
Yale University Yale University

EliScholar – A Digital Platform for Scholarly Publishing at Yale EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Graduate School of Arts and Sciences Dissertations

Spring 2022

Custom Cell Placement Automation for Asynchronous VLSI Custom Cell Placement Automation for Asynchronous VLSI

Yihang Yang
Yale University Graduate School of Arts and Sciences, yihangyang1993@gmail.com

Follow this and additional works at: https://elischolar.library.yale.edu/gsas_dissertations

Recommended Citation Recommended Citation
Yang, Yihang, "Custom Cell Placement Automation for Asynchronous VLSI" (2022). Yale Graduate School
of Arts and Sciences Dissertations. 680.
https://elischolar.library.yale.edu/gsas_dissertations/680

This Dissertation is brought to you for free and open access by EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Graduate School of Arts and Sciences Dissertations
by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more
information, please contact elischolar@yale.edu.

https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/gsas_dissertations
https://elischolar.library.yale.edu/gsas_dissertations?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/gsas_dissertations/680?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

Abstract

Custom Cell Placement Automation for Asynchronous VLSI

Yihang Yang

2022

Asynchronous Very-Large-Scale-Integration (VLSI) integrated circuits have demonstrated

many advantages over their synchronous counterparts, including low power consumption,

elastic pipelining, robustness against manufacturing and temperature variations, etc. How-

ever, the lack of dedicated electronic design automation (EDA) tools, especially physical

layout automation tools, largely limits the adoption of asynchronous circuits.

Existing commercial placement tools are optimized for synchronous circuits, and require

a standard cell library provided by semiconductor foundries to complete the physical design.

The physical layouts of cells in this library have the same height to simplify the placement

problem and the power distribution network. Although the standard cell methodology also

works for asynchronous designs, the performance is inferior compared with counterparts

designed using the full-custom design methodology.

To tackle this challenge, we propose a gridded cell layout methodology for asynchronous

circuits, in which the cell height and cell width can be any integer multiple of two grid

values. The gridded cell approach combines the shape regularity of standard cells with the

size flexibility of full-custom layouts. Therefore, this approach can achieve a better space

utilization ratio and lower wire length for asynchronous designs. Experiments have shown

that the gridded cell placement approach reduces area without impacting the routability.

We have also used this placer to tape out a chip in a 65nm process technology, demonstrating

that our placer generates design-rule clean results.

Custom Cell Placement Automation for Asynchronous VLSI

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Yihang Yang

Dissertation Director: Rajit Manohar

May, 2022

Copyright © 2022 by Yihang Yang

All rights reserved.

ii

Contents

1 Introduction 1

1.1 Background . 2

1.1.1 Circuit Design Flow . 2

1.1.2 Physical Design Flow . 4

1.2 Placement Problem Formulation . 5

1.3 Standard Cell Methodology . 7

1.3.1 Standard Cell Layout Style . 7

1.3.2 Row-based Placement . 8

1.4 Standard Cell Placement Flow . 10

1.4.1 Global Placement . 11

1.4.2 Legalization . 15

1.4.3 Detailed Placement . 17

1.5 Contribution . 18

2 Physical Design of Asynchronous Circuit 20

2.1 Asynchronous Circuit . 20

2.2 Circuit Family . 21

2.2.1 Quasi-Delay-Insensitive Circuit . 21

2.2.2 Micropipeline . 22

2.3 Physical Design . 24

2.3.1 Full-Custom Design . 25

2.3.2 Custom Standard Cell Design . 26

iii

2.3.3 Standard Cell Design . 27

2.4 Placement Problem for Asynchronous Circuits 27

2.4.1 Gridded Cell Layout Style . 28

2.4.2 Placement Problem Formulation . 29

2.4.3 N/P-well Design Rules . 30

2.4.4 Cluster-based Placement . 35

3 Dali: A Gridded Cell Placement Flow 37

3.1 Introduction . 38

3.2 Background . 40

3.2.1 Standard Cell Layout . 40

3.2.2 Row-based Placement . 40

3.3 Gridded cell . 42

3.3.1 Gridded cell layout . 42

3.3.2 Cluster-based Placement . 42

3.4 Gridded Cell Placement . 43

3.4.1 Placement Problem Formulation . 43

3.4.2 Placement Flow . 44

3.4.3 Global Placement . 44

3.4.4 Forward-backward Legalization . 48

3.4.5 N/P-well Legalization . 51

3.4.6 Power Grid Design . 54

3.5 Experimental Results . 55

3.5.1 Comparison for Asynchronous Circuits 55

3.5.2 Scalability Study . 57

3.6 Summary and Future Work . 59

4 Legalization Algorithm for Multideck Gridded Cells 60

4.1 Gridded Cell Legalization Problem Formulation 60

4.2 Single-Deck Gridded Cell . 61

4.2.1 Intra-Cluster Optimization . 63

iv

4.2.2 Inter-Cluster Optimization . 67

4.3 Multideck Gridded Cell . 68

4.4 Multideck Gridded Cell Legalization . 71

4.4.1 Legalization Problem Formulation 71

4.4.2 Legalization Flow . 72

4.4.3 Cluster Formation . 73

4.4.4 Displacement Optimization . 75

4.4.5 Problem Reformulation . 76

4.4.6 Adaptive Weight . 81

4.4.7 Cell Reordering . 83

4.5 Experimental Results . 84

4.6 Summary and Future Work . 87

5 Future Work 88

5.1 Timing-Driven Placement for Asynchronous Circuits 88

5.1.1 Timing Constraints . 88

5.1.2 Strategy . 90

5.2 Detailed Placement for Gridded Cells . 91

Bibliography 92

v

List of Figures

1.1 A typical digital circuit design flow . 4

1.2 Standard cell layout style . 8

1.3 Row-based placement for standard cells . 9

1.4 Example of different legalization techniques 16

2.1 Asynchronous data encoding . 22

2.2 A linear micropipeline structure . 23

2.3 C-element truth table and production rules 25

2.4 Muller C-element and its implementations 26

2.5 Gridded cell layout style . 29

2.6 Interaction between two gridded cells . 32

2.7 Individual gridded cells form clusters . 34

2.8 The floorplan for an asynchronous data decompressor 36

3.1 CMOS layout of the INV gate and NAND gate 41

3.2 Schematic diagram of the whole gridded cell placement flow 45

3.3 Forward-backward Legalization . 50

3.4 N/P-well legalization and power grid design 53

3.5 Layout of the core chip area . 57

3.6 Runtime and HPWL scaling for Dali on the synthetic benchmark suite. . . 58

4.1 Cell-centric legalization vs cluster-centric legalization 62

4.2 Cell alignment constraints . 70

4.3 Multideck gridded cell legalization flow . 72

vi

4.4 An example of cluster formation for multideck gridded cells 75

4.5 Breaking multideck gridded cells into sub-cells 78

4.6 Sub-cell location aggregation . 80

4.7 An example of placement with and without adaptive weights 82

4.8 An example of cell reordering . 83

4.9 Legalization result of benchmark des4 with low placement density 86

4.10 Average-case time complexity of the iterative algorithm 87

5.1 Timing constraints in a bundled data design 89

5.2 An example of correctness constraint and performance constraint 90

vii

List of Tables

3.1 Gridded cell designs vs. standard cell designs 56

3.2 Experimental results on synthetic benchmarks 58

4.1 Results in synthetic benchmarks . 85

viii

Acknowledgments

I would like to express my deepest appreciation to my supervisor, Prof. Rajit Manohar,

for accepting me into his research group and providing unwavering guidance and support

during my Ph.D. studies.

I would also like to extend my deepest gratitude to Prof. Leandros Tassiulas and Prof.

Jakub Szefer as members of my Ph.D. committee for insightful feedback on this work.

I am also grateful to my teammates Wenmian Hua, Rui Li, Ruslan Dashkin, Prafull

Purohit, and Xiayuan Wen for their tremendous help and contribution. I very much appre-

ciate Samira Ataei, Edward Bingham, Ioannis Karageorgos, Congyang Li, Zhan Liu, Tayyar

Rzayev, and Xiang Wu for helpful discussions and valuable advice.

I also had the great pleasure of working with Jiayuan He, Yi-Shan Lu, and Sepideh

Maleki on many challenging yet rewarding projects.

Thanks to my friends at Yale for their encouragement throughout my Ph.D. studies.

I’m extremely grateful to my family members and my love for their unconditional love

and support.

ix

Glossary

ASIC : application-specific integrated circuit

CHP : communicating hardware process

DI : delay-insensitive

EDA : electronic design automation

FPGA : field-programmable gate array

GND : ground (low voltage in circuits)

HPWL : half-perimeter wire length

I/O : input/output

QDI : quasi-delay-insensitive

RTL : register-transfer level

Vdd : voltage drain drain (high voltage in circuits)

VLSI : very-large-scale-integration

x

Chapter 1

Introduction

Application-specific integrated circuits (ASICs) are of great significance to modern soci-

ety [1]. As a consequence of the steady miniaturization of silicon transistors from 20 mi-

crometers in the 1970s to a few nanometers in the 2020s, Very-Large-Scale-Integration

(VLSI) makes it possible to create an ASIC containing millions to billions of transistors on

a single silicon chip [2–4].

Due to the relative simplicity of design, optimization, and verification, nearly all in-

tegrated circuits are synchronous circuits with a global clock signal controlling the data

orchestration [4, 5]. As the scale of integrated circuits increases, it is impractical for chip

designers to manage the growing complexity without automation tools [6–8], which stim-

ulates the research on automation algorithms for synchronous circuits. With the steady

development and improvement for several decades [9, 10], commercial electronic design au-

tomation (EDA) tools are very mature to facilitate the circuit design process [11].

Despite the astonishing achievement of synchronous circuits, the global clock signal itself

has become a limiting factor since the beginning of the 2000s for two major reasons. First,

the clock distribution network can consume more than 40% of the overall power [12–15].

Second, it is challenging to distribute a clean clock signal across the whole chip region

for modern designs [16–18]. Clock gating technique [12, 19–21] and multiple clock domain

technique [22,23] are proposed to mitigate these two problems, respectively.

Asynchronous circuits, also known as clockless or self-timed circuits, use the hand-

shaking protocol among circuit components to replace the global clock signal, which by

1

nature are clock-gated and have many local clock domains [24–27]. Despite the appear-

ance of asynchronous designs in the 1950s, the high design complexity and area overhead

hamper the wide adoption of asynchronous circuits in the industry, which, in turn, leads

to the lack of dedicated automation tools from EDA companies and layout support from

semiconductor foundries. Researchers have to manually design the physical layout for high-

performance asynchronous designs over the past decades [28–30]. Globally-asynchronous

locally-synchronous circuits circumvent this problem by exploiting existing EDA tools to

create synchronous modules and using asynchronous channels for inter-module communi-

cations [31,32].

This work aims to identify the placement problem for asynchronous circuits and develop

novel and efficient algorithms to handle large-scale designs. Since there are no existing place-

ment tools specialized for asynchronous circuits, this chapter will introduce the standard

cell placement flow developed for synchronous circuits.

1.1 Background

1.1.1 Circuit Design Flow

Commonly adopted design methods for ASICs include the full-custom design methodology

and the standard cell design methodology [33]. These two approaches balance the trade-

off between circuit performance and design time differently [34]. The full-custom design

methodology requires designers to carefully handcraft the circuit, which gives designers

the freedom to optimize each circuit component for superior power, performance, and area.

However, because this approach demands a huge amount of engineer hours for large designs,

it is only used for high-volume and high-performance circuits to amortize the design cost [35].

The standard cell design methodology requires a standard cell library to construct the

circuit. This library consists of pre-designed and pre-characterized basic logic gates and

storage elements like AND-gate, OR-gate, NOT-gate, latches, and flip-flops, but applies

restrictions on their physical layouts [36]. This library, together with its layout restrictions,

largely simplifies the design problem and thus enables automation tools to facilitate the

design process [37].

2

Modern ASIC design is a complicated task. To better handle the design complexity, the

design process is divided into many steps at different levels of abstraction [38]. Take the

standard cell methodology as an example, these steps are listed below.

• System specification: this step determines the functionality, performance, power, chip

size, technology node, and other high-level requirements.

• Architectural design: a basic architecture is specified to meet those system-level re-

quirements. This architecture defines the interface between the environment and the

system.

• Functional and logic design: function modules and their interconnections are imple-

mented for this architecture. These modules are usually described at the register-

transfer level (RTL) using hardware description languages.

• Circuit design: logic synthesis tools translate an RTL description to a circuit dia-

gram with a given standard cell library. This circuit diagram is also called a netlist,

consisting of cells, macros, and their interconnections. Macros are pre-designed and

pre-characterized function modules, which are optimized for power, performance, and

area. Typical macros include memory banks, digital signal processing units, and other

function modules.

• Physical design: this step takes the physical geometry of cells and macros into con-

sideration. During this process, placement tools map cells and macros onto a two-

dimensional grid, and then routing tools map their interconnections onto a three-

dimension grid. A verification step is needed to ensure the final layout meets all

high-level requirements.

• Fabrication: the physical layout is sent to semiconductor foundries, and then converted

into a series of photolithography masks. These masks are used to create patterns

forming transistors and metal wires on silicon wafers.

• Packaging and testing: silicon wafers are cut into individual chips, which are then

packed and tested to ensure they meet all requirements.

3

System
Specification

Architectural
Design

Functional and
Logic Design

Circuit Design

Physical
Design

Fabrication

Packaging and
Testing

Floorplanning

Placement

Routing

Timing Closure

Global
Placement

Legalization

Detailed
Placement

Figure 1.1: A typical digital circuit design flow. This work focuses on the placement problem
in the physical design stage.

1.1.2 Physical Design Flow

As a step in the circuit design flow, the physical design process consists of four major

components: floorplanning, placement, routing, and timing closure [39].

• Floorplanning : this step seeks to determine the location of circuit input/output (I/O)

ports and macros. For standard cell designs, this step also specifies the power distri-

bution network, the location of rows, and the location of auxiliary cells, like well tap

cells and end cap cells. The power distribution network and rows put a requirement

on the location of cells.

• Placement : the task of this step is to assign an exact location for every cell. These

4

locations must respect physical design rules and other layout constraints. A typical

example is the overlap constraint: no cells can overlap with other cells. Besides, the

placer also needs to improve circuit performance via optimizing the critical path delay,

total wirelength, routability, die area, power consumption, heat dissipation, and other

crucial metrics.

• Routing : this step aims to create metal wires for cell interconnections using limited

routing resources. These metal segments must also respect physical design rules. For

example, metal wire spacing must be no less than the minimum spacing. A routing

tool also needs to optimize critical path delay and other metrics to ensure correctness

and improve performance.

• Timing closure: designers specify two kinds of timing constraints for digital circuits.

The first type is the correctness constraint, and violations of these constraints can

make a circuit malfunction. Another type is the performance constraint, which aims

to ensure circuit performance. Timing analysis tools can identify violations of timing

constraints after the extraction of resistance and capacitance from a physical layout.

This step is usually performed iteratively during placement and routing such that the

final result can meet all timing constraints. For synchronous circuits, timing violations

can also be mitigated and fixed via a dedicated clock signal distribution and placement

refinement step.

1.2 Placement Problem Formulation

In general, the placement problem can be formulated as follows:

• Input: netlist, placement region, I/O pins;

• Output: cell locations;

• Constraint: cell overlap, design rule, timing constraint, cell density;

• Objective: wirelength, critical path delay, power, routability, etc.

5

It has been shown that for non-trivial objective functions, finding the optimal placement is

known to be an NP-hard problem [40].

The input netlist consists of cells, macros, and nets: a cell or a macro usually has a

rectangular shape, the location of which can be either pre-specified or unknown; a net

specifies the interconnection among cell pins, macro pins, and I/O pins. The placement

region defines the range of cell locations, and I/O pins need to be placed on the periphery

of the placement region.

The output of the placement problem is the location of cells and macros. The solution

space is discrete due to the manufacturing process and pre-placed rows. Moreover, the

placement result must respect all physical design rules and satisfy all timing constraints;

otherwise, the circuit may not work as expected.

The placement result also needs to satisfy various constraints. The cell overlap constraint

requires that cells cannot overlap with each other. This constraint (or even the existence

of cell boundary) is essentially a heuristic to ensure no design rule violations when cells

are placed close to each other. Although cell overlap may not necessarily lead to design

rule violations, the placer has to make the worst-case assumption if the detailed cell layout

is abstracted away during placement. Besides, the placement result is required to respect

other design rules, like N/P-well design rules. The cell locations also need to satisfy timing

constraints to ensure the design can work as expected. The cell density constraint requires

that heat generated by cells can dissipate easily to keep the silicon chip working under a

safe temperature.

Crucial circuit metrics need to be optimized during placement. For example, the crit-

ical path delay determines the circuit performance; total wirelength influences power and

performance. However, it is often timing-consuming to evaluate the exact metrics during

placement, and thus placement tools choose to calculate and optimize surrogate functions

instead of metrics themselves. Take the wirelength as an example, there are many wirelength

estimation models, and half-perimeter wirelength (HPWL) is the most popular method due

to its low computational cost [38].

Wirelength-driven placement have been extensive studied in the past decades. The

6

general form of the objective function is the following:

obj(X,Y) = W (X,Y) +D(X,Y), (1.1)

where X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn} are the x and y coordinates of cells,

respectively, W is the wirelength cost, and D is the overlap or density penalty. In the

next, we will briefly introduce the standard cell methodology and its placement flow for

optimizing this objective function.

1.3 Standard Cell Methodology

The standard cell methodology requires a standard cell library provided by semiconductor

foundries to construct circuits. This library contains many simple logic functions and storage

elements, such as inverters, electrical buffers, NAND/AND gates, NOR/OR gates, half/full

adders, latches, and flip-flops. An important feature of the physical layout of standard

cells is that they all have a Vdd rail at the top boundary and a GND rail at the bottom

boundary, and they share the same height to simplify the physical design problem [4].

1.3.1 Standard Cell Layout Style

Wirelength-driven placement tools usually abstract away the functionality and detailed

layout of cells and macros to simplify the placement problem. Fig. 1.2 (a) shows the physical

layout of the inverter implemented in the standard cell methodology. When the input signal

in is high, the pull-down network connects the output signal out to the low voltage GND.

When the input signal in is low, the pull-up network connects the output signal out to the

high voltage Vdd. The pull-down network sits in a P-well, while the pull-up network sits

in an N-well. As can be easily seen, this physical layout implements the Boolean function

out = ¬in using the following production rules:

in → out ↓

¬in → out ↑ .

(1.2)

7

GND

Vdd

in out

GND

Vdd

in out

N-well P-well

GND

Vdd

in0 out

(a) (b) (c) (d)

in1

GND

Vdd

in0 out

in1

blockagemetal

Figure 1.2: Standard cell layout style. (a) INV gate layout, (b) INV gate during placement,
(c) NAND gate during placement, (d), NOR-gate during placement.

Fig. 1.2 (b) shows the abstraction of the INV gate during placement. For the ease of

signal routing, some parts of input/output/power metal segments are marked as routing

blockages. Similarly, Fig. 1.2 (c) and (d) display the abstraction of the NAND gate and

NOR gate, respectively. As can be seen, these cell layouts share the same height and have

Vdd rail at the top and GND rail at the bottom. Something not shown in Fig. 1.2 is that

N/P-wells in these cells also have the same height. Since N-wells need to accommodate all

pull-up networks, the largest pull-up network in the cell library determines the height of

N-wells in all cells. A similar relationship holds for the height of P-wells.

This style of cell layout together with the row-based placement technique can simplify

the power distribution network, and fully abstract N/P-well design rules away from the

placement problem.

1.3.2 Row-based Placement

Fig. 1.3 shows an example of the row-based placement for a standard cell design. In this

example, cells are placed into rows: cells in the same row share the same orientation and

vertical location; cells in an adjacent row are mirrored vertically to avoid a short circuit

and share a common power rail. The advantages of row-based placement are listed below.

• Power distribution. Power rails of cells in the same row are perfectly aligned, and

8

GND

Vdd

GND

Vdd

GND

Vdd

N-well

N-well

N-well

P-well

P-well

P-well

Figure 1.3: Row-based placement for standard cells. Gray triangles indicate the orientation
of standard cells.

adjacent rows with opposite orientations allow them to share a common power rail.

These rows simplify the power distribution network to be regular horizontal metal

wires strapped together with vertical metal wires.

• N/P-well design rules. Design rules related to N/P-wells need to be satisfied during

placement. For example, the width and height of a well must be no less than a

minimum length, and the area of a well must be no less than a minimum area. There

are more delicate design rules, especially in modern technology nodes. N/P-wells of

cells in the same row are automatically abutted and united into a large well, which

can satisfy almost all N/P-well design rules, even delicate ones. Therefore, row-based

placement can abstract complicated N/P-well design rules from the standard cell

placement problem.

• Cell location correlation. Rows divide the whole placement region into many sub-

regions. Cells in the same row are forbidden to overlap with each other, and thus

their horizontal locations are strongly correlated. Cells in different rows can have the

same horizontal location because they are guaranteed to be overlap-free. The presence

9

of rows splits the global overlap constraint into local overlap constraints.

1.4 Standard Cell Placement Flow

A placement automation tool, also known as a placer, determines the exact physical location

of all cells in the placement region [41]. For modern technology processes, this location

assignment largely influences power and performance. However, an exact evaluation of the

circuit performance is a computationally expensive task. To mitigate this problem, chip

performance is estimated using simple metrics, which also act as objective functions during

placement. These metrics include HPWL, routability, critical path delay, power, area, and

other metrics [7]. Placers also need to consider layout constraints and timing constraints.

These constraints are modeled as smooth functions that take large or infinite values if

unsatisfied, which turns the placement problem into an optimization problem.

Modern circuits can have millions of logic gates, which puts a strong requirement on

the time complexity of placement algorithms. A common way to manage the complexity

is to divide the placement process into several stages: global placement, legalization, and

detailed placement [7, 8].

• Global placement relaxes the cell overlap constraint and other constraints for gener-

ating a coarse-grained placement solution. The goal of this step is to quickly find a

high-quality yet illegal solution. Since the overlap constraint is relaxed, this solution

usually contains many cell overlaps.

• Legalization cleans up design rule violations in the coarse placement and generates

a legal placement by moving cells locally. Because the global placement result is

expected to be close to a high-quality solution, a legalizer should perturb this result

as little as possible.

• Detailed placement aims to explore the solution space around the legalized placement

result. A detailed placer takes the legal placement as its input and invokes local

refinement algorithms to improve this result iteratively.

10

1.4.1 Global Placement

Problem Formulation

During this process, HPWL is usually used to estimate the computationally expensive

wirelength, and thus the objective function in Eqn. 1.1 becomes

obj(X,Y) = HPWL(X,Y) +D(X,Y). (1.3)

Since the netlist consists of cells and interconnections, we can denote it as (C,E), where

C is the set of cells, and E is the set of nets. Moreover, each net e consists of a collection

of cell pins: if the cell i has a pin in net e, we denote it as i ∈ e. With this, we can write

HPWL as

HPWL(X,Y) =
∑
e∈E

[(max
i∈e

xi −min
i∈e

xi) + (max
i∈e

yi −min
i∈e

yi)]

=
∑
e∈E

(max
i∈e

xi −min
i∈e

xi) +
∑
e∈E

(max
i∈e

yi −min
i∈e

yi)]

= HPWL(X) +HPWL(Y),

(1.4)

which is the total half perimeter of the minimum bounding box of each net. Note that in

the above formula, the shape and location of cell pins are ignored.

Eqn. 1.4 seems to imply that the x component and the y component of HPWL are

independent. Reality is not what it seems: due to the existence of the placement region

and placement blockages, the solution space is usually irregular, and thus a simple relation-

ship, like X ∈ Rdim(X) or X ∈ [low, high]dim(X), is inaccurate because the assignment of

the variable X determines the solution space of the variable Y , and vice versa. Therefore,

HPWL(X) and HPWL(Y) are entangled tightly and implicitly. They can be treated as in-

dependent functions only when the placement region is a rectangle and placement blockages

are absent or ignored.

Common strategies for global placement include the partitioning approach, simulated

annealing approach, and analytical approach.

11

Partitioning Approach

This approach determines cell locations in a top-down fashion by recursively cutting the

netlist and placement region into sub-netlists and placement bins. The intuition behind this

approach is that the minimum cut should be able to reduce the number of nets connecting

sub-netlists. Since these nets usually span placement bins, they are more likely to have

large bounding boxes. Reducing these nets should be able to make more nets physically

local and thus improve wirelength.

Commonly adopted heuristics for netlist partitioning are the Kernighan–Lin (KL) algo-

rithm [42] and the Fiduccia-Mattheyses (FM) algorithm [43]. Although the time complexity

of the FM algorithm is linear to the number of pins, the quality of partitioning degrades

with the increase of the netlist size. A multilevel paradigm is proposed to mitigate this

problem [44,45]. This paradigm starts with coarsening the original hypergraph by cluster-

ing strongly connected vertices. This process can repeat several times until the hypergraph

is small enough. Then the partitioning heuristic is applied to the coarsened hypergraph

level by level until the original hypergraph is restored. Typical partitioning-based placers

include PROUND [46], GORDIAN [47], FengShui [48], and Capo [49].

Simulated Annealing Approach

For optimizing a discrete objective function, simulated annealing is capable of escaping from

local minima and thus can lead to a placement result with superior quality. The TimberWolf

placement and routing package has demonstrated the effectiveness of this technique [50–

52]. First, the placer starts with a random placement as the initial state. Then, a new

state is generated by exchanging two units in a range limiter, moving a cell to another

location, or changing the orientation of cells, pads, and macros. Next, the placer evaluates

the cost function of the new state, which consists of wirelength, cell overlap penalty, and

row overcrowding penalty. Last, the new state is accepted at random with probability of

min(1, exp(−∆C/T)), where ∆C is the cost variation, and T is the decreasing annealing

temperature. These steps are in a loop with a stopping criterion that there is no further

improvement on the cost function.

12

TimberWolf can generate superior placement results for circuits with thousands of cells.

Since the state space increases quickly with the circuit size, a clustering technique is intro-

duced to improve the time complexity for large designs [53,54].

Analytical Approach

Analytical placement techniques have been extensively studied over the past decades due

to their excellent scalability [55–57]. The core idea is to use a smooth approximation of

HPWL as the surrogate function during placement.

Quadratic wirelength. Quadratic placers use the quadratic wirelength (QW) to ap-

proximate HPWL. For a net e, the x component of its HPWL is

HPWL = max
i∈e

xi −min
i∈e

xi

= max
i,j∈e

|xi − xj |

=
∑
i,j∈e

wij |xi − xj |

=
∑
i,j∈e

wij

|xi − xj |
(xi − xj)

2

=
∑
i,j∈e

wij

∆xij
(xi − xj)

2

≈
∑
i,j∈e

cij(xi − xj)
2 = QW,

(1.5)

where wij is 1 only when the i-th cell is the maximum pin and the j-th cell is the minimum

pin; otherwise, wij is 0. wij in this example is chosen in this way to illustrate the idea of

the quadratic approximation.

There are many other ways to make the above equation hold. A popular method is the

Bound2Bound net model [58]: if we denote the number of cell pins in net e as |e|, when one

of i and j is the maximum/minimum pin, we have

cij =
1

(|e| − 1)

1

|xi − xj |
, (1.6)

otherwise, cij is 0.

13

The global minimum of the quadratic wirelength is reached when its first derivative is

zero, which can be obtained by solving the following linear system

∑
e∈E

∑
i,j∈e

cij(xi − xj) = 0. (1.7)

Note that cij is a function of xi and xj , and it needs to be updated when the new set

of locations is obtained. This also means that the above linear system should be solved

iteratively until all cell locations converge. Typical quadratic placers include FastPlace [59],

Kraftwerk [58], SimPL [60], MAPLE [61], and POLAR [62].

Nonlinear wirelength. Log-sum-exponential wirelength (LSEW) is another way to

approximate HPWL:

HPWL = max
i∈e

xi −min
i∈e

xi

= lim
γ→0

[
ln
∑
i∈e

exi/γ + ln
∑
i∈e

e−xi/γ

]

≈ ln
∑
i∈e

exi/γ + ln
∑
i∈e

e−xi/γ = LSEW,

(1.8)

where γ is a parameter controlling the accuracy and smoothness of the approximation.

APlace [63] and NTUPlace [64] adopt LSEW for global placement.

Weighted-average wirelength (WA) is a popular approximation in recent years:

HPWL = max
i∈e

xi −min
i∈e

xi

= lim
γ→0

[∑
i∈e xie

xi/γ∑
i∈e e

xi/γ
+

∑
i∈e−xie

−xi/γ∑
i∈e e

−xi/γ

]

≈
∑

i∈e xie
xi/γ∑

i∈e e
xi/γ

+

∑
i∈e−xie

−xi/γ∑
i∈e e

−xi/γ
= WA.

(1.9)

ePlace [65], RePlAce [66], and DREAMPlace [67] use Nesterov’s method to optimize this

nonlinear cost function.

Density constraint. Because optimizing HPWL usually leads to a lot of cell overlaps,

a smoothed wirelength function itself is inadequate for generating a high-quality global

placement. Therefore, analytical placers need various heuristics to remove density hotspots.

14

For example, quadratic placers often use anchors and look-ahead legalization to keep cells

away from dense regions [60,62]. Some placers choose a smooth overlap function to spread

out cells [64]. Other placers model cells as an electrical system and use electrostatics to

distribute cells in the placement region [67,68].

1.4.2 Legalization

The primary goal of the legalization step is to eliminate cell overlaps and ensure each cell

has a legal location inside the placement region. Because the global placement result is

expected to be of high quality, it is undesirable to perturb cell locations during this step,

and thus a typical cost function during this process is the following:

obj(X,Y) = (∥X −X0∥p + ∥Y − Y 0∥p) +D(X,Y), (1.10)

where p is 1 or 2, (X0, Y 0) is the global placement result, and (X,Y) is the placement after

legalization. The first term in the above objective measures the location variation after

legalization, and the second term is the penalty function for cell overlaps.

Tetris is a simple but effective legalization algorithm for standard cells [69]. This

heuristic implicitly optimizes cell displacement by partially preserving the cell order during

legalization. The simplest version of this legalization method is to snap cells to rows and

compactly pack cells toward the left boundary. First, cells are sorted according to the x-

coordinate of the lower-left corner in the ascending order. Then, for each cell, the legalizer

finds the row whose leftmost free location is closest to the current cell location. Next, the

legalizer moves this cell to the greedy optimal position and updates the free space of the

corresponding row. These steps repeat until every cell has a legal location.

Fig. 1.4 (a) shows a global placement result: some cells overlap with other cells, and

some cells are out of the placement boundary. Fig. 1.4 (b) shows the legalized placement

result using the above Tetris legalization algorithm: cells are closely packed toward the left

placement boundary; the order of cells is preserved in every single row. This technique can

be easily extended to support cells with various heights.

Abacus is the state-of-the-art standard cell legalizer, which can simultaneously opti-

15

(a) (c)(b)

Figure 1.4: Example of different legalization techniques: (a) global placement result, (b)
legalized result using the simplest Tetris legalization algorithm, (c) legalized result using
Abacus legalization algorithm.

mize cell displacement and eliminate cell overlaps by treating the legalization problem as a

quadratic programming problem. The cost function is the quadratic displacement, and the

constraints are the overlap constraint and the boundary constraint. Abacus can find the

optimal legal placement solution for a fixed cell order.

For a given list of ordered cells C = {c1, ..., cn} that need to be placed into a specific

row, the cost function is

cost(X) =
∑
i∈C

(xi − x0i)
2, (1.11)

where x0i is the initial location of the i-th cell. Because Y and Y 0 are fixed in this case,

they are excluded from the above cost function. The solution needs to satisfy the following

constraints:

lower bound ≤ x1,

x1 + w1 ≤ x2,

...

xn−1 + wn−1 ≤ xn,

xn + wn ≤ upper bound,

(1.12)

where wi is the width of cell ci, lower bound and upper bound specify the free space in this

row. As can be seen, this is a typical quadratic programming problem. Instead of calling a

quadratic programming solver to find the solution, Abacus uses a more efficient way to solve

this problem based on the observation that cells are usually closely packed into segments

16

in the legalized placement. This procedure is an important subroutine in Abacus called

PlaceRow.

Similar to the Tetris legalization algorithm, the Abacus legalization algorithm starts

with sorting cells according to the x-location. Then, for each cell, the legalizer uses the

PlaceRow subroutine to find the row with the optimal cost, and places this cell into that

row. These steps repeat until all cells are processed. Fig. 1.4 (c) shows the legalized

placement result using the Abacus legalization algorithm: cells are closer to their initial

location compared with the Tetris legalization result. As can be seen, Abacus is also a

greedy algorithm and explicitly relies on the existence of rows. However, it is difficult to

extend this algorithm to support cells with various heights.

1.4.3 Detailed Placement

The detailed placement algorithms are usually more computationally expensive than global

placement algorithms. Since the global placer, together with the legalizer, gives a reasonably

good placement result, the task of the detailed placer is to refine this result and keep the

density/overlap penalty from increasing.

FastPlace-DP is a greedy detailed placement algorithm which can generate a high-

quality solution quickly [70]. This detailed placement improves wirelength using the follow-

ing four techniques:

• global swap: for a given cell, it is easy to find the optimal location to minimize

HPWL if all other cells remain unmoved. In reality, this optimal location turns out

to be a rectangular region. If this optimal region can accommodate this cell without

influencing other cells, we can improve HPWL by simply moving this cell into its

optimal region. However, this operation usually leads to cell overlap or cell density

overflow. A safer way is to swap this cell with a candidate cell in the optimal region,

which is also why this step is called global swap.

• vertical swap: under certain circumstances, it is impossible to successfully perform a

global swap operation for a given cell. Notice that moving a cell closer to its optimal

region can also improve HPWL. The vertical swap technique tries to swap a cell with

17

another candidate cell in adjacent rows but closer to its optimal region.

• local reordering : the vertical swap step adjusts the cell location vertically to reduce

HPWL, while the local reordering changes the cell location/order horizontally to im-

prove wirelength. For every row, we can use a sliding window containing 3 or 4 cells

to traverse cells in this row. It is fast to enumerate all possible ordering of cells in

this window and choose the optimal order to improve HPWL.

• single-segment clustering : this step aims to find the optimal placement for cells in a

row without changing the cell order. Assuming cells in other rows are fixed, cells in this

row can slide along the row to improve wirelength. Although an exact algorithm exists

for finding the optimal solution [71], FastPlace-DP uses a fast heuristic to improve

HPWL.

These four techniques are applied iteratively until HPWL converges.

There are many other detailed placement techniques: NRG uses simulated annealing to

improve HPWL [72]; Domino decomposes the detailed placement problem to be a network

flow problem [73]; some placers uses mixed integer programming for detailed placement [74].

1.5 Contribution

The contributions made by this dissertation are listed below.

• Due to the adoption of custom logic gates in asynchronous circuits, standard cell

methodology usually leads to physical layouts with larger areas, more power con-

sumption, and additional timing constraints. To mitigate these problems, a grid-

ded cell methodology is proposed for asynchronous designs in Chapter 2. This new

methodology combines the shape regularity of standard cells with the size flexibility of

full-custom layouts. Therefore, this approach is capable of generating a more compact

layout with lower power consumption and better performance.

• The gridded cell methodology brings new challenges to the placement process: N/P-

well design rules and power distribution network need to be explicitly handled during

18

placement. It is shown in Section 2.4.4 that a cluster-based placement technique can

solve these new problems.

• A gridded cell placement flow, Dali, is implemented to automate the cluster-based

placement process. Experiment results in Chapter 3 show that the gridded cell place-

ment approach can reduce the area by 15% and improve the wirelength.

• Complex custom logic gates are often used in asynchronous designs. Chapter 4 intro-

duces efficient and effective algorithms to handle these complex gates during legaliza-

tion.

• The timing-driven placement flow for asynchronous circuits is introduced in Chapter 5

as future works.

19

Chapter 2

Physical Design of Asynchronous

Circuit

This chapter will start with an introduction to asynchronous circuits and commonly adopted

physical design methodologies. Then, we will identify the placement dilemma for asyn-

chronous designs and propose the gridded cell layout style to solve this problem.

2.1 Asynchronous Circuit

Asynchronous circuits have demonstrated many advantages over their synchronous coun-

terparts [25,26,75–77]. These advantages are listed below.

• Low power consumption: asynchronous circuits use distributed handshake protocol

instead of a global clock signal to control data processing, and thus they are active

on-demand, which makes them more energy-efficient.

• No clock distribution: it is challenging to distribute a clean clock signal across the

whole die area for synchronous designs, but there is no global clock signal in asyn-

chronous designs.

• Average-case performance: the delay of asynchronous circuits can be data-dependent,

while that of synchronous circuits is always the worst-case delay.

20

• Robustness: since signal delays are influenced by many external factors, such as volt-

age or temperature fluctuation and manufacturing variation, asynchronous circuits

can be insensitive to signal delays, which makes them robust against these noises.

• Design modularity : the clock frequency of a synchronous pipelined design may need

to be reduced when new stages are added, while asynchronous circuits treat stages as

plug-ins because of the handshake protocol and local timing constraints.

2.2 Circuit Family

There are many asynchronous circuit families, each of which has a different set of delay

assumptions [77]. Among these circuit families, quasi-delay-insensitive (QDI) [78] circuits

and micropipelines [79, 80] are very popular due to their high operation speed and relative

simplicity of physical implementation.

2.2.1 Quasi-Delay-Insensitive Circuit

Delay-insensitive (DI) circuit makes no assumption on the delay of wires and gates, making

it a very robust circuit family [81]. However, the functionality of this circuit family is limited

when all logic gates have a single output [78]. It has been shown that two-output gates

are sufficient to remove this limitation, where timing constraints are hidden behind these

gates [82].

A quasi-delay-insensitive circuit is a DI circuit with the isochronic fork assumption [78],

which is the minimal set of timing assumptions that makes this circuit family Turing-

complete [83]. This isochronic fork timing constraint can be easily satisfied during the

physical design stage [28,30].

QDI circuits use the dual-rail encoding for datapath, where two wires represent one bit

of data [84,85], as shown in Fig. 2.1 (a). Take the d0 bit as an example, this bit has a true

rail d0.t and a false rail d0.f . When both rails are 0, there is no data present in d0. The

logic value “1” is encoded as d0.t = 1 and d0.f = 0, while the logic value “0” is encoded as

d0.t = 0 and d0.f = 1. It is forbidden that both rails are high at the same time.

21

Se
nd
er

R
ec
ei
ve
r

ack

d0.t d0.f

d1.td1.f

(a)

Se
nd
er

R
ec
ei
ve
r

req

ack

d0d1

(b)

Figure 2.1: Asynchronous data encoding: (a) dual-rail encoding, (b) bundled data encoding.

The four-phase handshake protocol for the dual-rail encoding works in this way: initially,

all signals are low; when the sender initiates the communication, it sets the true or false

rail to high for both data bits; when the receiver senses the presence of data, it will set

the ack (acknowledge) signal to high; then the sender reset all bit rails to low; finally, the

receiver reset the ack signal to low, and the system restores its initial state and ready for

the next round of communication. Although the dual-rail encoding makes the area of most

logic gates twice as big as their single-rail counterparts [86,87], it makes cell communication

very robust to cell placement and signal routing. The correctness of a QDI circuit layout is

largely guaranteed by its delay-insensitivity; timing-driven placement and routing are only

for performance improvement.

There are many techniques for synthesizing a QDI circuit. A classic method is commu-

nicating hardware process (CHP) decomposition [88], which has been used for building a

famous asynchronous MIPS microprocessor [28]. The syntax-directed translation approach

is another popular method: Tangram [89] developed by Philips has been used for designing

many asynchronous circuits [90]. Other methods include data-driven decomposition [91],

concurrent dataflow decomposition [92], and high-level synthesis [93].

2.2.2 Micropipeline

Pipelined asynchronous designs have many advantages over their synchronous counterparts,

including design modularity, pipeline elasticity, intrinsic data flow control, and on-demand

power consumption [80, 94]. However, asynchronous logic functions tend to have a larger

area because of the dual-rail encoding, and suffer from the lack of dedicated support from

22

req0

ack0

req1

ack1

C
om
bi
na
tio
na
l

Lo
gi
c

delay

St
or
ag
e

C Cd

Control

C
om
bi
na
tio
na
l

Lo
gi
c

delay

St
or
ag
e

C Cd

Control

C
om
bi
na
tio
na
l

Lo
gi
c

delay

St
or
ag
e

C Cd

Control

Figure 2.2: A linear micropipeline structure.

EDA companies and semiconductor foundries.

Micropipeline, introduced by Ivan Sutherland during his Turing award lecture [79], com-

bines the distributed control from asynchronous designs and the simplicity of synchronous

circuits [95]. Since then, this design style has been extensively studied and adopted [80].

Fig. 2.2 shows a linear micropipeline structure with three stages. Each stage consists of

three components: control circuitry, storage unit, and logic function.

• Control : the control circuitry follows the handshake protocol and generates a local

clock signal. When the input data to this stage is ready, the request signal req0 from

the previous stage becomes high. And if this stage is ready to accept new data, the

control part will generate a local clock signal, instructing the storage unit to capture

the input data. Once the input data is cached, the acknowledge signal ack0 becomes

high to notify its previous stage to take new data and its logic function to process

the cached data. When the output data is ready, the request signal req1 becomes

high, and once the next stage completes data capturing, the acknowledge signal ack1

will become high. This control circuitry essentially acts as a function wrapper and

provides a communication interface.

• Storage: the storage unit caches the data from the previous stage so that the previous

stage can reset itself and then start working on new data. There are many ways to

implement this storage unit as long as the implementation is compatible with the

23

control circuit. For example, the latch is a popular design choice due to its area and

power efficiency. When the control signal C is high, the latch becomes transparent

to pass the input data. When the data capturing process is complete, the signal

Cd becomes high, and the latch becomes opaque to protect the data from being

overwritten by accident.

• Logic function: the bundled data encoding and combinational logic are selected to

implement the logic function and simplify the datapath. Fig. 2.1 (b) shows the bundled

data encoding, where each data wire represents one logic bit. The request signal

req indicates the validity of all data bits, and this is also the bundled data timing

constraint, which needs to be satisfied during physical implementation. Since it takes

time for the combinational logic to process the input data, a delay line is needed to

show the completion of the computation. Principally speaking, the function can be

implemented using an analog circuit as long as the timing constraint is satisfied.

There are many different kinds of micropipelines [80]. Mousetrap pipeline uses standard cells

to construct its control part and the storage part, which makes it possible to exploit mature

EDA tools to complete the physical implementation [96]. GasP pipeline uses a single-track

wire channel, dynamic logic, and custom gates to build the control circuit, which leads

to very low latency and high operation speed but requires manual layout [95]. Precharge

half-buffer pipeline and weak-condition half-buffer pipeline use QDI control circuits, which

provides timing robustness [97].

2.3 Physical Design

Because asynchronous circuits contain many complex custom logic gates, mature EDA

tools have difficulties in handling them: standard cell libraries provided by semiconductor

foundries do not have these custom cells [28, 89, 95, 97]; static timing analysis does not

automatically support asynchronous designs [98]; the placement tool requires that custom

cells must be designed in the standard cell fashion [99]. The routing process is the only step

that supports custom cells but with a preference over cell pin shapes and locations [100].

24

A B C

0 0 0
0 1 Cprev

1 0 Cprev

1 1 1

A&B → C ↑
¬A&¬B → C ↓

Figure 2.3: C-element truth table and production rules.

In the following, we use the Muller C-element to illustrate the difference among different

physical implementation strategies. C-element is a widely used state-holding gate in many

asynchronous circuit families [24]: the output becomes high when all inputs are high; the

output becomes low when all inputs are low; otherwise, the output stays unchanged. The

next state logic function of a two-input Muller C-element is

C ′ = AB +AC +BC. (2.1)

The truth table and production rules of C-element is shown in Fig. 2.3, and Fig. 2.4 (a)

shows the schematic of its semi-static implementation.

2.3.1 Full-Custom Design

Fig. 2.4 (b) shows the full-custom layout of the two-input C-element: when input A and

B are different, the output C remains unchanged due to the weak feedback inverter; when

input A and B are the same, the pull-up/pull-down network has a stronger drive strength

than the weak inverter to switch the value of C. The sizing of transistors is crucial to ensure

the correctness of this implementation, which also means that timing constraints are inside

this gate. And once the functionality and correctness are verified, we can safely use this

implementation in the physical layout.

The arrangement of these full-custom cells needs to satisfy N/P-well design rules and

other design constraints. After the placement of these cells, designers need to manually

create a power delivery network and connect power pins in each cell to the corresponding

power supplies. The amount of effort to design such a network depends on the regularity

of cell placement. Although the full-custom design methodology can lead to superior per-

25

A

B C

Vdd

GND

(a)

A

B C

(d)

(b)

C

A B

Vdd

GND

Vdd

GND

C

A B

Vdd

GND

(c)

Figure 2.4: Muller C-element and its implementations. (a) semi-static implementation, (b)
full-custom layout, (c) custom standard cell layout, (d) static standard-cell implementation.

formance, power, and area, this approach is very labor-intensive, and thus only adopted for

high-volume or state-of-the-art asynchronous circuits [28–30,35].

2.3.2 Custom Standard Cell Design

This approach aims to leverage existing standard cell placement tools by designing the

physical layout of custom logic gates in the standard cell fashion. Fig. 2.4 (c) shows the

custom standard cell layout of the two-input C-element. Compared with the full-custom

layout, this physical implementation has local power rails acting as a cell wrapper to simplify

the construction of the power distribution network. After the placement of cells, this local

26

network can automatically form a global power distribution network, eliminating the need

for explicit power network construction.

This approach requires that every cell must have the same height, whose minimum value

is the sum of the maximum N-well height and the maximum P-well height among all cells.

Since asynchronous circuits contain custom logic gates with very different pull-up and pull-

down networks, this approach often leads to the waste of space in simple gates. This is also

why the custom standard cell layout in Fig. 2.4 (c) is taller than its full-custom layout in

Fig. 2.4 (b). Existing works have confirmed that this approach has a large area overhead

due to the high variance of custom cell heights [99].

2.3.3 Standard Cell Design

This approach seeks to design an asynchronous circuit using standard cells provided by

semiconductor foundries. Since nearly all asynchronous designs contain custom logic gates,

these logic gates need to be reimplemented using standard cells. However, this technology

mapping process usually leads to a larger area, more power consumption, and even extra

timing constraints.

Fig. 2.4 (d) shows the static standard cell implementation of the two-input C-element.

This implementation uses three 2-input NAND gates and one 3-input NAND gate, which

takes more space than the full-custom implementation. The extra timing constraint is that

the feedback loop must stabilize before the arrival of the next input, which depends on the

external environment. This also means the placement and routing tools need to handle this

timing constraint.

2.4 Placement Problem for Asynchronous Circuits

Although pre-designed power rails simplify the power distribution network and abstract

away N/P-well design rules, it limits the flexibility of the physical layout for an asyn-

chronous circuit. To obtain a high-quality physical implementation, we have to discard the

standard cell methodology. This choice impels us to use the full-custom cell layout during

the placement and routing, and brings two new problems: N/P-well design rules and power

27

distribution network.

2.4.1 Gridded Cell Layout Style

A full-custom layout can be very flexible, for example, the shape of a cell is unnecessarily

a rectangle, and the placement boundary of a custom cell can be ambiguous. These high

degrees of freedom make the placement problem intractable, and we need some constraints

on the cell layout to make this problem manageable. Therefore, we propose a new cell

layout style, called gridded cell layout, and we term custom logic cells implemented in

this style as gridded cells. This new layout style is the full-custom layout with constraints

listed below.

• Placement boundary : the shape of a cell is a well-defined rectangle, and the width

and height of this rectangle are an integer multiple of a predefined grid value gx and

gy, respectively.

• Well boundary : the N/P-well height is an integer multiple of the vertical grid value

plus a constant, i.e., ngy + c, where n is a non-negative integer, and c is a constant

for all cells.

• Placement grid : the lower-left corner of a cell must be placed on a placement grid,

whose horizontal/vertical grid width is also gx/gy.

• Cell abutment : when two cells are abutted horizontally with the same orientation,

there is no design rule violations from this abutment if their N/P-wells are aligned;

when two cells are abutted vertically with opposite orientations, there is no design

rule violations from this abutment.

Fig. 2.5 (a) shows three cells designed in the gridded cell layout style. As can be seen,

the above constraints make every corner of a cell on the placement grid. cell1 and cell2 are

abutted horizontally with no design rule violations; cell1 and cell3 are abutted vertically

with no design rule violations.

Modern VLSI routing tools usually adopt grid-based algorithms, which prefer cell pins

on a three-dimensional routing grid to simplify the routing problem [101]. To comply with

28

𝑔!

𝑔"
N-well

N-well

(a) (b)

placement grid
routing grid

1
2

3

Figure 2.5: Gridded cell layout style. (a) example gridded cells and the placement grid, (b)
example cell pins and the routing grid.

this preference, some optional constraints are listed below.

• Routing grid : the routing grid shares the same grid values with the placement grid.

• Cell pin: cell pins are on the routing grid when cells are on the placement grid, which

means the shape and location of cell pins need to compensate the offset between the

placement grid and the routing grid.

Fig. 2.5 (b) shows an example of cell pins satisfying these optional constraints.

2.4.2 Placement Problem Formulation

The gridded cell placement problem is formulated as the following:

• Input: netlist, placement region, I/O pins

• Output: cell locations

• Constraint: cell overlap, timing constraints, cell density, N/P-well design rules

• Objective: wirelength, critical path delay, power, routability, etc.

29

This placement problem can also be modeled as an optimization problem, the objective

function is the following:

obj(X,Y) = W (X,Y) +D(X,Y) +Well(X,Y), (2.2)

where W (X,Y) is the wirelength cost, D(X,Y) is the density and overlap penalty, and

Well(X,Y) is the penalty for N/P-well design rule violations. The previous chapter gives

the formulas of the wirelength cost and the density penalty function. Next, we will analyze

N/P-well design rules to figure out its mathematical expression.

2.4.3 N/P-well Design Rules

For gridded cells, we need to handle the following N/P-well design rules during placement:

• min-width rule: the distance of two non-intersecting edges in an N/P-well polygon

must be no less than a pre-defined value;

• min-space rule: the distance between an edge of an N/P-well polygon and an edge of

another N/P-well polygon must be no less than a pre-defined value;

• min-area rule: the area of an N/P-well polygon must be no less than a pre-defined

value;

• latch-up prevention rule: the distance between a point in an N/P-well to the nearest

well tap cell in the same well must be no more than a pre-defined value.

These rules are complicated to satisfy at the first glance, especially when there are a large

number of cells.

We can start with only two gridded cells to learn the consequence of these design rules.

The width of the first cell is w1, and its N/P-well height is n1/p1; similarly for the second

cell. For the sake of simplicity, we assume the minimum width of N-well and P-well are

the same, and we denote it as mw; similarly for the minimum space ms. Since the relative

arrangement of cells determines the N/P-well penalty, we can safely assume the first cell is

fixed with the center of its N/P-well borderline being the origin, and the second cell can

freely move with the center of its N/P-well borderline being (x, y).

30

There are many ways to define penalty functions for N/P-well design rule violations and

cell overlaps. For illustrative purposes, we will choose penalty functions in the following

way: the penalty function takes the value 0 if there are no design rule violations or cell

overlaps and 1 otherwise.

Two Cells with the Same Orientation

Fig. 2.6 (a) shows two gridded cells with the same orientation. For these two cells, the

overlap cost function can be written as

overlap(x, y) = b(x,−w,w)b(y,−hl, hu), (2.3)

where

w = (w1 + w2)/2,

hl = (p1 + n2),

hu = (n1 + p2),

(2.4)

and b(x, a, b) is the boxcar function with value 1 in range [a, b] and 0 otherwise.

If we only consider the min-width and the min-space rules, the N/P-well design rule

penalty function can be written as

well(x, y) = b(x, xl, xu) [b(y, yl1, yl2) + b(y, yu1, yu2)] , (2.5)

where

xl = −(w +ms),

xu = w +ms,

yl1 = min(−(p1 +ms),−(n2 +ms)),

yl2 = max(−(p1 −mw),−(n2 −mw)),

yu1 = min(n1 −mw, p2 −mw),

yu2 = max(n1 +ms, p2 +ms).

(2.6)

Figure (b) shows the total penalty function after smoothing: the placement is legal if the

second cell is in the blue region; the second cell violates the N/P-well design rules or the

31

(a)

𝑥

𝑦

(b)

𝑥

𝑦

(c) (d)

Figure 2.6: Interaction between two gridded cells. (a) two gridded cells with the same
orientation, (b) penalty function v.s. relative location for the same orientation, (c) two
gridded with opposite orientations, (d) penalty function v.s. relative location for different
orientations. The “+” mark indicates the origin point.

overlap constraint in the green region; the cell arrangement violates both constraints in the

yellow region. As can be seen from this figure, the penalty function has two notches on

both sides of the first cell around its N/P-well borderline. The width of these notches is

ms, and the height is determined by N/P-well heights in both cells. Strictly speaking, we

need to extend N/P-wells in one cell towards another to see these notches; otherwise, these

two notches will degenerate into two line segments. If the second cell is not in any notch,

this cell needs to be at least ms away from the first cell. In other words, to legally abut two

cells, their N/P-well borderlines must be close enough.

32

Two Cells with Opposite Orientations

Fig. 2.6 (c) shows two cells with opposite orientations. The overlap cost function is similar:

overlap(x, y) = b(x,−w,w)b(y,−hl, hu), (2.7)

where

w = (w1 + w2)/2,

hl = (p1 + p2),

hu = (n1 + n2).

(2.8)

The N/P-well design rule penalty function becomes

well(x, y) = b(x, xl, xu)b(y, yl, yu), (2.9)

where

xl = −(w +ms),

xu = w +ms,

yl = min(−mw,−ms),

yu = max(mw,ms).

(2.10)

Fig. 2.6 (d) shows the total penalty after smoothing. Unlike the previous case, there are

two bumps on both sides of the first cell, which means the second cell needs to be at least

ms away from the first cell when their N/P-well borderlines have similar vertical locations.

Cell Cluster

From Fig. 2.6 (b) and (d), we can find that when two gridded cells are close to each other

horizontally: if they have the same orientation, an attractive force will try to align their

N/P-well borderlines; if they have opposite orientations, a repulsive force pushes them away

from each other. And if the objective function contains the placement area, two adjacent

cells should have the same orientation and abut each other to reduce the total area.

The underlying assumption of the above analysis is that a cell is fully covered by its

33

(a) (b)

Vdd

GND

N-well

P-well

Figure 2.7: Individual gridded cells form clusters. (a) individual gridded cells with different
orientations, (b) gridded cells form a cluster to share a large N/P-well and a well tap cell
(the cell with red boundary).

N-well and P-well. This is valid for modern technology nodes due to the min-area rule: the

minimum N/P-well area is big enough to cover several cells, and a simple cell cannot satisfy

this rule. There are two ways to make the N/P-well in a cell satisfy this rule: making the

well in a cell larger or sharing a big N/P-well among cells. The latter solution is consistent

with horizontal and vertical cell abutment.

Fig. 2.7 shows the process of several individual gridded cells forming a cluster to satisfy

N/P-well design rules: cells in this cluster have the same orientation and share a common

N/P-well, and the area of the shared N/P-well is larger than the minimum area; a well

tap cell is created in this cluster to prevent the latch-up effect; the alignment of N/P-well

boundaries together with the shared N/P-wells satisfies the min-space and min-width rule.

There is some placement space wasted after the formation of clusters because the worst-

case N/P-well height determines the cluster height. But we must also notice that the

formation of clusters allows the horizontal abutment of cells, which saves the placement

area and satisfies design rules.

The formation of clusters can also simplify the power distribution network. As shown

in Fig. 2.7 (b), all cells have the same orientation, which means all pull-up networks are on

the top half of the cluster. This allows us to create a horizontal power rail along the top

boundary and connect all Vdd cell pins to this power rail. We can do the same thing for

GND cell pins, and this leads to a cluster surrounded by power rails.

34

2.4.4 Cluster-based Placement

The emergence of the cluster adds a new level to the placement hierarchy. Now the gridded

cell placement flow can be divided into the following three steps:

• cell clustering : for every cell, the gridded cell placer creates a new cluster or finds an

existing cluster to accommodate this cell;

• cluster legalization: design rule violations among clusters are eliminated by adjusting

the location and orientation of clusters;

• power distribution: the power rails in clusters are connected to the corresponding

power supplies.

The objective function is still circuit performance, power, and area.

We have tried various methods for cell clustering and cluster legalization. One way to

cluster cells is the following: for each cell, if there are any clusters around it, this cell will be

grouped into the nearest cluster; otherwise, a new cluster will be created around this cell.

This clustering method will lead to many overlaps among clusters because clusters remain

unchanged once created. Therefore, we need to figure out a way to legalize cluster locations,

but there are two problems during this process. The first one is the unconsolidated layout:

it is challenging to place clusters compactly because they have various widths. The second

problem is large cell displacements: a cluster can carry cells moving a long distance to find

a legal position. A declustering and reclustering technique can mitigate these problems, but

the result is still barely satisfactory.

It is observed that when clusters have similar widths, the final layout can be very

compact because these clusters will form cluster stacks after legalization. This equal-width

heuristic solves the first problem, but the cluster displacement problem still exists. It is

desirable to construct clusters without overlap in the first place. The solution for this

problem is the second heuristic: since equal-width clusters will eventually form stacks after

legalization, we can create a floorplan for these cluster stacks in advance, and clusters can

be developed in each sub-region without overlaps among them. This heuristic can avoid

cluster displacement and thus large cell displacements.

35

C
on

tr
ol

 C
ir

cu
itr

y

data receiver

register

comparator

register

counter

register

comparator

register

selector

register

data sender

Datapath

Figure 2.8: The floorplan for an asynchronous data decompressor.

These two heuristics coincide with the practices adopted by the full-custom method-

ology: the former corresponds to the design of wordslices or bitslices [4], and the latter

corresponds to the floorplanning step. Fig. 2.8 shows the floorplan for an asynchronous

design using the full-custom methodology. The datapath has many stages, each of which

consists of one or more cell clusters with a similar width. Although the control circuitry is

not as organized as the datapath, control cells also form local clusters.

The lesson from these trials is that it is unfitting to take the formation of clusters as a

goal. Instead, we should treat the cluster formation process as a way to organize gridded

cells. The following chapter will introduce our algorithms and implementations in detail.

36

Chapter 3

Dali: A Gridded Cell Placement

Flow

Asynchronous Very-Large-Scale-Integration (VLSI) has several potential benefits over its

synchronous counterparts, such as reduced power consumption, elastic pipelining, and ro-

bustness to variations. However, the lack of electronic design automation (EDA) support

for asynchronous circuits, especially physical layout automation tools, largely limits their

adoption. To tackle this challenge, we propose a gridded cell layout methodology for asyn-

chronous circuits, in which the cell height and cell width can be any integer multiple of

two grid values. The gridded cell approach combines the shape regularity of standard cells

with the size flexibility of custom design, and thus achieves a better space utilization ratio

and lower wire-length for asynchronous designs. We present the algorithms and our im-

plementation of Dali, a gridded cell placer, that consists of an analytical global placer, a

forward-backward legalizer, an N/P-well legalizer, and a power grid router. We show that

the gridded cell placement approach reduces area by 15% without impacting the routability

of the design. We have also used Dali to tape out a chip in a 65nm process technology,

demonstrating that our placer generates design-rule clean placement.

37

3.1 Introduction

Asynchronous circuits, also known as self-timed circuits, use local control signals instead

of a global clock signal for synchronization [75]. The absence of the clock signal eliminates

clock tree synthesis and distribution, alleviates global timing issues, and simplifies timing

closure. The use of local handshake control signal allows asynchronous designs to achieve

average-case instead of worst-case performance, and also makes circuits robust against en-

vironmental noises and fabrication variations [94]. However, despite these advantages, the

lack of dedicated EDA support and the absence of commercial dedicated standard cell

libraries hamper the acceptance of asynchronous circuits [102,103].

Many asynchronous circuit families use nonstandard and customized logic gates to

achieve small area and high performance [77, 97]. Although these gates can be converted

to commercial standard cells via technology mapping, this often leads to a substantially

larger area and power, and sometimes additional timing constraints, leading to an inferior

final circuit [77, 99]. Therefore, the full-custom design methodology is typically used for

implementing asynchronous circuits that have state-of-the-art power/performance [28, 35].

However, this approach is infeasible for most ASIC design projects due to the long design

time and high design cost [104].

Another option is a hybrid approach, which manually creates a custom standard cell

library for asynchronous design, and uses commercial EDA tools for layout automation [99,

105–107]. However, previous studies have shown that the space utilization ratio of cus-

tomized standard cells can be very inefficient [99], because the standard cell height is deter-

mined by the worst-case cell height across all the customized cells. Smaller cells have to be

“bloated” to the maximum height across the entire library [108,109]. This leads to a large

area gap between the customized standard cell approach and the full-custom approach for

the same asynchronous circuit netlist. This phenomenon is more prominent when a circuit

consists of many cells with small transistors but few cells with large ones.

To address this challenge, this paper introduces the gridded cell approach for asyn-

chronous circuit layout automation. This approach combines the shape regularity of stan-

dard cells and size flexibility of custom cells. Similar to a standard cell, a gridded cell has

38

a rectangular shape, but its height can be any integer multiple of a given grid value, which

we take to be the metal track pitch. This approach opens new degrees of freedom, and thus

can potentially lead to a better space utilization ratio, especially in a design that combines

different circuit styles.

Gridded cells introduce two additional problems for placement: (i) power delivery, since

the standard metal straps at the top and bottom of standard cell libraries cannot be used as

the means for connecting power and ground; and (ii) well legalization, since simply abutting

cells with different heights can cause design rule errors. We present solutions to both of

these problems as well.

We implement this placement approach in Dali , an open-source placer for asynchronous

circuits. We demonstrate that Dali reduces the die area by 15% without impacting the

routability of the placed design or the runtime of the place and route flow compared to the

standard cell approach for the same design netlist.

The key contributions of this work are listed as follows:

• We propose and implement the gridded cell layout methodology, specially tailored for

asynchronous circuits;

• We present an efficient legalization algorithm for gridded cells, loosely based on Tetris-

style legalization in standard cells;

• We present a new N/P-well legalization approach and algorithm that is capable of

legalizing well geometries in the presence of varying cell heights;

• We present a power grid routing strategy, and implement it as part of the placement

flow;

• To demonstrate the effectiveness of our approach, we have submitted a chip for fab-

rication in a 65nm process that was implemented with this methodology.

The rest of this paper is organized as follows: Section 3.2 presents a brief overview

of standard cell-based placement, and Section 3.3 describes differences with the gridded

cell approach. Section 3.4 explains the core placement techniques for gridded cell designs.

39

Section 3.5 reports the experimental results. Finally, the summary and future work are

given in Section 3.6.

3.2 Background

3.2.1 Standard Cell Layout

Fig. 3.1 (a) and (b) shows the CMOS layout of an INV gate and a NAND gate designed in

the standard cell fashion. In this approach, the worst-case N/P-well height determines the

height of standard cells, and thus the height of the INV gate is the same as the NAND gate,

although the INV gate has a smaller pull-down transistor as it has fewer gates in series.

For modern CMOS processes, the width and height of a standard cell are integer multiple

of the low-layer metal pitch, and the standard cell height is typically between seven and

twelve metal pitches.

Another feature of standard cell layout is power rails at the bottom and the top of

the cell. Standard cells with possible fillers can be abutted horizontally along a row, and

their power rails and N/P-wells are connected automatically, as shown in Fig. 3.1 (a) and

(b). To abut two cells vertically, one of the cells is mirrored along the horizontal direction

to avoid the direct contact of VDD and GND and for sharing of the power/ground rails.

Additional cells are needed to avoid design rule violations, including well tap cells that are

often pre-placed in a uniform pattern across the placement region to prevent latch-up, and

filler cells that the placer inserts into the gaps between standard cells to provide power rail

and well continuity along each row. Finally, in more modern technologies, end cap cells are

also necessary to handle additional design rule restrictions.

3.2.2 Row-based Placement

Standard cells are usually provided by semiconductor foundries, and the physical layout

of nearly all simple cells have the same height, although a small percentage of cells may

have multi-heights [110]. A commonly adopted practice for standard cell design is row-

based placement, also known as standard cell placement: many rows of empty spaces are

created inside the die area during floor-planning for accommodating logic cells of the same

40

(a) (b) (c) (d)

VDD

GND

N-well

P-well

Cell
outline

Figure 3.1: CMOS layout of the INV gate and NAND gate. Standard cell implementation:
(a) & (b) standard cell height and power rails. Gridded cell implementation: (c) & (d)
flexible cell height and no power rails.

height [38]. These rows come with N/P-wells of regular shapes and pre-placed well tap

cells. This kind of N/P-well arrangement relieves the standard cell placement from N/P-well

design rules, and thus simplifies the automation of the placement process [111]. Row-based

placement can lead to a compact physical layout and high space utilization ratio if every

standard cell conforms to these properties [99].

Row-based placement automation has been extensively studied in the past several decades.

There are many excellent placement techniques for standard cell designs. Academic stan-

dard cell placers include: TimberWolf [50] uses simulated annealing to optimize wire-length

cost; FengShui5 [48] and Capo [49] adopt a recursive bisection approach; NTUPlace3 [64]

models wire-length cost and cell overlap as non-linear functions; FastPlace [59], SimPL [60],

and POLAR [62] approximate wire-length cost as a quadratic function and use white-space

allocation heuristics to roughly remove cell overlaps; ePlace [68] and RePlAce [66] view cells

as uniformly charged plates to balance density and wire-length. A more detailed review of

placement techniques can be found in [57]. All of these techniques treat the placement prob-

lem as a constraint optimization problem. Together with detailed placement algorithms [70]

and legalization algorithms [69,112], these techniques can tackle the standard cell placement

problem effectively and efficiently.

41

3.3 Gridded cell

3.3.1 Gridded cell layout

As shown in Fig. 3.1 (c) and (d), a gridded cell layout is similar to its standard cell

counterpart, except that the former has (i) more flexible height and (ii) no power rails.

These two differences bring new problems to gridded cell placement: N/P-well design rule

satisfaction and new power grid design.

The height of a gridded cell is integer multiples of the low-layer metal pitch, while the

standard cells have a fixed height. Therefore, in the placement region, the y-coordinate

of standard cells is discretized by the standard cell height, while that of gridded cells is

discretized by the metal pitch. The higher resolution along the y-direction enables more

flexible cell placement but results in additional problems to satisfy N/P-well design rules.

These problems are discussed in more detail in Section 3.4.5.

Gridded cell abutment is similar to standard cell abutment. For horizontal abutment,

one needs to align the N/P-well boundaries of two gridded cells to share their wells, as

shown in Fig. 3.1 (c) & (d). The vertical abutment also requires one of the gridded cells to

be mirrored along the horizontal direction. The N/P-well width and height of gridded cells

are selected to be wide enough to avoid design rule violations during abutment.

The removal of power rails in gridded cells is to respect metal layer design rules. Imagine

the horizontal abutment of two gridded cells with power rails: due to different cell heights,

power rails in these two cells may disconnect with each other and potentially violate metal

layer design rules. The absence of power rails requires a new power grid design that must

be constructed after placement.

3.3.2 Cluster-based Placement

We have explored a large number of placement and legalization options for gridded cell

designs, including adapting existing legalization approaches [50, 64, 69, 113]. However, per-

mitting fully flexible placement resulted in significant increases in wire-length (up to 50%)

during the N/P-well legalization phase. To avoid this problem, we developed a cluster-based

placement strategy for gridded cell layout that is detailed in Section 3.4.

42

Cluster-based placement is based on our empirical observation that groups of neighbor-

ing cells looked like “mini-rows” after all cell overlaps were removed. In our approach, cells

are placed into clusters created dynamically during the N/P-well legalization phase. These

clusters can be viewed as local rows, whose heights and orientations are determined at run-

time. Within an individual cluster, the shapes of N/P-well regions can be easily determined,

and well tap cells can be inserted for each cluster. To the best of our knowledge, this is

the first time that N/P-well design rules are considered during placement for a large-scale

digital design.

3.4 Gridded Cell Placement

3.4.1 Placement Problem Formulation

A circuit can be represented as a hyper-graph G = (C,E), where C is the set of gridded

cells, and E is the set of nets. Given such an input circuit, the output of the placement

flow should be a legal cell arrangement, which satisfies the following constraints:

1. there is no overlapping among cells;

2. every cell resides in appropriate N/P-wells;

3. VDD/GND pins and N/P-wells are connected to the correct power rails;

Various objective functions need to be optimized during placement, including cell den-

sity, wire-length, critical path delay, area, power, etc. Among these objective functions,

cell density and wire-length are the most common performance metrics. Cell density can

be easily evaluated using a grid mesh defined across the placement region. Nevertheless,

the exact wire-length is computationally expensive to obtain, and thus efficient wire-length

estimations are adopted in practice. The half-perimeter wire-length (HPWL) is the most

commonly used metric for wire length estimation, and is half the perimeter of the bounding

box of the endpoints of the net:

HPWL(x ,y) =
∑
e∈E

[
(max

i∈e
xi −min

i∈e
xi) + (max

i∈e
yi −min

i∈e
yi)

]
, (3.1)

43

where vector x = {x1, x2, ..., xn} and vector y = {y1, y2, ..., yn} are the x and y-coordinates

of cells, respectively, and i ∈ e denotes the relationship that net e contains a pin in cell ci.

Note that vector x and y and independent in Eqn. 3.1, and thus HPWL can be decomposed

into two components containing either x or y .

3.4.2 Placement Flow

As shown in Fig. 3.2, our gridded cell placement flow consists of four stages: global place-

ment, forward-backward legalization, N/P-well legalization, and power grid design. These

four stages are designed to optimize HPWL and satisfy different constraints. The global

placement step uses existing approaches to optimize wire-length cost and meanwhile keep

the cell density less than a given upper limit [60, 62]. The forward-backward legalization

step removes overlapping among gridded cells, and only makes local cell displacement us-

ing a forward-backward legalization technique. Based on this overlap-free result, cells are

assigned to placement sub-regions, and in each sub-region, cell clustering is performed for

N/P-well generation and well tap cell creation. At last, based on the structure of cell clus-

ters, a power mesh is generated, and a detailed power routing process connects VDD and

GND pins in each cell to their closest power-lines.

3.4.3 Global Placement

We implement an analytical global placer for gridded cells using techniques similar to SimPL

[60] and POLAR [62]. The goal of this step is to minimize HPWL and eliminate cell density

overflow. As shown in the first panel of Fig. 3.2, our global placement implementation

consists of two major parts: wire-length optimization and cell density control. However,

these two steps compete with each other: the former step optimizes wire-length but ignores

cell density, while the latter step eliminates density overflow but largely neglects wire-length.

The global placer finds a balance point for the trade-off between wire-length and cell density

using anchors.

44

In
iti

al
Pl

ac
em

en
t

Ps
eu

do
ne

t
C

re
at

io
n

U
pd

at
e

B
2B

M
od

el
W

ei
gh

t

Li
ne

ar
Sy

st
em

So
lv

er

Lo
ok

-a
he

ad
Le

ga
liz

at
io

n

H
PW

L
C

on
ve

rg
e

G
ap

C
on

ve
rg

e

W
ire

-le
ng

th
O

pt
im

iz
at

io
n

C
el

lD
en

si
ty

C
on

tro
l

G
lo
ba
lP
la
ce
m
en
t

Fo
rw
ar
d-
ba
ck
w
ar
d
Le
ga
liz
at
io
n

Fo
rw

ar
d

C
el

l
Le

ga
liz

at
io

n

B
ac

kw
ar

d
C

el
l

Le
ga

liz
at

io
n

W
hi

te
Sp

ac
e

B
oo

kk
ee

pi
ng

N
/P
-w
el
lL
eg
al
iz
at
io
n

C
el

lL
is

t
Pa

rti
tio

ni
ng

Fo
rw

ar
d

C
el

l
C

lu
st

er
in

g

B
ac

kw
ar

d
C

el
l

C
lu

st
er

in
g

W
el

l&
Ta

p
C

el
lG

en
er

at
io

n

ye
s

ye
s

no

N
o

O
ve

rla
p ye
s

no

N
o

O
ve

rla
p

no

ye
s

R
es

ul
t

Le
ga

l ye
s

no

R
es

ul
t

Le
ga

l
no

ye
s

no

Po
w
er
G
rid
D
es
ig
n

D
et

ai
le

d
Po

w
er

R

ou
tin

g

Po
w

er
 M

es
h

G
en

er
at

io
n

C
lu

st
er

St
ru

ct
ur

e
A

na
ly

si
s

Lo
ca

l
R

eo
rd

er
in

g

R
ou

gh
Pl

ac
em

en
t

O
ve

rla
p-

fr
ee

Pl
ac

em
en

t
N

/P
-w

el
lL

eg
al

Pl
ac

em
en

t

Po
w

er
D

is
tri

bu
tio

n
C

om
pl

et
e

F
ig
u
re

3.
2:

S
ch
em

a
ti
c
d
ia
gr
a
m

o
f
th
e
w
h
ol
e
gr
id
d
ed

ce
ll
p
la
ce
m
en
t
fl
ow

:
gl
ob

al
p
la
ce
m
en
t,

fo
rw

ar
d
-b
ac
k
w
ar
d
L
eg
al
iz
at
io
n
,
N
/P

-w
el
l

le
g
al
iz
at
io
n
,
an

d
p
ow

er
g
ri
d
d
es
ig
n
.
E
ac
h
se
ct
io
n
in

th
e
d
ia
gr
am

co
n
ta
in
s
a
b
lu
e
b
ox

,
sh
ow

in
g
it
s
ou

tp
u
t.

45

Wire-length optimization

Although the direct optimization of HPWL in the form of Eqn. 3.1 is possible by using

steepest descent, a faster approach is conjugate gradient descent by converting HPWL to a

quadratic form [59]. The x-component (similar for y-component) of HPWL can be reformed

as

HPWL(x) =
∑
e∈E

∑
i,j∈e

wij,e(xi − xj)
2, (3.2)

and coefficient wij,e is determined by the Bound2Bound (B2B) net model [58]: if cell ci or

cell cj contains an extreme pin (max or min) in net e, the corresponding net weight is set

to

wij,e =
1

(pe − 1)|xi − xj |
, (3.3)

where pe is the number of pins connected by net e; otherwise, coefficient wij,e is zero.

As shown in the global placement flow in Fig. 3.2, the initial value of wij,e is generated

by uniformly distributing cells on the placement region. With these initial net weights, the

global minimum of the quadratic HPWL can be obtained by setting its first derivative to

zero as the following: ∑
e∈E

∑
i,j∈e

wij,e(xi − xj) = 0. (3.4)

This set of linear equations can be solved efficiently using an iterative linear solver with a

Jacobi preconditioner [114]. Note that the solution of x-coordinates can be different from

their initial values, and net weights wij,e should change accordingly. Therefore, with these

new x-coordinates, the B2B net model is updated, and a new linear system is constructed

and solved. This process is repeated until the solution converges.

Look-ahead legalization

A placement from solving Eqn. 3.4 contains considerable cell density overflow and over-

lapping. Look-ahead legalization eliminates density overflow using a recursive top-down

geometric partitioning technique.

Our implementation of look-ahead legalization is similar to POLAR [62]. First, we build

a uniform bin grid across the placement region, and each bin can accommodate around 15×

46

average movable cell area without exceeding the target density. Second, density overflow

bins are identified and grouped into bin clusters. Third, the legalizer finds a big enough

expansion region for the largest bin cluster. After that, a top-down geometric partitioning

step distributes movable cells to available space in the expansion region. These steps are

repeated until no overflow bin exists.

Anchor

A placement solution obtained from wire-length optimization has a small HPWL but a

significant amount of cell overlap. On the contrary, a solution from look-ahead legalization

has a large HPWL but no density overflow. The introduction of anchor makes it possible

to obtain a placement with reasonably small HPWL and no density overflow by including

a penalty term in the wire-length cost:

WL(x ,a) =
∑
e∈E

∑
i,j∈e

wij,e(xi − xj)
2 + α

∑
i∈V

wi(xi − ai)
2, (3.5)

where a is a known anchor solution, α ≥ 0 is a hyper-parameter, and wi is the B2B net

weight of a pseudo-net connecting each cell ci to its own anchor with x-coordinate ai. In

Eqn. 3.5, the first term is the HPWL of all nets, and the second term is the weighted HPWL

of pseudo-nets. As can be seen, when α is zero, this new wire-length cost becomes HPWL;

when α is large, the final value of x is close to a in order to minimize total pseudo-net

wire-length.

In practice, look-ahead legalization results act as anchor solutions, and wire-length cost

in Eqn. 3.5 is the objective function during wire-length optimization. Wire-length optimiza-

tion followed by look-ahead legalization is repeated, and meanwhile the hyper-parameter α

increases in proportion to the iteration number with initial value zero. With anchors acting

as an effective way to integrate wire-length optimization and look-ahead legalization, the

repetition of these two steps gradually improves the quality of placement and makes the

HPWL gap converge.

47

3.4.4 Forward-backward Legalization

Among existing legalization techniques, Tetris legalization can be easily adapted to handle

gridded cell legalization [69], unlike legalization techniques like Abacus [112] that depend

on pre-defined rows to reduce cell movement during legalization. However, Tetris legal-

ization introduces a bias toward the left boundary of the placement region and sometimes

leads to large cell displacements. To avoid these problems, we extend the Tetris algorithm

and propose an iterative forward-backward legalization algorithm for removing gridded cell

overlaps. As shown in Fig. 3.2, our implementation consists of a forward legalization phase

and a backward legalization phase. This algorithm aims to remove cell overlaps, and mean-

while seeks to maintain the order of cells. To preserve the quality of global placement, only

cells with illegal locations are moved, and large displacements are discouraged by the use

of transient locations.

Forward legalization

Algorithm 1 shows the outline of the forward legalization algorithm. First, the list of cells

is sorted by their x-coordinates in ascending order. Then for each cell, the forward legalizer

checks its overlap with previously placed cells and fixed blockages: if there is no overlap,

this cell will remain unmoved; otherwise, the legalizer will try to find a legal location for this

cell by a local search around its current location. Note that there may be no legal location

in a small search range. In this case, the conventional Tetris legalization enlarges the search

region until a legal location is found, while the forward legalization places this cell on a

transient yet illegal location temporarily to avoid large displacement. A legal location for

this cell will be found in subsequent legalization iterations.

Transient locations

Fig. 3.3 shows an example to illustrate the forward-backward legalization using transient

locations. A global placement is given in Fig. 3.3 (a), where blue boxes are movable cells

and the green box is a fixed macro. As shown in Fig. 3.3 (b), during the first iteration of

the forward legalization, the preceding three cells have no overlap with previously placed

48

Algorithm 1: Forward cell legalization

Input: cell list C, global iteration number k
Output: status of this iteration
Result: placement with less cell overlaps

1 Sort cell list C by x-coordinate in ascending order;
2 Initialize the cell front contour to the left boundary;
3 k := k + 1; status := True;
4 foreach cell c ∈ C do
5 if c overlaps with blockages or placed cells then
6 St := ∅, Sl := ∅;
7 h := k ∗ c.height;
8 lx := c.x− k ∗ c.width;
9 foreach y ∈ range(c.y − h, c.y + h) do

10 if a transient location x > lx found then
11 Append location (x, y) to St;
12 if a legal location x > lx found then
13 Append location (x, y) to Sl;

14 if Sl is an empty set then
15 status := False;
16 Place c to the closest transient location in St;

17 else
18 Place c to the closest legal location in Sl;

19 Update cell front contour;

cells and the fixed macro, and thus their locations remain unchanged. The fourth cell,

highlighted in dark blue, has an illegal location because it overlaps with two preceding cells

and the blockage. To find a new location for this cell, a local search range (dashed blue

box) is constructed in the following way: the center of the search range sits on the center

of this cell, and the width and height are proportional to the current iteration number. As

can be seen, candidate possible legal locations (dashed black boxes) are out of this local

search range, and thus there are no legal locations found during the first iteration.

As shown in Fig. 3.3 (c), since no vacant site is found for the dark blue cell, this cell

is temporarily moved to a transient location, which is the closest grid location to its initial

position but on the right-hand side of all previously placed cells. A cell front contour (green

dashed line) is constructed to track the right edges of placed cells. In this way, the order of

cells is largely maintained, and overlapping among movable cells is reduced by moving cells

away from a dense region. Because the dark blue cell in the transient location still overlaps

with the blockage, this iteration of the forward legalization fails, and then a backward

49

(b) Forward local search (c) Transient location

(e) Legal location found (f) Legal placement

(a) Rough placement

(d) Backward local search

Figure 3.3: Illustration of the use of transient locations during forward-backward legaliza-
tion. Yellow arrows indicate the direction of legalization.

legalization phase is invoked with the global iteration number increased by one.

Backward legalization

During the second iteration of backward legalization, cells are sorted by their x-coordinates

in descending order, and thus the dark blue cell is the first cell checked by the legalizer.

Since this cell overlaps with the blockage, a local search range is constructed, as shown in

Fig. 3.3 (d). Because the size of a local search range is proportional to the iteration number,

this search range is larger than the search window during the first iteration. A local legal

location can be easily found in this rang, as shown in Fig. 3.3 (e). The legal locations of

subsequent cells can be found in the same way. As can be seen from cell displacements (red

arrows) shown in Fig. 3.3 (f), all cells are moved locally in the final overlap-free placement.

This forward-backward legalization algorithm is efficient and easy to implement. Exper-

imental results show that it only takes one to two iterations to legalize a gridded cell design.

Besides, if the first several iterations fail to legalize the placement, the forward-backward

50

legalization will gradually degrade to the conventional Tetris legalization during the local

search.

3.4.5 N/P-well Legalization

Due to the flexibility of the gridded cell height, a gridded cell placement is unlikely to be

design rule checking (DRC) clean even if it is overlap-free. Without an organized placement

of gridded cells, N/P-well design rules can be violated, including minimum width rule,

minimum spacing rule, minimum area rule, short vertex rules, and latch-up prevention rule.

We propose an N/P-well legalization algorithm to eliminate these violations by partitioning

the placement region and clustering gridded cells.

Our N/P-well legalization algorithm consists of four major steps, each of which aims to

remove different kinds of design rule violations. First, the placement region is partitioned

into many sub-regions, and each cell is assigned to its closest sub-region. Second, in each

sub-region, a forward-backward cell clustering is performed vertically to construct clusters.

Then, these clusters are arranged in a back-to-back manner for power delivery and area.

After that, a local reordering step optimizes wire-length cost using an existing technique [70].

Finally, based on the orientation of clusters, well tap cells are placed in each cluster. The

design is then fully legalized by constructing a rectangular region for the N/P wells for the

cluster, thereby adding additional geometry to the layout during placement.

N/P-well design rule violations

An overlap-free placement is shown in Fig. 3.4 (a). As can be seen, although there is

no gridded cell overlap, the disorganized arrangement of N/P-wells leads to many design

rule violations. For example, small gridded cells have N/P-wells with an area less than

the minimum requirement, and thus when these cells abut no other cells, minimum area

violations are triggered. For some other cells, although they satisfy minimum area rule by

N/P-well sharing, their common well boundaries are too short to satisfy minimum width

rule. Besides, no wells in gridded cells are connected to power supplies, leading to latch-up

prevention violations.

51

Algorithm 2: Forward cell clustering

Input: placement region, sub-region set S
Output: status of this iteration
Result: N/P-well design-rule clean placement

1 status := True;
2 foreach sub-region s ∈ S do
3 Initialize cluster queue in s: Q := ∅;
4 Sort cells in sub-region s by y in ascending order;
5 foreach cell c belongs to s do
6 if cluster Q.back() cannot accommodate c then
7 Append an empty cluster to Q;
8 Insert cell c to Q.back();
9 Update the shape and location of cluster Q.back();

10 Align N/P-well boundaries of cells in Q.back();

11 if all clusters inside the region of s then
12 Set cell orientation in cluster Q.front() to be N ;
13 foreach cluster ∈ s do
14 Legalize cells in cluster;
15 Set orientation opposite to its previous cluster;

16 else
17 status := False;

Placement region partitioning

We borrow some ideas from the macro design methodology to develop our N/P-well legal-

ization algorithm [104]. In the example shown in Fig. 3.4, the whole placement region is

divided into three sub-regions, each of which can be viewed as a macro. Small gaps are

reserved among sub-regions for both power delivery and minimum spacing rule. The entire

cell list is partitioned into three sub-lists based on cell distance to sub-regions, and each

sub-list belongs to its corresponding sub-region.

Cell clustering

The forward cell clustering algorithm is outlined in Algorithm 2. In each sub-region, cells

are sorted by their y-coordinate. For the first cell in a sub-region, the legalizer constructs

an empty cluster and places this cell into it. The width and lower left x-coordinate of this

cluster are the same as those of the sub-region it belongs to, and the height and lower left

y-coordinate are the same as those of the first cell. For the subsequent cell, if the last

cluster has enough white space and overlaps with this cell, the legalizer will place this cell

52

into the last cluster; otherwise, a new cluster for this cell will be constructed similarly.

When a cell is placed into a cluster, its N/P-well boundary is aligned with other cells in

this cluster, and the cluster height is adjusted accordingly. This process from bottom to top

along each sub-region repeats in this way until all cells are placed into clusters, as shown in

Fig. 3.4 (b). The backward clustering places cells in the reverse order when cells spill out

of a sub-region. Clusters together with cells are further arranged in back-to-back fashion

for compact layout and power delivery, as shown in Fig. 3.4 (c).

(b) Cell clustering(a) Overlap-free placement

(e) Power grid design(d) Well tap cell & filling

(c) Back-to-back orientation

Figure 3.4: A simple example to illustrate N/P-well legalization and power grid design. (a)
N-wells in gridded cells are shown in light green, and P-wells in light yellow. (b) & (c) Grey
boxes with dashed black edges are clusters. (d) N/P-wells are filled between clusters. (e)
Orange and blue lines denote VDD and GND wires.

Local reordering

With clusters constructed, a local cell reordering technique optimizes wire-length cost with-

out creating any design rule violations [70]. For gridded cells in each cluster, we try all

possible local reordering using a sliding window with capacity 3 to obtain the best cell or-

53

der. Finally, the legalizer creates well tap cells for each cluster and draws N/P-well fillings

to prevent latch-up. In this example, well tap cells are placed at both ends of each cluster,

as shown in Fig. 3.4 (d).

3.4.6 Power Grid Design

Since standard cell design widely adopts row-based placement and the VDD/GND pins are

at the top and bottom edge of the cell, power grid design for standard cells builds alternate

VDD/GND stripes between rows to make pins automatically connect. Thus power grid

design only needs the row information and is completed before placement. In this work,

the power grid design must be adaptive to the cluster structure and is constructed after

placement. There are two major differences from standard cell power design: (1) Rows

must be adaptive to the cluster structure. (2) A special detailed router is needed to connect

VDD/GND pins to the mesh since they may not be at the top or bottom edge of the cell.

As shown in the design flow Fig. 3.2, the power grid design consists of two steps: power

mesh generation and detailed power routing. First, power mesh generation builds chip-

height vertical mesh and column-width horizontal mesh according to the cluster structure.

The chip-height vertical mesh is placed between columns in a pair of VDD/GND wires.

The column-width horizontal mesh is placed between rows inside a column and alternates

between VDD/GND. As shown in Fig. 3.4 (e), these meshes partition the chip area into

many rows and provide power delivery to each row. Similar to power design for standard

cells, wide high layer stripes are generated as well to reduce IR drop. The wide high

layer stripes are not shown in the figure. The second step detailed power routing connects

VDD/GND pins of each cell to the horizontal mesh. This step generates standard-width

wires on track inside a cell respecting all design rules. It hooks up the closest points of

VDD/GND pins to the corresponding mesh on each track, and tries to use the lowest metal

layer first to avoid consuming the space for signal routing. If such a solution is not found,

then higher layers are used. Note that it only routes inside a cell: a solution using the

free space of other cells is not allowed. In Fig. 3.4 (e), the vertical short wires in the first

column represent wires generated by this step. More details can be found in [115].

54

3.5 Experimental Results

We implement Dali in C++11, and compile it using GCC 9.3.0 on a Linux machine with 32

GB memory and Intel Core i7-8750H CPU running at 3.95 GHz. Dali uses only one CPU

core to perform experiments and benchmark runs. A commercial tool completes the routing

of normal signals and evaluates the HPWL of placement solutions as well as post-routing

wire-length.

To validate the effectiveness of our algorithms and implementation, we used Dali as the

placer for an asynchronous microprocessor (a stack machine) implemented with the gridded

cell approach. We used commercial DRC signoff tools to verify that the placement result was

DRC clean, and have taped out this chip in a 65nm CMOS process with routing completed

using a commercial detailed router. We observed that the tool run-time for detailed routing

was similar for both standard cell and gridded cell placement. We remark that because we

use the lower-level metal track pitches as the placement grid, pins on the routing grid in a

cell remain on the routing grid for any legal gridded placement.

Benchmarks are challenging to obtain, and asynchronous circuit benchmarks are even

more rare. We report results from two sets of benchmarks: (i) a collection of asynchronous

stack-based microprocessors generated using different parameterizations (des1, des3, des4),

and a RISC-V microprocessor (des2); and (ii) a collection of synthetic benchmarks of asyn-

chronous pipelines, developed to test tool/algorithm scalability.

3.5.1 Comparison for Asynchronous Circuits

A commercial placer acts as our comparison point. Since existing placers for asynchronous

circuits are modified versions of standard synchronous placers [116–118], a commercial placer

is superior when the goal is smaller wire-length and DRC-clean layout. To evaluate the

placement quality, we built a standard cell library for each design that matches its gridded

cell library using the approach from [99]. The commercial tool performs the placement and

routing for these standard cell counterparts.

Table 3.1 summarizes our placement results for real asynchronous designs, and shows

the comparison between gridded cell designs and their standard cell counterparts. “des1”

55

Ckt #cells #nets
Standard cell approach

cell area die area density HPWL wirelength

des1 16k 14k 134689 138756 0.97 216782 267017

des2 19k 20k 84314 86724 0.97 228879 314284

des3 81k 71k 754135 776949 0.97 1044571 1287450

des4 718k 627k 6721014 6927911 0.97 8599981 10805787

ratio - - 1.00 1.00 - 1.00 1.00

Ckt #cells #nets
Gridded cell approach

cell area die area density HPWL wirelength

des1 16k 14k 80451 115801 0.69 195721 254938

des2 19k 20k 51863 78792 0.66 229656 330857

des3 81k 71k 447645 643685 0.70 980099 1242999

des4 718k 627k 3990622 5744170 0.69 8832368 11169479

ratio - - 0.60 0.85 - 0.97 1.00

Table 3.1: Comparison between gridded cell designs and their standard cell counterparts.

corresponds to the 65nm test chip, and the core placement region of the design is shown

in Fig. 3.5. Both kinds of designs use the smallest possible die area and have well tap

cells in their layout. The target density of gridded cell designs is around 70%, while that

of standard cell designs is 97%. While normally a lower cell density is used for standard

cell designs, we used the highest feasible cell density for both approaches for comparison

purposes.

As expected, since white space counts towards the cell area, the total standard cell area

is much larger than the total gridded cell area. However, when we group gridded cells into

clusters, the effective cell area increases when a short cell is grouped with a tall cell. The

net result is that the gridded cell approach uses 15% less die area due to the new power grid

design and the smaller cell size. To study the impact of the modified power distribution

approach, we: (i) removed power stripes from each standard cell, and made these cells

smaller accordingly; and (ii) re-ran the commercial placement and routing flow. The area

gap drops from 15% to 10%, which indicates that an area reduction of 5% can be attributed

to the new power grid design, and the remaining 10% comes from the more compact layout

of the individual cells.

For the largest benchmark (des4), the commercial tool takes 102min to finish the routing

for the standard cell placement, and 124min for the gridded cell placement, running on a

single core. The average runtime of routing across the real designs is around 15% higher

56

(a) Gridded cell design (b) Standard cell design

Figure 3.5: Layout of the core chip area using (a), gridded cell design methodology, (b),
standard cell design methodology with standard cell height of 19 tracks. Both images use
the same scale. Signal routes and I/O pins are not shown.

for gridded cells compared to standard cells, because the same collection of nets must now

fit into a more compact area, and part of high metal tracks are taken by power routing. In

spite of this, we did not see any pin access issues because pins that were on routing tracks

in the standard cell design remain on track in the gridded cell design. The final wire-length

show that the gridded cell approach requires less chip area than the standard cell approach

for asynchronous designs with negligible routing quality degradation.

3.5.2 Scalability Study

To test the scalability and efficiency of our algorithms and implementation, we construct a

set of synthetic benchmarks, with the number of cells ranging from 1k to 750k and a similar

amount of two-pin nets. These benchmarks have similar connectivity structures and contain

only local nets. Therefore, principally speaking, the optimal wire-length is proportional to

the number of cells. The target density of this benchmark suite is set to 65%, and Dali runs

on a single core and completes the largest benchmark in 8 min using 0.96 GB of memory.

Table 3.2 lists the detailed runtime breakdown of Dali on this benchmark suite: global

57

#cells HPWL GP(s) LG(s) WLG(s) PWR(s) Sum(s)

1k 0.5 0.21 0.01 0.01 0.04 0.27

8k 5.9 1.90 0.03 0.11 0.08 2.12

76k 86.7 22.87 0.32 1.17 1.67 26.03

151k 217.1 58.94 0.64 2.39 3.39 65.36

222k 529.0 106.57 0.97 3.68 4.78 116.00

299k 643.2 111.51 1.25 5.04 6.73 124.53

372k 958.5 220.67 1.62 6.10 8.41 236.80

450k 1112.4 200.85 1.83 7.33 9.96 219.97

525k 1362.6 255.54 2.12 8.52 11.69 277.87

598k 1758.5 467.23 2.60 9.96 13.28 493.07

677k 1962.3 599.40 2.90 11.36 14.71 628.37

742k 2787.5 409.80 3.06 12.33 16.68 441.87

Geomean ratio 0.91 0.01 0.03 0.05 1.00

Table 3.2: Experimental results on synthetic benchmarks. The unit of HPWL is 10,000
base unit.

placement (GP), legalization (LG), well legalization (WLG), and power routing (PWR). The

last row shows the geometric mean of the runtime percentage for each step. On average,

global placement iterations take 91% of the runtime, and the remaining steps take 9%. Fig.

3.6 plots the runtime and HPWL against the number of cells, showing that Dali has linear

scalability and consistency in the placement quality with the increase of the circuit size.

0 200k 400k 600k 800k
0

1000

2000

3000 HPWL
 Time

#cells

H
PW

L

0 200k 400k 600k 800k
0

200

400

600

 T
im

e
(s

)

Figure 3.6: Runtime and HPWL scaling for Dali on the synthetic benchmark suite.

58

3.6 Summary and Future Work

This paper presents the gridded cell design methodology together with a placement flow,

Dali, for asynchronous circuits. A chip tape-out verifies the correctness and effectiveness of

this methodology. The placement and routing quality of a gridded cell design are comparable

to its standard cell counterpart produced by a commercial tool with considerably less area.

The experimental results demonstrate the scalability of our implementation.

Future works are listed as follows: first, we plan to explore additional detailed placement

technique for wire-length cost improvement; second, integration with a timer for timing-

driven placement; third, structure-aware placement for sub-region creation and compact

datapath layout; fourth, incremental placement for buffer insertion and pipeline balancing;

and finally, hierarchical placement to handle increasing design complexity.

59

Chapter 4

Legalization Algorithm for

Multideck Gridded Cells

The previous chapter introduces the placement flow for gridded cells, and this chapter will

focus on the legalization problem. We will formulate this problem as a cell displacement

optimization problem. To quickly solve this problem, gridded cells are first grouped into

local clusters, and then cell displacement is optimized in each cluster. This idea is further

extended to support gridded cells with complex structures.

Since an asynchronous design usually contains many complex and multi-output logic

gates, the physical layout of these gates may consist of several transistor stacks forming a

multideck structure. These multideck cells make the legalization problem more challenging

by introducing correlations between cells in adjacent clusters. In this chapter, we formulate

the multideck gridded cell legalization problem as a mixed-integer quadratic programming

problem and present a greedy algorithm followed by a distributed algorithm to optimize cell

displacement. Experiment results demonstrate that this legalization flow is both effective

and efficient.

4.1 Gridded Cell Legalization Problem Formulation

For a given list of gridded cells C and a rough placement (X0, Y 0), the output of the

legalization step is a legal placement (X,Y), which satisfies the following constraints:

60

• all cells are inside the placement region;

• the lower left coordinate of each cell is on the placement grid;

• all cells have no overlap with each other and placement blockages;

• N/P-well design rules are satisfied, including minimum width rule, minimum space

rule, minimum area rule, and latch-up prevention rule.

The initial placement is expected to be of high-quality. To ensure the placement quality,

the distance between the initial placement and the final placement acts as the objective

function and needs to be optimized during this process:

obj(X,Y) =
∑
ci∈C

ei(∥xi − x0i ∥p + ∥yi − y0i ∥p), (4.1)

where p is usually 1 or 2 and ei ≥ 0 is a scale factor for cell ci, which is usually 1.

When p = 1, the objective function is the linear displacement, which is also a commonly

adopted metric for measuring the quality of new placement besides wirelength metrics.

When p = 2, the objective function is the quadratic displacement, which is a commonly

adopted objective function due to its smoothness.

4.2 Single-Deck Gridded Cell

The previous chapter introduces an algorithm to legalize gridded cells, which is illustrated

in Fig. 4.1 (a). This legalization algorithm starts with an illegal placement. The legalizer

sorts cells according to their y-locations. Then, for each cell, if there is an existing cluster

that can accommodate this cell, this cell will be grouped into this cluster; otherwise, a new

cluster will be created based on the location of this cell. Since clusters are created based on

the need of cells, this approach is called cell-centric legalization. This legalization algorithm

can also handle standard cells by setting the standard cell height as the grid value along

the y-direction and adjusting cluster orientations when necessary.

Another variant of the gridded cell legalization algorithm is the cluster-centric legal-

ization algorithm, as illustrated in Fig. 4.1 (b). Initially, the legalizer fills the placement

61

(a)

(b)

initial placement create a cluster fill cells into a cluster legal placement

initial placement create meta-clusters fill cells into a cluster legal placement

Figure 4.1: Cell-centric legalization vs. cluster-centric legalization. (a) cell-centric legaliza-
tion, (b) cluster-centric legalization. Gray boxes are clusters. Legal cells are in green, and
cells with illegal locations are in light green.

region with close-packed clusters. These clusters have the same height, which is the height

of a well tap cell. Then, cells are sorted according to the y-coordinate. Next, for each cell,

the legalizer puts this cell into the nearest cluster and updates the height of this cluster.

Finally, cell overlaps are removed in each cluster. This approach ensures the abutment of

clusters and can automatically handle the standard cell legalization problem. Since cells

are always placed into a nearby cluster, this approach is called cluster-centric legalization.

The cell-centric legalization and the cluster-centric legalization lead to similar placement

results.

To obtain a high-quality placement result, we need to optimize the cell displacement

during the cell legalization process. Swapping cells among clusters can potentially reduce

cell displacement. However, this swapping operation can potentially change the cluster

height and thus make clusters out of the placement region, especially for a high placement

density. Therefore, it is better to keep cells in their original clusters and optimize cell

62

displacement by moving cells inside each cluster and adjusting the location of clusters if

applicable.

4.2.1 Intra-Cluster Optimization

For each cluster, the cell displacement optimization problem is the following: given an or-

dered cell list C = {c1, c2, ..., cn} with cell widths W = {w1, w2, ..., wn} and initial locations

X0 = {x01, x02, ..., x0n}, the goal is to find a new location X = {x1, x2, ..., xn} to optimize the

following displacement:

obj(X) =
∑
i

ei∥xi − x0i ∥p, (4.2)

where ei is the weight of the initial location of the i-th cells. The solution also needs to

satisfy the overlap constraint and placement region constraint:

lo ≤ x1,

xi + wi ≤ xi+1, i = 1, ..., n− 1,

xn + wn ≤ hi.

(4.3)

In the following, we will introduce the solution for this problem when p = 2 and p = 1.

Quadratic Displacement

When p = 2, the problem becomes a mixed-integer quadratic programming problem. In

general, it is time-consuming to solve such a quadratic program. Abacus provides a fast way

to find the optimal solution: the abutment of cells changes those inequality relationships into

equality relationships, turning the quadratic program into a series of linear equations [112].

For example, with equality constraints, constraints in Eqn. 4.3 become

lo ≤ x1,

xi + wi = xi+1, i = 1, ..., n− 1,

xn + wn ≤ hi.

(4.4)

These equality constraints further change the objective function from a multivariable into

63

a single variable function as the following:

obj(X) =
∑
i

ei(xi − x0i)
2

=
∑
i

ei(x1 + w1 + ...+ wi−1 − x0i)
2

=
∑
i

ei(x1 − si)
2,

(4.5)

where

si = x0i −
∑
j<i

wj . (4.6)

To obtain the optimal solution, we only need to solve the following linear equation

dobj(X)

dx1
=
∑
i

2ei(x1 − si) = 0, (4.7)

and the solution is

x1 =

∑
i eisi∑
i ei

. (4.8)

With the location of the first cell and the equality constraints, we can easily compute loca-

tions for subsequent cells. The final solution needs to be rounded to the nearest placement

grid and shifted into the legal range.

Linear Displacement

When p = 1, this problem can be formulated as a linear programming problem by intro-

ducing auxiliary variables and additional constraints. The optimization problem is

min
∑
i

eiti, (4.9)

with the following constraints

(xi − x0i) ≤ ti, i = 1, ..., n,

−(xi − x0i) ≤ ti, i = 1, ..., n,

lo ≤ x1, (4.10)

64

xi + wi = xi+1, i = 1, ..., n− 1,

xn + wn ≤ hi.

In general, it is time-consuming to solve this problem using a linear programming solver.

There is a faster way to find the optimal solution similar to the method for quadratic

displacement. When these inequality constraints become equality constraints, all cells are

abutted and form a long segment, which changes the objective function to

obj(X) =
∑
i

ei|xi − x0i |

=
∑
i

ei|x1 + w1 + ...+ wi−1 − x0i |

=
∑
i

ei|x1 − si|,

(4.11)

where

si = x0i −
∑
j<i

wj . (4.12)

It is straightforward to prove that the above objective function is convex when ei is non-

negative, and its first derivative is

dobj(X)

dx1
=
∑
i

eisgn(x1 − si)

=
∑
si≤x1

ei −
∑
si>x1

ei

= 2
∑
si≤x1

ei −
∑
i

ei.

(4.13)

From the last formula, it is easy to see that the optimal value of the objective function is

reached when x1 takes the value in {si} where the first derivative changes from negative to

non-negative.

Algorithm 3 shows the implementation of the linear displacement optimization proce-

dure. The workhorse of this procedure is the Merge subroutine. Given two cell segments,

this subroutine merges them into one segment and computes the optimal location using

the conclusion introduced above. Because each segment has a sorted (s, e) list, the time

65

Algorithm 3: Single cluster linear displacement optimization

Input: ordered cell list C and weight list E
Output: the location of each cell
Result: minimum total cell displacement

1 Create a cell segment list G;
2 foreach cell (c, e) ∈ (C,E) do
3 Create a segment g;
4 g.push(c.x, e);
5 g.width := c.width;
6 g.x := c.x;
7 Append g to G;
8 Collapse(G);

9 i := 1;
10 foreach segment g ∈ G do
11 x := g.x;
12 ns := g.size();
13 foreach j=1,...,ns do
14 C[i].x := x;
15 x := x+ C[i].width;
16 i := i+ 1;

17 Function Collapse(G):
18 g−1 := last segment in G;
19 g−2 := second to last segment in G;
20 if g−2.x+ g−2.width > g−1.x then
21 Merge(g−2, g−1);
22 Pop the last segment from G;
23 Collapse(G);

24 Function Merge(g, g′):
25 foreach (s, e) ∈ g′ do
26 s := s− g.width;
27 Merge (s, e) list in g′ to g;
28 Traverse (s, e) list in g to get the optimal g.x;

complexity of merging two sorted lists is linear. Moreover, finding the optimal location

requires traversal of the merge list, the time complexity of which is also linear. Therefore,

the time complexity of the Merge subroutine is linear. However, the cluster has N cells,

and this Merge subroutine can be executed up to N − 1 times, making the worst-case

time complexity of the whole procedure O(N2). The time complexity of the corresponding

procedure for quadratic displacement is only O(N) [112]. It is preferable to use quadratic

displacement as the objective function when a cluster contains a large number of cells.

66

4.2.2 Inter-Cluster Optimization

Because the placement region is partitioned into several sub-regions, the location of clusters

can be adjusted vertically to optimize the cell displacement along the y-direction. For

clusters in each sub-region, the optimization problem can be formulated as the following:

given an ordered cluster list L = {l1, l2, ..., ln} with P-well heights P = {p1, p2, ..., pn} and

N-well heights N = {n1, n2, ..., nn}, the goal is to find the N/P-well borderline for each

cluster Y = {y1, y2, ..., yn} to optimize the following objective function:

obj(Y) =
∑
c∈C

ec∥yc − y0c∥p

=
∑
li∈L

∑
c∈li

ec∥yc − y0c∥p

=
∑
li∈L

∑
c∈li

ec∥yi − y0c∥p,

(4.14)

where y0c is the initial N/P-well boundary of cell c. The above equations are valid because

every cell is in and only in a single cluster, and cells in the same cluster share a common

N/P-well boundary. For illustrative purposes, we assume the orientation of all clusters is

unflipped, and thus the overlap constraint and the placement region constraint are:

lo ≤ y1 − p1,

yi + ni ≤ yi+1 − pi+1, i = 1, ..., n− 1,

yn + nn ≤ hi.

(4.15)

When p = 2, it is easy to show that

∑
c∈li

ec(yi − y0c)
2 = ei(yi − ȳi) + const, (4.16)

where

ei =
∑
cj∈li

ecj , (4.17)

67

and

ȳi =

∑
cj∈li ecjy

0
cj∑

cj∈li ecj
. (4.18)

These relationships change the objective function to

obj(Y) =
∑
i

ei(yi − ȳi)
2, (4.19)

where constant terms are ignored because they do not affect the global optimality. This

objective function can be optimized using the same method for minimizing the quadratic

displacement of cells in a cluster. In addition, it is straightforward to modify the constraints

to support clusters with alternating or even arbitrary orientations.

When p = 1, we can also modify the method for linear displacement to solve this

problem. However, the time complexity becomes worse after this modification. For example,

to merge two clusters into one cluster segment, we need to traverse through the sorted list

of initial cell locations in these two clusters, which is more computationally expensive than

merging two cells into a cell segment.

4.3 Multideck Gridded Cell

Asynchronous designs often contain complex logic gates with their physical layouts consist-

ing of a few simple gridded cells stacking on top of one another [97]. These multideck gridded

cells make the locations of cells in adjacent clusters entangled and thus largely increase the

complexity of the legalization problem. Although it is possible to replace multideck cells

with multiple single-deck cells and apply existing techniques to solve the placement problem,

this decomposition process may lead to a layout with a large area, degraded performance,

and timing issues.

Multideck Standard Cell

Fig. 4.2 (a) shows an example of the power rail alignment constraints for standard cells.

For an odd-deck standard cell, its power pins can match power rails in any row via vertical

cell flipping; for an even-deck standard cell, its power pins only match power rails in every

68

other row.

There are many legalization algorithms for designs with multideck standard cells. Wu

and Chu proposed to pair single-deck cells into double-deck cells and apply conventional

detailed placement techniques to solve the legalization problem [119]. However, this al-

gorithm cannot handle multideck cells in general. Chow et al. considered the power rail

alignment constraint during legalization and proposed a local adjustment algorithm [120].

MrDP uses a dynamic programming-based technique to solve double-row placement and a

network flow-based technique to solve multi-row placement [121]. Wang et al. analyzed

the insufficiencies of algorithms in Abacus and extended the advantages of those algorithms

to handle multideck cells [122]. Hung et al. proposed a parallel algorithm using integer

linear programming to optimize cell displacement, which leads to high-quality legalization

results but suffers from slow execution time [110]. Some works also consider constraints in

addition to power rail alignment, such as minimum implant area [123], drain-to-drain abut-

ment [124], pin-accessibility [125], fence region [126], and technology [127]. An analytical

legalizer treats the legalization problem as a linear complementarity problem, and uses a

modulus-based matrix splitting iteration method to solve this problem efficiently [128].

Multideck Gridded Cell

In general, compared with single-deck gridded cells, multideck gridded cells bring the fol-

lowing new problems to the legalization process:

• even-deck gridded cells cannot be placed in an arbitrary cluster;

• multideck cells need to be stretched to fit into clusters;

• multideck gridded cells make adjacent clusters entangled.

Fig. 4.2 (b) shows an example of the N/P-well alignment constraints for gridded cells.

Similar to multideck standard cells, for an odd-deck gridded cell, its N/P-well can match

the orientation of any cluster via vertical cell flipping; for an even-deck gridded cell, its

N/P-well only match the orientation of every other cluster.

Since a multideck gridded cell sits in multiple cell clusters, and different clusters may

have different N/P-well heights, the legalizer needs to stretch multideck gridded cells to

69

G
N
D

V
dd

G
N
D

V
dd

G
N
D

(a
)

P-
w
el
l

N
-w
el
l

P-
w
el
l

N
-w
el
l

P-
w
el
l

(b
)

𝑐 !

𝑐 "

𝑐 #

F
ig
u
re

4
.2
:
C
el
l
a
li
g
n
m
en
t
co
n
st
ra
in
ts
.
(a
)
P
ow

er
ra
il
al
ig
n
m
en
t
co
n
st
ra
in
ts

fo
r
st
an

d
ar
d
ce
ll
s,

(b
)
N
/P

-w
el
l
al
ig
n
m
en
t
co
n
st
ra
in
ts

fo
r

g
ri
d
d
ed

ce
ll
s.

C
el
ls

w
it
h
il
le
ga

l
lo
ca
ti
on

s
ar
e
m
ar
ke
d
w
it
h
a
re
d
cr
os
s
sy
m
b
ol
.

70

satisfy the alignment constraints when necessary. For example, initially, two sub-cells in

cell c1 are abutted vertically, the boundary of which is marked with a red dashed line. During

the legalization process, the alignment constraint requires a non-zero distance between these

two sub-cells, and thus cell c1 needs to be stretched. Similarly, the legalizer also needs to

stretch cell c2 and cell c3: although these two cells are of the same type before legalization,

they are stretched differently due to their local environment. The stretching of cells also

has an impact on the delay of cells.

Multideck gridded cells introduce more correlations among cells in adjacent clusters.

This is because the locations of cells are coupled in the presence of multideck gridded cells.

For example, when the location of cell c2 needs a local adjustment for optimizing some

metrics, the locations of other cells in the first three clusters need to be considered to avoid

cell overlaps.

4.4 Multideck Gridded Cell Legalization

4.4.1 Legalization Problem Formulation

The legalization problem formulation given in Section 4.1 is a general formulation for both

single-deck and multideck gridded cells. We choose the weighted quadratic displacement as

the objective due to its smoothness and other properties:

obj(X,Y) =
∑
ci∈C

ei((xi − x0i)
2 + (yi − y0i)

2), (4.20)

where ei ≥ 0 is the weighting parameter for cell ci.

The main difference between the standard cell legalization problem and the gridded cell

legalization problem is the following:

• rows for standard cells specify the legal y-locations for cells before legalization;

• clusters for gridded cells specify the legal y-location for cells but need to be constructed

during legalization.

When legal y-locations are known before legalization, cells can be legalized one by one based

71

Global
Placement

Cell & Region
Partitioning

Upward
Clustering

Downward
Clustering

Fixed Clusters
with Cells

Break
multideck cells

Weight Update Power Routing

N/P-well Legal
Placement

Legal

Cell Stretching

Legal

Conse
nsus

Cluster Formation Displacement Optimization

Parallel
Optimization

Well Tap Cell
Insertion

Location
Aggregation

no

no

yes

yes

yes

no

Figure 4.3: Multideck gridded cell legalization flow: cluster formation and displacement
optimization.

on the order of their x-coordinates using a Tetris-like legalization algorithm; cells can also

be legalized row by row based on the order of their y-coordinates using an Abacus-like

legalization algorithm. For gridded cells, we have to adopt the latter approach. In this

case, the gridded cell legalization problem can be viewed as a combinatorial optimization

problem: the task is to divide cells into many subsets, each of which forms a cluster; the

goal is to find the optimal partitioning and cell location to minimize the total displacement.

4.4.2 Legalization Flow

The multideck gridded cell legalization flow consists of two stages: cluster formation and

displacement optimization, as shown in Fig. 4.3. These two stages are designed to satisfy

various N/P-well design rules and optimize the quadratic cell displacement. The cluster

formation step aims to maintain the relative cell order using a greedy algorithm to group cells

into clusters. During this step, gridded cells are stretched to satisfy N/P-well design rules.

After cell clustering, the displacement optimization step refines the quadratic displacement

using a distributed algorithm.

72

4.4.3 Cluster Formation

This step takes the global placement result as the input and eliminates cell overlaps and

N/P-well design rule violations. First, the cell list and the placement region are partitioned

into sub-lists and corresponding sub-regions. Then, in each sub-region, cells are grouped

into clustered using the upward-downward legalization algorithm. Finally, multideck grid-

ded cells are stretched to ensure their N/P-well boundaries align with those boundaries in

clusters.

Cell & Region Partitioning

In the presence of placement blockages, the placement region may have an irregular shape,

and a large cell displacement can occur when the legalizer moves a cell across a placement

blockage. To avoid large cell displacements, the placement region is divided into simple

sub-regions, and cells are assigned to their nearest sub-regions. After this partitioning step,

the legalizer eliminates cell overlaps and N/P-well design rule violations in each sub-region

independently.

Greedy Cell Clustering

Local cell clustering is an effective way to satisfy N/P-well design rules [129]. For modern

technology nodes, the area of an N/P-well in a single gridded cell is smaller than the

minimum requirement. A cluster provides a large N/P-well shared among cells to satisfy

the minimum area rule. This shared N/P-well also has a large width and height, avoiding

the violation of the minimum width rule. Moreover, well tap cells in a cluster connect

N/P-wells to the corresponding power rail, eliminating the latch-up phenomenon.

Algorithm 4 shows the implementation of the cell clustering algorithm. This algorithm

combines the single-deck cell clustering technique presented in Dali [129] and the cell dis-

placement optimization technique used in Abacus [112]. This algorithm starts with sorting

cells according to their y-coordinates. Then, the legalizer creates a list of meta-clusters to

fill the sub-region. The height of these clusters is initially the same as that of a well tap

cell and can change during the legalization process. Next, for each cluster, the legalizer fills

73

Algorithm 4: Upward/downward cell clustering

Input: cell list C
Output: status of this iteration
Result: placement with less cell overlaps

1 Sort cell list C by y-coordinate in ascending order;
2 status := True;
3 Nc := C.size();
4 Initialize the number of processed cells Np := 0;
5 repeat
6 Initialize a front cluster f ;
7 Initialize a legalized list G;
8 Initialize a skipped list K;
9 foreach i = Np, ..., Nc − 1 do

10 if !f.hasOverlap(C[i]) then
11 break;
12 if f.hasMatchOrient(C[i]) and f.hasSpace(C[i]) then
13 f.place(C[i]);
14 G.append(C[i]);

15 else
16 K.append(C[i]);

17 foreach i = 0, ..., G.size()− 1 do
18 C[i+Np] := G[i];
19 Np := Np +G.size();
20 foreach i = 0, ...,K.size()− 1 do
21 C[i+Np] := K[i];
22 Update the N/P-well height of the front cluster;
23 Stretch cells in the front cluster;
24 Minimize the x quadratic displacement of the front cluster;

25 until Np = Nc;

nearby gridded cells into this cluster. These gridded cells need to satisfy the cell-cluster

overlap criterion and match the orientation of this cluster. During this filling process, the

height of this cluster is updated to fit all gridded cells in it. Finally, the quadratic dis-

placement of cells in this cluster is optimized, and multideck gridded cells will be treated

as fixed cells for subsequent clusters. These steps are repeated until all cells are processed.

An extension of this greedy legalization is that the legalizer only fills a cell into a cluster

when this operation does not lead to a large cell displacement.

Fig. 4.4 shows an example of the cluster formation process for a design containing

multideck gridded cells. As shown in Fig. 4.4 (a), cells in the global placement overlap

with each other. Fig. 4.4 (b) shows the legal placement result using the upward-downward

74

(a) (b)

(c)

Figure 4.4: An example of cluster formation for multideck gridded cells. (a) global place-
ment, (b) legal placement via cluster formation, (c) N/P-well alignment and cell stretching
in a local region.

legalization, which eliminates cell overlaps and N/P-well design rule violations via cluster

formation. As can be seen from Fig. 4.4 (c), gridded cells are stretched so that they can

share the same N/P-well in clusters.

4.4.4 Displacement Optimization

This cluster formation step aims to optimize the cell displacement by preserving the cell

order, which is also sufficient to generate a legal placement result. However, this greedy

algorithm may not lead to the globally optimal solution, especially when the placement

75

density is high. Although it is possible to improve cell displacement by swapping cells

among clusters, this can potentially change cluster heights, making clusters out of the sub-

region. Note it is always safe to improve the cell displacement along the x-direction, and

the objective function is the following:

obj(X) =
∑
ci∈C

ei(xi − x0i)
2

=
∑
l∈L

∑
ci∈l

ei
hi
(xi − x0i)

2,

(4.21)

where C is the list of cells, L is the list of clusters, and hi is the number of clusters that

contain a part of cell ci. The solution must satisfy the constraint that cells have no overlap

with each other and are located in a cluster. For example, for a given cluster l and the list

of sorted cells Cl = {c1, c2, ..., cn} with cell widths Wl = {w1, w2, ..., wn}, the constraints

are the following:

lo ≤ x1

xi + wi ≤ xi+1, i = 1, ..., n− 1

xn + wn ≤ hi,

(4.22)

where [lo, hi] is the available space in the cluster l. When all cells are single-deck cells, each

cluster has an independent set of constraints. However, the presence of multideck gridded

cells makes constraints for different clusters entangled.

As can be seen, this is a typical quadratic programming problem, and thus we can use a

quadratic programming solver to find the solution. However, this process is time-consuming

in general. In this work, we propose a distributed algorithm to quickly optimize the cell

displacement. This algorithm decouples clusters by introducing auxiliary variables, making

it possible to optimize the displacement of cells in each cluster independently.

4.4.5 Problem Reformulation

The core idea of the distributed algorithm is to make every cluster an open system and

allow them to exchange information about shared multideck gridded cells. This algorithm

makes use of the theorem described below.

76

Optimal Anchor

Theorem 1 (Optimal anchor theorem). Let Xopt be the global minimum point of the func-

tion

f(X) =
n∑

i=1

ei(xi − x0i)
2

subject to a set of constraints S, where X = {x1, x2, ..., xn} and ∀i, ei ≥ 0, x0i ∈ R, then

Xopt is also the global minimum point of the following function subject to the same set of

constraints:

g(X) =

n∑
i=1

[ei(xi − x0i)
2 + ai(xi − xopti)2],

where Xopt = {xopt1 , xopt2 , ..., xoptn } and ∀i, ai ≥ 0.

Proof. If the global minimum point Xopt exists, then Xopt satisfies all constraints in S.

Moreover, because ai is non-negative, ai(xi − xopti)2 reaches its global minimum when xi =

xopti for all i. This means Xopt is the global minimum point of the function

h(X) =
n∑

i=1

ai(xi − xopti)2

subject to constraints S. Since Xopt is the global minimum point of function f , it is obvious

that Xopt is also the global minimum point of any function in the set F = {q(X)|q(X) =

af(X) + bh(X),∀a, b ≥ 0} subject to constraints S. Because g ∈ F , Xopt is the global

minimum point of g(X).

This theorem can be generalized to cover the linear displacement function and other

function families.

Multideck Cell Decomposition

Multideck gridded cells can be decomposed into simple cells. Since a multideck gridded

cell is shared among multiple clusters, it can be viewed as multiple single-deck gridded cells

with additional location constraints: sub-cells belonging to the same multideck cell must

share the same x-coordinate. If we denote xi,l as the location of the sub-cell of ci in cluster

77

c

(a) (b)

c

(d)

c

c

(e)

c

c

(c)

c

c

Figure 4.5: Breaking multideck gridded cell into sub-cells. (a) global placement, (b) cluster
formation, (c) cell breaking, (d) sub-cell displacement optimization with no discrepancy
penalty, (e) sub-cell displacement optimization with discrepancy penalty. N/P-wells are
not shown, and multideck gridded cells are not stretched.

l, we can rewrite the objective function in Eqn. 4.21 as

obj(X) =
∑
l∈L

∑
ci∈l

ei
hi
(xi,l − x0i)

2, (4.23)

where X represents the location of all sub-cells, and additional constraints on sub-cell

locations are:

∀ci ∈ C,∀l ∋ ci, xi,l = xi. (4.24)

Fig.4.5 shows the process of cell decomposition. The cluster formation step groups

cells into clusters to eliminate cell overlaps and N/P-well design rule violations, as shown

78

in Fig.4.5 (a) and (b). Because it is preferred to maintain the initial cell order, the x

coordinate cells are restored after cluster formation, and then multideck gridded cells are

split into sub-cells. As can be seen from Fig.4.5 (c), sub-cells in each cluster honor the cell

order in the global placement result.

Distributed optimization

If we apply theorem 1 to the objective function for sub-cells in Eqn. 4.23, we can get a new

objective function:

obj(X) =
∑
l∈L

∑
ci∈l

[
wi(xi,l − x0i)

2 + ai,l(xi,l − xopti)2
]
, (4.25)

where wi = ei/hi and ai,l ≥ 0. The goal is to minimize the above objective function to get

the optimal location Xopt. Since Xopt is also a part of the objective function, we can use

an iterative scheme to find the solution.

For a given trial solution Xa = {xa1, xa1, ..., xan−1}, the objective function for a cluster l

becomes

objl(X) =
∑
ci∈l

[
wi(xi,l − x0i)

2 + ai,l(xi,l − xai)
2
]

=
∑
ci∈l

(wi + ai)(xi,l −
wix

0
i + ai,lx

a
i

wi + ai,l
)2 + const,

(4.26)

where the constant term can be ignored because it does not change the optimal solution,

and the solution needs to respect the overlap constraint in each cluster.

As can be seen, this problem is essentially the same as the problem described in Eqn.

4.2, and thus we can use the same approach to optimize this objective function. Fig.4.5 (d)

shows an example of sub-cell locations with the rough placement result as the trial solution

and all ai,l being 0 for simplicity.

With these sub-cell locations, a new trial solution can be constructed from the aggre-

gation sub-cell locations. For example, the new location for cell c in Fig.4.5 (d) can be the

weighted average of sub-cell locations:

xc =

∑
l w̄c,lxc,l
w̄c,l

, (4.27)

79

where w̄c,l is the weight of the cell segment that contains this sub-cell. The intuition behind

this choice is that cells in a segment move together: the cost of moving a cell in this segment

is effectively the same as that of moving this whole segment when the moving distance is

small. Fig. 4.6 shows an example to illustrate this aggregation process.

1 2 4

5

3

3 6

𝑙!

𝑙"

𝑤##,%! = 𝑤!,%! +𝑤",%! +𝑤#,%! +𝑤&,%!

𝑤##,%" = 𝑤',%" + 𝑤#,%" + 𝑤(,%"

Figure 4.6: Sub-cell location aggregation. The weight of a sub-cell during aggregation is
the total weight of the segment containing this sub-cell.

It is easy to show that when ai,l in the objective function approaches infinity, the final

solution can satisfy the additional location constraints in Eqn. 4.24. Because the iterative

scheme is used to find the optimal solution, we can increase ai,l with the number of iterations.

Moreover, notice that the cell displacement in the objective function is the only term that

can violate additional location constraints. Therefore, instead of making ai,l very big in late

iterations, we can gradually diminish the cell displacement term to get the same result by

adding a decay factor like the following:

Xt+1 = argminX
∑
ci∈l

[
e−t/τwi(xi,l − x0i)

2 + (1− e−t/τ)(xi,l − xti)
2
]
, (4.28)

where t is the current iteration number and τ is a decay factor. The second term in the

above objective function measures the distance between the sub-cell locations and average

locations. We call this term the cell discrepancy. Fig.4.5 (e) shows an example of sub-cell

locations after a few iterations. The stopping criterion of the iterative scheme is that the

objective function is close to zero, indicating clusters reach a consensus on sub-cell locations.

80

4.4.6 Adaptive Weight

The weight decay itself cannot guarantee the system to reach a consensus state. Fig. 4.7

(a)-(c) show such an example. It is expected that the total cell displacement keeps increas-

ing, while the total sub-cell location discrepancy keeps decreasing. However, the sub-cell

discrepancy cannot converge to zero after many iterations, as can be seen from Fig. 4.7

(a). Fig. 4.7 (b) shows the result of this non-zero discrepancy: multideck gridded cells may

overlap with each other. The reason for the non-zero discrepancy is that sub-cells in a row

can prevent each other from getting into their corresponding target locations, as shown in

Fig. 4.7 (c). A red arrow indicates the difference between the current location of a sub-cell

and its target location.

Among many sub-cells in Fig. 4.7 (c), those two sub-cells connected by a black double-

headed arrow have an equal but opposite discrepancy, preventing the whole system from

satisfying the additional location constraints. A possible solution is to use a legalizer to

remove overlaps among multideck gridded cells after each iteration. However, this kind of

procedure needs a centralized control system to resolve conflicts, which has to be a sequential

program.

If we carefully examine those two sub-cells, we can find that it is impossible to move

them closer to their target locations without violating the overlap constraint. If these sub-

cells are forbidden to move toward their target locations, moving target locations toward

these sub-cells is the only choice. Because the target location is the weighted average of all

sub-cells, increasing the weight of a sub-cell with a large discrepancy can make the average

location closer to this sub-cell. Therefore, it is necessary to add an adaptive weight to the

objective function like the following:

Xt+1 = argminX
∑
ci∈l

[
e−t/τwi(xi,l − x0i)

2 + (1− e−t/τ)ati,l(xi,l − xti)
2
]
, (4.29)

where ati,l is 1 when the sub-cell is at its target location, and greater than 1 when away

from its target location. Experimental results show that the following two forms of adaptive

81

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8 106

0

1

2

3

4

5

6
104

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3 106

0

1

2

3

4

5

6
104

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.7: An example of placement with and without adaptive weights. (a) cell displace-
ment and discrepancy before adding adaptive weights, (b) cells still overlap with each other
after the last iteration, (c) sub-cells prevent each other from getting to their target loca-
tions, (d) cell displacement and discrepancy after adding adaptive weights, (e) cells have
no overlap with each other after the discrepancy converges to zero, (f) sub-cells are at their
target locations after the convergence.

82

weight can effectively speed up the convergence of the sub-cell discrepancy:

ati,l =

(
1 +

|xti,l − xti|
avej∈l(|xtj,l − xtj |) + ϵ

)α

, (4.30)

where α is a positive number no less than 2, or

ati,l = exp

(
|xti,l − xti|

avej∈l(|xtj,l − xtj |) + ϵ

)
, (4.31)

where xti,l is the initial location of sub-cell ci,l at the beginning of the t-th iteration, and ϵ

is a small positive number for numerical stability.

The red arrow in Fig. 4.7 (d) indicates the introduction of adaptive weights to the

system. With adaptive weights, the sub-cell discrepancy converges to zero quickly. Fig. 4.7

(e) and (f) show the placement of cells and sub-cells in a local placement region after the

convergence.

4.4.7 Cell Reordering

The above techniques optimize the cell displacement without changing the order of sub-cells

in each cluster. The cell order remains the same as that in the global placement result. It is

preferred to keep the cell order unchanged for two reasons: first, this can narrow down the

search space and thus speed up the legalization process; second, maintaining the relative

cell order is important for keeping wirelength from increasing. However, multideck cells can

influence the location of cells in other clusters, and thus this heuristic can lead to large cell

displacements, especially in dense placement regions.

1 2 4

5

3

3 6

1 2 4

5

3

36

(a) (b)

Figure 4.8: An example of cell reordering. (a) before cell reordering, (b) after cell reordering.

Fig. 4.8 shows an example of cell reordering. Before reordering, cells {3, 5, 6} form a cell

83

segment. It is easy to see that cell 5 and cell 6 tend to move toward the space occupied

by cell 3. In this case, local cell reordering may improve the cell displacement and sub-cell

discrepancy. However, the number of permutations of all sub-cells in a cluster can be huge.

To tackle this problem, we can use a sliding window to change the order of a few cells at

a time. Another method is to use the cell locations after each iteration to update the cell

order. With these techniques, the displacement optimization flow is the following:

• compute the scale factor for the cell displacement term and the sub-cell discrepancy

term in the objective function;

• for each cluster, sort sub-cells based on their target locations, optimize the objective

function, and store sub-cell locations to the corresponding multideck cell;

• for each cell, compute the weighted average location, and set it as the new cell location;

• repeat the above steps until the sub-cell discrepancy converges to zero.

Because there is no dependency among clusters, the objective function can be optimized in

parallel. Cell aggregation can also be done in parallel for a similar reason.

4.5 Experimental Results

We implement the multideck gridded cell legalization algorithm in C++17, and compile

it using GCC 9.3.0 on a Linux machine with 32 GB memory and Intel Core i7-8750H

CPU running at 3.95 GHz. This legalizer uses one CPU core to perform experiments

and benchmark runs. A commercial quadratic programming solver, CPLEX, acts as the

baseline. Since there are no public asynchronous circuit benchmarks, we report results

from a collection of synthetic benchmarks developed to test the tool/algorithm scalability.

These benchmarks consist of 1X, 2X, 3X, and 4X multideck gridded cells. The percentage

of single-deck gridded cells is around 89%, and that of other heights is around 3.6%. The

number of cells in these benchmarks ranges from ten thousand to one million. Moreover,

each design has three different die areas to test the legalizer under different cell densities.

The global placement results are generated using the gridded cell placer, Dali [129].

84

ck
t

#
ce
ll
s

d
en

si
ty
/
%

gr
ee
d
y

C
P
L
E
X

it
er
at
iv
e

t/
s

av
e
d
is
p
x

av
e
d
is
p
y

H
P
W

L
t/
s

av
e
d
is
p
x

H
P
W

L
t/
s

av
e
d
is
p
x

H
P
W

L

d
es
1

12
k

83
.1
5

0
.0
2

33
.5
9

11
.8
5

6.
96

e5
0.
85

20
.7
8

4.
21

e5
0.
07

15
.2
7

4.
20

e5
65

.5
5

0
.0
2

18
.9
8

9.
86

4.
96

e5
0.
76

13
.5
4

3.
78

e5
0.
06

10
.8
3

3.
80

e5
37

.8
4

0
.0
1

6.
28

5.
44

3.
96

e5
0.
58

5.
06

3.
77

e5
0.
04

4.
71

3.
76

e5

d
es
2

28
k

83
.3
9

0
.0
6

37
.2
9

14
.7
1

1.
76

e6
2.
82

19
.9
0

1.
01

e6
0.
17

15
.0
7

1.
01

e6
65

.3
0

0
.0
5

19
.8
2

8.
70

1.
23

e6
2.
47

13
.4
2

9.
25

e5
0.
14

10
.4
9

9.
16

e5
38

.7
5

0
.0
4

7.
84

6.
64

9.
39

e5
2.
15

6.
07

8.
68

e5
0.
11

5.
59

8.
66

e5

d
es
3

74
k

83
.4
5

0
.1
2

30
.0
5

12
.9
3

4.
55

e6
11

.8
5

17
.8
4

3.
09

e6
0.
50

13
.4
1

3.
01

e6
65

.7
6

0
.1
4

21
.9
9

10
.9
1

3.
69

e6
11

.4
4

13
.4
3

2.
67

e6
0.
47

10
.6
6

2.
63

e6
38

.8
4

0
.1
3

7.
10

6.
32

2.
76

e6
9.
28

5.
49

2.
59

e6
0.
31

5.
08

2.
58

e6

d
es
4

11
2
k

78
.0
0

0
.2
1

31
.1
4

12
.4
4

6.
79

e6
22

.6
3

17
.2
5

4.
38

e6
0.
81

13
.2
1

4.
29

e6
65

.9
7

0
.1
8

19
.9
8

8.
97

5.
49

e6
20

.8
1

12
.3
2

4.
20

e6
0.
75

9.
94

4.
15

e6
38

.8
7

0
.1
8

6.
75

6.
14

4.
30

e6
17

.8
0

5.
15

4.
04

e6
0.
48

4.
78

4.
03

e6

d
es
5

26
1
k

77
.9
3

0
.5
3

29
.8
3

12
.6
5

1.
65

e7
80

.6
6

16
.3
3

1.
10

e7
2.
03

12
.5
6

1.
08

e7
66

.5
0

0
.4
7

20
.3
4

9.
88

1.
42

e7
74

.7
3

12
.3
8

1.
09

e7
2.
11

9.
96

1.
07

e7
38

.9
8

0
.4
3

6.
15

6.
20

1.
30

e7
65

.7
7

4.
41

1.
24

e7
1.
51

4.
30

1.
24

e7

d
es
6

50
7
k

75
.9
1

1
.0
0

25
.0
7

11
.2
3

3.
22

e7
21

6.
53

14
.2
1

2.
37

e7
4.
49

11
.2
4

2.
32

e7
66

.4
7

0
.9
7

20
.8
0

10
.2
6

3.
03

e7
21

7.
27

12
.2
5

2.
26

e7
4.
58

9.
93

2.
32

e7
39

.0
3

0
.7
4

6.
05

6.
08

2.
63

e7
18

0.
27

4.
23

2.
53

e7
2.
93

4.
15

2.
52

e7

d
es
7

1
1
47

k
78

.3
8

2
.4
9

30
.2
8

13
.1
2

9.
27

e7
78

0.
84

15
.7
0

6.
92

e7
14

.3
3

12
.2
7

6.
73

e7
66

.4
1

2
.2
3

19
.5
2

10
.0
1

7.
52

e7
71

2.
84

11
.3
1

6.
18

e7
12

.3
9

9.
27

6.
09

e7
38

.9
5

1
.9
7

5.
36

6.
15

6.
73

e7
58

2.
09

3.
90

6.
54

e7
7.
12

3.
88

6.
53

e7

g
eo
-m

ea
n

-
0
.2
1

15
.9
0

-
6.
36

e6
23

.5
4

10
.2
0

4.
98

e6
0.
77

8.
52

4.
94

e6

ra
ti
o

-
0
.2
7

1.
87

-
1.
29

30
.4
2

1.
20

1.
01

1.
00

1
.0
0

1
.0
0

T
ab

le
4
.1
:
R
es
u
lt
s
in

sy
n
th
et
ic

b
en

ch
m
ar
k
s.

“a
ve

d
is
p
x
/y

”
is
th
e
av
er
ag

e
li
n
ea
r
d
is
p
la
ce
m
en
t
al
on

g
th
e
x
/y

-d
ir
ec
ti
on

.
C
el
l
d
is
p
la
ce
m
en
t

a
n
d
H
P
W

L
h
av
e
th
e
sa
m
e
b
a
se

u
n
it
.
T
h
e
gr
id

va
lu
e
is

2.
4
b
as
e
u
n
it
s.

A
v
er
ag

e
ce
ll
w
id
th

is
13

b
as
e
u
n
it
.

85

(a) (b)

Figure 4.9: (a) legalization result of benchmark des4 with low placement density, (b) local
region marked in (a). Cells are in cyan, and displacement is in red.

Although this work focuses on optimizing the quadratic cell displacement, this section

uses the linear cell displacement as a metric. Table 4.1 shows the performance of the

greedy cell clustering algorithm, CPLEX, and the iterative algorithm. There is no detailed

placement step to adjust the location and orientation of cells after the legalization step.

As can be seen from the experimental results, although the iterative algorithm is 3.7X

slower than the greedy legalization algorithm, it leads to 87% less cell displacement and 29%

less HPWL. Moreover, this algorithm only takes around ten seconds to legalize a design

with more than one million cells, while the time for global placement is around ten minutes.

The iterative algorithm is 30X faster than the CPLEX approach, and meanwhile, it gives

20% less cell displacement and slightly better HPWL. Fig. 4.9 (a) and (b) show the legalized

result of the benchmark des4 using the iterative algorithm.

Fig. 4.10 displays the CPU time v.s. the circuit size. The empirical time complexity for

the iterative algorithm is O(N1.17) from the curve fitting. As a comparison, the empirical

time complexity is O(N1.06) for the greedy algorithm, and O(N1.50) for CPLEX.

86

101 102 103
10-2

10-1

100

101

Figure 4.10: Average-case time complexity of the iterative algorithm.

4.6 Summary and Future Work

This chapter introduces a legalization algorithm for asynchronous designs containing multi-

deck gridded cells. The legalizer first organizes gridded cells into clusters and then optimizes

cell displacement using a fast iterative algorithm. The experimental results show the effec-

tiveness of this algorithm and the efficiency of our implementation.

Future works are the following: first, we want to refine and extend this algorithm to

support standard cell designs; second, since this algorithm is very efficient, it is promising

to adopt this framework for wire length optimization.

87

Chapter 5

Future Work

5.1 Timing-Driven Placement for Asynchronous Circuits

The gridded cell methodology and its automation flow are capable of generating a compact

physical layout for asynchronous circuits. The timing-driven placement flow is crucial for

the correctness of the physical design, especially for circuit families with non-trivial timing

constraints.

5.1.1 Timing Constraints

In general, timing constraints are needed to simplify the circuit design and ensure circuit

performance. Since a circuit consists of components and communication channels, its func-

tionality is realized via data exchange among components.

As introduced in Chapter 2, dual-rail channels use completion detection to ensure correct

data capturing, while bundled data channels use timing constraints to get rid of complete

detection circuitries. Fig. 5.1 shows such a bundled data design. Take the stage in the

middle as an example. The signal req1 indicates the validity of the output data, and when

this signal changes from low to high, the data must have been ready. To be more precise,

when the request signal req0 changes from low to high, we know the output data will

eventually be stable before the request signal req1 changes from low to high.

Fig. 5.2 (a) shows a more concrete example. The start signal corresponds to the req0

signal, and the validity signal corresponds to the req1 signal. The correctness constraint

88

req0

ack0

req1

ack1

C
om
bi
na
tio
na
l

Lo
gi
c

delay

St
or
ag
e

C Cd

Control

C
om
bi
na
tio
na
l

Lo
gi
c

delay

St
or
ag
e

C Cd

Control

C
om
bi
na
tio
na
l

Lo
gi
c

delay

St
or
ag
e

C Cd

Control

fast

slow

Figure 5.1: Timing constraints in a bundled data design.

can be written as [82,130]

start+ : data+ ≺ validity+, (5.1)

which means when the start signal changes from low to high, the transition of the data

signal from low to high must happen before the transition of the validity signal from low

to high. Similarly, we can write the correctness constraint for data signal transition from

high to low:

start+ : data− ≺ validity + . (5.2)

The above two constraints must be satisfied to ensure the correctness of the physical layout.

Fig. 5.2 (b) shows all possible paths of this stage: the red path and the cyan path must be

faster than the black path to satisfy the correctness constraints.

The delay of this stage is determined by the black path, and thus the performance

constraint can be written as

delay(start+, validity+) ≤ target, (5.3)

which means the black path must be faster than this target delay to achieve the expected

performance.

89

start validity

data

start validity

data

(a) (b)

Figure 5.2: An example of correctness constraint and performance constraint. (a) the
topology of a pipeline stage, (b) paths in this stage.

5.1.2 Strategy

There are two options to satisfy the correctness constraints. The first option uses an ordinary

placement tool to place all cells, after which a timing analysis tool is used to find the worst

delay in the datapath. With this delay information, one can synthesize a delay line and

perform an incremental update to place this delay line. However, this approach ignores the

performance constraints and thus may lead to poor performance.

The second approach explicitly optimizes the datapath delay at runtime. Assuming the

target delay of a stage is known, we can use the timing analysis tool to find the top-k paths

that violate the performance constraint, and then increase the weight of nets containing

these paths accordingly. A weighted wirelength-driven placement is performed to optimize

the weighted wirelength and thus improve the delay of these paths. These steps are repeated

until delays cannot be further improved. Finally, a delay line is synthesized and carefully

placed to satisfy the correctness constraints.

We have done many preparatory works for integrating the placement flow with a timing

analysis tool for asynchronous designs. Once the integration between the timer and the

placer is complete, the placer can fetch timing information, making it possible to synthesize

delay lines during placement.

90

5.2 Detailed Placement for Gridded Cells

The gridded cell placement flow does not have a dedicated detailed placement step. The

main reason is that swapping cells among clusters can change the height of clusters, and

eventually make cells out of the placement boundary. Statistically speaking, the influence

may be tiny when swapping a large number of cells. Therefore, during detailed placement,

we can pretend all gridded cells have the same height, and thus all the swapping operations

are legal and safe. After cell swapping, we can recompute the cluster locations to finalize

the physical layout.

91

Bibliography

[1] M. J. S. Smith. Application-specific integrated circuits, volume 7. Addison-Wesley
Reading, MA, 1997.

[2] C. Mead. Introduction to vlsi systems. IEE Proceedings I-Solid-State and Electron
Devices, 128(1):18, 1980.

[3] B. Lojek. History of semiconductor engineering. Springer, 2007.

[4] N. H. Weste and D. Harris. CMOS VLSI design: a circuits and systems perspective.
Pearson Education India, 2015.

[5] T. Xanthopoulos. Clocking in modern VLSI systems. Springer Science & Business
Media, 2009.

[6] D. MacMillen, R. Camposano, D. Hill, and T. W. Williams. An industrial view of elec-
tronic design automation. IEEE transactions on computer-aided design of integrated
circuits and systems, 19(12):1428–1448, 2000.

[7] L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng. Electronic design automation: syn-
thesis, verification, and test. Morgan Kaufmann, 2009.

[8] L. Lavagno, I. L. Markov, G. Martin, and L. K. Scheffer. Electronic design automation
for IC implementation, circuit design, and process technology: circuit design, and
process technology. CRC Press, 2016.

[9] D. Jansen et al. The electronic design automation handbook. Springer, 2003.

[10] L. Lavagno, L. Scheffer, and G. Martin. EDA for IC implementation, circuit design,
and process technology. CRC press, 2018.

[11] E. Brunvand. Digital VLSI chip design with Cadence and Synopsys CAD tools.
Addison-Wesley New York, 2010.

[12] M. Donno, A. Ivaldi, L. Benini, and E. Macii. Clock-tree power optimization based
on rtl clock-gating. In Proceedings of the 40th annual Design Automation Conference,
pages 622–627, 2003.

[13] M. Donno, E. Macii, and L. Mazzoni. Power-aware clock tree planning. In Proceedings
of the 2004 international symposium on Physical design, pages 138–147, 2004.

[14] S. A. Butt, S. Schmermbeck, J. Rosenthal, A. Pratsch, and E. Schmidt. System level
clock tree synthesis for power optimization. In 2007 Design, Automation & Test in
Europe Conference & Exhibition, pages 1–6. IEEE, 2007.

92

[15] H. Homayoun, S. Golshan, E. Bozorgzadeh, A. Veidenbaum, and F. J. Kurdahi. On
leakage power optimization in clock tree networks for asics and general-purpose pro-
cessors. Sustainable Computing: Informatics and Systems, 1(1):75–87, 2011.

[16] Y. Chen and D. Wong. An algorithm for zero-skew clock tree routing with buffer
insertion. In Proceedings ED&TC European Design and Test Conference, pages 230–
236. IEEE, 1996.

[17] C.-W. A. Tsao and C.-K. Koh. Ust/dme: a clock tree router for general skew con-
straints. ACM Transactions on Design Automation of Electronic Systems (TODAES),
7(3):359–379, 2002.

[18] C.-M. Chang, S.-H. Huang, Y.-K. Ho, J.-Z. Lin, H.-P. Wang, and Y.-S. Lu. Type-
matching clock tree for zero skew clock gating. In Proceedings of the 45th annual
Design Automation Conference, pages 714–719, 2008.

[19] Q. Wu, M. Pedram, and X. Wu. Clock-gating and its application to low power design
of sequential circuits. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 47(3):415–420, 2000.

[20] F. Emnett and M. Biegel. Power reduction through rtl clock gating. SNUG, San Jose,
pages 1–11, 2000.

[21] J. Shinde and S. Salankar. Clock gating—a power optimizing technique for vlsi cir-
cuits. In 2011 annual IEEE India conference, pages 1–4. IEEE, 2011.

[22] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas, and
M. L. Scott. Energy-efficient processor design using multiple clock domains with dy-
namic voltage and frequency scaling. In Proceedings Eighth International Symposium
on High Performance Computer Architecture, pages 29–40. IEEE, 2002.

[23] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, and S. Dropsho. Profile-based
dynamic voltage and frequency scaling for a multiple clock domain microprocessor.
In Proceedings of the 30th annual international symposium on Computer architecture,
pages 14–27, 2003.

[24] D. E. Muller. A theory of asynchronous circuits. Report 75, University of Illinois,
1956.

[25] C. J. Myers. Asynchronous circuit design. John Wiley & Sons, 2001.

[26] J. Spars and S. Furber. Principles asynchronous circuit design. Springer, 2002.

[27] J. Sparsø. Introduction to Asynchronous Circuit Design. DTU Compute, Technical
University of Denmark, 2020.

[28] A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R. Southworth, U. Cum-
mings, and T. K. Lee. The design of an asynchronous mips r3000 microprocessor. In
Proceedings Seventeenth Conference on Advanced Research in VLSI, pages 164–181.
IEEE, 1997.

[29] J. Teifel and R. Manohar. Highly pipelined asynchronous fpgas. In proceedings of the
2004 ACM/SIGDA 12th International symposium on field programmable gate arrays,
pages 133–142, 2004.

93

[30] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam,
Y. Nakamura, P. Datta, G.-J. Nam, et al. Truenorth: Design and tool flow of a 65 mw
1 million neuron programmable neurosynaptic chip. IEEE transactions on computer-
aided design of integrated circuits and systems, 34(10):1537–1557, 2015.

[31] D. M. Chapiro. Globally-asynchronous locally-synchronous systems. Technical report,
Stanford Univ CA Dept of Computer Science, 1984.

[32] M. Krstic, E. Grass, F. K. Gürkaynak, and P. Vivet. Globally asynchronous, locally
synchronous circuits: Overview and outlook. IEEE Design & Test of computers,
24(5):430–441, 2007.

[33] L. Xiu. VLSI circuit design methodology demystified: a conceptual taxonomy. John
Wiley & Sons, 2007.

[34] H. Eriksson, P. Larsson-Edefors, T. Henriksson, and C. Svensson. Full-custom vs.
standard-cell design flow: an adder case study. In Proceedings of the 2003 Asia and
South Pacific Design Automation Conference, pages 507–510, 2003.

[35] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan,
B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, et al. A million spiking-neuron
integrated circuit with a scalable communication network and interface. Science,
345(6197):668–673, 2014.

[36] J. Grad and J. E. Stine. A standard cell library for student projects. In Proceedings
2003 IEEE International Conference on Microelectronic Systems Education. MSE’03,
pages 98–99. IEEE, 2003.

[37] W.-W. Hu, J.-Y. Zhao, S.-Q. Zhong, X. Yang, E. Guidetti, and C. Wu. Implement-
ing a 1ghz four-issue out-of-order execution microprocessor in a standard cell asic
methodology. Journal of Computer Science and Technology, 22(1):1–14, 2007.

[38] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu. VLSI physical design: from graph
partitioning to timing closure. Springer Science & Business Media, 2011.

[39] C. J. Alpert, D. P. Mehta, and S. S. Sapatnekar. Handbook of algorithms for physical
design automation. CRC press, 2008.

[40] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. Vlsi module placement based
on rectangle-packing by the sequence-pair. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 15(12):1518–1524, 1996.

[41] M. Sarrafzadeh, M. Wang, and X. Yang. Modern placement techniques. Springer
Science & Business Media, 2003.

[42] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
Bell system technical journal, 49(2):291–307, 1970.

[43] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network
partitions. In 19th design automation conference, pages 175–181. IEEE, 1982.

[44] C. J. Alpert, J.-H. Huang, and A. B. Kahng. Multilevel circuit partitioning.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
17(8):655–667, 1998.

94

[45] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph partition-
ing: Applications in vlsi domain. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 7(1):69–79, 1999.

[46] R.-S. Tsay, E. S. Kuh, and C.-P. Hsu. Proud: A sea-of-gates placement algorithm.
IEEE Design & Test of Computers, 5(6):44–56, 1988.

[47] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich. Gordian: Vlsi placement
by quadratic programming and slicing optimization. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 10(3):356–365, 1991.

[48] A. R. Agnihotri, S. Ono, and P. H. Madden. Recursive bisection placement: Feng
shui 5.0 implementation details. In Proceedings of the 2005 international symposium
on Physical design, pages 230–232, 2005.

[49] J. A. Roy, D. A. Papa, S. N. Adya, H. H. Chan, A. N. Ng, J. F. Lu, and I. L. Markov.
Capo: robust and scalable open-source min-cut floorplacer. In Proceedings of the 2005
international symposium on Physical design, pages 224–226, 2005.

[50] C. Sechen and A. Sangiovanni-Vincentelli. The timberwolf placement and routing
package. IEEE Journal of Solid-State Circuits, 20(2):510–522, 1985.

[51] C. Sechen and A. Sangiovanni-Vincentelli. Timberwolf3. 2: A new standard cell place-
ment and global routing package. In 23rd ACM/IEEE Design Automation Conference,
pages 432–439. IEEE, 1986.

[52] C. Sechen. An improved simulated annealing algorithm for row-based placement. In
Proc. of International Conference on Computer-Aided Design, 1987, 1987.

[53] W.-J. Sun and C. Sechen. Efficient and effective placement for very large circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
14(3):349–359, 1995.

[54] X. Yang, M. Sarrafzadeh, et al. Dragon2000: Standard-cell placement tool for large
industry circuits. In IEEE/ACM International Conference on Computer Aided De-
sign. ICCAD-2000. IEEE/ACM Digest of Technical Papers (Cat. No. 00CH37140),
pages 260–263. IEEE, 2000.

[55] K. M. Hall. An r-dimensional quadratic placement algorithm. Management science,
17(3):219–229, 1970.

[56] Y.-W. Chang, Z.-W. Jiang, and T.-C. Chen. Essential issues in analytical placement
algorithms. IPSJ Transactions on System LSI Design Methodology, 2:145–166, 2009.

[57] I. L. Markov, J. Hu, and M.-C. Kim. Progress and challenges in vlsi placement
research. Proceedings of the IEEE, 103(11):1985–2003, 2015.

[58] P. Spindler, U. Schlichtmann, and F. M. Johannes. Kraftwerk2—a fast force-directed
quadratic placement approach using an accurate net model. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 27(8):1398–1411, 2008.

[59] N. Viswanathan and C.-N. Chu. Fastplace: efficient analytical placement using cell
shifting, iterative local refinement, and a hybrid net model. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 24(5):722–733, 2005.

95

[60] M.-C. Kim, D.-J. Lee, and I. L. Markov. Simpl: An effective placement algorithm.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
31(1):50–60, 2011.

[61] M.-C. Kim, N. Viswanathan, C. J. Alpert, I. L. Markov, and S. Ramji. Maple:
Multilevel adaptive placement for mixed-size designs. In Proceedings of the 2012 ACM
international symposium on International Symposium on Physical Design, pages 193–
200, 2012.

[62] T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and I. Nedelchev. Polar: Placement
based on novel rough legalization and refinement. In 2013 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 357–362. IEEE, 2013.

[63] A. B. Kahng and Q. Wang. Implementation and extensibility of an analytic placer.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
24(5):734–747, 2005.

[64] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang. Ntuplace3: An
analytical placer for large-scale mixed-size designs with preplaced blocks and density
constraints. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 27(7):1228–1240, 2008.

[65] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng, and C.-K. Cheng.
eplace: Electrostatics-based placement using fast fourier transform and nesterov’s
method. ACM Transactions on Design Automation of Electronic Systems (TODAES),
20(2):1–34, 2015.

[66] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang. Replace: Advancing solution qual-
ity and routability validation in global placement. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 38(9):1717–1730, 2018.

[67] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z. Pan. Dream-
place: Deep learning toolkit-enabled gpu acceleration for modern vlsi placement.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
40(4):748–761, 2020.

[68] J. Lu, P. Chen, C.-C. Chang, L. Sha, J. Dennis, H. Huang, C.-C. Teng, and C.-K.
Cheng. eplace: Electrostatics based placement using nesterov’s method. In 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2014.

[69] D. Hill. Method and system for high speed detailed placement of cells within an
integrated circuit design, April 9 2002. US Patent 6,370,673.

[70] M. Pan, N. Viswanathan, and C. Chu. An efficient and effective detailed placement al-
gorithm. In ICCAD-2005. IEEE/ACM International Conference on Computer-Aided
Design, 2005., pages 48–55. IEEE, 2005.

[71] A. B. Kahng, P. Tucker, and A. Zelikovsky. Optimization of linear placements for
wirelength minimization with free sites. In Proceedings of the ASP-DAC’99 Asia
and South Pacific Design Automation Conference 1999 (Cat. No. 99EX198), pages
241–244. IEEE, 1999.

96

[72] M. Wang et al. Nrg: Global and detailed placement. In 1997 Proceedings of IEEE
International Conference on Computer Aided Design (ICCAD), pages 532–537. IEEE,
1997.

[73] K. Doll, F. M. Johannes, and K. J. Antreich. Iterative placement improvement by
network flow methods. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 13(10):1189–1200, 1994.

[74] S. Cauley, V. Balakrishnan, Y. C. Hu, and C.-K. Koh. A parallel branch-and-cut
approach for detailed placement. ACM Transactions on Design Automation of Elec-
tronic Systems (TODAES), 16(2):1–19, 2011.

[75] A. Davis and S. M. Nowick. An introduction to asynchronous circuit design. The
Encyclopedia of Computer Science and Technology, 38:1–58, 1997.

[76] J. Sparsø. Asynchronous circuit design–a tutorial. 2006.

[77] P. A. Beerel, R. O. Ozdag, and M. Ferretti. A designer’s guide to asynchronous VLSI.
Cambridge University Press, 2010.

[78] A. J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In Beauty
is our business, pages 302–311. Springer, 1990.

[79] I. E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–738, 1989.

[80] S. M. Nowick and M. Singh. High-performance asynchronous pipelines: An overview.
Ieee design & test of computers, 28(5):8–22, 2011.

[81] J. T. Udding. A formal model for defining and classifying delay-insensitive circuits
and systems. Distributed Computing, 1(4):197–204, 1986.

[82] R. Manohar and Y. Moses. Asynchronous signalling processes. In 2019 25th IEEE
International Symposium on Asynchronous Circuits and Systems (ASYNC), pages
68–75. IEEE, 2019.

[83] R. Manohar and A. J. Martin. Quasi-delay-insensitive circuits are turing-complete.
Technical report, CALIFORNIA INST OF TECH PASADENA DEPT OF COM-
PUTER SCIENCE, 1995.

[84] D. E. Muller. Asynchronous logics and application to information processing. Switch-
ing Theory in Space Technology, 4, 1963.

[85] C. L. Seitz and C. Mead. System timing. Introduction to VLSI systems, pages 218–
262, 1980.

[86] P. Maurine, J.-B. Rigaud, F. Bouesse, G. Sicard, and M. Renaudin. Static imple-
mentation of qdi asynchronous primitives. In International Workshop on Power and
Timing Modeling, Optimization and Simulation, pages 181–191. Springer, 2003.

[87] D. Sokolov, J. Murphy, A. Bystrov, and A. Yakovlev. Design and analysis of dual-rail
circuits for security applications. IEEE Transactions on Computers, 54(4):449–460,
2005.

97

[88] A. J. Martin. Compiling communicating processes into delay-insensitive vlsi circuits.
Distributed computing, 1(4):226–234, 1986.

[89] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij. The vlsi-programming
language tangram and its translation into handshake circuits. In Proceedings of the
European Conference on Design Automation., pages 384–389. IEEE, 1991.

[90] H. Van Gageldonk, K. Van Berkel, A. Peeters, D. Baumann, D. Gloor, and
G. Stegmann. An asynchronous low-power 80c51 microcontroller. In Proceedings
Fourth International Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 96–107. IEEE, 1998.

[91] C. G. Wong and A. J. Martin. High-level synthesis of asynchronous systems by
data-driven decomposition. In Proceedings of the 40th annual Design Automation
Conference, pages 508–513, 2003.

[92] J. Teifel and R. Manohar. Static tokens: Using dataflow to automate concurrent
pipeline synthesis. In 10th International Symposium on Asynchronous Circuits and
Systems, 2004. Proceedings., pages 17–27. IEEE, 2004.

[93] R. Li, L. Berkley, Y. Yang, and R. Manohar. Fluid: An asynchronous high-level
synthesis tool for complex program structures. In 2021 27th IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC), pages 1–8. IEEE, 2021.

[94] S. Hauck. Asynchronous design methodologies: An overview. Proceedings of the IEEE,
83(1):69–93, 1995.

[95] I. Sutherland and S. Fairbanks. Gasp: A minimal fifo control. In Proceedings Sev-
enth International Symposium on Asynchronous Circuits and Systems. ASYNC 2001,
pages 46–53. IEEE, 2001.

[96] M. Singh and S. M. Nowick. Mousetrap: High-speed transition-signaling asynchronous
pipelines. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
15(6):684–698, 2007.

[97] A. M. Lines. Pipelined asynchronous circuits. 1998.

[98] A. Devgan and C. Kashyap. Block-based static timing analysis with uncertainty. In
ICCAD-2003. International Conference on Computer Aided Design (IEEE Cat. No.
03CH37486), pages 607–614. IEEE, 2003.

[99] R. Karmazin, C. T. O. Otero, and R. Manohar. celltk: Automated layout for asyn-
chronous circuits with nonstandard cells. In 2013 IEEE 19th International Symposium
on Asynchronous Circuits and Systems, pages 58–66. IEEE, 2013.

[100] A. B. Kahng and G. Robins. On optimal interconnections for VLSI, volume 301.
Springer Science & Business Media, 1994.

[101] S. Peyer, D. Rautenbach, and J. Vygen. A generalization of dijkstra’s shortest path
algorithm with applications to vlsi routing. Journal of Discrete Algorithms, 7(4):377–
390, 2009.

98

[102] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev. Asynchronous design
using commercial hdl synthesis tools. In Proceedings Sixth International Symposium
on Advanced Research in Asynchronous Circuits and Systems (ASYNC 2000)(Cat.
No. PR00586), pages 114–125. IEEE, 2000.

[103] A. Kondratyev and K. Lwin. Design of asynchronous circuits using synchronous cad
tools. IEEE Design & Test of Computers, 19(4):107–117, 2002.

[104] S. M. Sait and H. Youssef. VLSI physical design automation: theory and practice,
volume 6. World Scientific Publishing Company, 1999.

[105] P. A. Beerel, G. D. Dimou, and A. M. Lines. Proteus: An ASIC flow for GHz
asynchronous designs. IEEE Design and Test of Computers, 28(5):36–51, 2011.

[106] M. Moreira, B. Oliveira, J. Pontes, and N. Calazans. A 65nm standard cell set and
flow dedicated to automated asynchronous circuits design. In 2011 IEEE International
SOC Conference, pages 99–104. IEEE, 2011.

[107] M. Trevisan, M. Arendt, A. Ziesemer, R. Reis, and N. L. V. Calazans. Automated syn-
thesis of cell libraries for asynchronous circuits. In Proceedings of the 27th Symposium
on Integrated Circuits and Systems Design, pages 1–7, 2014.

[108] C. J. Poirier. Excellerator: custom cmos leaf cell layout generator. IEEE transactions
on computer-aided design of integrated circuits and systems, 8(7):744–755, 1989.

[109] G. A. Northrop and P.-F. Lu. A semi-custom design flow in high-performance micro-
processor design. In Proceedings of the 38th annual Design Automation Conference,
pages 426–431, 2001.

[110] C.-Y. Hung, P.-Y. Chou, and W.-K. Mak. Mixed-cell-height standard cell placement
legalization. In Proceedings of the on Great Lakes Symposium on VLSI 2017, pages
149–154, 2017.

[111] P. H. Madden. Reporting of standard cell placement results. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 21(2):240–247, 2002.

[112] P. Spindler, U. Schlichtmann, and F. M. Johannes. Abacus: fast legalization of
standard cell circuits with minimal movement. In Proceedings of the 2008 international
symposium on Physical design, pages 47–53, 2008.

[113] H. Ren, D. Z. Pan, C. J. Alpert, P. G. Villarrubia, and G.-J. Nam. Diffusion-
based placement migration with application on legalization. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 26(12):2158–2172, 2007.

[114] Y. Saad. Iterative methods for sparse linear systems, volume 82. siam, 2003.

[115] J. He, Y. Yang, and R. Manohar. A power router for gridded cell placement. In
Workshop on Open-Source EDA Technology, International Conference on Computer-
Aided Design (ICCAD), 2020.

[116] G. Wu, T. Lin, H.-H. Huang, C. Chu, and P. A. Beerel. Asynchronous circuit place-
ment by lagrangian relaxation. In 2014 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 641–646. IEEE, 2014.

99

[117] R. Karmazin, S. Longfield, C. T. O. Otero, and R. Manohar. Timing driven placement
for quasi delay-insensitive circuits. In 2015 21st IEEE International Symposium on
Asynchronous Circuits and Systems, pages 45–52. IEEE, 2015.

[118] C. P. Sotiriou. Implementing asynchronous circuits using a conventional eda tool-flow.
In Proceedings of the 39th annual Design Automation Conference, pages 415–418,
2002.

[119] G. Wu and C. Chu. Detailed placement algorithm for vlsi design with double-row
height standard cells. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 35(9):1569–1573, 2015.

[120] W.-K. Chow, C.-W. Pui, and E. F. Young. Legalization algorithm for multiple-row
height standard cell design. In 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–6. IEEE, 2016.

[121] Y. Lin, B. Yu, X. Xu, J.-R. Gao, N. Viswanathan, W.-H. Liu, Z. Li, C. J. Alpert, and
D. Z. Pan. Mrdp: Multiple-row detailed placement of heterogeneous-sized cells for
advanced nodes. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 37(6):1237–1250, 2017.

[122] C.-H. Wang, Y.-Y. Wu, J. Chen, Y.-W. Chang, S.-Y. Kuo, W. Zhu, and G. Fan.
An effective legalization algorithm for mixed-cell-height standard cells. In 2017 22nd
Asia and South Pacific Design Automation Conference (ASP-DAC), pages 450–455.
IEEE, 2017.

[123] J. Chen, Y.-W. Chang, and Y.-Y. Wu. Mixed-cell-height detailed placement consid-
ering complex minimum-implant-area constraints. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 40(10):2128–2141, 2020.

[124] Y.-W. Tseng and Y.-W. Chang. Mixed-cell-height placement considering drain-to-
drain abutment. In 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 1–6. IEEE, 2018.

[125] H. Li, W.-K. Chow, G. Chen, B. Yu, and E. F. Young. Pin-accessible legalization
for mixed-cell-height circuits. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 41(1):143–154, 2021.

[126] H. Li, W.-K. Chow, G. Chen, E. F. Young, and B. Yu. Routability-driven and fence-
aware legalization for mixed-cell-height circuits. In Proceedings of the 55th Annual
Design Automation Conference, pages 1–6, 2018.

[127] Z. Zhu, J. Chen, W. Zhu, and Y.-W. Chang. Mixed-cell-height legalization considering
technology and region constraints. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 39(12):5128–5141, 2020.

[128] X. Li, J. Chen, W. Zhu, and Y.-W. Chang. Analytical mixed-cell-height legalization
considering average and maximum movement minimization. In Proceedings of the
2019 International Symposium on Physical Design, pages 27–34, 2019.

[129] Y. Yang, J. He, and R. Manohar. Dali: A gridded cell placement flow. In 2020
IEEE/ACM International Conference On Computer Aided Design (ICCAD), pages
1–9. IEEE, 2020.

100

[130] W. Hua, Y.-S. Lu, K. Pingali, and R. Manohar. Cyclone: A static timing and power
engine for asynchronous circuits. In 2020 26th IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC), pages 11–19. IEEE, 2020.

101

	Custom Cell Placement Automation for Asynchronous VLSI
	Recommended Citation

	Introduction
	Background
	Circuit Design Flow
	Physical Design Flow

	Placement Problem Formulation
	Standard Cell Methodology
	Standard Cell Layout Style
	Row-based Placement

	Standard Cell Placement Flow
	Global Placement
	Legalization
	Detailed Placement

	Contribution

	Physical Design of Asynchronous Circuit
	Asynchronous Circuit
	Circuit Family
	Quasi-Delay-Insensitive Circuit
	Micropipeline

	Physical Design
	Full-Custom Design
	Custom Standard Cell Design
	Standard Cell Design

	Placement Problem for Asynchronous Circuits
	Gridded Cell Layout Style
	Placement Problem Formulation
	N/P-well Design Rules
	Cluster-based Placement

	Dali: A Gridded Cell Placement Flow
	Introduction
	Background
	Standard Cell Layout
	Row-based Placement

	Gridded cell
	Gridded cell layout
	Cluster-based Placement

	Gridded Cell Placement
	Placement Problem Formulation
	Placement Flow
	Global Placement
	Forward-backward Legalization
	N/P-well Legalization
	Power Grid Design

	Experimental Results
	Comparison for Asynchronous Circuits
	Scalability Study

	Summary and Future Work

	Legalization Algorithm for Multideck Gridded Cells
	Gridded Cell Legalization Problem Formulation
	Single-Deck Gridded Cell
	Intra-Cluster Optimization
	Inter-Cluster Optimization

	Multideck Gridded Cell
	Multideck Gridded Cell Legalization
	Legalization Problem Formulation
	Legalization Flow
	Cluster Formation
	Displacement Optimization
	Problem Reformulation
	Adaptive Weight
	Cell Reordering

	Experimental Results
	Summary and Future Work

	Future Work
	Timing-Driven Placement for Asynchronous Circuits
	Timing Constraints
	Strategy

	Detailed Placement for Gridded Cells

	Bibliography

