861 research outputs found

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Securing Marine Data Networks in an IoT Environment

    Get PDF
    With the huge proliferation of sensory applications, the Internet of Things (IoT) is promising connectivity capacity far beyond the conventional computing platforms, with an ultimate goal of connecting all everyday objects. Sensory applications in the marine environment are foreseen to be an integral part of this connected world, forming the Internet of Marine Things (IoMaT). While some efforts that aim to establish network connectivity in such a sparse environment exist, securing these networks is still an unreached goal. This paper introduces a secure Mobile Ad-hoc/Delay Tolerant routing protocol (S-MADNET) for the marine environment over VHF equipment available on the majority of ships. The proposed secure network is designed to use the existing Automatic Identification System (AIS) that ships use for positioning and navigation aid. An IoMaT routing module that forwards marine sensory data using the proposed secure protocol is also presented, taking the AIS system level considerations into account. Furthermore, a new AIS message format with IoMaT support is proposed that accommodates the requirements of the secure routing protocol. Evaluation results show that the proposed S-MADNET routing protocol outperforms its counterparts in terms of packet delivery rates and packet duplication rates, while maintaining data security

    HoPP: Robust and Resilient Publish-Subscribe for an Information-Centric Internet of Things

    Full text link
    This paper revisits NDN deployment in the IoT with a special focus on the interaction of sensors and actuators. Such scenarios require high responsiveness and limited control state at the constrained nodes. We argue that the NDN request-response pattern which prevents data push is vital for IoT networks. We contribute HoP-and-Pull (HoPP), a robust publish-subscribe scheme for typical IoT scenarios that targets IoT networks consisting of hundreds of resource constrained devices at intermittent connectivity. Our approach limits the FIB tables to a minimum and naturally supports mobility, temporary network partitioning, data aggregation and near real-time reactivity. We experimentally evaluate the protocol in a real-world deployment using the IoT-Lab testbed with varying numbers of constrained devices, each wirelessly interconnected via IEEE 802.15.4 LowPANs. Implementations are built on CCN-lite with RIOT and support experiments using various single- and multi-hop scenarios

    Adding Support for Delay Tolerance to IPv6 Networks

    Get PDF
    AbstractAs we continue to connect ever lower power and more power constrained devices to the Internet of Things the problem of main- taining constant end to end connectivity becomes harder. Accepting that continuous end to end connectivity cannot be maintained, we are forced to seek solutions to allow good operating function. Delay Tolerant Networking, an evolution of existing store and forward systems is a candidate for resolving this issue, however, current implementations are not ideal for use in constrained Inter- net of Things environments. We propose a solution to this by integrating the capabilities of Delay Tolerant Networking into the IP layer, in such a way as to maintain compatibility with existing and future systems and minimising additional overhead. This has been achieved by developing a new IPv6 Hop by Hop option header which contains the information required for messages to be delayed. This solution is then demonstrated to be implementable within the limitations of current Internet of Things hardware

    LunaNet: a Flexible and Extensible Lunar Exploration Communications and Navigation Infrastructure

    Get PDF
    NASA has set the ambitious goal of establishing a sustainable human presence on the Moon. Diverse commercial and international partners are engaged in this effort to catalyze scientific discovery, lunar resource utilization and economic development on both the Earth and at the Moon. Lunar development will serve as a critical proving ground for deeper exploration into the solar system. Space communications and navigation infrastructure will play an integral part in realizing this goal. This paper provides a high-level description of an extensible and scalable lunar communications and navigation architecture, known as LunaNet. LunaNet is a services network to enable lunar operations. Three LunaNet service types are defined: networking services, position, navigation and timing services, and science utilization services. The LunaNet architecture encompasses a wide variety of topology implementations, including surface and orbiting provider nodes. In this paper several systems engineering considerations within the service architecture are highlighted. Additionally, several alternative LunaNet instantiations are presented. Extensibility of the LunaNet architecture to the solar system internet is discussed

    PaFiR : Particle Filter Routing – a predictive relaying scheme for UAV-assisted IoT communications in future innovated networks

    Get PDF
    Increasing urbanization, smart cities and other cutting-edge technologies offer the prospect of providing more functions to benefit citizens by relying on the substantial data processing and exchange capabilities now possible. This can generate significant unpredictable and unbalanced data loads for the bearing IoT network to support its application and service demands. We thus propose a wireless routing scheme designed to use the Particle Filter algorithm to empower portable smart devices with intelligent capacities for the radio communication system. This facilitates the offloading of traffic from traditional wireless networks and enables the IoT system to adopt unmanned aerial vehicles, thus also offering further innovation to flying network platforms. The proposed PaFiR routing protocol offers the network more scalability, tolerance and resilience, to achieve the goal of smart relaying. Simulation results that demonstrate the routing algorithm designed offers excellent performance when compared with existing wireless relaying schemes. It provides delivery ratios that are improved by up to 40% without unmanageable increases in latency or overheads
    corecore