40 research outputs found

    ACT: A DFT tool for self-timed circuits

    Get PDF
    Journal ArticleThis paper presents a Design for Testability (DFT) tool called ACT (Asynchronous Circuit Testing) which uses a partial scan technique to make macro-module based selftimed circuits testable. The ACT tool is the first oFits kind for testing macro-module based self-timed circuits. ACT modifies designs automatically to incorporate partial scan and provides a complete path from schematic capturie to physical layout. It also has a test generation system to generate vectors for the testable design and to compute fault coverage of the generated tests. The test generatioin system includes a module for doing critical hazard free (.est generation using a new 6-valued algebra. ACT has been hilt around commercial tools from Viewlogic and Cascade. A Viewlogic schematic is used as the design entry point and Cascade tools are used for technology mapping

    Pipelined Asynchronous High Level Synthesis for General Programs

    Get PDF
    High-level synthesis (HLS) translates algorithms from software programming language into hardware. We use the dataflow HLS methodology to translate programs into asynchronous circuits by implementing programs using asynchronous dataflow elements as hardware building blocks. We extend the prior work in dataflow synthesis in the following aspects:i) we propose Fluid to synthesize pipelined dataflow circuits for real-world programs with complex control flows, which are not supported in the previous work; ii) we propose PipeLink to permit pipelined access to shared resources in the dataflow circuit. Dataflow circuit results in distributed control and an implicitly pipelined implementation. However, resource sharing in the presence of pipelining is challenging in this context due to the absence of a global scheduler. Traditional solutions to this problem impose restrictions on pipelining to guarantee mutually exclusive access to the shared resource, but PipeLink removes such restrictions and can generate pipelined asynchronous dataflow circuits for shared function calls, pipelined memory accesses and function pointers; iii) we apply several dataflow optimizations to improve the quality of the synthesized dataflow circuits; iv) we implement our system (Fluid + PipeLink) on the LLVM compiler framework, which allows us to take advantage of the optimization efforts from the compiler community; v) we compare our system with a widely-used academic HLS tool and two commercial HLS tools. Compared to commercial (academic) HLS tools, our system results in 12X (20X) reduction in energy, 1.29X (1.64X) improvement in throughput, 1.27X (1.61X) improvement in latency at a cost of 2.4X (1.61X) increase in the area

    Architectural Exploration of KeyRing Self-Timed Processors

    Get PDF
    RÉSUMÉ Les derniĂšres dĂ©cennies ont vu l’augmentation des performances des processeurs contraintes par les limites imposĂ©es par la consommation d’énergie des systĂšmes Ă©lectroniques : des trĂšs basses consommations requises pour les objets connectĂ©s, aux budgets de dĂ©penses Ă©lectriques des serveurs, en passant par les limitations thermiques et la durĂ©e de vie des batteries des appareils mobiles. Cette forte demande en processeurs efficients en Ă©nergie, couplĂ©e avec les limitations de la rĂ©duction d’échelle des transistors—qui ne permet plus d’amĂ©liorer les performances Ă  densitĂ© de puissance constante—, conduit les concepteurs de circuits intĂ©grĂ©s Ă  explorer de nouvelles microarchitectures permettant d’obtenir de meilleures performances pour un budget Ă©nergĂ©tique donnĂ©. Cette thĂšse s’inscrit dans cette tendance en proposant une nouvelle microarchitecture de processeur, appelĂ©e KeyRing, conçue avec l’intention de rĂ©duire la consommation d’énergie des processeurs. La frĂ©quence d’opĂ©ration des transistors dans les circuits intĂ©grĂ©s est proportionnelle Ă  leur consommation dynamique d’énergie. Par consĂ©quent, les techniques de conception permettant de rĂ©duire dynamiquement le nombre de transistors en opĂ©ration sont trĂšs largement adoptĂ©es pour amĂ©liorer l’efficience Ă©nergĂ©tique des processeurs. La technique de clock-gating est particuliĂšrement usitĂ©e dans les circuits synchrones, car elle rĂ©duit l’impact de l’horloge globale, qui est la principale source d’activitĂ©. La microarchitecture KeyRing prĂ©sentĂ©e dans cette thĂšse utilise une mĂ©thode de synchronisation dĂ©centralisĂ©e et asynchrone pour rĂ©duire l’activitĂ© des circuits. Elle est dĂ©rivĂ©e du processeur AnARM, un processeur dĂ©veloppĂ© par Octasic sur la base d’une microarchitecture asynchrone ad hoc. Bien qu’il soit plus efficient en Ă©nergie que des alternatives synchrones, le AnARM est essentiellement incompatible avec les mĂ©thodes de synthĂšse et d’analyse temporelle statique standards. De plus, sa technique de conception ad hoc ne s’inscrit que partiellement dans les paradigmes de conceptions asynchrones. Cette thĂšse propose une approche rigoureuse pour dĂ©finir les principes gĂ©nĂ©raux de cette technique de conception ad hoc, en faisant levier sur la littĂ©rature asynchrone. La microarchitecture KeyRing qui en rĂ©sulte est dĂ©veloppĂ©e en association avec une mĂ©thode de conception automatisĂ©e, qui permet de s’affranchir des incompatibilitĂ©s natives existant entre les outils de conception et les systĂšmes asynchrones. La mĂ©thode proposĂ©e permet de pleinement mettre Ă  profit les flots de conception standards de l’industrie microĂ©lectronique pour rĂ©aliser la synthĂšse et la vĂ©rification des circuits KeyRing. Cette thĂšse propose Ă©galement des protocoles expĂ©rimentaux, dont le but est de renforcer la relation de causalitĂ© entre la microarchitecture KeyRing et une rĂ©duction de la consommation Ă©nergĂ©tique des processeurs, comparativement Ă  des alternatives synchrones Ă©quivalentes.----------ABSTRACT Over the last years, microprocessors have had to increase their performances while keeping their power envelope within tight bounds, as dictated by the needs of various markets: from the ultra-low power requirements of the IoT, to the electrical power consumption budget in enterprise servers, by way of passive cooling and day-long battery life in mobile devices. This high demand for power-efficient processors, coupled with the limitations of technology scaling—which no longer provides improved performances at constant power densities—, is leading designers to explore new microarchitectures with the goal of pulling more performances out of a fixed power budget. This work enters into this trend by proposing a new processor microarchitecture, called KeyRing, having a low-power design intent. The switching activity of integrated circuits—i.e. transistors switching on and off—directly affects their dynamic power consumption. Circuit-level design techniques such as clock-gating are widely adopted as they dramatically reduce the impact of the global clock in synchronous circuits, which constitutes the main source of switching activity. The KeyRing microarchitecture presented in this work uses an asynchronous clocking scheme that relies on decentralized synchronization mechanisms to reduce the switching activity of circuits. It is derived from the AnARM, a power-efficient ARM processor developed by Octasic using an ad hoc asynchronous microarchitecture. Although it delivers better power-efficiency than synchronous alternatives, it is for the most part incompatible with standard timing-driven synthesis and Static Timing Analysis (STA). In addition, its design style does not fit well within the existing asynchronous design paradigms. This work lays the foundations for a more rigorous definition of this rather unorthodox design style, using circuits and methods coming from the asynchronous literature. The resulting KeyRing microarchitecture is developed in combination with Electronic Design Automation (EDA) methods that alleviate incompatibility issues related to ad hoc clocking, enabling timing-driven optimizations and verifications of KeyRing circuits using industry-standard design flows. In addition to bridging the gap with standard design practices, this work also proposes comprehensive experimental protocols that aims to strengthen the causal relation between the reported asynchronous microarchitecture and a reduced power consumption compared with synchronous alternatives. The main achievement of this work is a framework that enables the architectural exploration of circuits using the KeyRing microarchitecture

    Performance analysis and optimization of asynchronous circuits

    Get PDF
    Journal ArticleAsynchronous/Self-timed circuits are beginning to attract renewed attention as promising means of dealing with the complexity of modern VLSI designs. However, there are very few analysis techniques or tools available for estimating the performance of asynchronous circuits. In this paper we adapt the theory of Generalized Timed Petri-nets (GTPN) for analyzing and comparing a wide variety of asynchronous circuits, ranging from purely control-oriented circuits such as cross-bar arbiters to large asynchronous systems with data dependent control such as asynchronous processors. Experiments with the GTPN analyzer are found to track the observed performance of actual asynchronous circuits, thereby offering empirical evidence towards the soundness of the modeling approach. Our main contribution is in demonstrating how a quantitative design methodology for asynchronous circuits can be developed based on Timed Petri-nets

    High level optimizations in compiling process descriptions to asynchronous circuits

    Get PDF
    technical reportAsynchronous/'Self-Timed designs are beginning to attract attention as promising means of dealing with the complexity of modern VLSI technology. In this paper, we present our views on why asynchronous systems matter. We then present details of our high level synthesis tool SHILPA that can automatically synthesize asynchronous circuits from descriptions in our concurrent programming language, hopCP. We outline some of the high level communication abstractions available in hopCP. We illustrate how these abstractions are realized in the asynchronous circuits generated by SHILPA. We then present a series of examples that present many of the high level optimization strategies used by SHILPA. Some of these optimizations aim to speed up the generated circuits by avoiding un-necessary waiting. Others synthesize components that are much easier to realize in a variety of technologies. We also discuss some of the tradeoffs possible between optimizations and timing constraints

    Custom Cell Placement Automation for Asynchronous VLSI

    Get PDF
    Asynchronous Very-Large-Scale-Integration (VLSI) integrated circuits have demonstrated many advantages over their synchronous counterparts, including low power consumption, elastic pipelining, robustness against manufacturing and temperature variations, etc. However, the lack of dedicated electronic design automation (EDA) tools, especially physical layout automation tools, largely limits the adoption of asynchronous circuits. Existing commercial placement tools are optimized for synchronous circuits, and require a standard cell library provided by semiconductor foundries to complete the physical design. The physical layouts of cells in this library have the same height to simplify the placement problem and the power distribution network. Although the standard cell methodology also works for asynchronous designs, the performance is inferior compared with counterparts designed using the full-custom design methodology. To tackle this challenge, we propose a gridded cell layout methodology for asynchronous circuits, in which the cell height and cell width can be any integer multiple of two grid values. The gridded cell approach combines the shape regularity of standard cells with the size flexibility of full-custom layouts. Therefore, this approach can achieve a better space utilization ratio and lower wire length for asynchronous designs. Experiments have shown that the gridded cell placement approach reduces area without impacting the routability. We have also used this placer to tape out a chip in a 65nm process technology, demonstrating that our placer generates design-rule clean results

    Introducing KeyRing self‐timed microarchitecture and timing‐driven design flow

    Get PDF
    ABSTRACT: A self-timed microarchitecture called KeyRing is presented, and a method for implementing KeyRing circuits compatible with a timing-driven electronic design automation (EDA) flow is discussed. The KeyRing microarchitecture is derived from the AnARM, a low-power self-timed ARM processor based on ad hoc design principles. First, the unorthodox design style and circuit structures are revisited. A theoretical model that can support the design of generic circuits and the elaboration of EDA methods is then presented. Also addressed are the compatibility issues between KeyRing circuits and timing-driven EDA flows. The proposed method leverages relative timing constraints to translate the timing relations in a KeyRing circuit into a set of timing constraints that enable timing-driven synthesis and static timing analysis. Finally, two 32-bit RISC-V processors are presented; called KeyV and based on KeyRing microarchitectures, they are synthesized in a 65 nm technology using the proposed EDA flow. Postsynthesis results demonstrate the effectiveness of the design methodology and allow comparisons with a synchronous alternative called SynV. Performance and power consumption evaluations show that KeyV has a power efficiency that lies between SynV with clock-gating and SynV without clock-gating
    corecore