

Relational Algebra for In-Database Process Mining

Citation for published version (APA):
Dijkman, R. M., Gao, J., Grefen, P., & ter Hofstede, A. (2017). Relational Algebra for In-Database Process
Mining. arXiv, 2017, Article 1706.08259. http://arxiv.org/abs/1706.08259

Document status and date:
Published: 26/06/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

http://arxiv.org/abs/1706.08259
https://research.tue.nl/en/publications/c032d38e-858e-4513-b267-09d446fd9269

Relational Algebra for In-Database Process
Mining

Remco Dijkman1, Juntao Gao2, Paul Grefen1, and Arthur ter Hofstede3,1

1 Eindhoven University of Technology, The Netherlands
{r.m.dijkman|p.w.p.j.grefen}@tue.nl
2 Northeast Petroleum University, China

gjt@nepu.edu.cn
3 Queensland University of Technology, Australia

a.terhofstede@qut.edu.au

Abstract. The execution logs that are used for process mining in prac-
tice are often obtained by querying an operational database and storing
the result in a flat file. Consequently, the data processing power of the
database system cannot be used anymore for this information, leading
to constrained flexibility in the definition of mining patterns and limited
execution performance in mining large logs. Enabling process mining di-
rectly on a database - instead of via intermediate storage in a flat file -
therefore provides additional flexibility and efficiency. To help facilitate
this ideal of in-database process mining, this paper formally defines a
database operator that extracts the ‘directly follows’ relation from an
operational database. This operator can both be used to do in-database
process mining and to flexibly evaluate process mining related queries,
such as: “which employee most frequently changes the ‘amount’ attribute
of a case from one task to the next”. We define the operator using the
well-known relational algebra that forms the formal underpinning of re-
lational databases. We formally prove equivalence properties of the oper-
ator that are useful for query optimization and present time-complexity
properties of the operator. By doing so this paper formally defines the
necessary relational algebraic elements of a ‘directly follows’ operator,
which are required for implementation of such an operator in a DBMS.

Keywords: process mining, relational algebra, formal methods

1 Introduction

Enabling process mining directly on an operational database or data warehouse
presents new opportunities. It provides additional flexibility, because event logs
can be constructed on-demand by writing an SQL query, even if they are dis-
tributed over multiple tables, as is the case, for example, in SAP [17]. It even
provides opportunities for fully flexible querying, allowing for the formulation of
practically any process mining question. Moreover, process mining directly on
a database leverages the proven technology of databases for efficiently handling

ar
X

iv
:1

70
6.

08
25

9v
1

 [
cs

.D
B

]
 2

6
Ju

n
20

17

Table 1. Database table R that contains a log

case activity start time end time case activity start time end time

1 A 00:20 00:22 4 A 03:06 03:10
1 B 02:04 02:08 4 B 05:04 05:09
1 E 02:32 02:32 4 E 07:26 07:29
2 A 02:15 02:20 5 A 03:40 03:44
2 D 03:14 03:19 5 B 05:59 06:06
2 E 05:06 05:07 5 E 07:49 07:52
3 A 02:27 02:29 6 A 04:18 04:20
3 D 04:17 04:20 6 C 07:08 07:12
3 E 06:51 06:53 6 E 09:05 09:07

large data collections in real time, which is one of the challenges identified in
the process mining manifesto [1]. This can speed up process mining, especially
when extremely large logs are going to be considered, such as call behavior of
clients of a telecom provider, or driving behavior of cars on a road network.

To illustrate the potential benefits of process mining on a database, Table 1
shows a very simple event log as it could be stored in a database relation. In
practice, such a log would contain thousands of events, as is the case for the
well know BPI Challenge logs (e.g. [13]), and even millions of events in the
examples of the telecom provider and the road network mentioned above. Table 1
shows the activities that were performed in an organization, the (customer) case
for which these activities were performed and the start and end time of the
activities. Given such a relation, it is important in process mining to be able to
retrieve the ‘directly follows’ relation, because this relation is the basis for many
process mining techniques, including the alpha algorithm [4] (and its variants),
the heuristic miner [22], and the fuzzy miner [16]. The directly follows relation
retrieves the events that follow each other directly in some case. The SQL query
that retrieves this relation from relation R in Table 1 is:

SELECT DISTINCT a.activity, b.activity

FROM R a, R b WHERE a.case = b.case AND

a.end_time < b.end_time AND

NOT EXISTS SELECT * FROM R c WHERE c.case = a.case AND

a.end_time < c.end_time AND c.end_time < b.end_time;

Another example query, is the query that returns the average waiting time before
each activity:

SELECT b.activity, average(b.start_time - a.end_time)

FROM R a, R b WHERE a.case = b.case AND

a.end_time < b.end_time AND

NOT EXISTS SELECT * FROM R c WHERE c.case = a.case AND

a.end_time < c.end_time AND c.end_time < b.end_time

GROUP BY b.activity;

These queries illustrate the challenges that arise when doing process mining
directly on a database:

1. The queries are inconvenient. Even a conceptually simple process mining
request like ‘retrieve all directly follows relations between events’ is difficult
to phrase in SQL.

2. The queries are inefficient. The reason for this is that the ‘directly follows’
relation that is at the heart of process mining requires a nested query (i.e.
the ‘NOT EXISTS’ part) and nested queries are known to cause perfor-
mance problems in database, irrespective of the quality of query optimiza-
tion [18,10], This will be discussed in detail in Section 4.

user

process
mining tool

DBMS

log

model

DBMS

user

process
mining tool

log

model

DBMS+

user

process
mining tool

log

model

query query query

(i) with intermediate storage (ii) with database connection (iii) with database operator

other
results

Fig. 1. Strategies for process mining on a database

Consequently, measures must be taken to make process mining - and in par-
ticular extracting the ‘directly follows’ relation - feasible on relational databases.
Figure 1 shows three possible strategies. Figure 1.i shows the current state of the
art, in which a user constructs an SQL query to extract a log from the database.
This log is written to disk (for example as a csv file) and then read again by a
process mining tool for further processing. Consequently, the complete log must
be read or written three times and there is some manual work involved in getting
the log to and from disk. It is easy to imagine a process mining tool that does
not need intermediate storage to disk. Such a tool would only need to read the
log once and would not require manual intervention to get the log to and from
disk. Figure 1.ii illustrates this strategy.

This paper proposes a third strategy, in which the DBMS supports a native
‘directly follows’ operator. This strategy has the benefit that it does not require
intermediate storage on disk and that it facilitates flexible and convenient query-
ing for process mining related information. In addition, it has the benefit that
it leverages proven database technology, which can efficiently handle very large
data sets in real time. To realize this strategy, the paper defines the ‘directly
follows’ operator in relational algebraic form, by defining what it does, how it
behaves with respect to other operators, and what its execution costs are. By
doing so this paper formally defines the necessary relational algebraic elements

of a ‘directly follows’ operator, which are required for implementation of such
an operator in a DBMS.

Against this background the remainder of this paper is structured as follows.
Section 2 explains relational algebra as background for this paper. Section 3
presents a relational algebraic ‘directly follows’ operator. Section 4 shows the
computational cost of executing this operator and the potential effects of query
optimization with respect to this operator. Finally, section 5 presents related
work and section 6 the conclusions.

2 Background

Relational algebra is at the core of every relational database system. It is used
to define the execution semantics of an SQL query and to define equivalence
rules to determine which execution semantics (among a set of equivalent ones)
is the most efficient to execute. Before we define a relational algebraic ‘directly
follows’ operator, we provide background on these two topics.

2.1 Relational Algebra

In this section we briefly define the basic relational algebraic operators. We refer
to the many textbooks on databases (e.g. [5]) for more detailed definitions.

Definition 1 (Attribute, Schema, Relation). An attribute is a combination
of a name and a domain of possible values. A schema is a set of attributes. Any
two elements s1, s2 of schema s with s1 6= s2 have different names. A relation
is a combination of a schema and a set of tuples. Each tuple in a relation maps
attribute names from the schema of the relation to values from the corresponding
domain.

For example, let C be the domain of case identifiers, E be the domain of
activities, and T be the time domain. The relation of Table 1 has the schema
{case : C, activity : E, start time : T, end time : T} and the set of tuples
{{case 7→ 1, activity 7→ A, start time 7→ 00:20, end time 7→ 00:22}, . . .}.

In the remainder of this paper, we will also refer to R as the set of tuples of
a relation R. For a relation with a schema that defines an attribute with name
a, we will use ta to refer to the value of attribute a in tuple t.

Definition 2 (Relational Algebra). Let R,S be relations with schema r, s.
Furthermore, let a, b be attribute names, and φ a condition over attributes that
is constructed using conjunction (∧), disjunction (∨), negation (¬), and binary
conditions (>,≥,=, 6=,≤, <) over attributes and attribute values. We define the
usual relational algebra operators:
– Selection: σφR = {t|t ∈ R,φ(t)}, where φ(t) is derived from φ by replacing

each attribute name a by its value in tuple t: ta. The schema of σφR is r.
– Projection: πa,b,...R = {{a 7→ ta, b 7→ tb, . . .}|t ∈ R}. The schema of πa,b,...R

is r restricted to the attributes with names a, b,

Table 2. Example Relational Algebra Expressions

σcase=1R πcaseR ρcase/idR

case activity start time end time case id activity start time end time

1 A 00:20 00:22 1 1 A 00:20 00:22
1 B 02:04 02:08 2 1 B 02:04 02:08
1 E 02:32 02:32 3 1 E 02:32 02:32

.

– Renaming: ρa/bR = R. The schema of ρa/bR is derived from r by replacing
the name of attribute a by b. In the remainder of this paper, we will also use
ρxR to represent prefixing all attributes of R with x.

In addition, we define the usual set theoretic operators R∪S, R∩S, R−S. These
operators have the usual set-theoretic interpretation, but they require that R and
S have the same schema. We define the Cartesian product of R with schema
{r1 : R1, r2 : R2, . . . , rn : Rn} and S with schema {s1 : S1, s2 : S2, . . . , sn : Sn}
as R × S = {{r1 7→ tr1 , r2 7→ tr2 , . . . , rn 7→ trn , s1 7→ us1 , s2 7→ us2 , . . . , sm 7→
usm}|t ∈ R, u ∈ S}. The schema of R× S is r ∪ s.

Finally, a join operator is usually defined for the commonly used operator of
joining tuples from two relations that have some property in common. The join
operator is a shorthand for a combination of Cartesian product and selection:
R ./φ S = σφR× S.

Table 2 shows examples of the selection, projection, and renaming operators,
applied to the relation in Table 1.

2.2 Query Optimization

There are a large number of proven relational algebraic equivalences that can
be used to rewrite relational algebraic equations [5,21]. In the remainder of this
paper, we use the following ones. Let R,S be tables, a, b, c be attributes, x, y be
attribute values, φ, ψ be conditions, and θ be a binary condition (>,≥,=, 6=,≤
, <). Then:

σφ∧ψR = σφ(σψR) (1)

σφ(σψR) = σψ(σφR) (2)

R ./φ S = S ./φ R (3)

(R ./φ S) ./ψ T = R ./φ (S ./ψ T) (4)

σψ(R ./φ S) = (σψR) ./φ S, if ψ only has attributes from R (5)

σψ(R− S) = (σψR)− (σψS) (6)

σaθx(ρb/aR) = ρb/a(σbθxR) (7)

πa(ρb/aR) = ρb/a(πbR) (8)

πa,b,...(σφR) = σφ(πa,b,...R), if φ only has attributes from a, b, . . . (9)

πa,b,...(S ./φ R) = (πa,...R) ./φ (πb,...S), if a, b, . . . can be split over R,S (10)

πa,b(πb,cR) = πbR (11)

πa,...(πb,...R) = πb,...(πa,...R) (12)

ρb/a(R ./bθc S) = (ρb/aR) ./aθc S, if a, b only in R (13)

πRsR = R, if Rs has only attributes from R (14)

πRs(R ./φ S) = R, if R ./φ S includes each tuple of R

and Rs has exactly the attributes from R (15)

(R− T) ./aθb S = R ./aθb S − T ./aθb S (16)

In practice these equivalences are used to generate alternative formulas that
lead to the same result, but represent alternative execution strategies. For exam-
ple, σψ(σφR× σθS) can be proven to be equivalent to σψ∧φ∧θ(R×S). However,
σψ(σφR × σθS) represents the execution strategy in which we first execute the
selections and then the Cartesian product, while σψ∧φ∧θ(R × S) represents the
execution strategy where we first execute the Cartesian product and then the
selection. The first execution strategy is much more efficient than the second,
because it only requires the Cartesian product to be computed for a (small)
subset of R and S.

3 Relational Algebra for Process Mining

This section defines the ‘directly follows’ relation as a relational algebraic op-
erator. It also presents and proves equivalences for this operator that can be
used for query optimization, similar to the equivalences that are presented in
Section 2.2.

3.1 Directly Follows Operator

The directly follows operator retrieves events that directly follow each other in
some case. For a database table Log that has a column c, which denotes the case
identifier, and a column t, which denotes the completion timestamp of an event,
we denote this operator as >c,t Log. For example, applying the operator to the
example log from Table 1 (i.e. >case,end time Log) returns Table 3. Similar to
the way in which the join operator is defined in terms of other relational algebra
operators, we define the ‘directly follows’ operator in terms of the traditional
relational algebra operators as follows.

Definition 3 (Directly Follows Operator).

>c,t Log =ρ↓Log ./↓t<↑t∧↓c=↑c ρ↑Log

− πAs((ρ↓Log ./↓t<↑t∧↓c=↑c ρ↑Log) ./↓t<t∧t<↑t∧↓c=c Log)

where As is the set of attributes that are in ρ↓Log or ρ↑Log.

Table 3. Result of >case,end time Log

↓case ↓activity ↓start time ↓end time ↑case ↑activity ↑start time ↑end time

1 A 00:20 00:22 1 B 02:04 02:08
1 B 02:04 02:08 1 E 02:32 02:32
2 A 02:15 02:20 2 D 03:14 03:19
2 D 03:14 03:19 2 E 05:06 05:07
3 A 02:27 02:29 3 D 04:17 04:20
3 D 04:17 04:20 3 E 06:51 06:53
4 A 03:06 03:10 4 B 05:04 05:09
4 B 05:04 05:09 4 E 07:26 07:29
5 A 03:40 03:44 5 B 05:59 06:06
5 B 05:59 06:06 5 E 07:49 07:52
6 A 04:18 04:20 6 C 07:08 07:12
6 C 07:08 07:12 6 E 09:05 09:07

The directly follows operator can both be used in an algorithm for process
mining that is based on it (or on ‘footprints’ which are derived from it [2]) and
for flexible querying. Some example queries include:

– The two activities that precede a rejection:
π↑↑activity=reject >↑case,↑end time>case,end time Log

– The activities in which the amount of a loan is changed:
σ↑amount6=↓amount >↑case,↑end time Log

– The resources that ever changed the amount of a loan:
π↑resourceσ↑amount 6=↓amount >↑case,↑end time Log

3.2 Directly Follows Query Optimization

To facilitate query optimization for the directly follows operator, we must define
how it behaves with respect to the other operators and prove that behavior. We
present this behavior as propositions along with their proofs. In each of these
propositions, we use a, b, c, t as attributes (where - as convention - we use c to
denote the case identifier attribute and t to denote the time attribute), θ as a
binary operator from the set {>,≥,=, 6=,≤, <}, and x as a value.

The first proposition holds for case attributes and event attributes. We define
case attributes as attributes that keep the same value for all events in a case,
from the moment that they get a value. We define event attributes as attributes
that have a value for at most one event in each case. Consequently, we can only
use this proposition for optimizing queries that involve a selection on a case
or event attribute. Selections on other types of attributes (including resource
attributes) cannot be optimized with this proposition.

Proposition 17 (directly follows and selection commute).
>c,t σaθxLog = σ↓aθx∧↑aθx >c,t Log, if a is a case or event attribute.

Proof.

>c,t σaθxLog

= (definition 3)

ρ↓(σaθxLog) ./↓t<↑t∧↓c=↑c ρ↑(σaθxLog)

− πAs
(
((ρ↓(σaθxLog) ./↓t<↑t∧↓c=↑c ρ↑(σaθxLog)) ./↓t<t∧t<↑t∧↓c=c σaθxLog)

)
= (proposition 7)

σ↓aθx(ρ↓Log) ./↓t<↑t∧↓c=↑c σ↑aθx(ρ↑Log)

− πAs
(
((σ↓aθx(ρ↓Log) ./↓t<↑t∧↓c=↑c σ↑aθx(ρ↑Log)) ./↓t<t∧t<↑t∧↓c=c σaθxLog)

)
= (proposition 1, 3, 5)

σ↓aθx∧↑aθx(ρ↓Log ./↓t<↑t∧↓c=↑c ρ↑Log)

− πAs
(
σ↓aθx∧↑aθx∧aθx((ρ↓Log ./↓t<↑t∧↓c=↑c ρ↑Log) ./↓t<t∧t<↑t∧↓c=c Log)

)
= (assume ↓aθx ∧ ↑aθx⇒ aθx)

σ↓aθx∧↑aθx(ρ↓Log ./↓t<↑t∧↓c=↑c ρ↑Log)

− πAs
(
σ↓aθx∧↑aθx((ρ↓Log ./↓t<↑t∧↓c=↑c ρ↑Log) ./↓t<t∧t<↑t∧↓c=c Log)

)
= (proposition 9)

σ↓aθx∧↑aθx(ρ↓Log ./↓t<↑t∧↓c=↑c ρ↑Log)

− σ↓aθx∧↑aθx
(
πAs((ρ↓Log ./↓t<↑t∧↓c=↑c ρ↑Log) ./↓t<t∧t<↑t∧↓c=c Log)

)
= (proposition 6)

σ↓aθx∧↑aθx
(
ρ↓Log ./↓t<↑t∧↓c=↑c ρ↑Log

− πAs((ρ↓Log ./↓t<↑t∧↓c=↑c ρ↑Log) ./↓t<t∧t<↑t∧↓c=c Log)
)

= (definition 3)

σ↓aθx∧↑aθx >c,t Log

Note that proposition 9 requires that the condition only contains attributes
that are also projected (in this case ↓ a, ↑ a must be in As). This condition is
satisfied as per definition 3. Also note that the proof uses an assumption, which
states that if any two events in a case have the same value for an attribute, all
events for that case that are between these two (in time) must also have that
value (↓aθx ∧ ↑aθx ⇒ aθx). This assumption holds for case attributes and for
event attributes, which are the scope of this proposition.

The next proposition is a variant of the previous one, in which there is a
condition on two attributes instead of an attribute and a value.

Proposition 18 (directly follows and selection commute 2).
>c,t σaθbLog = σ↓aθ↓b∧↓aθ↑b∧↑aθ↓b∧↑aθ↑b >c,t Log, if a, b are case or event at-
tributes.

Proof. Analogous to the proof of proposition 17

To prove that directly follows and projection commute, we first need to prove
that projection and set minus commute, because the set minus operator is an

important part of the definition of the directly follows operator. However, for
the general case it is not true that projection and set minus commute. A counter
example is easily constructed. Let R = {{a 7→ 1, b 7→ 2}} and S = {{a 7→
1, b 7→ 3}}. For these relations it does not hold that πa(R−S) = (πaR)− (πaS).
However, we can prove this proposition for the special case that S is a subset of
R and a uniquely identifies tuples in R. Since these conditions are satisfied for
the directly follows operator, it is sufficient to prove the proposition under these
conditions.

Proposition 19 (projection and restricted set minus commute).
πa(R− S) = (πaR)− (πaS), if S ⊆ R and a uniquely identifies each tuple in R.

Proof. This equivalence is proven by observing that S ⊆ R implies that a non-
surjective injective function f : S → R exists that matches each tuple s in S
to a unique tuple r in R. The fact that a uniquely identifies tuples in R (and
also in S, because S is a subset of R) implies that f is completely determined
by the values of tuples in a, i.e., the values of attributes other than a have no
consequence for f . Therefore, projecting R and S onto a does not change the
tuple mapping defined by f .

Now, looking at the left side of proposition 19, calculating the projection over
the difference, means removing the attributes not in a from the selected tuples
in R that are not in the range of f . Looking at the right side, calculating the
difference over the projections, means removing the attributes not in a from R
and S (which does not affect f) and then selecting the tuples in R that are not
in the range of f . These two are equivalent.

Proposition 20 (directly follows and restricted projection commute).
>c,t πc,t,aLog = π↓c,↓t,↓a,↑c,↑t,↑a >c,t Log

Proof.

>c,t πc,t,aLog

= (definition 3)

ρ↓(πc,t,aLog) ./↓t<↑t∧↓c=↑c ρ↑(πc,t,aLog)

− πAs((ρ↓(πc,t,aLog) ./↓t<↑t∧↓c=↑c ρ↑(πc,t,aLog)) ./↓t<t∧t<↑t∧↓c=c πc,t,aLog)

= (proposition 8)

π↓c,↓t,↓a(ρ↓Log) ./↓t<↑t∧↓c=↑c π↑c,↑t,↑a(ρ↑Log)

− πAs((π↓c,↓t,↓a(ρ↓Log) ./↓t<↑t∧↓c=↑c π↑c,↑t,↑a(ρ↑Log)) ./↓t<t∧t<↑t∧↓c=c πc,t,aLog)

= (proposition 10)

π↓c,↓t,↓a,↑c,↑t,↑a(ρ↓Log ./↓t<↑t∧↓c=↑c ρ↑Log)

− πAs
(
π↓c,↓t,↓a,↑c,↑t,↑a,c,t,a((ρ↓Log ./↓t<↑t∧↓c=↑c ρ↑Log) ./↓t<t∧t<↑t∧↓c=c Log)

)
= (proposition 11, 12)

π↓c,↓t,↓a,↑c,↑t,↑a(ρ↓Log ./↓t<↑t∧↓c=↑c ρ↑Log)

− π↓c,↓t,↓a,↑c,↑t,↑a
(
πAs((ρ↓Log ./↓t<↑t∧↓c=↑c ρ↑Log) ./↓t<t∧t<↑t∧↓c=c Log)

)

= (proposition 19)

π↓c,↓t,↓a,↑c,↑t,↑a
(
(ρ↓Log ./↓t<↑t∧↓c=↑c ρ↑Log)

− πAs((ρ↓Log ./↓t<↑t∧↓c=↑c ρ↑Log) ./↓t<t∧t<↑t∧↓c=c Log)
)

= (definition 3)

π↓c,↓t,↓a,↑c,↑t,↑a >c,t Log

The next proposition, which states that the directly follows relation and the
theta join commute, makes it explicit that the directly follows relation duplicates
all attributes of a log event. Table 3 illustrates this. However, if the case, activity
and start time attribute uniquely identify an event, then there is no need to
duplicate the end time attribute or any other attribute. Nonetheless, the directly
follows operator adds all attributes both on the ↑ and on the ↓ side of the table.
This redundancy can easily be fixed later on with a project operator and in
future work additional efficiency may be achieved by avoiding this redundancy
altogether.

Proposition 21 (directly follows and theta join commute).
>c,t (R ./aθb S) = (>c,t R) ./↓aθb S ./↑aθb S, if each tuple from R is combined
with a tuple in S.

Proof.

>c,t (R ./aθb S)

= (definition 3)

ρ↓(R ./aθb S) ./↓t<↑t∧↓c=↑c ρ↑(R ./aθb S)

− πAs((ρ↓(R ./aθb S) ./↓t<↑t∧↓c=↑c ρ↑(R ./aθb S)) ./↓t<t∧t<↑t∧↓c=c (R ./aθb S))

= (proposition 13)

(ρ↓R) ./↓aθb S ./↓t<↑t∧↓c=↑c (ρ↑R) ./↑aθb S

− πAs(((ρ↓R) ./↓aθb S) ./↓t<↑t∧↓c=↑c (ρ↑R) ./↑aθb S) ./↓t<t∧t<↑t∧↓c=c R ./aθb S)

= (proposition 4, 10, 14, 15)

ρ↓R ./↓t<↑t∧↓c=↑c ρ↑R ./↓aθb S ./↑aθb S

− πAs(ρ↓R ./↓t<↑t∧↓c=↑c ρ↑R ./↓t<t∧t<↑t∧↓c=c R) ./↓aθb S ./↑aθb S

= (proposition 16)(
ρ↓R ./↓t<↑t∧↓c=↑c ρ↑R

− πAs(ρ↓R ./↓t<↑t∧↓c=↑c ρ↑R ./↓t<t∧t<↑t∧↓c=c R)
)
./↓aθb S ./↑aθb S

= (proposition 16)

(>c,t R) ./↓aθb S ./↑aθb S

4 Execution cost

We determine the computational cost of executing the directly follows operation,
either as part of a process mining tool or as an operation that is executed directly

Table 4. Execution costs of process mining on a database

execution strategy order of costs (disk blocks)

classical process mining
with intermediate storage 3 ·B
with database connection B
with database operator
native operator B
composite operator B up to B3

on the database. We also determine the effect of query optimization on the
directly follows operator.

4.1 Cost of computing the directly follows relation

The execution cost of a database operation is typically defined in terms of the
number of disk blocks read or written, because reading from or writing to disk are
the most expensive database operations. In line with the strategies for process
mining on a database that are presented in Figure 1, Table 4 shows four execution
strategies with their costs. (Note that the ‘with database operator’ strategy from
Figure 1 is split up into two alternatives.) The cost is presented as an order of
magnitude, measured in terms of the number of disk blocks B that must be read
or written. The number of disk blocks is linear with the number of events in
the log and depends on the number of bytes needed to store an event and the
number of bytes per disk block. These measures assume that the complete log
fits into memory.

Process mining with intermediate storage requires that the log is read and
written three times: once to query the database for the log, once to store the log
to disk, and once to load the log in the process mining tool. Consequently, the
complexity is 3 ·B. Process mining directly on a database requires that the log
is read only once. Subsequent processing can be done in memory.

In many usage scenarios more flexible querying capabilities are needed, which
can benefit from access to all SQL operators. For such usage scenarios, the
‘directly follows’ relation must be extracted directly from the database. It is easy
to imagine how a native ‘directly follows’ operator would work. Such an operator
would read the log, then sort it by case identifier and timestamp, and finally
return each pair of subsequent rows that have the same case identifier. Such an
operator would have to read the log from disk only once and consequently has
linear cost. For databases that do not have a native ‘directly follows’ operator,
the operator can be emulated using the composite formula from definition 3.
The drawback of this formula is that it requires that the intermediate results
from both sides of the minus operator are stored, after which the minus operator
can be applied. While this is no problem as long as the intermediate results fit
into memory, the costs become prohibitive once the intermediate results must
be written to disk.

100000

200000
300000

400000
500000

5000
10000

15000

10^4

10^6

10^8

10^10

10^12

Events

Cases

C
os

t (
D

is
kb

lo
ck

s)

Fig. 2. Execution costs of process mining using the composite operator

On a practical level, this problem manifested itself, for example, for the log of
the BPI 2011 challenge [13] on our desktop with an i5 processor, 8GB of internal
memory and an SSD drive, using MySQL and the standard MySQL buffer size.
Each attempt to perform a database query that involved a composite ‘directly
follows’ relation, needed at least 10 minutes to execute, which is prohibitive for
interactive exploration of an event log.

On a theoretical level, the problem is illustrated in Figure 2. This figure shows
that the problem arises when the number of events in the log is high, relative
to the number of cases. The mechanism that causes this is easy to derive from
definition 3, which shows that the intermediate results that must be stored are
the pairs of events that directly or indirectly follow each other in some case (the
left side and right side of the minus operator). Consequently, if there are many
events per case, this number is high (cubic over the number of events per case
in the right-hand side of the minus operator).

The precise calculation can be performed as follows. Let V be the number of
cases in the log, N be the number of events, F be the block size (i.e. the number
of tuples/events that fit in a single disk block), BLog = N

F the number of disk
blocks required to store the log, and M be the total memory size in blocks. Note
that the cost of a block nested join (or minus) operator on two relations R and
S that take BR and BS disk blocks (with BR ≤ BS), is equal to BR +BS when
one of the two relations fits in memory, and equal to BR+ BS

M ·BR otherwise [9].
The cost is split up into five components:

1. The cost of the first join is denoted as Bjoin1
. This equals BLog if the log fits

into memory and BLog +
BLog

M ·BLog otherwise. Note that this join appears
twice, but that it only needs to be computed once.

2. The cost of storing the results of the first join to disk is denoted as Bresult1 .
This equals 0 if the result fits in memory. Otherwise, the number of tuples
in the result, which we denote as |t1|, equals the number of pairs of events
that directly or indirectly follow each other in some case: V · (NV ·

N
V − 1)/2

on average. This fits into |t1|·2F disk blocks (times 2 because each tuple in the
result is a pair of tuples from the original).

3. The cost of the second join is denoted as Bjoin2
. This equals 0 if the original

log fits into memory. Otherwise, the cost equals BLog + |t1|·2
F /M ·BLog.

4. The cost of storing the result of the second join to disk is denoted as Bjoin2
.

This equals 0 if the result fits into memory. Otherwise, the number of tuples
in the result, which we denote as |t2|, equals the number of pairs of events
that indirectly follow each other. This equals the number of pairs of events
|t1| that directly of indirectly follow each other minus the number of pairs
of events that directly follow each other: V · (NV − 1) on average. This fits

into |t2|·2F disk blocks (times 2 because each tuple in the result is a triple of
tuples from the original and then reduced to a pair by projection).

5. The cost of the minus operator is denoted as Bminus. This equals 0 if the
result of the second join fits into memory. Otherwise, it equals Bresult1 +
Bresult1

M ·Bresult2 .

To generate Figure 2 we used a tuple size of 80 bytes, a 4 GB buffer size,
and a block size of 50, such that there is a total memory size of 1 million blocks.
The figure shows two ‘thresholds’ in the computational cost. These thresholds
are crossed when a particular intermediate result no longer fits into memory.

The order of the cost can be determined more easily. The order of the cost is
determined the cost of the set minus, because this incorporates both intermediate
results, which are typically much larger than the original log. Therefore, the order

of the cost of computing the intermediate results are N2

V /F . The total order
of cost is then obtained by filling these costs out in the right-hand side of the

formula for computing the cost of the set minus, which yields: (N
2

V /F/M)·N
2

V /F .
If we let M be large enough to contain the log itself, but not the intermediate

results (i.e. we set M = N
F), this can be simplified as: N3

V 2 /F .

Summarizing, the execution cost of flexibly retrieving a directly follows re-
lation directly from a database can be as low as retrieving it from a process
mining tool, if the database supports a native ‘directly follows’ operator and the
process mining tool supports on-database process mining. However, as long as a
native ‘directly follows’ operator does not exist, the execution costs increase to
third order polynomial cost if the average number of events per case is high (i.e.
if intermediate results do not fit into memory anymore).

4.2 The effect of query optimization

An advantage of in-database process mining is that it enables query optimization.
Query optimization, using the rewrite rules that are defined in section 3.2 can
greatly reduce the cost of executing a query. As an example, we show the cost of
executing the query >c,t σaθxLog and the equivalent query σ↓aθx∧↑aθx >c,t Log.
These costs decrease at least linearly with the fraction of events that match the
selection criteria. Let Q be that fraction. Table 5 shows the different execution
situations that can arise. It is possible to either first derive the directly follows
relation and then do the selection, or vice versa. It is also possible that the
intermediate results fit in memory, or that they must be stored on disk. If the
results fit in memory (and the table is indexed with respect to the variable
on which the selection is done), then the execution costs are simply the cost of
reading the log, or the part that matches the selection criteria, into memory once.
If the intermediate results do not fit into memory, the order of the execution cost

is N3

V 2 /F as explained in the previous section. Remembering that B = N
F leads

to the formulas that are shown in the table.

Table 5. Execution cost orders of different execution sequences

execution sequence in memory (blocks) on disk (blocks)

σ > Log B B · (N
V

)2

> σLog B · S Q ·B · (N
V

)2

The most dramatic increase occurs when, if the selection is done first and
as a consequence the intermediate results fit into memory, while if the selection
is done last, the intermediate results do not fit into memory. In practice this
is likely to be the case, because the selection can greatly reduce the number of
events that are considered. For example, for a log with N = 10, 000 events over
V = 500 cases, with a block size of F = 50 and a selection fraction Q = 0.10,
the order of the cost increases from 20 to 8 · 104 according to the formulas from
Table 5. The actual computed costs increase (the same order of magnitude) from
21 (plus one, because we need to read one disk block to load the index that is
used to optimize the selection) to 9.5 · 104 using the formulas from the previous
section.

This shows that the way in which a query that includes the directly follows
operator is executed greatly influences the execution cost. Query optimizers,
which are parameterized with equivalence relations from section 3.2 and the cost
calculation functions from section 4.1, can automatically determine the optimal
execution strategy for a particular query.

5 Related Work

By defining an operator for efficiently extracting the ‘directly follows’ relation
between events from a database, this paper has its basis in a long history of
papers that focus on optimizing database operations. In particular, it is related
to papers that focus on optimizing database operations for data mining pur-
poses [11,7], of which SAP HANA [15] is a recent development. The idea of
proposing domain-specific database operators has also been applied in other do-
mains, such as spatio-temporal databases [6] and scientific databases [12].

By presenting a ‘directly follows’ operator, the primary goal of this paper is
to support computationally efficient process mining on a database. There exist
some papers that deal with the computational complexity of the process mining
algorithms themselves [19,8]. Also, in a research agenda for process mining the
computational complexity and memory usage of process mining algorithms have
been identified as important topics [3]. However, this paper focuses on a step that
precedes the process mining itself: flexibly querying a database to investigate
which information is useful for process mining.

More database-related work from the area of process mining comes from
shaping data warehouses specifically for process mining [14,20]. There also exists
work that focuses on the extraction of logs from a database [17].

6 Conclusions

This paper presents a first step towards in-database process mining. In particu-
lar, it completely defines a relational algebraic operator to extract the ‘directly
follows’ relation from a log that is stored in a relational database, possibly dis-
tributed over multiple tables. The paper presents and proves relational algebraic
properties of this operator, in particular that the operator commutes with the
selection, projection, and theta join. These equivalence relations can be used for
query optimization. Finally, the paper presents and proves formulas to estimate
the computational cost of the operator. These formulas can be used in combi-
nation with the equivalence relations to determine the most efficient execution
strategy for a query. By presenting and proving these properties, the paper pro-
vides the complete formal basis for implementing the operator into a specialized
DBMS for process mining, which can be used to efficiently and conveniently
query a database for process mining information.

Consequently, the obvious next step of this research is to implement the op-
erator into a DBMS. The DBMS and the relational algebraic operators can then
be further extended with additional process mining-specific operators, such as
an operator to query for execution traces. In addition, more algebraic properties
of those operators can be proven to assist with query optimization.

There are some limitations to the equivalence relations that are presented in
this paper, in particular with respect to the conditions under which they hold.
These limitations restrict the possibilities for query optimization. The extent to
which these theoretical limitations impact practical performance of the operator
must be investigated and, if possible, mitigated.

References

1. van der Aalst, W., et al.: Process mining manifesto. In: Proc. of BPM Workshops.
pp. 169–194 (2012)

2. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer (2011)

3. van der Aalst, W., Weijters, A.: Process mining: a research agenda. Computers in
Industry 53(3), 231–244 (2004)

4. van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: Discovering pro-
cess models from event logs. IEEE Transactions on Knowledge and Data Engineer-
ing 16(9), 1128–1142 (2004)

5. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases: the logical level.
Addison-Wesley (1995)

6. Abraham, T., Roddick, J.F.: Survey of spatio-temporal databases. GeoInformatica
3(1), 61–99 (1999)

7. Agrawal, R., Imielinski, T., Swami, A.: Database mining: a performance perspec-
tive. IEEE Transactions on Knowledge and Data Engineering 5(6), 914–925 (1993)

8. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining Based on Re-
gions of Languages, pp. 375–383 (2007)

9. Blasgen, M.W., Eswaran, K.P.: Storage and access in relational data bases. IBM
Systems Journal 16(4), 363–377 (1977)

10. Chaudhuri, S.: An overview of query optimization in relational systems. In: Proc.
of PODS. pp. 34–43. New York, NY, USA (1998)

11. Chen, M.S., Han, J., Yu, P.S.: Data mining: an overview from a database per-
spective. IEEE Transactions on Knowledge and Data Engineering 8(6), 866–883
(1996)

12. Cudre-Mauroux, P., Kimura, H., Lim, K.T., Rogers, J., Simakov, R., Soroush, E.,
Velikhov, P., Wang, D.L., Balazinska, M., Becla, J., DeWitt, D., Heath, B., Maier,
D., Madden, S., Patel, J., Stonebraker, M., Zdonik, S.: A demonstration of scidb:
A science-oriented dbms. Proc. VLDB Endow. 2(2), 1534–1537 (2009)

13. van Dongen, B.: Real-life event logs - hospital log (2011)
14. Eder, J., Olivotto, G.E., Gruber, W.: A Data Warehouse for Workflow Logs, pp.

1–15 (2002)
15. Färber, F., Cha, S.K., Primsch, J., Bornhövd, C., Sigg, S., Lehner, W.: Sap hana

database: Data management for modern business applications. SIGMOD Rec.
40(4), 45–51 (2012)

16. Günther, C., van der Aalst, W.: Fuzzy mining: Adaptive process simplification
based on multi-perspective metrics. In: Proc. of BPM 2007. pp. 328–343 (2007)

17. Ingvaldsen, J.E., Gulla, J.A.: Preprocessing support for large scale process mining
of sap transactions. In: Proc. of BPM. pp. 30–41 (2007)

18. Kim, W.: On optimizing an SQL-like nested query. ACM Trans. on Database Sys-
tems 7(3), 443–469 (1982)

19. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient Discovery of Under-
standable Declarative Process Models from Event Logs, pp. 270–285 (2012)

20. zur Mühlen, M.: Process-driven manaement information systems – combining data
warehouses and workflow technology. In: Proc. of ICECR. pp. 550–566 (2001)

21. Sagiv, Y., Yannakakis, M.: Equivalcen among relational expressions with the union
and difference operation. In: Proc. of VLDB. pp. 535–548 (1978)

22. Weijters, A., van der Aalst, W., Alves De Medeiros, A.: Process mining with the
heuristics miner-algorithm. Technische Universiteit Eindhoven, Tech. Rep. WP
166, 1–34 (2006)

	Relational Algebra for In-Database Process Mining

