

‖φ‖t=1

X..(ψ ⊗ ϕ⊗ φ) (6)

= X..(ψ1 ⊗ ϕ1 ⊗ φ1)

This is a direct extension of Equation 5, as expressed by the practical schemas in Figure 1, with
contractions made either on a matrix table or on a tensor of order 3. The further extension to
k > 3 is straightforward. CONTRACTION.list() is convenient relatively to Equations 5 and 6
as it performs the contraction without computing the tensor product of the vectors in the
first place as algebraically:

X..(ψ ⊗ ϕ⊗ φ) = (X..ψ)..(ϕ⊗ φ) = (X..ϕ)..(ψ ⊗ φ) = (X..φ)..(ψ ⊗ ϕ) = ((X..ψ)..ϕ))..φ (7)

The function SINGVA() computes the best rank-one approximation of the given tensor X to-
gether with its singular value, given by Equation 6 (and a similar equation for higher orders).
The therein algorithm, called RPVSCC in Leibovici (1993), is inspired from the algorithm of
“reciprocal averaging” (Hill 1973) also known as the “transition formulae” in modern corre-
spondence analysis and in the signal processing community as the “power method”.

Adding an orthogonality constraint to Equation 6 allows us to carry on the algorithm to find
the second principal tensors and so on. The optimization becomes is equivalent but working on
P(ψ⊥1 ⊗ϕ⊥1 ⊗φ⊥1 )X: the orthogonal projection of X onto the orthogonal tensorial of the principal

tensor, i.e (ψ⊥1 ⊗ϕ⊥1 ⊗φ⊥1 ); this projector can also be written as (Id−Pψ1)⊗Id−Pϕ1)⊗(Id−
Pφ1). Following this algorithm schema, given in Equation 8, the PTAk-modes decomposition
obtained offers a way of synthesizing the data according to uncorrelated sets of components.
Within this schema implemented for the functions PTA3() and PTAk() one can distinguish
main principal tensors from associated principal tensors. The latter are associated with main
principal tensors as they show one or more component of this main principal tensor in their
sets of components. The associated principal tensors are obtained by a PTA(k − 1)-modes
decomposition once the k-modes data array has been “contracted” by the given component.
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Figure 2: Output summary from the function summary() on a“PTAk”object, here the climatic
data described in Section 4.3: (a) is the first principal tensor, (c) represents all the associated
principal tensors to first one such like (b) are the spatial-mode associated principal tensors,
(d) corresponds to a PTAk-modes decomposition of the initial data tensor projected onto the
orthogonal tensorial of the first principal tensor.

This makes the algorithm a recursive algorithm with the following procedure, where here
k = 3:

PTA3(X) = σ1(ψ1 ⊗ ϕ1 ⊗ φ1) (8)

+ ψ1 ⊗1 PTA2(P (ϕ⊥1 ⊗ φ⊥1 )X..ψ1)

+ ϕ1 ⊗2 PTA2(P (ψ⊥1 ⊗ φ⊥1 )X..ϕ1)

+ φ1 ⊗3 PTA2(P (ψ⊥1 ⊗ ϕ⊥1 )X..φ1)

+ PTA3(P (ψ⊥1 ⊗ ϕ⊥1 ⊗ φ⊥1 )X)

The notation ⊗i means that the vector on the left hand will take the ith place, among the k
places here, in each full tensorial product, e.g., ϕ1 ⊗2 (α⊗ β) = α⊗ ϕ1 ⊗ β. More details on
the properties of the method and on each function of the R package is given in the references
Leibovici and Sabatier (1998); Leibovici (2009).

Equation 8 and Figure 2 illustrate the multi-hierarchical decomposition obtained with the
PTAk-modes model. In Figure 2, in almost the same way as for PCA, one gets a hierarchy
of principal tensors corresponding to a hierarchy of sum of squares, i.e., by the square of the
singular values (σ) under the column -Sing Val associated with each principal tensor. It is
a multilevel hierarchy in agreement with Equation 8. Percents of variability associated with
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each principal tensor can be used to retain the main variability within the data tensor X.
These percentages are in the -Global Pct column of Figure 2 whereas -local Pct are relative
to the sum of squares given in column -ssX linked to the current tensorial optimization as
defined in Equation 8. Plots of the vector components of a particular principal tensor allows
the description of the extracted variability for each principal tensor.

PROJOT() is the function within PTAk() performing the orthogonal tensor projection of Equa-
tion 8 but can also be used for any structure or design associated with each mode to perform
a linear constrained analysis in the same way as for PCAIV (principal component analysis on
instrumental variables), see Leibovici (2000) for a full description of using PTAIVk() and in
the PTAk manual for PROJOT() where a quick implementation is given as an example.

3.3. A brief comparison of multiway models

Before expressing in detail the R usage of the main methods within PTAk a practical com-
parison of the multiway models already described is of use. The models behind the methods
PTAk(), CANDPARA() (PARAFAC/CANDECOMP) and PCAn() (Tucker-n model) are equiv-
alent when looking for best rank-one approximation. This can be demonstrated from the
expression of the models associated with these methods and can be understood from Equa-
tions 9 and 10. Using an example this would be:

R> library("PTAk")

R> PTAk(X, nbPT = 1, nbPT2 = 0) == CANDPARA(X, dim = 1)

R> PTAk(X, nbPT = 1, nbPT2 = 0) == PCAn(X, dim = rep(1, length(dim(X))))

R> CANDPARA(X, dim = 1) == PCAn(X, dim = rep(1, length(dim(X))))

This cannot be strictly verified using the package PTAk as CANDPARA() and PCAn() in their
implementation only accept rank approximation greater than 1. Working around using a
tensor “nearly” of rank-one is:

R> X <- c(1, 2, 3) %o% c(2, 4, 6) %o% c(3, 7) + rnorm(18, sd = 0.0001)

R> sol1 <- PTAk(X, nbPT = 2, nbPT2 = 0)

R> sol2 <- CANDPARA(X, dim = 2);

R> sol3 <- PCAn(X, dim = c(2, 2, 2))

R> sol1[[1]]$v[1, ]

[1] 0.2672617 0.5345234 0.8017830

R> sol2[[1]]$v[1, ]

[1] -0.2672617 -0.5345234 -0.8017830

R> sol3[[1]]$v[1, ]

[1] -0.2672617 -0.5345234 -0.8017830

R> sol1[[3]]$d
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[1] 2.132416e+02 2.086484e-04

showing the first mode component for the first principal tensor given by sol1[[1]]$v[1,]

as equal to the other approximations, (it is the same with mode 2 sol[[2]] and mode 3
sol[[3]]). The tensor can be said to be “nearly” of rank-one as the ratio the two singular
values, sol1[[3]]$d is 106.

This gives a numerical proof of equivalence between PTAk, PARAFAC/CANDECOMP and
Tucker-n when looking for the best rank-one approximation. Then the methods differ as
also differs the rank definition attached to each model. PTAk will try to look for best
approximation according to the orthogonal rank, i.e., the rank-one tensors (of the decom-
position) are orthogonal; Tucker-n or PCAn-modes will look for best approximation accord-
ing to the space-ranks, i.e., ranks of every bilinear form deducted from the original tensor
(folding the multi-array into a matrix), that is the number of components in each space;
PARAFAC/CANDECOMP will look for best approximation according to the rank, i.e., the
rank-one tensors are not necessarily orthogonal.

It is said here“PTAk will try”as it has been shown recently on an example that the orthogonal-
rank was not necessarily providing a nested decomposition as PTAk-modes implies (Kolda
2003). One can also notice that PTAk model extends the PARAFAC-orthogonal if one only
retains in the decomposition the main principal tensors (not the associated ones), i.e., by
setting nbPT2 = 0 in the PTAk() call or by ignoring them.

The function REBUILD() will return the approximated or filtered dataset according to the
method used, either PTAk(), CANDPARA(), or PCAn(); the parameters of the method are
the list of tensors and/or a global threshold for percentage of variability explained by each
elementary tensors. For PCAn() the function calls REBUILDPCAn() which does not use these
parameters.

R> Xapp <- REBUILD(sol1, nTens = c(1, 2), testvar = 1e-12)

-- Variance Percent rebuilt X at 100 %

-- MSE 4.378514e-09

-- with 2 Principal Tensors out of 2 given

-- compression 0 %

For PTAk() and CANDPARA(), the approximation is done according to the equation model,
here written for a tensor of order 4:

X =
∑
i∈ς

σiψi ⊗ ϕi ⊗ φi ⊗ ξi + ε (9)

where ς is a set of the selected elementary tensors. The PCAn() rebuilt approximation is a
direct generalization of model from Kroonenberg and De Leeuw (1980):

X = (Ψ⊗Υ⊗ Φ⊗ Ξ)..C + ε (10)

where the components here are matrices of components with as many columns in each mode-
space as asked for during the optimization analysis (the space-ranks), and C being the core
tensor with dimensions corresponding to the space-ranks.
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4. Running a general PTAk

SINGVA(), PROJOT() described above are part of the main functions for 2-modes analysis,
such as SVDGen(), and k-modes analysis with PTAk(), CANDPARA() and PCAn(). They can
also be used to devise new analysis. So once you have loaded or scanned the dataset from
other sources or format, put it in a multi-array, an“array”object in R you can run the PTAk()
decomposition or the other multiway methods.

4.1. Structure of the PTAk package

The package can be summarized as four series of methods: (i) preprocessing the methods
Multcent(), IterMV(), Detren() for data preprocessing but also some metrics preparation
such as CauRuimet(), (ii) the multiway analysis methods PTAk(), FCAk(), CANDPARA(), and
PCAn() which output objects of class “PTAk” and appropriate subclasses given by the name
of the analysis along with S3 methods associated with them (iii) plot(), summary(), and
REBUILD(), the other methods (iv) are either internal or used within main methods but they
can be used for developing further methods.

The principal argument of the preprocessing methods is an“array”object which has been pre-
pared beforehand for data analysis: the array will be the multiway table of the measurements
arranged by their modes, i.e., the “dimensions” deserving interest, e.g., time(s), variable(s),
subject(s), space(s), countrie(s), or condition(s). Whichever name used to describe an entry
of the table, it has a particular semantic according to the study. For example time for the
ecolimatic study example corresponds to 12 months, and for the pharmaco-dynamic study
it is the hour and minutes at measurements. Some examples of preprocessing are given in
Section 4.3, see the help files of the package for a detailed description of the other arguments.

The principal arguments for the analysis methods are first of all, either an “array” object of
the multiway dataset or a “list” object with $dat containing an “array” object and $met

containing the metrics associated with each entry of the array, then the “amount” of approx-
imation chosen. A metric is a semi-definite positive symmetric matrix allowing to perform
non-canonical scalar product, i.e., covariance, “sum of squares of products”, within the cor-
responding vectorial space (see Section 6 for further explanation). The arguments related to
this “amount” of approximation chosen are: dim an integer for CANDPARA() and a “vector”
object of integers for PCAn() fixing respectively as described previously the number of elemen-
tary tensors to fit, and the size of the core tensor (therefore the number components in each
space); for PTAk() one chooses the number of principal tensors at each “level” of analysis by
nbPT, the last level (2-modes analysis) is fixed by nbPT2. Note that for PTA3-modes() nbPT

has to be just an integer but for k > 3 it can be a vector (of length (k − 2)) specifying this
choice for each level above 2-modes analysis. The current version of the package doesn’t give
much support for other plots or interpretations for CANDPARA() and PCAn(). For example
the summary() method on a PCAn object doesn’t properly describe the core tensor and no
jointplot method (see Kroonenberg 1983) has been implemented yet in the package PTAk.
Further practical use of the functions are described in the help files of the package Leibovici
(2009), but some practical examples are given in the next section.

4.2. Practical example

This illustrative session uses the dataset related to an ecoclimatic delineation problem (Lei-
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bovici et al. 2007), where dynamics over a typical year of 10 climatic indicators were analysed
in the circum-saharan zone, using their monthly average estimates. The problematic explained
in Leibovici et al. (2007) is to delineate homogeneous zones in relation to the ecolimatic profile
(rainfall, temperature, evapotranspiration, etc.). So finding main spatial patterns via the spa-
tial components associated with a climatic profile and a seasonal pattern, was the aim of this
analysis. Here the studied zone has been limited to Tunisia; the shapefile contains a regular
grid with the multivariate values. The dataset Zone_climTUN was obtained using the call
read.shape("E:/R_GIS/R_GilHF/TUN/tunisie_climat.shp") based on the read.shape()

function from the MAPS package. For replication, the data are also available in PTAk:

R> library("PTAk")

R> library("maptools")

R> data("Zone_climTUN")

The next command produces a plot of a MAP object not shown here:

R> plot(Zone_climTUN, ol = NA, auxvar = Zone_climTUN$att.data$PREC_OCTO,

+ nclass = 20)

The data are transformed into an array object:

R> Zone_clim <- Zone_climTUN$att.data[, c(2:13, 15:26, 28:39, 42:53,

+ 57:80, 83:95, 55:56)]

R> Zot <- Zone_clim[, 85:87]

R> temp <-colnames(Zot)

R> Zot <- as.matrix(Zot) %x% t(as.matrix(rep(1, 12)))

R> colnames(Zot) <- c(paste(rep(temp [1], 12), 1:12),

+ paste(rep(temp [2], 12), 1:12), paste(rep(temp [3], 12), 1:12))

R> Zone_clim <- cbind(Zone_clim[, 1:84], Zot)

R> dim(Zone_clim)

[1] 2599 120

R> Zone3w <- array(as.vector(as.matrix(Zone_clim)), c(2599, 12, 10))

R> dim(Zone3w)

[1] 2599 12 10

R> dimnames(Zone3w) <- list(rownames(Zone3w), 1:12, c("P", "Tave", "ETo",

+ "PETo", "Tmax", "Tmin", "Q3", "Alt", "dM2T", "dMETo"))

R> Zone3w.PTA3-modes <- PTA3-modes(Zone3w, nbPT = 3, nbPT2 = 3,

+ minpct = 0.1, addedcomment="centrée réduite sur var")

---Final iteration--- 7

--Singular Value-- 59898.86 -- Local Percent -- 97.62936 %

---Final iteration--- 26

--Singular Value-- 2860.392 -- Local Percent -- 68.66842 %
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---Final iteration--- 39

--Singular Value-- 401.1593 -- Local Percent -- 38.09571 %

++ Last 3-modes vs < 0.1 % stopping this level and under ++

-----Execution Time----- 7.43

R> summary(Zone3w.PTA3-modes, testvar = 0.01)

++++ PTA3-modes ++++

data = Zone3w 2599 12 10

PTA3-modes centrée réduite sur var

------Percent Rebuilt---- 99.97716 %

------Percent Rebuilt from Selected ---- 99.95512 %

-no- --Sing Val-- --ssX-- --local Pct-- --Global Pct--

vs111 1 59898.9 3674994157 97.62936 97.629361

2599 vs111 12 10 3 3243.0 3598688392 0.29226 0.286187

12 vs111 2599 10 6 7354.4 3652184965 1.48097 1.471774

12 vs111 2599 10 7 3142.0 3652184965 0.27031 0.268629

vs222 11 2860.4 11915003 68.66842 0.222636

12 vs222 2599 10 16 1677.1 11037709 25.48250 0.076536

++++ ++++

Shown are selected over 15 PT with var> 0.01 % total

The first principal tensor captures most of the variability, 97.6%, nearly as much as the
decomposition up to 3 main principal tensors and 3 for each associated, i.e., at each second
level analysis (a PCA). Notice that the listing should be 30 lines long, as for each main
principal tensor, 9 associated principal tensors are requested (nbPT2 = 3), but redundant
tensors are removed automatically and out of the 21 potential principal tensors a selection
has been performed here: Global Pct > 0.01%. The listing summary() mentions “...over
15 PT” as in the call function, the parameter minpct = 0.1 forces the algorithm to stop a
k ≥ 3-level (no sub-level analysis), if this percentage of variability is not met: it was the case
here for vs333. The full description of the ouput summary() is explained in the Section 4.4
where the listing ouput provides a more complete form.

This first PTAk analysis is not very useful as the variations and range of values can be
very different from one climatic variable to another. So the main variations captured by
the principal tensors will be towards this differentiation without necessarily expressing the
interactions between the variables and them with the spatio-temporal domain which may only
be detected in some principal tensors (main or associated) with comparatively small singular
values. As for PCA, centering and scaling the variables, preprocessing transformation may
be crucial as part of the modelling and analysis process.

4.3. Array data and preprocessing

In the ecoclimatic data example the variables of interest are in mode 3, the climatic indicators,
as the other tow modes are their support, the spatial-locations and the months. How does
one center and scale the 10 indicators? It depends on the variability of the data one put the
focus on, so this has to be considered as a part of the model. Here we are focusing on the
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spatio-temporal dynamics of the indicators, so we are looking for spatial patterns and tempo-
ral patterns of the correlations of the variables. For a given spatial-location or spatial trend
one would like to detect the mean temporal patterns of evolution or seasonality, therefore it
is not desirable to center and scale the indicators for each month over the spatial-locations. It
is also desirable to detect spatial mean patterns for a given month or temporal trend. There-
fore, centering and scaling the indicators along the whole spatio-temporal observations seems
appropriate. This would be the transformation to do, to perform a PCA on the indicators
with spatial observations repeated over the 12 months.

Another interesting preprocessing would have been to perform a bi-centering along spatial-
location and month modes for each indicator in order to emphasize only on interactions but
not on marginal effects.

Performing centering and scaling can be done with the function Multcent() which proposes
a centering and/or a scaling along the by mode(s) combination, before and/or after, xxxBA
some possible “multi-centering” along each bi combined with by. For example a bi-centering
on a three-way table corresponding to an ANOVA way of removing each of the two first factor
effects and the mean effect for each level of the third factor can be done with:

R> Zone3w.bi <- Multcent(dat = Zone3w, bi = c(1, 2), by = 3, centre = mean,

+ centrebyBA = c(FALSE, FALSE), scalebyBA = c(FALSE, FALSE))

More advanced centering and scaling can be used iteratively with IterMV() as each trans-
formation may destroy the other one, but one could possibly reach convergence in this pre-
modeling step. For example removing a smooth trend of the months and scaling spatially the
results would be:

R> Zone3w.DS <- IterMV(n = 10, dat = Zone3w, Mm = c(1, 3), Vm = c(2, 3),

+ usetren = TRUE, tren = function(x) smooth.spline(as.vector(x),

+ df = 5)$y, rsd = TRUE)

Simple centering and scaling as mentioned before has been performed for the ecoclimatic data
for Tunisia. This allows us to extract spatio-temporal trends and spatio-temporal interactions
with the indicator mode.

R> Zone3w <- Multcent(dat = Zone3w, bi = NULL, by = 3, centre = mean,

+ centrebyBA = c(TRUE, FALSE), scalebyBA = c(TRUE, FALSE))

R> Zone3w.PTA3-modes <- PTA3-modes(Zone3w, nbPT = 3, nbPT2 = 3)

---Final iteration--- 37

--Singular Value-- 362.1039 -- Local Percent -- 42.04291 %

---Final iteration--- 25

--Singular Value-- 276.2334 -- Local Percent -- 62.08935 %

---Final iteration--- 56

--Singular Value-- 28.11064 -- Local Percent -- 28.82325 %

-----Execution Time----- 9.57

R> summary(Zone3w.PTA3-modes, testvar = 0.01)
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++++ PTA3-modes ++++

data = Zone3w 2599 12 10

------Percent Rebuilt---- 97.82399 %

------Percent Rebuilt from Selected ---- 97.82059 %

-no- --Sing Val-- --ssX-- --local Pct-- --Global Pct--

vs111 1 362.1039 311870.00 42.04291 42.042911

2599 vs111 12 10 3 59.7161 136876.70 2.60528 1.143430

2599 vs111 12 10 4 35.1733 136876.70 0.90385 0.396692

12 vs111 2599 10 6 155.7611 156121.23 15.54019 7.779373

12 vs111 2599 10 7 17.9319 156121.23 0.20596 0.103104

10 vs111 2599 12 9 162.1045 158215.21 16.60893 8.425900

10 vs111 2599 12 10 20.1820 158215.21 0.25744 0.130603

vs222 11 276.2334 122895.32 62.08935 24.466893

2599 vs222 12 10 13 28.2110 77264.61 1.03005 0.255191

2599 vs222 12 10 14 10.7468 77264.61 0.14948 0.037033

12 vs222 2599 10 16 169.1854 118622.16 24.13016 9.178092

12 vs222 2599 10 17 99.8820 118622.16 8.41025 3.198903

10 vs222 2599 12 19 15.6388 76876.78 0.31813 0.078421

10 vs222 2599 12 20 12.4100 76876.78 0.20033 0.049383

vs333 21 28.1106 2741.56 28.82325 0.253377

2599 vs333 12 10 23 6.5390 853.89 5.00744 0.013710

12 vs333 2599 10 26 8.7500 958.79 7.98538 0.024550

12 vs333 2599 10 27 5.7349 958.79 3.43029 0.010546

10 vs333 2599 12 29 21.2609 1792.86 25.21260 0.144941

10 vs333 2599 12 30 16.5225 1792.86 15.22673 0.087534

++++ ++++

Shown are selected over 21 PT with var > 0.01 % total

Some other preprocessing transformations or pre-model examples can be seen with the EEG
data in Leibovici (2000), exploiting the ANOVA interpretation of the factors involved. The
EEG data consisted of a repeated cross-over design on 12 subjects with 3 verum doses (10mg,
30mg and 90mg) and 1 placebo. The EEG bands quantification was available spatially at 28
electrodes with repetitions over 10 times of measurements (before drug administration and
every hour or so after until 6 hours post-dosing). For this dataset the preprocessing aim was
pretty much towards minimizing subject variability. Part of Figure 4 in Leibovici (2000) is
reproduced here in Figure 3, showing a comparison of the first principal tensors obtained from
PTA4-modes of the subject× dose× electrode× time×EEG − band with different centering
and scaling. So the best result (c) was obtained after scaling each subject and then removing
the subject effect and all two-way interactions with the subject factor. Would it have been
better to remove subject 11 from the analysis?

4.4. Summary method on “PTAk” objects

Figure 2 and the previous output are examples of output from the summary() method of
“PTAk” objects generated by calling PTAk() and the other methods in the R package. The
identifier for singular values and principal tensors corresponds to the column -no- which is the
order number in the processing history. The first column of the output table from summary()
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Figure 3: 1st principal tensor from PTA4-modes of the EEG data versus baseline versus
placebo with different centering and scaling: (a) raw data, (b) subject scaled, (c) ANOVA
residuals from subject factor (main effect and other two-ways interactions with it) —the
subject— doses and bands plots are artificially scattered vertically for better reading of the
dispersion on the horizontal axe (means by dose have been overlaid).

qualifies the identifier with a leading name. For main principal tensors the name is unique,
like vs111 or vs222 where the number corresponds to an order from the top level hierarchy
(the repetition of the number is to emphasize the level of the hierarchy corresponding to the
order of the current tensor analyzed). The others names are qualifying associated principal
tensors, expressing the dimension of the mode from which the association is made (contraction
by the corresponding component vector). In 3-modes analysis, they also show the last two
dimensions (on which a PCA is done).

For PTA4-modes the schema starts with vs1111, the second level corresponds to 3-modes
analyses with names such as 12-vs222 where here the component contracting the data is
explicit for the dimension, 12, but implicit for the principal tensor it comes from, as here
vs222 expresses the current 3-modes analysis. The third level brings in names such as 12-300
vs222 10 7 with the same meaning as in 3-modes analysis: associated with the PCA on the
table 10 × 7. This schema is then similar for all other higher modes. Notice for the 4-
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modes analysis there is no 12-vs111 as in fact this SINGVA() optimization is redundant with
the vs1111 solution. In the same manner, the first principal component for every 2-modes
analysis is redundant with the solution just optimized within the 3-modes analysis. This
comes from the fact that in order to really take the benefit of the recursivity it is easier in
the implementation of Equation 8 to perform the PTA(k − 1)-modes analysis just onto the
contracted tensor and not onto the projection of it on the tensorial orthogonal of the rest of
the principal tensor. Computationally it is then easier to let the recursive algorithm perform
all the solutions associated and discarding the redundant ones. That is why there are gaps in
the number for the column -no-, e.g., after the principal tensor -no- 1 there will never be a
principal tensor -no- 2. The generic form of the PTAk() algorithm which is implemented in
the R package is then:

PTAk(X) = σ1(ψ
1
1 ⊗ ψ2

1 ⊗ ...⊗ ψk1 ) (11)

+ ψ1
1 ⊗1 PTA(k− 1)∗(X..ψ1

1)

+ ψ2
1 ⊗2 PTA(k− 1)∗(X..ψ2

1)

+ ...

+ ψk1 ⊗k PTA(k− 1)∗(X..ψk1 )

+ PTAk(P (ψ1
1
⊥ ⊗ ψ2

1
⊥ ⊗ ...⊗ ψk1

⊥
)X)

in where ∗ means that the “top” solutions of each PTA(k − 1)-modes have to be discarded as
redundant from previous optimization.

5. Plotting and interpreting

A class “PTAk” object is a list of lists. For each mode of the tensor, the list, reachable by
its mode number in the dimension of the array, contains few descriptors of the mode and the
components stored in a matrix $v where the row numbers match the order (-no-) given in the
summary(), while the columns are the names list given in $n (taken from the dimnames() of
the array) for the corresponding mode. The list for last mode has extra summaries describing
the analysis (applicable to all modes or the whole analysis), such as the singular values stored
in $d:

R> Zone3w.PTA3[[3]]$v[c(1, 9, 11), ]

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.2406405 -0.4552913 -0.4382538 0.2727417 -0.4560138 -0.4447370

[2,] 0.2406405 -0.4552913 -0.4382538 0.2727417 -0.4560138 -0.4447370

[3,] -0.2976787 -0.1066016 -0.0960886 -0.1850355 -0.1017793 -0.1103574

[,7] [,8] [,9] [,10]

[1,] 0.2501758 0.001285919 -0.003664209 -0.002239094

[2,] 0.2501758 0.001285919 -0.003664209 -0.002239094

[3,] -0.2404791 -0.297859857 0.610534012 0.560992015

R> Zone3w.PTA3[[3]]$d[c(1, 9, 11)]

[1] 362.1039 162.1045 276.2334
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R> Zone3w.PTA3[[3]]$n

[1] "P" "Tave" "ETo" "PETo" "Tmax" "Tmin" "Q3" "Alt" "dM2T" "dMETo"

Notice that here, looking at the components for mode 3 of the tensors 1, 9, and 11, the principal
tensor 9 is an associated principal tensor to the first principal tensor via the indicator mode,
its component for this mode is therefore equal to the one from the first principal tensor.

Interpretations of the extracted features of the dataset expressed in the principal tensors can
be derived from various plots of components which can be read simultaneously. For the ecocli-
matic analysis one would read and interpret a map configuration (spatial-location component),
an annual pattern (month component) and an axis describing associations and oppositions
of the variables (indicator component), together expressing the monthly dynamic of the eco-
climatic characteristics. PTAk provides a plot() method for “PTAk” objects which basically
overlays the scattering plots of components for the asked modes. For the spatial component
here we used a modified version of the plot.Map() (given in the file “v34i10-additions.R”).
The following plot() calls can be seen on Figure 4 which gathers the basic 3 plots related to
the principal tensors 1 and 11: the first plot is a joint plot of their modes 2 and 3 (time and
indicators), the other plots are their respective spatial modes (mode 1).

R> plot(Zone3w.PTA3-modes, mod = c(2, 3), nb1 = 1, nb2 = 11,

+ lengthlabels = 5, coefi = list(c(1, 1, 1), c(1, -1, -1)))

R> plot(Zone_climTUN, ol = NA, auxvar = Zone3w.PTA3-modes[[1]]$v[1, ],

+ nclass = 30, colrmp = colorRampPalette(Yl)(31), mult = 100)

R> plot(Zone_climTUN, ol = NA, auxvar = Zone3w.PTA3-modes[[1]]$v[11, ],

+ nclass = 30, colrmp = colorRampPalette(Yl)(31), mult = 100)

Looking closely at the given outputs, one sees that the principal tensor -no- 11, vs222, makes
an opposition between “number of dry months” dM2T, dMETo (two different ways deriving this
ecoclimatic indicator) with positive weightings and the other indicators with negative weights.
Nonetheless the plot() on Figure 4 shows the opposite signs and as a matter of fact the
argument coefi, in the call of the plot(), is indicating this change for the tensor nb2 = 11

on mode 2 and 3. The reason for this ad-hoc change can be understood for example from the
fact:

ψi ⊗ ϕi ⊗ φi ⊗ ξi = ψi ⊗ (−ϕi)⊗ φi ⊗ (−ξi) (12)

So as in PCA where a principal component and the corresponding variable loadings can be
arbitrarily multiplied by (−1), k-modes analysis having k > 2 set of components will show dif-
ferent ways of distributing this changes. Therefore simultaneous or joint interpretation has to
be cautious about this fact. Interpretation has to look at either components separately giving
a within-component description (association, opposition, etc.) or all the component scores
giving a whole principal tensor interpretation, but not reading only 2 out of 3 components
for example.

Using the associativity of the tensor product, a theoretical example of reading associations and
oppositions for different components is given in Table 1, the interpretations are all compatible,
and also identical for any other tensor equivalence transformation.

In PCA, examining correlations of variables with the principal components is the traditional
way of having interpretations across components. The duality in 2-modes analysis implies
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Figure 4: Principal tensors 1 and 11 from PTA3-modes of the ecoclimatic Tunisian data.

− +
ψ A B
ϕ t1 t2
φ n m

ψ ⊗ ϕ ⊗ φ
ψ ⊗ (−ϕ) ⊗ (−φ)

(−ψ) ⊗ ϕ ⊗ (−φ)
(−ψ) ⊗ (−ϕ) ⊗ φ

Oppositions 2 by 2
(Bt2m) , (At1m),
(Bt1n), (At2n)

Table 1: Linked information: Tensor Components | Tensor Equivalences | Interpretations
across components: (xyz) meaning semantic association.

full equivalence as reading interpreting directly the factor loadings. With 3-modes, theses
correlations have to be between the variables represented by the vectors of the tensor unfolded
into a matrix and the ψi ⊗ φi (for the 2-modes variables). Similar considerations occur with
k > 3 modes.
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6. PTAk-modes with non identity metrics

As mentioned in the introduction, all multiway decomposition methods in PTAk allow us
to use non-identity metrics for every space involved in the tensorial space, i.e., symmetric
positive definite matrices used in the inner products within each space. (The canonical inner
product —sum of cross-products— corresponds to the identity metric and the metric on the
tensorial space the tensorial product of the individual metrics, see for example Leibovici 1993;
Dauxois et al. 1994). Instead of feeding the methods with an“array”object X, one uses a list

where $data contains the “array” object and $met is a list of “matrix” objects or “vector”
object objects (diagonal metrics) representing the metrics associated with the inner products
in each space. Algebraically within the tensor framework this has an effect on the contracted
product and on the norms of the vectors, therefore on the optimization of Equations 6 and
its equivalent for any k. Going back to one of the definitions of the tensorial product gives a
hint for this natural extension:

〈a⊗ b⊗ c, ψ ⊗ ϕ⊗ φ〉D⊗Q⊗M = 〈a, ψ〉D 〈b, ϕ〉Q 〈c, φ〉M = taDψ tbQϕ tcMφ (13)

where a and ψ belong to the metric space Rs with as metric the symmetric positive definite
matrix D, s being the length of vector a, and similar definitions for the other elements of
Equation 13. If a, b, and c cover the canonical basis elements in each space and X being
expressed naturally in this basis, it is possible to grasp via the contraction of elementary
tensors (rank one tensors), the utilisation of metrics in the contraction of any two tensors.
Computationally one could also write:

X..m(ψ ⊗ ϕ⊗ φ) = t(t(tXDDψ)QQϕ)MMφ (14)

in which the use of non-identity metrics in the contracted product has been emphasized by
a subscript ..m; the subscript with a metric means rearranging the given tensor in a matrix
where the columns lie in that metric space, i.e., the number of rows is equal to the dimension
of the given metric space.

Like in PCA or SVD, where one analyses a triplet (X,Q,D), data and metrics for the two
modes, it is convenient to refer to (k + 1)-uples of objects defining the analysis, that is the
tensor of order k as the data, and the k metrics associated to each mode of the tensor:

(X,M1,M2, ...,Mk) (15)

6.1. Use of metrics in PCA

A PCA of a triplet (X, Q, D) with X a data matrix n× p, Q a p× p metric on the rows (or
in the column-space) and similarly D a n × n metric on the columns (or in the row-space),
is generalizing a standard PCA by diagonalizing with Q-normed vectors the matrix tXDXQ
equivalent, to the covariance matrix if X is column-centered, D = 1/nIdn and Q = Idp, or to
the correlation matrix if instead of the identity metric Q = diag(1/var1 . . . 1/varp) (see also
Dray and Dufour 2007, for more details).

6.2. Choice of metrics for spatial data

A classical use of metrics is in discriminant analysis when a known group structure is part
of the design experiment, and either assessing or minimizing the impact of this structure on
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the variability is the goal of the analysis. For example it would be possible to a perform (i) a
PTAIVk-modes to assess the known structure and (ii) an orthogonal-PTAIVk-modes (that is
a residual analysis) to minimize the structure in the analysis, where using as metric the inverse
of within-group variations would improve both analyses. When the structure is unknown, as
is often the case, the goal of the analysis becomes to look for what is structuring the data.
As mentioned by Caussinus and Ruiz (1990) a good strategy to reveal dense groups with
generalized PCA would be to reveal outliers first using the metric W−1o given in Equation 17
with 0.05 ≤ β ≤ 0.03 and remove them before using the metric W−1l , Equation 16, using a
β ≥ 1. Wl is a robust estimate of the within covariance of the unknown structure given by
the function CauRuimet:

Wl =

∑n−1
i=1

∑n
j=i+1Gijker(d

2
S−(Zi, Zj))(Zi − Zj) t(Zi − Zj)∑n−1

i=1

∑n
j=i+1Gijker(d

2
S−(Zi, Zj))

(16)

where Z is a data matrix, d2S−(., .) is the squared Euclidean distance with S− the inverse
of a robust sample covariance and G is a graph structure expressing some known proximity
(when no knowledge of proximity is chosen Gij = 1 and one just has to put mo = 1 in the
function). ker is a positive decreasing function which would provide a kernel function for the
different weighting: by default e−βu with choices on β. Wl corresponds to the definition of
local variance (Lebart 1969; Caussinus and Ruiz 1990; Faraj 1994).

Wo =

∑n
i=1 ker(d

2
S−(Zi, Z̃))(Zi − Z̃) t(Zi − Z̃)∑n
i=1 ker(d

2
S−(Zi, Z̃))

(17)

To complete the different metrics or semi-metrics associated to known or unknown structure
variances, the function can give also something analog to a global variance:

Wg =

∑n−1
i=1

∑n
j=i+1Gijker(d

2
S−(Zi, Zj))(Zi − Z̃) t(Zj − Z̃)∑n−1

i=1

∑n
j=i+1Gijker(d

2
S−(Zi, Zj))

(18)

where Z̃ is the location vector of the multivariate distribution, i.e., a robust estimate of the

mean. In the case of some known structure the semi-metric W gα−
l = W

1/α
g W−1l Wg1/α may be

used to extract robust sub-structure, in the sense that the analysis will tend to minimize the
local variance and be consistent at 1/α with the global variance, with convergence towards
W−1l as α increases.

So far, using these metrics is not specific to spatial data as even the graph structure can
reflect any proximity in attribute space, but it is also reminiscent of neighborhood graphs as
in Lebart (1969); Faraj (1994). In a spatial context, W gα−

l is particularly interesting when
looking for finer-scale structures compatible with some coarser scale relationships represented
by the Gij (G taken into account in Wg but in Wl computations).

With the Tunisian climatic data example, we used Wly
−1 as metric in the indicators space

computed on the yearly average across spatial-location but also the same metric computed
on the concatenated array across spatial-location and month mode (noted below W−1l ).

R> Zvm <- CONTRACTION(Zone3w, rep(1/12, 12), Xwiz = 2, zwiX = 1)

R> Wly <- CauRuimet(Zvm, ker = 2, m0 = 1, withingroup = TRUE,

+ loc = substitute(apply(Z, 2, mean, trim = 0.1)), matrixmethod = TRUE)
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R> Wlv <- Powmat(Wly, -1)

R> Zone3w <- list("data" = Zone3w, "met" = list(1, 1, Wlv))

R> Zone3w.PTA3-modesm3 <- PTA3-modes(Zone3w, nbPT = 3, nbPT2 = 3,

+ modesnam = c("carte", "mois", "var"),

+ addedcomment = "PTA3-modes metric Wly var yearly")

R> summary(Zone3w.PTA3-modesm3, testvar = 1e-2)

++++ PTA3-modes ++++

PTA3-modes metric Wly var yearly data = Zone3w 2599 12 10

------Percent Rebuilt---- 96.56307 %

------Percent Rebuilt from Selected ---- 96.46785 %

-no- --Sing Val-- --ssX-- --local Pct-- --Global Pct--

vs111 1 801.918 1112488.0 57.8049 57.80492+

2599 vs111 12 10 3 308.729 750707.7 12.6965 8.56761+

2599 vs111 12 10 4 104.273 750707.7 1.4483 0.97734

12 vs111 2599 10 6 404.862 821714.2 19.9477 14.73391+

12 vs111 2599 10 7 101.507 821714.2 1.2539 0.92618

10 vs111 2599 12 9 100.671 658692.8 1.5386 0.91099

10 vs111 2599 12 10 51.986 658692.8 0.4103 0.24293

vs222 11 287.342 167518.8 49.2871 7.42167-

2599 vs222 12 10 13 138.938 102851.1 18.7685 1.73518

...

The summary description of the analysis shows a “concentration” of explained variability onto
the first principal tensors (marked with a +) with a decrease for example of vs222. Nonethe-
less using W−1ly , little differences were seen for the spatial components. When using the W−1l

metric instead, taking into account month differences, results are completely redistributed in
the principal tensors as for example the principal tensor vs222 of the analysis without metric
now becomes the main features extracted by vs111, see and compare Figures 5 and 4.

R> Zv <- matrix(as.vector(aperm(Zone3w$data, c(1, 2, 3))), c(2599*12, 10))

R> Wlv <- Powmat(CauRuimet(Zv, ker = 1, m0 = 1, withingroup = TRUE,

+ loc = substitute(apply(Z, 2, mean, trim = 0.1)),

+ matrixmethod = TRUE), -1)

R> Zone3w.PTA3-modesm3all <- PTA3-modes(list("data" = Zone3w$data,

+ "met" = list(1, 1, Wlv)),

+ nbPT = 3, nbPT2 = 3, modesnam = c("carte", "mois", "var"),

+ addedcomment = "PTA3-modes metric Wlv var")

R> summary(Zone3w.PTA3-modesm3all, testvar = 1e-2)

++++ PTA3-modes ++++

PTA3-modes metric Wlv var data = Zone3w 2599 12 10

------Percent Rebuilt---- 82.45044 %

------Percent Rebuilt from Selected ---- 79.82162 %

-no- --Sing Val-- --ssX-- --local Pct-- --Global Pct--

vs111 1 411.92 493139 34.408 34.4080

2599 vs111 12 10 3 210.18 233375 18.929 8.9582
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2599 vs111 12 10 4 127.69 233375 6.986 3.3061

12 vs111 2599 10 6 157.71 247705 10.041 5.0435

12 vs111 2599 10 7 151.75 247705 9.297 4.6699

10 vs111 2599 12 9 107.83 184021 6.319 2.3580

vs222 11 191.73 167397 21.959 7.4540

12 vs222 2599 10 16 156.67 100306 24.470 4.9772

12 vs222 2599 10 17 129.00 100306 16.591 3.3746

vs333 21 121.81 60459 24.543 3.0089

...

Figure 5 is realised from the three different plots given below, the scatter plot being done
using the plot.PTAk() method, and spatial components plotted using plot.Map() from the
maptools R package:

R> plot(Zone3w.PTA3-modesm3all, mod = c(2, 3), nb1 = 1, nb2 = 11,

+ lengthlabels = 5)

R> plot(Zone_climTUN, ol = NA, auxvar = Zone3w.PTA3-modesm3all[[1]]$v[1, ],

+ nclass = 30, colrmp = colorRampPalette(Yl)(31), mult = 100)

R> plot(Zone_climTUN, ol = NA, auxvar = Zone3w.PTA3-modesm3all[[1]]$v[11, ],

+ nclass = 30, colrmp = colorRampPalette(Yl)(31), mult = 100)

Now using this metric combining smoothed global variance constraint with inverse within local
structure, given by W gα−

l , the results demonstrate a more interesting spatial pattern than in
previous analysis, Figure 6. Note as in the analysis with W−1l , vs222 of the previous analysis
(without metric) now becomes the main features extracted by vs111, elsewhere different in a
compatible description of the spatio-temporal patterns as expected by the link between the
metrics.

R> DD <- round(100*t(Zone3w.PTA3-modes[[1]]$v[c(1, 6, 9, 11, 16, 17), ]))

R> ddd2 <- exp(as.matrix(round(dist(DD))))

R> ddd2 <- 1/(1 + (ddd2-min(ddd2)))

R> ddd2[ddd2 <= quantile(ddd2, probs = 0.25)] <- 0

R> Zv1 <- CONTRACTION(Zone3w$data, rep(1, 12), zwiX = 1, Xwiz = 2)

R> Wov <- CauRuimet(Zv1, ker = 2, m0 = ddd2, withingroup = FALSE,

+ loc = substitute(apply(Z, 2, mean, trim = 0.1)), matrixmethod = FALSE)

R> Wglv <- Powmat(Wov, 1/9) %*% Wlv %*% Powmat(Wov, 1/9)

R> Zone3wgl.PTA3-modes <- PTA3-modes(list("data" = Zone3w$data,

+ "met" = list(1, 1, Wglv)), nbPT = 3, nbPT2 = 3,

+ modesnam = c("carte", "mois","var"),

+ addedcomment = "PTA3-modes metric Wglv")

R> summary(Zone3wgl.PTA3-modes, testvar = 1e-2)

++++ PTA3-modes ++++

data = list(data = Zone3w$data, met = list(1, 1, Wglv)) 2599 12 10

PTA3-modes metric Wglv

------Percent Rebuilt---- 87.57398 %

------Percent Rebuilt from Selected ---- 87.56613 %
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Figure 5: Principal tensor 1 and 11 (vs111 and vs222)) using W−1l metric for the indicator
mode.

-no- --Sing Val-- --ssX-- --local Pct-- --Global Pct--

vs111 1 1233.432 3609793 42.14520 42.145198 a

2599 vs111 12 10 3 590.828 1913730 18.24071 9.670305 a

2599 vs111 12 10 4 194.028 1913730 1.96720 1.042910 a

12 vs111 2599 10 6 584.066 2348657 14.52462 9.450226 b

12 vs111 2599 10 7 480.787 2348657 9.84207 6.403597 c

10 vs111 2599 12 9 429.092 1731332 10.63456 5.100556 d

10 vs111 2599 12 10 97.945 1731332 0.55409 0.265754
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Figure 6: Main spatial components from principal tensors of Tunisian climatic data with
metric W gα−

l : letters correspond to the output listing with (metric Wglv).

vs222 11 412.755 658783 25.86084 4.719574 e

2599 vs222 12 10 13 265.521 267878 26.31853 1.953064 e

2599 vs222 12 10 14 150.321 267878 8.43528 0.625971 e

12 vs222 2599 10 16 295.822 370631 23.61118 2.424251 f

...

The coarse structure, used here for the W gα−
l metric, is a non-linear transformation of dis-

tances (see ddd2 in the above code chunk) based on components extracted from the PTA3-
modes without metric (from which global spatial effects were expected to emerge). This par-
ticular example, with this choice of coarse structure, could be seen as as an iterative process,
assimilating non-linear estimation of smoothed spatial pattern, from and within constrained
spatio-temporal decomposition of multivariate dynamics.

In a similar context, geographically weighted discriminant analysis (Brunsdon et al. 2007),
takes a similar kernel approach with geographic distances, to take into account spatial prox-
imity in the estimation of variance-covariance matrix playing also the role of a metric. The
approach of Borcard and Legendre (2002), claiming to account for a range of scales by using
an eigenvalue decomposition of a truncated matrix of distances between sampling sites, is also
applicable here to build a metric depending on spatial proximity.

7. Correspondence Analysis on k-way tables

The tensorial framework developed previously, using different metrics and particular datasets
to perform a PTAk-modes, extends the framework of multidimensional analysis using PCA as
a generic method (Escoufier 1987; Dray and Dufour 2007). A method of particular interest is
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correspondence analysis; a generalization to multiple contingency table (Leibovici 1993, 2000),
has been used to analyze spatial patterns of attributes of categorical variables (Leibovici et al.
2008).

7.1. 2-way correspondence analysis

Correspondence analysis (FCA) of a two-way contingency table with cells nij , i = 1, . . . , I,
j = 1, . . . , J can be described as follows. The usual notations are:

ni. =
∑
j

nij , n.j =
∑
i

nij , n.. = N =
∑
ij

nij

and then the observed proportions are defined as pij = nij/N . Diagonal metrics containing
vector margins PI. = t(· · · pi. · · ·) and P.J used thereafter, are noted DI and DJ . Correspon-
dence analysis provides a decomposition of the measure of lack of independence between the
two categorical variables indexed respectively by i and j in performing the principal compo-
nent analysis, PCA or generalized PCA, of the following triplet (Escoufier 1987):

(D−1I PD−1J DI , DJ) (19)

The measure of lack of independence is linked to the analysis by:

1 +
χ2

N
= 1 +

∑
ij

(pij − pi.p.j)2

pi.p.j
=

∑
ij

pi.p.j(
pij
pi.p.j

)2 =
∑
s

σ2s (20)

where the σs are the singular values from the PCA of the triplet given which has σ0 = 1 with
components equal to unit vectors in their respective spaces.

7.2. k-way correspondence analysis

As FCA is a particular PCA, we proposed a generalization of correspondence analysis to k-
way tables, FCAk-modes, as particular PTAk-modes (Leibovici 1993). Presenting here only
the case k = 3, and using similar notations as in the previous section, the three-way table
I × J ×K, is analyzed by the PTA3-modes of the quadruple:

((D−1I ⊗D
−1
J ⊗D

−1
K )..P, DI , DJ , DK) (21)

If one notes: Πijk = Π.jk + Πi.k + Πij. + ∆ijk for

(
pijk − pi..p.j.p..k

pi..p.j.p..k
) = (

p.jk − p.j.p..k
p.j.p..k

) + (
pi.k − pi..p..k

pi..p..k
) + (

pij. − pi..p.j.
pi..p.j.

) + (
pijk − δijk
pi..p.j.p..k

),

where δijk = pij.p..k + pi.kp.j. + p.jkpi.. − 2pi..p.j.p..k, one has the following property:

‖Πijk‖2 = ‖Π.jk‖2 + ‖Πi.k‖2 + ‖Πij.‖2 + ‖∆ijk‖2 (22)

where ‖.‖ is the norm on the tensor space, i.e., using the metric DI ⊗ DJ ⊗ DK . This re-
sult dates from Lancaster in 1951, reported more recently in Carlier and Kroonenberg (1996)
where another generalization of correspondence analysis is derived. Equation 22 means that
deviation from three-way independence can be orthogonally decomposed into deviations from
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independence for the two-way margins of the three-way table, and a three-way interaction
term. Each two-way margin deviation from independence is reminiscent of (simple) corre-
spondence analysis:

χ2

N
=

∑
ijk

pi..p.j.p..k(
pijk − pi..p.j.p..k

pi..p.j.p..k
)2 (23)

=
∑
jk

p.j.p..k(
p.jk − p.j.p..k

p.j.p..k
)2 +

∑
ik

pi..p..k(
pi.k − pi..p..k

pi..p..k
)2 +

∑
ij

pi..p.j.(
pij. − pi..p.j.
pi..p.j.

)2

+
∑
ijk

pi..p.j.p..k(
pijk − δijk
pi..p.j.p..k

)2.

showing that, the PTA3-modes (Equation 21) simply retrieves the two-way lacks of marginal
independence, and this, in a natural way according to the algorithm schema 11. The inertia
or sum of squares is:

∑
ijk

pi..p.j.p..k(
pijk

pi..p.j.p..k
)2 =

r∑
s=0

σs = 1 +
r∑
s=1

σs = 1 +
χ2

N
(24)

where the first (s = 0) principal tensor being 1II ⊗ 1IJ ⊗ 1IK with σ0 = 1, its associated
principal tensors relate to two-way margins decompositions, i.e., each term of the second row
of the Equation 23. The use of the FCAk() function, implementing this particular PTAk(), is
described in the next section for a particular spatial analysis.

7.3. Analyzing multiple collocations

Looking at collocations of attributes with v ≥ 1 categorical variables issued from spatial-
location processes (such as point processes) leads to analyse multiway tables of spatial cooc-
currences (Leibovici et al. 2008). Order-two cooccurrences have now a long history within
spatial pattern analysis (Ripley 1981; Diggle 2003) and can be used within R for example
with the R package spatstat (Baddeley and Turner 2005).

They can also be analyzed using correspondence analysis whilst higher order cooccurrences
revealing spatial patterns can be extracted via FCAk-modes performed within PTAk using the
method FCAk()(respectively the CAOO and CAkOO statistical methods defined in Leibovici
et al. 2008). This is illustrated here using the dataset Lansing from spatstat. This dataset
consist of an ecological study where categories of trees and their positions in the studied
area are recorded. Analyzing the pattern of categories will help the ecologist to study tree
associations in the development of the forest. A collocation of order 3 at distance 0.1 unit
(square window of 1 unit × 1 unit) on the single point process marked with a categorical
variable describing the tree species was used. The collocation function cOO3d1S() is given in
the file “v34i10-additions.R”. Other functions for other applications of the generic PTAk
method can be found at Leibovici (2004).

The function cOO3d1S() in the following code computes the collocation of order 3 for one
marked point process, keeping the “locations of collocations” in one entry of the output ar-
ray (instead of marginalizing for each category). Each cell nsi,j,k contains the number of
collocations, up to distance d = 0.1 unit, of categories i, j and k at location si of category i.
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R> lansing.1 <- cOO3d1S(lansing, 0.1)

R> lansing.1.FCAk <- FCAk(lansing.1, nbPT = 3, nbPT2 = 3, minpct = 0.01,

+ modesnam = c("2251points", "6catTree", "6catTree"),

+ addedcomment = "S I I", chi2 = FALSE, E = NULL)

R> summary(lansing.1.FCAk)

++++ FCA3-modes++++ d = 0.1 unit

++ collocation Table lansing.1 2251 6 6 ++ S I I

-----Total Percent Rebuilt---- 69.68052 %

++ Percent of lack of complete independence rebuilt ++ 42.70666 %

selected pctoafc > 0.1 % total = 42.61869

-no- --Sing Val-- --ssX-- --Global Pct-- --FCA--

vs111 1 1.000000 2.124032 47.08027 NA

2251 vs111 6 6 3 0.256438 1.074332 3.09603 5.85042

2251 vs111 6 6 4 0.062902 1.074332 0.18628 0.35201

6 vs111 2251 6 6 0.493220 1.429735 11.45302 21.64225

6 vs111 2251 6 7 0.250328 1.429735 2.95025 5.57495

vs222 11 0.238690 0.190229 2.68231 5.06863

6 vs222 2251 6 16 0.115381 0.092153 0.62677 1.18437

6 vs222 2251 6 17 0.103075 0.092153 0.50020 0.94521

vs333 21 0.132362 0.062104 0.82483 1.55865

6 vs333 2251 6 26 0.051125 0.024298 0.12306 0.23254

6 vs333 2251 6 27 0.048546 0.024298 0.11096 0.20967

...

The FCAk() listing results obtained by the summary() function on a FCAk class object (in-
heritance from “PTAk” class object) differs from the PTAk() listing multi-hierarchical tree of
singular values by the extra column -FCA- percentage which is merely a percentage of variabil-
ity without regard to vs111 the trivial singular value 1. Associated with this trivial principal
tensor we get the marginal FCA’s (or generally the marginal FCA(k − 1)-modes).

R> plot(lansing.1.FCAk, mod = c(2, 3), nb1 = 6, nb2 = 11, lengthlabels = 5)

R> lansing$marks <- lansing.1.FCAk[[1]]$v[6, ]

R> plot(lansing[lansing$marks< = 0], cols = "blue",

+ main = "6 vs111 2251 6 FCAk 21%")

R> par(new = TRUE)

R> plot(lansing[lansing$marks>0], cols = "red", main = "")

R> lansing$marks <- lansing.1.FCAk[[1]]$v[11, ]

R> plot(lansing[lansing$marks< = 0], cols = "blue", main = "vs222 FCAk 5%")

R> par(new = TRUE)

R> plot(lansing[lansing$marks>0], cols = "red", main = "")

Figure 7 displays some effects associated with spatial dependencies of the categories of trees
as measured by the lack of independence for the collocation counts of order 3. The principal
tensors 6 and 11 are indeed showing the same thing: collocations with Blackoak and Hickory
in the top left corner opposed to the collocations with Maple and Miscellaneous trees, and
the reverse in the big blue squares areas. Nonetheless principal tensor 11 is a real third order
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Figure 7: Main effects. Principal tensors 6 and 11 (see summary(lansing.1.FCAk)) from
CAkOO analysis for collocation counts of order 3 of the Lansing data: blackoak, hickory,
maple, misc, redoak and whiteoak trees.

discrepancy effect, and principal tensor 6 is like a second order a posteriori as it is associated
with a marginal effect (an FCA2-modes after marginal contraction, i.e., associated with vs111

which is all components values equal to 1 (the s = 0 of Equation 24).

When analyzing cooccurrences of high orders on the same categorical variable, such as the
lansing data, one gets lots of symmetries within the tensor to be analyzed by FCAk(). A fully
symmetrical tensor can cause problems to obtain convergence for the actual algorithm within
SINGVA(). It is expected that the renewed interest in multiway tensor analysis, particularly
for symmetric tensors (Ni and Wang 2007; Comon et al. 2008) will bring new algorithms
for rank-one approximation (as in SINGVA() with the RPVSCC algorithm): see also Faber
et al. (2003) for a discussion on recent PARAFAC algorithms and de Silva and Lim (2008)
for a general discussion on lower-rank approximation in general. Other multiway methods
linked to higher order cooccurrences, spatially or non-spatially, are focusing on generalizing
dissimilarities or similarities for multidimensional scaling. For example Bennani’s work from
his thesis, published in Heiser and Bennani (1997), was looking at Euclidean approximation
of 3-way dissimilarities using an approach generalizing the unfolding metric multidimensional
scaling.
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8. Penalized optimization

The optimization algorithm within PTA3() or PTAk(), can be seen as alternating uncon-
strained least squares. Utilizing metrics could be seen as introducing linear constraints or
linear smoothing, which was pushed a bit further by allowing any smoothing of the compo-
nents within each iteration step. This very simple constraint makes a panelization algorithm
which will be equivalent to using metrics or semi-metrics if the penalizing operators are linear
in a separable Hilbert space, e.g., polynomial smoothing, spline smoothing (Leibovici and
El Maâche 1997; Leibovici 2008; Besse et al. 2005). Nonetheless even in the previous case, the
structure of the algorithm is more flexible, as for a particular mode, the smoothing parameter
is a list of smoothers which can be different along the decomposition process. However, the
increased flexibility of optimization may lead to an invalid or even non-convergent PTAk(),
but nearly orthogonal decompositions may be intersting. Work to fully describe the proper-
ties of such smoothing parameterization for the multiway methods in PTAk analysis is still
underway by the current author.

Below is a comparison of two different PTA3 for a verbal study on 12 subjects in which brain
activity is measured by fMRI during the verbal paradigm on/off showed by the square curves
on Figure 8. The first analysis (top of Figure 8) is a standard PTA3-modes on the brain
× time × subject data, and the analysis at the bottom is using panelization for time and
space: Wav2D() a 2-D wavelet smoothing for brain adapted from wavethresh and for time
a double kernel smoother Susan1D() provided in PTAk, which additionally to traditional
kernel smoothing does preserve high peaks. The smoothing arguments in PTAk() or PTA3()

are then included: PTA3(..., smoothing = TRUE, smoo = list(Wav2D, Susan1D, NA),

...). Beforehand, the data was detrended, using Detren on the time mode and scaled for
each subject using Multcent(). Only the first principal tensors are shown here, some more
results especially combining metrics and penalization can be seen at Leibovici (2004).

Figure 8: Verbal study data brain × time × subject with: canonical PTA3-modes (top),
penalised PTA3-modes with smooth constraints on brain and time (bottom).
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9. Conclusions and perspectives

As a possible way of extending multidimensional analysis on tables with 2 entries to multi-
entries data analysis, PTAk allows multiway decompositions of high order interactions and
can describe efficiently multiple domain interactions including the spatio-temporal domain.
Using specific metrics, linked to the input data or to a covariate structure, leads also to extend
well known 2-way analysis or principles such as discriminant analysis and correspondence
analysis, which have been shown to be of interest for contiguity analysis, or spatial data
defined by collocation events. Metrics, linear constraints and finally penalizing components
during optimization are made possible by the framework developed; they are efficient ways to
take into account spatio-temporal intrinsic properties within multiway analysis. Even though
we presented mainly the PTAk() generic method, two other multiway methods, CANDPARA()
and PCAn(), implemented in the R package possess these generalized features.

Non-linear adjustment is desirable in multidimensional analysis and also in multiway analy-
sis, PTAk gives some answers but remains fundamentally multilinear. Non-linear objective
functions used with multilinear models, can nonetheless be very powerful such as in indepen-
dent component analysis (ICA) for noisy data (Leibovici and Beckmann 2001; Beckmann and
Smith 2005).
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