27,517 research outputs found

    Towards a Framework for Predictive Maintenance Strategies in Mechanical Engineering – A Method-Oriented Literature Analysis

    Get PDF
    Industrial machines are amongst Germany’s main export products and contribute to the increasing revenue of Mechanical Engineering. However, in the course of globalization, services for such machines have become costly and inflexible due to long distances between vendors and customers. Consequently, companies seek to avoid unexpected failures and long down times by the development of data-based “smart” service solutions, including Predictive Maintenance (PM). In contrast to reactive or preventive measures, PM refers to the proactive planning of required maintenance services based on data sampled from the machinery. Although PM has been conceptualized decades ago and various methods have been proposed ever since, there is no standard strategy. By analyzing existing literature, we shed light on the knowledge base in PM. We provide an overview of methods and discuss their respective context, including preconditions and applications. Our work constitutes a first step towards a framework that guides the implementation of PM-strategies

    Maintenance Strategies to Reduce Downtime Due to Machine Positional Errors

    Get PDF
    Manufacturing strives to reduce waste and increase Overall Equipment Effectiveness (OEE). When managing machine tool maintenance a manufacturer must apply an appropriate decision technique in order to reveal hidden costs associated with production losses, reduce equipment downtime competently and similarly identify the machines’ performance. Total productive maintenance (TPM) is a maintenance program that involves concepts for maintaining plant and equipment effectively. OEE is a powerful metric of manufacturing performance incorporating measures of the utilisation, yield and efficiency of a given process, machine or manufacturing line. It supports TPM initiatives by accurately tracking progress towards achieving “perfect production.” This paper presents a review of maintenance management methodologies and their application to positional error calibration decision-making. The purpose of this review is to evaluate the contribution of maintenance strategies, in particular TPM, towards improving manufacturing performance, and how they could be applied to reduce downtime due to inaccuracy of the machine. This is to find a balance between predictive calibration, on-machine checking and lost production due to inaccuracy. This work redefines the role of maintenance management techniques and develops a framework to support the process of implementing a predictive calibration program as a prime method to supporting the change of philosophy for machine tool calibration decision making. Keywords—maintenance strategies, down time, OEE, TPM, decision making, predictive calibration

    Establishment of a novel predictive reliability assessment strategy for ship machinery

    Get PDF
    There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme.There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme

    A high level e-maintenance architecture to support on-site teams

    Get PDF
    Emergent architectures and paradigms targeting reconfigurable manufacturing systems increasingly rely on intelligent modules to maximize the robustness and responsiveness of modern installations. Although intelligent behaviour significantly minimizes the occurrence of faults and breakdowns it does not exclude them nor can prevent equipment’s normal wear. Adequate maintenance is fundamental to extend equipments’ life cycle. It is of major importance the ability of each intelligent device to take an active role in maintenance support. Further this paradigm shift towards “embedded intelligence”, supported by cross platform technologies, induces relevant organizational and functional changes on local maintenance teams. On the one hand, the possibility of outsourcing maintenance activities, with the warranty of a timely response, through the use of pervasive networking technologies and, on the other hand, the optimization of local maintenance staff are some examples of how IT is changing the scenario in maintenance. The concept of e-maintenance is, in this context, emerging as a new discipline with defined socio-economic challenges. This paper proposes a high level maintenance architecture supporting maintenance teams’ management and offering contextualized operational support. All the functionalities hosted by the architecture are offered to the remaining system as network services. Any intelligent module, implementing the services’ interface, can report diagnostic, prognostic and maintenance recommendations that enable the core of the platform to decide on the best course of action.manufacturing systems, platform technologies, maintenance

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin

    Selection of the best maintenance approach in the maritime industry under fuzzy multiple attributive group decision-making environment

    Get PDF
    Many maintenance approaches have been developed and applied successfully in a variety of sectors such as aviation and nuclear industries over the years. Some of those have also been employed in the maritime industry such as condition based maintenance; however, choosing the best maintenance approach has always been a big challenge due to the involvement of many attributes and alternatives which can also be associated with multiple experts and vague information. In order to accommodate these aspects, and as part of an overall novel Reliability and Criticality Based Maintenance strategy, an existing fuzzy multiple attributive group decision-making technique is employed in this study, which is further enhanced with the use of Analytical Hierarchy Process to obtain a better weighting of the maintenance attributes used. The fuzzy multiple attributive group decision-making technique has three distinctive stages, namely rating, aggregation and selection in which multiple experts’ subjective judgments are processed and aggregated to be able to arrive at a ranking for a finite number of maintenance options. To demonstrate the applicability in a real-life industrial context, the technique is exemplified by selecting the best maintenance approach for shipboard equipment such as the diesel generator system of a vessel. The results denote that preventive maintenance is the best approach closely followed by predictive maintenance, thus steering away from the ship corrective maintenance framework and increasing overall ship system reliability and availability
    • …
    corecore