14,619 research outputs found

    Answer Set Programming Modulo `Space-Time'

    Full text link
    We present ASP Modulo `Space-Time', a declarative representational and computational framework to perform commonsense reasoning about regions with both spatial and temporal components. Supported are capabilities for mixed qualitative-quantitative reasoning, consistency checking, and inferring compositions of space-time relations; these capabilities combine and synergise for applications in a range of AI application areas where the processing and interpretation of spatio-temporal data is crucial. The framework and resulting system is the only general KR-based method for declaratively reasoning about the dynamics of `space-time' regions as first-class objects. We present an empirical evaluation (with scalability and robustness results), and include diverse application examples involving interpretation and control tasks

    Between Sense and Sensibility: Declarative narrativisation of mental models as a basis and benchmark for visuo-spatial cognition and computation focussed collaborative cognitive systems

    Full text link
    What lies between `\emph{sensing}' and `\emph{sensibility}'? In other words, what kind of cognitive processes mediate sensing capability, and the formation of sensible impressions ---e.g., abstractions, analogies, hypotheses and theory formation, beliefs and their revision, argument formation--- in domain-specific problem solving, or in regular activities of everyday living, working and simply going around in the environment? How can knowledge and reasoning about such capabilities, as exhibited by humans in particular problem contexts, be used as a model and benchmark for the development of collaborative cognitive (interaction) systems concerned with human assistance, assurance, and empowerment? We pose these questions in the context of a range of assistive technologies concerned with \emph{visuo-spatial perception and cognition} tasks encompassing aspects such as commonsense, creativity, and the application of specialist domain knowledge and problem-solving thought processes. Assistive technologies being considered include: (a) human activity interpretation; (b) high-level cognitive rovotics; (c) people-centred creative design in domains such as architecture & digital media creation, and (d) qualitative analyses geographic information systems. Computational narratives not only provide a rich cognitive basis, but they also serve as a benchmark of functional performance in our development of computational cognitive assistance systems. We posit that computational narrativisation pertaining to space, actions, and change provides a useful model of \emph{visual} and \emph{spatio-temporal thinking} within a wide-range of problem-solving tasks and application areas where collaborative cognitive systems could serve an assistive and empowering function.Comment: 5 pages, research statement summarising recent publication

    Grounding Dynamic Spatial Relations for Embodied (Robot) Interaction

    Full text link
    This paper presents a computational model of the processing of dynamic spatial relations occurring in an embodied robotic interaction setup. A complete system is introduced that allows autonomous robots to produce and interpret dynamic spatial phrases (in English) given an environment of moving objects. The model unites two separate research strands: computational cognitive semantics and on commonsense spatial representation and reasoning. The model for the first time demonstrates an integration of these different strands.Comment: in: Pham, D.-N. and Park, S.-B., editors, PRICAI 2014: Trends in Artificial Intelligence, volume 8862 of Lecture Notes in Computer Science, pages 958-971. Springe

    Learning and Reasoning for Robot Sequential Decision Making under Uncertainty

    Full text link
    Robots frequently face complex tasks that require more than one action, where sequential decision-making (SDM) capabilities become necessary. The key contribution of this work is a robot SDM framework, called LCORPP, that supports the simultaneous capabilities of supervised learning for passive state estimation, automated reasoning with declarative human knowledge, and planning under uncertainty toward achieving long-term goals. In particular, we use a hybrid reasoning paradigm to refine the state estimator, and provide informative priors for the probabilistic planner. In experiments, a mobile robot is tasked with estimating human intentions using their motion trajectories, declarative contextual knowledge, and human-robot interaction (dialog-based and motion-based). Results suggest that, in efficiency and accuracy, our framework performs better than its no-learning and no-reasoning counterparts in office environment.Comment: In proceedings of 34th AAAI conference on Artificial Intelligence, 202

    Pointing as an Instrumental Gesture : Gaze Representation Through Indication

    Get PDF
    The research of the first author was supported by a Fulbright Visiting Scholar Fellowship and developed in 2012 during a period of research visit at the University of Memphis.Peer reviewedPublisher PD
    corecore