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Abstract

As we continue to connect ever lower power and more power constrained devices to the Internet of Things the problem of main-

taining constant end to end connectivity becomes harder. Accepting that continuous end to end connectivity cannot be maintained,

we are forced to seek solutions to allow good operating function. Delay Tolerant Networking, an evolution of existing store and

forward systems is a candidate for resolving this issue, however, current implementations are not ideal for use in constrained Inter-

net of Things environments. We propose a solution to this by integrating the capabilities of Delay Tolerant Networking into the IP

layer, in such a way as to maintain compatibility with existing and future systems and minimising additional overhead. This has

been achieved by developing a new IPv6 Hop by Hop option header which contains the information required for messages to be

delayed. This solution is then demonstrated to be implementable within the limitations of current Internet of Things hardware.
c© 2015 The Authors. Published by Elsevier B.V.
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1. Introduction

Maintaining continuous connectivity with Internet of Things devices is not always possible. This causes issues

as continuous connectivity is the expected behaviour for internet connected devices. The reasons for the lack of

connectivity can be due to a range of factors both deliberate and incidental.

The main reason for deliberately causing a lack of connectivity is to save power. Keeping communication hardware

in a receive state is a significant drain on the energy resources of small battery powered devices. A method to reduce

the power use of devices in sensor networks is to put the device into a low power sleep state for as long as possible. In

this state the device has its communications powered down so is unable to be contacted but will consume substantially

less energy. An alternative solution to this is to provide more energy resource to the device. Doing this limits the

options for placement of these devices as they will either require access to a power source or be physically larger

to accommodate the additional batteries. As a result this has become a trade off between connectivity and power

consumption.
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With regard to incidental loss of connectivity, the environment in which the devices operate can cause breakdowns

in communication. As an example, in remote sensing systems the weather can cause communications links to become

unavailable. In the Glacsweb network, the winter snowfall often buries the equipment and prevents surface radio

communication and in the summer, increased water levels within the ice can interrupt probe communications1. These

issues are difficult to resolve and must be anticipated as a part of the deployment challenges.

Rather than trying to solve these issues individually the lack of low level connectivity can be addressed at a higher

level. Currently many internet connected devices that have the issue of limited power reserves rely on the device

initiating all communication rather than listening for any incoming communications. This relies on having an al-

ways available route to an endpoint which they communicate with, and requires all communication with the device

go through that endpoint. While this has worked for current devices, this solution reimposes many of the limita-

tions that had been removed by using direct internet connectivity rather than proprietary systems. Through previous

research, Delay Tolerant Networking (DTN) had been shown to have potential but required additional research to

make it suitable for IP based networks2. This paper covers the implementation of IP extension headers as a means

of implementing DTN and discusses the initial testing of the system in Cooja simulated nodes then on Zolertia Z1

hardware.

2. Delay Tolerant Networking

With Internet Protocol (IP) networking technologies a message is either immediately delivered to its destination or

is discarded. This is inconvenient when there may be many interruptions in connectivity as the originating device will

need to keep retrying the transmission. While some link layers support retransmissions, these are intended to protect

against packet corruption and occasional packet loss rather than loss of connectivity. In many cases the contents of

the packet do not need to be delivered immediately and are still useful if they are delivered at a later time. The one

solution to this is to allow nodes on the route to buffer packets and send them on when connectivity to the next hop

has been restored. This is similar to existing store and forward technologies used in current sensor networks3.

Store and forward is often used in sensor networks to allow packets to travel through the network one hop at a

time. These existing systems are usually limited to a specific link layer protocol or application layer protocol. This is

a workable technology when the data is constrained to a single network or the data will always be sent with a specific

protocol. Removing these limitations, however, is one of the main benefits of connecting such systems to the internet.

Connection interruptions are also an issue in other networks such as interplanetary communications. In the inter-

planetary use case, connection interruptions are mainly caused by alignment issues between nodes. Planetoids might

be in the way or dishes not pointed in the right direction for immediate communication. These extreme distance com-

munications also need to support the delays while a packet is in flight. There is currently an effort to create a solution

to these issues known as Delay Tolerant Networking4,5.

Delay Tolerant Networking aims to improve the connectivity between devices by providing a consistent method-

ology for managing delays that can be used over multiple link layers and containing any sort of data. While in most

store and forward applications the communications system needs to be a specific type, in Delay Tolerant Networking

this is no longer a requirement.

As well as improving the reliability of communications DTN can also improve network efficiency. With DTN

networks, attempts at retransmitting messages that were lost can be achieved far more efficiently than is possible with

end to end retransmissions. There are several reasons for this, as the DTN node is closer to the problem it has a better

knowledge of when it is appropriate to retry. This avoids retrying when the message would still be unable to make it

through; in addition the retries do not need to travel the successful part of the journey again. These combine to make

retransmission far more efficient than would previously be possible, also as the origin does not have to be involved

in the retransmissions it can perform other tasks or enter a sleep state itself. While the retransmissions will be more

efficient, this comes at the cost of additional overhead of transmitting and processing the delay tolerance of the packet.

For more reliable networks there will be less of an advantage as retries will be required less frequently.

While Delay Tolerant Networking is intended to be compatible with existing protocols and networks it is not

simply a drop-in solution. As well as supporting the delay tolerant packets, the software on the endpoints will need

to be able to deal with packets that have been delayed. Software which has been designed to wait for an immediate

response from a device before continuing might be challenging to retrofit DTN compatibility into. While any upper
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Fig. 1. IP as the common layer in the internet of things.

layer protocol can be sent with Delay Tolerant Networking enabled, the protocol might not be capable of handling the

potential delay or require careful thought on its use. The Transmission Control Protocol (TCP) is one example of this,

while there is no inherent problem with using TCP in a DTN environment the time-outs need to be at least as long as

the DTN packet lifetime to avoid resending a packet that is still being transfered through the network.

Using Delay Tolerant Networking opens up several security and quality of service considerations mainly related

to denial of service. As packets are buffered for a node, a large amount of packets can be built up, which can cause

several issues. Intermediate routers can become saturated with messages that will be held waiting for other devices

to reappear, this can prevent other users getting access to them. Alternatively this can overwhelm devices when they

regain connectivity as they receive the entire buffer of packets waiting for them. These situations can occur either

maliciously or as an unexpected side effect of the intended use.

2.1. The Bundle Protocol

Most of the current work on implementing Delay Tolerant Networking has been on the Bundle Protocol6,7 which

is an implementation of DTN for the deep space network use case. The Bundle Protocol works as an overlay network

implementing its own system on top of existing networks and encapsulating the data within it. This makes it possible

to transmit packets over multiple network types along its route, and allowing it to use the existing deep space networks

which use a mixture of different network stacks as well as using the internet. This significantly increases the size of the

packet headers, as information must be contained in the encapsulated protocol as well as the networks own headers.

The encapsulating nature of the Bundle Protocol puts additional demands on the nodes that need to access data

within the encapsulated packet. These demands come as both additional code to decode the protocol and the resulting

code space requirement on the device, there will also be the processing required to decode an additional protocol.

These demands would be required on any node which would be able to delay the packet, but would not be required

for nodes that just route the underlying network.

The features of the Bundle Protocol make it a highly versatile protocol at the cost of overhead. While this reduces

its suitability for use in constrained networks, the principles of Delay Tolerant Networking can still be applied.

3. Integrating Delay Tolerant Networking into IP based networks

In order to use DTN on a network, it needs to be added to a layer common across all network types that the data

will flow though. With store and forward this would typically require the use of a specific application protocol or low

level network, which as previously discussed prevents flexibility. Previous attempts at implementing Delay Tolerant

Networking technologies on IP, such as the Bundle Protocol, operate by adding another networking layer above the

current IP framework and using it as if it was a link layer8. This encapsulating layer includes the packet data and

routing information but cannot be processed by devices that do not support the protocol. In addition this requires

duplication of data already contained in the packet as it must be included in the encapsulated version as well as the

packet headers. To allow for seamless integration with existing systems both end devices and routers without DTN

support need to be able to handle DTN packets in a predictable manner. DTN nodes will also need to be capable of

handling non DTN enabled traffic. For these reasons DTN can not be implemented as an encapsulating layer or as a

new lower layer protocol.
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The alternative is to add the DTN functionality to a common layer across the network, for internet communications

IP is the only layer which meets these requirements, this can be seen in Figure 1. IPv6 was created with the ability

to accept optional extension headers which can add additional features or information to packets9, examples of this

include the routing header which specifies the route through the network or the authentication header which provides

cryptographic authentication of the packet. These extension headers can be used to add the required information for

using DTN to packets traveling across the network. Adding a new type of header can cause unpredictable responses

from devices that are unable to process it, there are, however, two existing expansible option headers, the hop by

hop options and destination options headers which can be used. These headers explicitly state how packets should be

handled by devices which are unable to recognise one or more of the options. This guarantees a predictable response

from devices which do not have support for delay tolerance, however, some parts of the internet infrastructure just

drop packets with these headers10 which could cause problems for protocols like this. The hop by hop options header

is evaluated by each router along the route whereas the destination option is only evaluated by the final destination so

the hop by hop options header is the one to use.

Adding a hop by hop option to a packet incurs a two byte overhead, one for the option type and one for the option

length. There is an additional 2 byte overhead to add the hop by hop header itself if it is not already present. The

actual data of the packet will contain a set of control flags and an expiry timestamp. This will provide the features

required for the processing and handling of delayed packets. The total size of the DTN hop by hop options including

type and length details is 6 bytes. While other DTN systems include additional features within the DTN data format

these would be best served by a separate extension header. Many of the additional features of the Bundle Protocol

already have equivalent IP headers available to perform those functions such as the fragmentation header. Figure 2

shows how the new DTN header fits in with the existing IP headers.

3.1. Packet expiry timestamps

The most important piece of data required for DTN operation is the expiry time at which a packet should be

discarded. Without this, a packet could remain held in the network consuming storage resources indefinitely, or

delivered too late to be of any use. In order to maintain a small packet overhead an efficient method of storing the

time is required.

Storing a time as a fixed Unix style timestamp will require 64 bits, for small packets on constrained networks

this is a noticeable amount of overhead. While 32 bit timestamp values could be used, this would make the protocol

obsolete in the near future so is not a sustainable option. Using a fixed timestamp would also require every DTN node

to maintain a reasonably accurate clock in order to determine packet expiry, which will not be possible for low power

devices without an on-board real time clock.

Instead of using a fixed timestamp, a relative timestamp could be used. By doing this the value would be the amount

of time remaining before the packet expired. This would require each node to update the remaining lifetime on route

but avoids the need to know the exact time, just the difference in time between reception and transmission. Using a

relative timestamp, the use of a 32 bit timestamp variable becomes feasible and reduces the packet size compared to

a fixed timestamp by half.

The size of a relative timestamp can be decreased further by reducing the accuracy of the timestamps for long

duration delays. As the delay lifetime extends into the order of hours or days then defining the lifetime down to the

exact second is no longer required. By using this property an exponent based timestamp was developed, this allows

for high precision for small lifetimes while still providing far longer timeouts. A 4 bit exponent combined with a 12

bit multiplier was chosen as this gives a high level of accuracy whilst still allowing packet lifetimes up to eight and a

half years which should be plenty of time for any application. This solution reduces the amount of timing information

that needs to be transmitted to 2 bytes, a 4 fold improvement over the fixed timestamps.

With relative timestamps, the time taken while the packet is in flight needs to be considered. In most cases this will

be less than a second and can be ignored, however in some cases the time between transmission and reception will be

significant. While this is not the case with almost all current IP carrying systems, the ability to accept delayed packets

opens up such options to protocol designers. In cases where there could be an unknown time between transmission

and reception it will be necessary to use a fixed timestamp as part of that link layer’s headers in order to determine the

transmission time.
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Fig. 2. How the DTN option header fits into the network layer structure.

3.2. Custody transfer

To pass packets from one DTN enabled device to another, a process known as custody transfer is required. To

do this the sender of a DTN packet needs to know that the next DTN router has received the packet and has taken

responsibility for its onwards transmission. This is achieved by the recipient sending a custody response to the current

custody holder. There may be several non DTN hops between two DTN routers so the custody acceptance response

cannot be sent to the last link layer hop as that might not be the previous custody holder. While it would be possible

to add the IP address of the last DTN node to the packet to give a place to return the custody report to, this adds

additional overhead. This can be avoided by sending packets back towards the message’s origin during which they

will travel back through the previous DTN hop. To allow DTN nodes to identify these packets they need to be tagged,

which will allow the router to know that they need to evaluate their contents rather than just letting them pass though.

This tag can be implemented as another bit of the flag byte in order to avoid additional overhead.

As well as ensuring that the DTN routers can detect the custody packets it is necessary to send the details of the

custody transfer in some format. Internet Control Message Protocol (ICMP6) makes a good candidate to transfer

status information around as it is already widely used for that purpose on the internet.

Depending on the situation there will need to be different types of responses. In the case where the custody has been

accepted and can be transfered an acceptance message will be sent. The acceptance message completes the handover

process at which point the transmitting node can delete its copy of the packet, it is then the job of the receiving node to

ensure forward transmission. As this message is intended for the DTN router holding the custody this message should

not be passed beyond that router.

In some cases the next DTN router will not be able to accept custody of the packet for the entire remaining lifetime

in which case a temporary custody acceptance can be used. It indicates that a node has taken custody over the packet

for a given period of time but the original custody holder should maintain custody. The original custody holder can

then retry after the temporary custody has expired, should a full custody transfer not be received in the meantime.

The case where the next DTN router cannot accept custody is an important one. This situation could occur for

many reasons, such as running out of storage space or only accepting custody in certain conditions. The way to deal

with this is to send the packet onwards if it is able, just like a normal router would, otherwise the packet should be

silently dropped. The lack of a custody response for the dropped packet will cause the current custody holder to

perform a retransmission at a later time when it might be possible to accept custody again.

4. Implementations

In order to investigate the potential of adding DTN technologies into the IP layer, two versions of the handler were

created, one to run on the Linux based border routers and one to run on the constrained sensor network hardware

itself. These implementations can be used together to provide a working delay tolerant system which is capable of

handling delays both on and off the low power network.
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4.1. Implementation for Linux systems

In order to provide delay tolerance on the 6LoWPAN border router a Linux implementation of the delay tolerant

header processing is required. While handling such a protocol is much better suited to a kernel module this would be

time consuming for initial development. To avoid this a userspace program was created, Python was chosen for this

in order to leverage existing packet analysis libraries and tools for faster development.

As the Linux kernel provides an abstraction from the low level network when using network sockets a different

solution was required to get access to the raw option headers. This is done by capturing complete packets and

performing any required actions in userspace, the packet capture library (py-pcap) was used to perform this. These

raw packets then need to be decoded in order to extract the required information from the packet. The dpkt library

was used to decode the packets, allowing the packed binary data to be separated into individual parameters.

With the packets decoded, they are then filtered to remove those which did not contain a delay tolerant header. At

this point the DTN header was evaluated and the packet passed to the packet store. As the usual Linux routing has

been interrupted to allow the analysis of the DTN packets, the packet’s next hop needs to be calculated manually so it

can be sent over the correct interface. Initially the Linux code was implemented without custody transfer so Ethernet

ARP tables were used to provide a guess as to whether it was possible to deliver the packet or not. Later on custody

transfers were added to provide a guarantee that the packet had been received. The use of ARP tables provides a good

example of where additional local network knowledge of a DTN node can avoid unnecessary transmissions.

In order to send the packets onwards with a DTN option header the standard sockets library could not be used.

Raw sockets were used to send the packets, this allows the userland code to control the DTN header but also requires

the software to calculate the packet routing and link layer addressing as well.

The Python Linux implementation provides a functional demonstration of DTN working in a significantly less

constrained environment. In order to realise the full benefits of Delay Tolerant Networking the protocol would also

need to be supported on the low power network as well.

4.2. Implementation for constrained hardware

With a Linux implementation created, the next step was to implement the protocol on a constrained 6LoWPAN

system. To develop this the Contiki operating system running on Zolertia Z1 nodes was used. The code was also

tested on Tmote sky nodes, however, due to the code space limitations some of the Contiki example programs would

no longer fit when the DTN processing was also present. The DTN code requirements came to approximately 1Kib of

code space memory, however, with some optimisation this could be reduced, The increased amount of ram and flash

on newer chips are likely to make this a non issue. A test DTN network was created using the Cooja emulation tool

for Contiki to allow for faster development and easier access to the contents of in-flight packets. The Cooja tool uses

mspsim to emulate the node hardware, which will provide realistic results without needing to manually retrieve and

program hardware for each test.

The Contiki implementation was separated into two sections. Part of the implementation would be integrated into

the network stack to provide fast processing of incoming packets and acknowledgements. The other part would be

implemented as a separate process that would manage the stored packet records and perform any retransmissions

required. An overview of the DTN implementation can be found in Figure 3.

Contiki’s IP networking uses the uIP network stack to handle the processing of the IP layer frames. The modularity

of this code meant that the DTN code could be directly integrated into Contiki’s network stack. This still allows for

nodes that did not support DTN to be built with the same codebase without incurring any processing or code space

overhead. The RPL routing system used by Contiki uses the hop by hop option for some of its information exchanges,

this meant that Contiki already had support for detecting hop by hop options and processing them. This code was

expanded to include the DTN header, allowing the DTN options to be inspected as part of the packets reception.

The additional code in the network stack decodes and validates the DTN option included in the packet. If the

packet is a new DTN enabled packet the packet is stored, if possible, in a new record in the DTN custody store and

timers are set for the packet expiry. The packet then continues through the Contiki uIP networking stack as usual and

is forwarded onto the next node or passed to the receive code as required. This allows packets to be passed through

the network without additional delay if the network is up. As this is done regardless of whether the packet could be

stored or not, it also allows packets to bypass nodes that have filled up the custody packet buffer.
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Fig. 3. DTN processing within the Contiki operating system.

If the packet is a custody acknowledgement it is matched to the appropriate record in the custody store, that record

is then marked for removal in the next store cleanup, the packet is then dropped to prevent it being forwarded any

further. If there is no matching record the packet is sent onwards as a previous node might be holding custody of the

packet.

The custody store management process iterates though each of the records in the custody store and performs any

actions required. The data storage in the custody store is implemented in two parts, the index and the packet store

itself. The index stores the state of the packet and basic information about the packet, adding this information to the

index avoids the need to access the packet except when performing retransmissions. The packet store, stores the actual

packet, although this was implemented in ram it does not have to be, use of the coffee file system within Contiki would

allow for packets to be stored in flash allowing for the space saved to be allocated to a larger index.

The main actions of the custody store are to send custody acknowledgements, perform retransmissions, and remove

packets that have been delivered or expired. Due to limitations in the network stack of Contiki it is not possible to

generate a custody response while processing the message in the network so this is done as one of the actions of the

store. An ICMP6 message is built and sent out in the normal way, the addition of the DTN header and flagging as an

informational DTN packet is implemented as part of the network send routine.

Where a custody message has not been received the custody store process will retransmit the message. In the trial

network a retry was attempted after a fixed time if no response had been received. In order to perform a retransmission

the packet was copied from the packet store into the network buffer. As the packet has been in storage the expiry

timestamp was updated using the information in the index to give the new time until expiry. The network buffer with

the updated packet was then transmitted.

In order to prevent the custody store filling up with unused packets, completed records need to be removed. Records

that have been flagged for deletion by a custody response having been received are deleted as part of the stores

operation. In addition the expiry timeout is checked to see if the packet has passed its maximum lifetime.

4.3. Preliminary Testing and Evaluation

Initial testing was carried out using the Cooja11 tool for Contiki. A multi hop network was created comprising of

a mix of Z1 and sky nodes with and without support for delay tolerance. This network was connected using a SLIP

interface to a Linux border router which was running the Python DTN code. Several of the nodes were programmed

with a DTN enabled UDP responder which would be used as the target for the test communications. The network

traffic was then extracted for analysis by feeding the cooja radio logs into the wireshark packet capture and analysis

tool.

Using this testbed framework, several experiments were carried out in order to see how the DTN nodes would

behave. Nodes along the packets route were deliberately disconnected from the network in order to represent a

loss of connectivity. Using the results from wireshark, it was possible to see the retransmissions of packets and the



224   Tyler Ward et al.  /  Procedia Computer Science   56  ( 2015 )  217 – 224 

custody acknowledgements after a successful transmission. With the DTN features added to the network, packets

were successfully retransmitted and delivered when the disconnected devices were reconnected to the network.

After testing on a simulated system, the same code was loaded onto physical sky and Z1 nodes which were deployed

in our research lab. Instead of trying to access the radio messages in the network, wireshark was used on the link

between the border router and the network. While this does not give hop by hop information on the packet’s progress

it still provides enough information to confirm the successful delivery of the packets even with artificially injected

connectivity breaks, such as removing antennas. From this deployment the DTN implementation was shown to work

in a real world deployed network.

5. Conclusion

Meeting the current expectation of continuous connectivity for all internet connected devices is infeasible with the

new generation of ultra low power Internet of Things devices. Previous attempts at working around those issues leave

major limitations that counteract many of the benefits gained from using the Internet of Things over other connection

technologies. Delay Tolerant Networking makes it possible to maintain reliable communications without the burden

of providing constant low level connectivity or limitations on what can be sent.

Previous delay tolerant technologies have required significant overhead making them unsuitable for constrained

devices. It is, however, possible to provide delay tolerance with a far lower overhead and without breaking compat-

ibility with existing systems. This has been solved by adding delay tolerance to packets using the IPv6 hop by hop

extension header. A protocol has been created around this and implemented on Linux and Contiki operating systems.

Through these implementations this technology has been demonstrated to be viable for use on constrained hardware

systems.

Bringing Delay Tolerant Networking to IP, will allow a new wave of ultra low power internet connected devices to

be created. This opens many opportunities that were previously unavailable to such devices.

This protocol demonstrates that IP layer DTN is viable even on constrained Internet of Things hardware. To make

the most from the protocol some additional refinement will be required to resolve any edge cases that may exist, but

care must be taken to avoid bloating the protocol with additional features as these will increase the overhead of the

protocol. With this complete the huge potential from using DTN in the internet of things can be unlocked.
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