
Titre:
Title:

Introducing KeyRing self‐timed microarchitecture and timing‐driven
design flow

Auteurs:
Authors:

Mickael Fiorentino, Claude Thibeault, & Yvon Savaria

Date: 2021

Type: Article de revue / Article

Référence:
Citation:

Fiorentino, M., Thibeault, C., & Savaria, Y. (2021). Introducing KeyRing self‐timed
microarchitecture and timing‐driven design flow. IET Computers & Digital
Techniques, 15 (6), 409-426. https://doi.org/10.1049/cdt2.12032

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/9301/

Version: Version officielle de l'éditeur / Published version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use: CC BY

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

IET Computers & Digital Techniques (vol. 15, no. 6)

Maison d’édition:
Publisher:

Wiley

URL officiel:
Official URL:

https://doi.org/10.1049/cdt2.12032

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1049/cdt2.12032
https://publications.polymtl.ca/9301/
https://doi.org/10.1049/cdt2.12032

Received: 1 February 2021 - Revised: 4 April 2021 - Accepted: 5 May 2021 - IET Computers & Digital Techniques
DOI: 10.1049/cdt2.12032

OR I G INAL RE SEARCH PA PER

Introducing KeyRing self-timed microarchitecture and timing-
driven design flow

Mickael Fiorentino1 | Claude Thibeault2 | Yvon Savaria1

1Department of Electrical Engineering,
Polytechnique Montreal, Montreal, Quebec, Canada

2Department of Electrical Engineering, Ecole de
Technologie Superieure, Montreal, Quebec, Canada

Correspondence

Mickael Fiorentino, Department of Electrical
Engineering, Polytechnique Montreal, Montreal, QC
H3T 1J4, Canada.
Email: mickael.fiorentino@polymtl.ca

Funding information

Canadian Network for Research and Innovation in
Machining Technology, Natural Sciences and
Engineering Research Council of Canada

Abstract
A self-timed microarchitecture called KeyRing is presented, and a method for imple-
menting KeyRing circuits compatible with a timing-driven electronic design automation
(EDA) flow is discussed. The KeyRing microarchitecture is derived from the AnARM, a
low-power self-timed ARM processor based on ad hoc design principles. First, the un-
orthodox design style and circuit structures are revisited. A theoretical model that can
support the design of generic circuits and the elaboration of EDA methods is then
presented. Also addressed are the compatibility issues between KeyRing circuits and
timing-driven EDA flows. The proposed method leverages relative timing constraints to
translate the timing relations in a KeyRing circuit into a set of timing constraints that
enable timing-driven synthesis and static timing analysis. Finally, two 32-bit RISC-V
processors are presented; called KeyV and based on KeyRing microarchitectures, they
are synthesized in a 65 nm technology using the proposed EDA flow. Postsynthesis
results demonstrate the effectiveness of the design methodology and allow comparisons
with a synchronous alternative called SynV. Performance and power consumption eval-
uations show that KeyV has a power efficiency that lies between SynV with clock-gating
and SynV without clock-gating.

1 | INTRODUCTION

The high demand for energy-efficient computing coupled with
the current limitations of technology scaling—which no longer
provides improved performance at constant power densities—
is leading designers to explore new microarchitectures to pull
more performance out of a constrained power budget [1].
Classical approaches to improve the energy efficiency of very
large-scale integration circuits consist of reducing supply
voltages, gaining efficiency through specialization, and mini-
mizing switching activity. Clock-gating methods are widely
adopted, as they dramatically reduce the impact of the global
clock in synchronous circuits, which constitutes the main
source of switching activity. Alternatively, asynchronous cir-
cuits benefit from reduced switching activities, as they rely on
decentralized self-timed clocking schemes, and may provide
more flexible alternatives than their synchronous counterparts

in the quest for energy efficiency [2–5]. However, the adoption
of asynchronous circuits has been limited by multiple factors
[4, 5]: (i) the lack of support for asynchronous designs by
standard EDA flows, especially with respect to timing; (ii) the
limited compatibility of asynchronous systems with conven-
tional verification and test methods; and (iii) the limited design
reuse, which is mainly due to the plethora of asynchronous
design styles. This work follows a broader research project
about the AnARM, an energy-efficient ARM processor based
on the Octasic self-timed design style [6–8]. The AnARM was
fabricated with a 28 nm technology, as reported in [9]. It first
served as a proof of concept to be compared with other
general-purpose processors and provided a context for a novel
self-timed cache architecture [10], a new model for dynamic
voltage scaling [11], and original test methods [12]. We revisit
the original Octasic self-timed design style using circuits and
methods coming from the asynchronous literature, with the

This work was funded by the Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (NSERC).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2021 The Authors. IET Computers & Digital Techniques published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Comput. Digit. Tech. 2021;15:409–426. wileyonlinelibrary.com/journal/cdt2 - 409

https://doi.org/10.1049/cdt2.12032
https://orcid.org/0000-0002-7998-9004
mailto:mickael.fiorentino@polymtl.ca
https://orcid.org/0000-0002-7998-9004
http://wileyonlinelibrary.com/journal/cdt2

objective of lowering the barrier with timing-driven EDA
flows.

Octasic developed a custom self-timed design style for the
Opus family of digital signal processors (DSPs) [6] with the
intent for a low-power design. The commercial success of
these DSPs is often cited as an example to illustrate the ben-
efits of using asynchronous circuits [2, 4], and other processors
have been developed based on their design principles [13, 14].
However, as reported in [6], this design style is derived from ad
hoc solutions that resulted from an empirical development
process rather than a research-oriented approach. In the
following, we will show that it stands out from the standard
asynchronous design paradigm, as it does not rely on elastic
channel abstraction [5]. Moreover, we will show that the ad
hoc self-timed microarchitecture of the AnARM exploits
instruction-level parallelism (ILP) out of order. We here lay the
foundations for a more rigorous definition of this unorthodox
design style by introducing a theoretical model that allows for
balancing design trade-offs and serves as the basis for a timing-
driven electronic design automation (EDA) flow. We propose
the name KeyRing for this self-timed design style. Note that
this work focuses on in-order KeyRing systems. First, this
design decision is aligned with our goal of building basic
principles that can support more complex approaches (such as
out-of-order operations). Second, it allows us to depart from
the original Octasic design style, thus avoiding the pitfall of
duplicating their design without understanding important
design trade-offs.

When Octasic started to develop their DSPs in 2004, the
lack of well-suited EDA flows and the need to design custom
cells dedicated to asynchronous circuits (e.g. C-elements), were
the main limitations that prevented full adoption of a standard
asynchronous paradigm [6]. But since then, the asynchronous
design literature has reported many advances with standard
EDA flows that have lowered the barrier for leveraging com-
mercial static timing analysis (STA) engines and timing-driven
synthesis tools. The most influential research in this area is
the click elements template [15], relative timing constraint
(RTC) formalism [16–18], and local clock set (LCS) method-
ology [19, 20]. This work proposes the KeyRing micro-
architecture in combination with a design method inspired by
this influential research that makes KeyRing circuits compatible
with standard timing-driven EDA flows. Specifically, the pro-
posed method allows timing-driven synthesis tools to optimize
KeyRing circuits for performance while preventing setup and
hold-time violations.

Results reported in Ref. [9] show that the AnARM
achieves performance comparable to that of ARM Cortex A
processors in a smaller power envelope (compared in a
28 nm technology node). Earlier experiments presented in
[6] have shown that the Octasic Opus2 DSP core is more
power-efficient than the TI C64+ synchronous alternative
(compared in a 90 nm technology node). However, com-
parison with complex systems on a chip is always a difficult
task when circuit features and design intent vary while being
implemented with different EDA tools using various tran-
sistor technologies. Hence, this work aims to strengthen the

causal relation between the reported KeyRing micro-
architecture and reduced power consumption compared with
synchronous alternatives. To support this goal, we propose
an experimental protocol that maximizes the impact of the
microarchitecture on performance and power consumption
comparisons between KeyRing processors and synchronous
alternatives.

We developed RISC-V processors, called KeyV, show-
casing the KeyRing microarchitecture and the proposed
EDA flow. These processors implement the RV32IM 32-bit
variant of the RISC-V instruction set architecture (ISA) [21],
and are synthesized with a 65 nm technology from TSMC.
In the spirit of drawing up fair comparisons, we have
developed synchronous alternatives to KeyV, called SynV—
one with and one without clock-gating—that reuse most of
the modules used in KeyV, implement the same RV32IM
ISA, and are synthesized with the same technology using the
same EDA tools. Performance and power consumption
evaluations are performed postsynthesis using the CoreMark
benchmark [22].

We begin by taking a new look at the AnARM design style
from the perspective of ILP and resource sharing (Section 2).
That review highlights how the AnARM clocking mechanism
is involved in the arbitration of shared resource access and in
ILP implementation, which to the best of our knowledge has
never been shown before. We show that shortcomings of the
AnARM design style with respect to timing can be alleviated
with circuits and methods from the standard asynchronous
paradigm. Backed by analysis of the AnARM, we propose the
novel KeyRing microarchitecture based on a template inspired
by click elements [15] (Section 3). We propose an abstract
model of the microarchitecture that reveals key characteristics
of KeyRing systems and allows derivation of timing relations
using relative timing constraints. We use this model as the
foundation of a timing-driven EDA flow compatible with
Synopsys tools (Section 4). Finally, we present the case of
KeyV (Section 5), a RISC-V processor based on the proposed
KeyRing microarchitecture, which is implemented using a
65 nm technology. KeyV is compared with SynV with and
without clock-gating in terms of performance, area, power
consumption, and synthesis run time to highlight the trade-offs
of the KeyRing design style. To summarize, this paper focuses
on studying the KeyRing microarchitecture and improving its
integration with the conventional timing-driven EDA flow.
Our proposed EDA methodology enables unbiased compari-
son of the KeyV self-timed KeyRing RISC-V processor with
its synchronous counterparts, which sets a baseline for future
research. Note that optimizations of the KeyV processor for
energy efficiency may be possible but are outside the scope of
the paper. The specific contributions of this work are as
follows:

� Deep analysis of the Octasic ad hoc self-timed design style
as implemented in the AnARM

� In-order KeyRing microarchitecture adapted from the
original out-of-order Octasic design style and a template
inspired by click elements [15]

410 - FIORENTINO ET AL.

� A KeyRing microarchitecture model that reveals the timing
relations of the self-timed clocking mechanism and allows
performance prediction

� A method to perform STA of KeyRing systems based on
the timing relations derived from the model, enabling the
use of standard EDA flows (i.e. timing-driven synthesis and
STA)

� KeyV RISC-V (RV32IM) processors designed with the
proposed KeyRing microarchitecture and synthesized with
the reported timing-driven EDA flow

� Analysis of KeyRing microarchitecture trade-offs based on
comparisons of KeyV with SynV synchronous alternatives
in terms of performance, area, power consumption, and
synthesis run time

This work is available at https://github.com/mick-
aelfiorentino/keyv.

2 | THE AnARM PROCESSOR

The AnARM was introduced in Ref. [9], but its underlying
design principles were first reported by Laurence in Ref. [6].
Additional details are also presented in several patents [7, 8, 14].
This section summarizes the principles of the AnARM design
style from an original point of view that highlights key charac-
teristics not reported in previous works. We first show, in Sec-
tion 2.1, that the reported design style does not belong to the
elastic design paradigm [5]. This claim is supported by a dis-
cussion on the taxonomy used throughout this paper. We then
present the AnARM architecture in Section 2.2, with an
emphasis on ILP and resource sharing. It shows that the
AnARM is an out-of-order processor that does not rely on
pipelining to exploit ILP. This analysis is the basis from which
we elaborate on the principles of the KeyRing design style in
Section 3.

2.1 | Taxonomy

We use the term self-timed in a broad sense to refer to any
circuits that are not globally synchronous. Specifically, we refer
to Seitz's chapter on system timing in Mead and Conway [23],
which defines self-timed systems as interconnections of

processing elements performing computational steps in se-
quences and for which the time required to perform a
computation is determined locally by the delays imposed by the
processing elements and interconnection delays between them.

The most ubiquitous forms of self-timed circuits are
asynchronous elastic circuits, as formalized in Ref. [5]. Elas-
ticity is a design paradigm in which elastic channels manage
timing variations (within the circuit and between the circuit and
its environment). An elastic channel synchronizes the trans-
actions between a sender and a receiver using a handshake
protocol, often implemented with request and acknowledge
signals [24]. Despite having very different implementations—
from latency insensitive synchronous templates to delay
insensitive templates by way of bundled data (BD) templates—
elastic circuits share the characteristics of the elastic channel
abstraction: common building blocks (fork, join, merge etc.),
properties (such as composability), and formal models (e.g. to
predict performance) [5, 24, 25].

The AnARM microarchitecture does not belong to the
asynchronous elastic design paradigm. Indeed, although the
basic processing elements used in the AnARM, as shown in
Figure 1, resembles BD circuits—they both use a single-rail
data encoding scheme, and storage elements are timed with
self-generated clocks, with cycles duration adjusted as a func-
tion of the computations delay using Delay Elements (DEs)—,
at the system level they do not use the elastic channel
abstraction. As previously stated, this ad hoc design style was
developed following empirical design principles stemming
from an attempt to reduce power consumption by eliminating
the global clock rather than trying to fit in any design paradigm
[6]. Consequently, we define the AnARM microarchitecture as
being simply self-timed in accord with the broad definition
presented in this section.

2.2 | Microarchitecture

The AnARM is composed of functional modules, called
execution units (EU), and shared resources, such as a register
file (RF), program counter (PC), load store unit (LSU) etc., as
depicted in Figure 2. EUs operate asynchronously; the over-
lapping of instruction execution in different EUs allows the
parallelism in a program sequence to be exploited. EUs and
shared resources communicate with one another through the

F I GURE 1 Basic processing element used in
the AnARM, representing one stage of a multicycle
execution unit

FIORENTINO ET AL. - 411

https://github.com/mickaelfiorentino/keyv
https://github.com/mickaelfiorentino/keyv

crossbar switch (XBS). Note that in contrast with many
asynchronous circuits, the XBS in the AnARM does not
include any synchronization mechanism.

2.2.1 | Multicycle operations

Similar to most processors, instructions in the AnARM are
decomposed in steps (Fetch, Decode, Execute, …), and paral-
lelism among instructions is exploited by overlapping the
execution of multiple instruction steps. Microarchitectural
implementations of ILP usually relies on pipelining, where a
new instruction may enter the pipeline as soon as the first stage
is available. In single-issue in-order execution, ILP is at its
maximum when each stage of the pipeline processes a step of
different instructions. By contrast, the AnARM exploits ILP by
overlapping the execution of multiple instructions in different
multicycle EUs (similar to the multicycle processor of

Hennessy & Patterson [26]). Each self-timed stage is a basic
processing element, as depicted in Figure 1. A new instruction
may enter the EU only when the last stage has completed its
execution. Hence, each EU contains a maximum of one in-
struction at any given time. In single-issue in-order execution,
ILP is at its maximum when each EU processes one step of an
instruction.

2.2.2 | Resource tokens

Structural hazards that would arise from concurrent access to
shared resources by multiple EUs are addressed using resource
tokens. In Octasic's terminology, tokens are signals associated
with shared resources that asynchronously propagate through
EUs [6]. In Figure 2, tokens are represented by coloured ar-
rows, and their associated resources are indicated in the legend.
The principles of arbitration with tokens in the AnARM are as

F I GURE 2 AnARM processor overview

412 - FIORENTINO ET AL.

follows [8]: when a token enters an EU, if the EU requests a
transaction with the associated resource, it is retained in a DE
until the transaction is completed. If the EU does not request
the transaction, the token is directly released. A token travels
along EUs in sequence (see Figure 2), thereby granting
resource access to one EU at a time. This organization of
resource tokens in rings serves the dual purpose of granting
access to shared resources and synchronizing transactions be-
tween a resource and the associated EU stage.

2.2.3 | EU stage

Figure 1 represents typical EU stage architecture in the
AnARM and illustrates the synchronization mechanism using
resource tokens. A token is being consumed (i.e. resource ac-
cess is granted) as long as it propagates through the DE
matching the delay of the resource access path. The local clock
(capture clock) generated from the delayed token triggers the
destination register. The source register may represent the
destination register of a resource or the destination register of
another EU stage. It is triggered by a local clock (launch clock)
generated either by the same token coming from a different
EU or by another token coming from a different stage.
Because EUs are multicycle, stagei+1 accepts data from stagei
without returning an acknowledgement.

2.2.4 | Timing conditions

Let us consider the timing conditions that should be valid for
the correct operation of a typical EU stage. When the same
token generates both the launch clock and the capture clock
(assuming that the latch is transparent), the setup condition is
the same as with BD circuits [19]: the delay on the token path
should exceed the delay on the data path from the source
register to the destination register. However, when the launch
clock is generated by a token different from the capture clock,
the setup condition may vary by an unpredictable amount
equal to the arrival time difference between the two tokens.
The role of the latch controlled by the valid signal is to block
the input token until the source register is triggered. It ensures
that the setup condition is satisfied as long as the DE delay
matches the data path delay. Hold conditions found in BD
circuits—associated with the backward propagation of control
signals through the acknowledgement line—have no direct

correspondence here. However, we show in Section 3 that hold
conditions exist and explicitly define them.

2.2.5 | Instruction-level parallelism

In the AnARM, the clocking mechanism and ILP organization
are tightly coupled. Indeed, each stage in an EU is controlled
by a different token, and the ordering of tokens defines the
order in which instruction steps are executed. For example,
updating the PC (PC token) must be performed before
accessing the instruction memory (I-Mem token). Similarly, a
new instruction cannot be launched (Launch token) before the
write operation of the previous instruction in the EU is
completed (Reg.Wr token). In addition, valid signals distrib-
uted across EUs stages allow the ordering of resource tokens
by controlling their propagation in EUs through latches. These
control signals carry the information that one or more stages
have completed their execution. Hence, the conditions for
initiating a transaction in an EU stage are as follow: (i) the
associated resource token has arrived, and thus, a transaction
involving the same resource in the previous EU has finished;
and (ii) the valid signal is enabled, and thus, transactions
involving dependent tokens in the same EU have finished.

So far, we have described the in-order operations of the
AnARM based on the arbitration of shared resource access
using tokens. But the AnARM computes instructions out-of-
order using arithmetical and logical units (ALUs) distributed
across all EUs. In contrast with shared resources, these repli-
cated resources have no need for access arbitration and thus do
not require tokens. Replicated resources can be used as soon as
the operands they need to operate are ready. The subsequent
stages may depend on the results that replicated resources
produce, which are handled similarly to other dependent stages
using valid signals. Replicated resources operated concurrently
enable another level of parallelism: the AnARM is an out-of-
order processor with in-order instructions issue, out-of-order
execution, and in-order completion.

Figure 3 shows how ILP is achieved by allocating in-
structions steps in EUs stages. A given EU processes the ith

instruction modulo E, where E represents the number of EUs.
Coloured rectangles represent instruction steps, with their
length representing the stage delay and their colour repre-
senting the associated token. Notice that delays vary from one
stage to another—much like with BD pipelines—with very
short rectangles representing the case where a stage is

F I GURE 3 Illustration of instruction-level
parallelism in the AnARM

FIORENTINO ET AL. - 413

bypassed. Horizontally, steps are processed in a sequence that
follows the dependency of tokens in an EU (i.e. Launch →
Reg.Rd→ PC …). Vertically, steps are processed in a sequence
that follows the propagation of tokens across EUs (i.e. Launch:
EU0 → EU1 → EU2 …). The Execution steps, which rely on
replicated ALU resources, can be completed out-of-order
because they are not associated with a token: the Execution
step of the ith instruction can finish before the Execution step
of the (i−1)th instruction is completed. Results are written back
to the RF sequentially using the Reg.Wr token. Data de-
pendencies between nearby instructions are handled by pre-
venting the Execution step in the processing EU from starting
before the operands are ready and by forwarding data between
all EUs using the XBS as soon as results are available. For
example, Figure 3 shows that the third instruction depends on
data coming from the previous instruction in the r2 register.
The operands come from the XBS, thus the Reg.Rd token is
bypassed, and the Execution step does not start before the last
Execution step is completed.

In contrast with existing literature [6–8], this analysis has
emphasized the different levels of parallelisms in the AnARM.
The first level of parallelism (in-order) is achieved by concur-
rently operating multicycle EUs with shared resources. The
second level of parallelism (out-of-order) is achieved by
replicating resources in different EUs.

3 | KeyRing MICROARCHITECTURE

In this section, we present the KeyRing self-timed micro-
architecture derived from the analysis of the AnARM in Sec-
tion 2. We propose the KeyRing protocol, an arrangement of
EUs in a two-dimensional toroidal mesh topology, as the
elementary organization of KeyRing systems and the KeyRing
template as an alternative implementation of the basic pro-
cessing element used in the AnARM (Figure 1). This new
circuit template and the formal definition of the KeyRing
protocol also ease integration with timing-driven EDA flows
(see Section 4). Here, the focus is on the first level of paral-
lelism (in-order), while formalizing, analysing, and imple-
menting the second level of parallelism (out-of-order) is left for
future works.

3.1 | KeyRing template

The need to modify the AnARM template (see Figure 1) comes
from the following: (i) The tokens and valid signals carry
redundant information. That is, one or more stages have
completed their execution. (ii) The tokens and valid signals use
different signalling conventions. Tokens use transition signal-
ling, while valid signals use level signalling. (iii) The AnARM
template is less compatible with a timing-driven methodology
because latches are used on the clock paths.

Figure 4 shows the proposed alternative to the AnARM
template based on a Key unit controller (KU). A KU is an
adaptation of the click elements circuit [15] that produces a

local clock for the registers in the data path and a state signal
used to replace both the tokens and the valid signals. We call it
a Key to contrast it with token in the AnARM and request and
acknowledge in BD circuits. Similarly to a token, a Key uses
transition signalling and is delayed through a DE to match a
stage logic delay. Like valid signals, Keys are generated by flip-
flops and are involved in the control of other Keys. Our
proposed processing element (Figure 4) operates as follows: A
toggle flip-flop stores a state signal (Ke,s), and a pair of XOR

gates implements the phase conversion that generates the local
clock (Ce,s). The rising edge of the clock toggles the state of the
Key, which through the feedback path initiates the falling edge
of the clock. A new cycle begins when the two input Keys,
asynchronously generated by other KUs, and the local Key
have toggled and are in the same state. The following condi-
tions must be satisfied for correct circuit operation: (i) The
inputs must remain stable during the active phase of the clock.
This is ensured by construction of the KeyRing protocol. (ii)
The clock pulse width must be larger than the minimum pulse
width defined in the technology library. This can be enforced
by sizing the buffer on the feedback path. Compared with the
original Click Elements [15], the main difference comes from
adaptation of the phase conversion mechanism inspired by the
implementation reported in [25]. This difference accounts for
the specificities of the KeyRing protocol. It is worth noting
that similar circuits were independently proposed by Traylor in
[27] and Quinton in [28].

As for the AnARM, KeyRing systems do not use the
channel abstraction of elastic circuits. The KeyRing is an or-
ganization of KUs linked together by Keys in rings (hence the
name), which orchestrates the generation of self-timed clocks
across EU stages. Keys arbitrate the access to shared resources,
and their states bound the activity of EU stages. An EU stage is
activated by its KU when dependent Keys (coming from other
KUs) have triggered the local clock. The ordering of KUs in
the KeyRing is tightly coupled with the level of parallelism
exposed by the system.

3.2 | KeyRing protocol

The KeyRing microarchitecture is suitable for implementing
any sequential system that would otherwise be implemented
with a pipeline. Figure 5a represents a generic KeyRing
circuit equivalent to a three-stage pipeline. It is composed of
three EUs (columns) of three stages each (rows). Re,s
represent the registers of the data path, Ke,s are their asso-
ciated KUs, and keye,s are the Keys. The KeyRing is
modelled by the graph of Figure 5b, where nodes represent
KUs, and arcs represent Keys. Interestingly, this intercon-
nection topology of processing elements has previously been
studied in the context of multicomputer networks [29].
Here, we reuse some of the notations and definitions pro-
posed in [29].

LetG = (U,K) be the graph of Figure 5b such thatU ∈ ξ�
ζ and K ∈ ξ2 � ζ2, where ξ is a set of E identical EUs, each
comprising a set ζ of S stages. G is a toroidal mesh that

414 - FIORENTINO ET AL.

consists of a two-dimensional grid of EUs with wraparound
connections at the edges. For any node (e, s), e ∈{0,…, E − 1}, s
∈{0, …, S − 1}, connections are defined as

ðe; sÞ ←ðe; 〈s − 1〉SÞ; ð〈e − 1〉E; 〈sþ ðα − 1Þ〉SÞ
ðe; sÞ →ðe; 〈sþ 1〉SÞ; ð〈eþ 1〉E; 〈s − ðα − 1Þ〉SÞ

ð1Þ

where 〈x〉X signifies that x is considered modulo X, which
allows accounting of the wraparound connections at the edges,
where α ∈{1, …, S} represents the dependency shift between
two stages of successive EUs. Note that Figure 5 shows the
specific case where E = 3, S = 3, α = 1.

Definition 1 An in-order KeyRing system is such that
no stage is computed concurrently in more than one
EU.

Equation (1) defines KeyRing organizations in which
computations are performed in order according to

Definition 1. A value of α = 1 corresponds to the case
where a stage (e, s) in a given EU can start when the stage
in the previous EU (e−1, s) has finished, which maximizes
parallelism. On the opposite end, a value of α = S corre-
sponds to the case where the first stage of a given EU (e, 0)
can start when the last stage of the previous EU (e−1, S−1)
has finished, which minimizes parallelism. Indeed, the level
of parallelism of an in-order KeyRing system depends on
the number of EUs (E), the number of stages per EU (S),
and the relation between dependent stages across successive
EUs (α). Let F(e, s) be the relation between these parame-
ters such that all the stages (e, s) having the same value of F
(e, s) are computed concurrently:

Fðe; sÞ ¼ 〈sþ αe〉S ð2Þ

Definition 2 The level of parallelism P of an in-order
KeyRing system is the number of elements in the set of

F I GURE 4 Processing element used in
KeyRing systems representing one stage of a
multicycle execution unit controlled by the proposed
Key unit

F I GURE 5 A KeyRing circuit (a) is a two-dimensional grid of Key units linked together by Keys controlling a set of registers (Re,s). The KeyRing protocol is
modelled by a graph (b) having a toroidal mesh topology with wraparound connections at the edges. The represented KeyRing has E = S = 3 and α = 1

FIORENTINO ET AL. - 415

all (e, s), e ∈{0, …, E − 1}, and s ∈{0, …, S − 1}
having the same value of F(e, s). It is equal to the
number of EUs: P = E.

From these definitions, we propose a necessary condition
on the KeyRing parameters (E, S and α) that a KeyRing system
should satisfy in-order operation.

Proposition 1 An in-order KeyRing system satisfies
αE = λS with λ ∈{1, …, α}.

Proof. By definition of an in-order KeyRing system
(Definition 1), a given stage s has the same value of F(e, s)
in only one EU e. From Equation (2), by taking advantage of
the symmetry of the graph, this can be expressed for the first
stage as FðE; 0Þ ¼ Fð0; 0Þ⇒ 〈αE〉S ¼ 0 ⇒ αE ¼ λS; λ ∈ Nþ.
Moreover, KeyRing organizations where λ > α have more EUs
than stages per EU, which is incompatible with Definition 1.
Thus, λ⩽α. □

KeyRing systems having more stages per EU than EUs
(S > E) are compatible with Definition 1. However, these
configurations are suboptimal. For example, a KeyRing with
(E = 3, S = 6, α = 2) has the same level of parallelism as a
KeyRing with (E = 3, S = 3, α = 2) despite having twice as
many stages per EU. The optimal configuration of an in-order
KeyRing system is one in which a given level of parallelism is
obtained with the minimum number of EUs and stages per
EU. It is obtained when E = S. However, we will see that
KeyRing circuits having E < S need fewer timing constraints to
be correctly implemented, which results in reduced synthesis
time and more robust circuits. In Section 5, we present two
KeyV processors: the first uses an (E = 3, S = 6, α = 2)
KeyRing (p = 3), while the other uses an (E = 6, S = 6, α = 1)
KeyRing (p = 6).

3.3 | Performance

The performance of a sequential circuit is bounded by the
level of parallelism and the speed of the computations. In a
typical synchronous system, the speed is determined by a
global clock—usually generated externally—characterized by a
given frequency and uncertainties from the clock distribution
network. In a KeyRing system, by contrast, the speed is
determined by local clocks—generated and timed internally—
characterized by their frequencies and the uncertainties com-
ing from their respective clock trees. Moreover, in a syn-
chronous system, the clock base frequency is independent of
the implementation flow; only the uncertainties of the clock
tree are affected by the implementation. In contrast, because
the clocks in a KeyRing system are timed by DEs, their fre-
quencies are constantly being altered during the implementa-
tion flow.

Definition 3 The period T(e, s) of a clock in a KeyRing
system is the delay separating the occurrence of two
pulses generated by a given KU (e, s).

As opposed to synchronous systems, in which the clock
period corresponds to the delay between adjacent stages
(adjusted with the clock skew), the periods of the self-timed
clocks in a KeyRing system should not be confused with the
delay between stages due to the multicycle nature of EUs.
Hence, this metric is independently defined.

Definition 4 The delay Δdst
src between a source KU (src)

and destination KU (dst) is the delay separating the
occurrence of the destination clock, generated by (dst),
from the occurrence of the source clock, generated by
(src).

In synchronous pipelines, the delay between two stages
separated by multiple stages is simply the sum of each stage
delay expressed as a multiple of the clock period (assuming no
stalls). In a KeyRing system, by contrast, the delay between two
stages cannot simply be expressed as the sum of each stage
delay because of the interdependence of KUs, as modelled by
the KeyRing graph (Figure 5b). Let δdstsrc be the delay between
two adjacent nodes ((src) and (dst)) in the KeyRing graph,
which can be evaluated with STA. This delay includes the delay
of the DE and the delays of the clock distribution network,
including the delay from the source KU to the DE and from the
DE to the destination KU. As illustrated by the KeyRing graph,
the instant at which a KU fires its clock recursively depends on
the arrival time of its predecessor Keys. To determine the
effective delay between two clocking events in the KeyRing—
that is, the delay between two stages in the KeyRing as per
Definition 4—this recursivity should be accounted for.

Algorithm 1: Determine the effective delay between
a source (src) and a destination (dst) KU

Data: Let G be the graph of Figure 5b, A[e,
s] be the forward adjacency lists of
a node (e, s) ∈ G, μ and ν be tables,
and Γ be a stack

1 Function EFFECTIVE_DELAY((src), (dst)) is
2 Initialize(Γ,μ, ν)
3 push(Γ, (src))
4 while Γ ≠ ϕ do
5 (e, s) ← pop(Γ)
6 ν(e, s) ← μ(e, s)
7 foreach (i, j) ∈ A[e, s] do
8 μ(i, j) ←max μði;jÞ; μðe;sÞ þ δi;je;s

� �

9 if (i, j) has not been reached yet then
10 push(Γ, (i, j))
11 end
12 end
13 end
14 return μ(src)−ν(dst)
15 end

To this end, we propose a longest-path algorithm (Algo-
rithm 1) that computes the effective delay between two
clocking events by finding the longest path between two nodes

416 - FIORENTINO ET AL.

of the KeyRing graph (Figure 5b). It is derived from the
breadth-first search (BFS) and the Dijkstra algorithms [30],
which are well-known methods for solving similar problems.
Each arc of the graph is weighted by δba, which has been
defined as the latency between two adjacent nodes a and b. The
algorithm starts from the source node to traverse the graph by
exploring the forward adjacency list of each node. Each step of
the way, it computes the maximum cumulative distance from
the source. When applied to a directed graph, the BFS algo-
rithm traverses each arc exactly once [30]. Given the symmetry
of the graph, this means that the cumulative distance is eval-
uated twice for each node, the retained value being the largest.

Algorithm 1 can be used to determine the delay Δdst
src be-

tween two stages in a KeyRing system by computing the
effective delay between a source, (src), and a destination, (dst),
KU. Similarly, it can determine the period T(e, s) of a clock by
computing the effective delay between two clocking events of
the same KUs.

Δdst
src ¼ effective_delay ðsrcÞ; ðdstÞð Þ ð3Þ

Tðe; sÞ ¼ effective_delay ðe; sÞ; ðe; sÞð Þ ð4Þ

Proposition 2 All the clock periods in a KeyRing
system have the same T for a given delay element set
configuration: ∀(e, s), T(e, s) = T.

Proof. From Equation (4), T(e, s) is computed with Algo-
rithm 1 by traversing the graph from node (e, s) back to itself.
The algorithm reaches each node twice, choosing the longest
path at each step. Thus, regardless of the starting point, the
computation of T(e, s) traverses the longest cycle of the graph.

4 | TIMING-DRIVEN DESIGN FLOW

This section deals with the integration of KeyRing systems into
an automated design flow. The focus is on timing-driven syn-
thesis and STA. Timing-driven synthesis engines can optimize
a netlist to meet a performance target, and STA tools can verify
whether these targets are met. Trade-offs can be made between
area, power, and performance, which improves the resulting
design and significantly lowers design time compared with a
non-timing-driven flow. However, the integration of self-timed
circuits into standard timing-driven EDA flows is challenging.
Given the similarities between KeyRing systems and asyn-
chronous BD circuits, as discussed in Section 2.1, we first re-
view existing methods for implementing BD circuits with
standard EDA tools (Section 4.1). The methods retained rely
on Relative Timing Constraints [16–18,20]. We propose RTCs
definition of KeyRing circuits (Section 4.2), from which we
derive a set of timing constraints (Section 4.3) that allows
standard timing engines to correctly apprehend KeyRing
circuits.

4.1 | Background

Asynchronous BD circuits work under timing assumptions
similar to synchronous systems (bounded delay model):
glitches are allowed in the combinational logic because data
transitions are expected to happen strictly before a validity tag
is analogous to a clock signal. Thus, they are more compatible
with synchronous EDA flows than other asynchronous design
styles [5]. Many techniques have been developed to alleviate
the various limitations related to the implementation of BD
circuits using standard EDA tools.

4.1.1 | Standard cells

A first limitation is related to the use of asynchronous-specific
gates. Typically, the C-elements used in the micropipeline BD
template [31] are not provided as standard cells by silicon
vendors. Thus, additional time and expertise are needed to
design and characterize these cells. Some asynchronous tem-
plates have addressed this issue. Most notably, the mousetrap
[32] and click elements [15] templates rely solely on standard
components (D-latches, flip-flops, XOR etc.). Likewise, as pre-
viously mentioned, the KeyRing template uses only standard
components. Compared with the AnARM template, it favours
flip-flops over latches to facilitate the definition of timing
constraints.

4.1.2 | Logical synthesis

Three main approaches have been explored for the synthesis of
asynchronousmodels [33, 34]: (i) Custom synthesis tools [15, 35]
that rely on specific languages (e.g. Balsa, Haste). (ii) Desynch-
ronization design flow [36], which starts with the synthesis of a
synchronous specification and converts the netlist into an
equivalent asynchronous BD circuit (flip-flops are replaced with
latches, and the clock tree is replaced with handshake control
networks). (iii) Template-based approach [37, 38], which relies
on various empirical techniques applied to standard synthesis
tools to synthesize hardware descriptions of BD circuits. Con-
trol structures (asynchronous templates) are designed at the gate
level, and a set of dont_touch directives are used to prevent their
automatic removal. The first two methods are research areas of
their own, and their study is beyond the scope of this paper. This
work uses a template-based approach in combination with a
standard synthesis tool.

4.1.3 | Timing analysis

The methods presented for the logical synthesis of BD circuits
do not guarantee their temporal correctness, nor do they allow
timing-driven optimizations. To this end, timing constraints
must be derived from the circuit and supported throughout the
design flow stages. A suitable set of timing constraints should
allow the synthesis tool (i) to prevent hazards due to timing

FIORENTINO ET AL. - 417

loops and (ii) to meet (with timing-driven optimizations) and
verify (with STA) the performance targets of the system.
However, modelling the timing of asynchronous BD circuits
with standard timing constraints is a major challenge [16–20].

The most promising avenues in this research area rely on
RTCs. In a first approach reported in [17, 18], RTCs are
translated into min_delay and max_delay constraints between
each sequential stage and respectively applied to the control
and data paths. This method allows the use of STA to verify
the timing, but it does not benefit from the ability of the
synthesis tool to explore the design space with timing-driven
optimizations because the constraints must be updated dur-
ing the flow. Other works have proposed leveraging the
concept of clock to improve compatibility with standard EDA
tools. The work reported in Ref. [39] first proposed to define a
pair of non-overlapping virtual clocks on the handshake sig-
nals of a BD circuit. The works reported in Ref. [37, 40]
explore the idea further by defining generated clocks, derived
from virtual clocks, to model the propagation of events in the
control path. The resulting timing paths are defined as zero-
cycle paths to account for the non-periodic characteristics of
BD operations. These clock constraints enable some optimi-
zations of the data path and facilitate STA. However, similar to
the min/max_delay method, they should be updated during
the flow to reflect the actual delays of the control paths. The
LCS methodology [19, 20] draws the best from these previous
works. First, it exhaustively defines the RTCs of a BD template.
Then, for each RTC, a set of clock constraints is advanta-
geously defined in a way that preserves the timing relationship
between the data path and the control path, allowing the
synthesis tool to optimize them concurrently. Our proposed
method adapts the LCS methodology to the case of KeyRing
circuits.

4.2 | Relative timing constraints of KeyRing
circuits

RTCs formally define the timing requirements a circuit must
satisfy to operate correctly. They are described by the following
relation [18, 20],

pod ↦ pocearly ≺ poclate − ε ð5Þ

which specifies that the consequences of an event occurring at
the point-of-divergence (pod) must reach the point-of-early-
convergence (pocearly) before reaching the point-of-late-
convergence (poclate) with a margin ɛ. Protocol-level RTCs
define the timing relations between adjacent stages having
control path dependencies such as those typically found in BD
circuits (Req and Ack) and KeyRing circuits (Keys). More
detailed classifications of RTCs can be found in [17, 20]. The
timing path between the pod and the data pin of a register is
the launch path, and the timing path between the pod and the
control pin of a register is the capture path. An RTC translates
to a setup condition if the capture event reaches the poc after

the launch event, and it translates to a hold condition if the
capture event reaches the poc before the launch event.

Figure 6 shows the generic KeyRing circuit with an overlay
representing the protocol-level RTC definitions spanning
multiple EU stages. Without a loss of generality, these defini-
tions are shown for a KeyRing having E = S = 3 and α = 1.
The pods serve as references for the RTC definitions. In a
synchronous circuit, this is usually defined as the main clock,
and thus it can be defined implicitly. In a KeyRing (or BD)
circuit, by contrast, it varies with each stage and must be
explicitly defined. In KeyRing circuits, finding the pods is
further complicated by the recursive dependencies of the Keys.
In practice, a pod can be localized as the last common point
between the launch and capture paths. That is, a KU at the
intersection of a launch path from dependent KUs to the data
input of Re,s, and a capture path from dependent KUs to the
clock input of Re,s is the pod of a KeyRing RTC. A specificity
of KeyRing circuits, compared with BD circuits, is that each
stage (e, s) has two setup RTCs and two hold RTCs. The first
RTC comes from the dependent stage (e, s−1), while the
second RTC comes from the dependent stage (e−1, s) (see
Figure 5b). We denote Ce,s and De,s the clock pin and the data
pin (respectively) of register Re,s, and Ke,s the Key of the (e, s)
KU. Moreover, note that Figure 6 denotes launch paths with
dashed lines and capture paths with plain lines:

setup ðaÞ: Ce;s−1 ↦ Dmax
e;s ≺ Ce;s − ε ð6Þ

setup ðbÞ: Ce−1;s ↦ Dmax
e;s ≺ Ce;s − ε ð7Þ

hold ðaÞ: Ce;s−1 ↦ Ce;s ≺ fCeþ1;s−1;Dmin
e;s g − ε ð8Þ

hold ðbÞ: Ce−1;s ↦ Ce;s ≺ fCe−1;sþ1;Dmin
e;s g − ε ð9Þ

The setup RTCs are defined by Equations (6) and (7)
and shown in Figure 6a with yellow and blue, respectively.
The capture path starts at Ce,s−1 (Ce−1,s) and reaches Ce,s
from the DE of Ke,s−1 (Ke−1,s) through the shortest path.
The launch path starts at Ce,s−1 (Ce−1,s) and reaches Re,s
from Re,s−1 (Re−1,s) and the combinational logic through the
longest path. The hold RTCs are defined by Equations (8)
and (9) and are represented by Figure 6b in yellow and blue,
respectively. The capture path starts at Ce,s−1 (Ce−1,s) and
reaches Ce,s from the DE of Ke,s−1 (Ke−1,s) through the
longest path. The launch path starts at Ce,s−1 (Ce−1,s), then
reaches Ce+1,s−1 (Ce−,s+1) from the DE of Ke,s−1 (Ke−1,s), and
reaches Re,s from Re+1,s−1 (Re−1,s+1) and the combinational
logic through the shortest path.

Setup RTCs in KeyRing circuits are similar to those in BD
circuits [19, 20], but hold RTCs are different. Indeed, the hold
conditions in a typical asynchronous BD stage are associated
with the feedback path of the acknowledgement signal. The
lack of an acknowledgement signal path in a typical multicycle

418 - FIORENTINO ET AL.

EU may suggest that KeyRing circuits are exempt from hold
conditions altogether, as discussed in Section 2. However, hold
conditions are revealed when looking at the interaction of
multiple EU stages, as shown in Figure 6. In a KeyRing circuit,
hold violations happen in stage (e, s) when the incoming data
of register Re,s are overridden by the data produced from a
concurrent stage from register Re+1,s−1 (launched by the clock
event on Ce+1,s−1), or from register Re−1,s+1 (launched by the
clock event on Ce−1,s+1) before they are captured by the clock
event on Ce,s.

Lastly, we must consider multipod RTCs. Although an
RTC is by definition relative to a single pod, we call multipod
RTCs the cases where data launched from poda (podb) is being
captured by a clock starting from podb (poda). These cases exist
for both setup and hold conditions in KeyRing circuits (see
Figure 6) and should thus be constrained appropriately. Mul-
tipod timing paths are only activated when the capture path
from podb (poda) is longer than the capture path from poda
(podb), which increases the likelihood of satisfying the setup
constraint, but works against meeting the hold condition. Thus,
additional constraints are only needed for multipod hold
timing paths. However, when trying to define new hold RTCs
from parent KUs, we found that there will always be a race
between poda and podb, regardless of the stage at which the
RTC starts. In practice, as long as the clock definitions used to
translate KeyRing RTCs belong to the same clock group,
interclock timing paths are automatically constrained by STA.
The solution that we used to safely constrain multipod hold
RTCs is to add hold margins between interclock definitions.

4.3 | Static timing analysis of KeyRing
circuits

For the RTCs defined in the previous section to effectively
constrain the design in a timing-driven design flow and to
enable setup and hold timing verifications for each EU stage
using standard STA reports, they must be translated into a set
of timing constraints using the Synopsys Design Constraints

(SDC) format that the tools can interpret appropriately. As
already mentioned, this task is not trivial [16–20]. This section
deals with this translation for the case of KeyRing circuits.

An important contribution of the work reported in Ref.
[20] was to show that standard EDA tools already deal with
RTCs. Indeed, timing engines use clock constraints defined at
every register clock pin to derive setup and hold timing con-
ditions from RTCs defined in the timing characterization file of
a standard cell library (usually in Liberty format). Protocol-
level RTCs are typically not included in Liberty models pro-
vided with standard cell libraries because they involve multiple
components. In Ref. [34], Liberty models of micropipeline BD
stages are proposed to make the tool interpret protocol-level
RTCs of the stages as internal RTCs of components, which
are exploited using min/max_delay timing constraints. How-
ever, this approach does not allow concurrent timing-driven
optimizations of the data and control paths. Instead of hid-
ing protocol-level RTCs in Liberty models, the LCS method-
ology [19, 20] defines a set of local clock constraints such that
the tool interprets RTCs between adjacent stages as a function
of the internal RTCs of their components. The main advantage
of using clock constraints (create_clock and create_gener-
ated_clock SDC commands) is that they allow standard EDA
tools to be used as they were intended, thus improving support
for timing-driven optimizations.

Algorithm 2 shows the proposed set of timing constraints
that makes KeyRing circuits compatible with a timing-driven
design flow. Its underlying principles are as follow:

Algorithm 2: KeyRing timing constraints
pseudocode

Root clocks
1 foreach (e, s) in KeyRing do
2 create clock ce,s on Ce,s
3 generate clock ke,s from ce,s on Ke,s
4 end
Setup launch & capture clocks

5 foreach (e, s) in KeyRing do

F I GURE 6 Protocol-level relative timing constraint definitions in a KeyRing circuit. Dashed lines represent launch paths, and plain lines represent capture
paths

FIORENTINO ET AL. - 419

6 generate clock sle;se;s−1 from ce,s−1 on Ce,s−1
7 generate clock sce;se;s−1 from ke,s−1 on Ce,s
8 generate clock sle;se−1;s from ce−1,s on Ce−1,s
9 generate clock sce;se−1;s from ke−1,s on Ce,s
10 add these clocks to the setupe,s group
11 end

Hold launch & capture clocks
12 foreach (e, s) in KeyRing do
13 generate clock hle;se;s−1 from ke,s−1 on Ce+1,s−1
14 generate clock hce;se;s−1 from ke,s−1 on Ce,s
15 generate clock hle;se−1;s from ke−1,s on Ce−1,s+1
16 generate clock hce;se−1;s from ke−1,s on Ce,s
17 add these clocks to the holde,s group
18 end

Margins
19 add uncertainty to all capture clocks
20 increase the uncertainty for interclock

hold capture clocks
Exceptions

21 define false paths from/to root clocks
22 define groups of clocks as asynchronous
23 define false paths from capture clocks
24 define false paths to launch clocks

Miscellaneous
25 propagate all clocks
26 define zero-cycle path from launch to

capture clocks

4.3.1 | Root clocks

The clocks, ce,s and ke,s, defined on the clock (Ce,s) and Key (Ke,s)
pins of each KU are used (i) to break architectural loops that the
timing engine finds by travelling along the KeyRing (we take
advantage of the fact that a clock constraint definition breaks
any timing path crossing its source point); and (ii) to generate
the launch and the capture clocks in the design (we use the
ability of generated clock constraints to propagate events
through breakpoints). Using this combination of clock con-
straints for each KU is enough to disable all the timing cycles in
the KeyRing and provide support for the rest of the constraints.
The architecture (Figure 4) facilitates these constraint
definitions.

4.3.2 | Launch & capture clocks

The remaining clock constraint definitions, derived from the
root clocks, are meant to be used by the timing engine to
effectively constrain the data paths. The setup clocks translate
RTCs (6) and (7), while the hold clocks translate RTCs (8)
and (9). For each RTC, a launch and a capture clock are
defined for each poc: the setup-launch clocks (noted sl) and
the setup-capture clocks (noted sc) are respectively used for
pocearly and for poclate. Similarly, the hold-launch clocks (noted

hl) and the hold-capture clocks (noted hc) are respectively
used for poclate and pocearly. The pods are automatically
determined as the last common point between the launch
clock and the capture clock paths corresponding to one of the
root clocks ce,s.

4.3.3 | Margins

Margins are added to the timing paths by applying an uncer-
tainty surplus delay between every pair of launch and capture
clocks (using the set_clock_uncertainty SDC command). In
addition, we increase the margin between crossed pairs of
hold-launch and capture clocks to safely constrain multipod
timing paths (see Section 4.2).

4.3.4 | Exceptions

First, root clocks are excluded from the timing analysis with
false path definitions (using the set_false_path SDC com-
mands), as they are not intended to constrain the data paths.
Then, interclock timing interactions between selected groups
of clocks are disabled (using the set_clock_groups asynchro-
nous SDC commands). Every group of four setup (hold)
clocks generated for each stage (e, s) is added to the setupe,s
(holde,s) group after being defined. Only the interclock in-
teractions between clocks of the same group are allowed: (i)
setup clocks do not interact with hold clocks, and (ii) clocks
defined at stage (e, s) do not interact with clocks defined at
other stages. Finally, the timing paths coming from (reaching)
capture clocks (launch clocks) are defined as false paths
because capture clocks (launch clocks) do not launch (capture)
data.

4.3.5 | Miscellaneous

The default behaviour of synchronous tools in dealing with
clocking events must be altered to be suitable for KeyRing
circuits. First, clocks are propagated (using the set_propaga-
ted_clock SDC command), which allows the timing engine to
account for the contributions of the clock path logic delay to
the skew. In our case, propagating clocks is mandatory to
include the control path delay—including DE delays, KU logic
delays etc.—in the computation of the launch and capture
clocks latencies. Second, the ordering of active clock edges that
are considered for the timing analysis must be modified.
Indeed, by default, setup checks are performed between two
successive active edges of the clock, separated by the clock
period, and the hold checks are performed between the
same active edges. However, for circuits with bundled data
operations (such as asynchronous BD and KeyRing circuits),
the same clock edge generates the launch and the capture
events. Thus, (i) both setup and hold checks should be
performed between the same active edge of the clock, and
(ii) the constraints should reflect the relative arrival time of

420 - FIORENTINO ET AL.

the launch and the capture clocks regardless of their
respective period. This is achieved by defining a zero-cycle
path between launch and capture clocks (using the set_-
multicycle_path 0 SDC command). Having propagated
launch and capture clocks, with setup and hold timing
checks performed at zero-cycle, allows adequate use of the
control path (including the DE) delay as a constraint for the
associated data path.

5 | CASE STUDY: KeyV PROCESSORS

This final section presents a use case for the KeyRing micro-
architecture and its associated timing-driven design flow. We
propose the KeyV processors, implementing the RV32IM
variant of the RISC-V ISA: KeyV362, using an (E = 3, S = 6,
α = 2) KeyRing, and KeyV661, using an (E = 6, S = 6, α = 1)
KeyRing, thereby achieving twice the level of parallelism of
KeyV362. We chose not to compare KeyV with other RISC-V
processors in the literature, as we reckon with the limitations of
such comparisons in this context. For instance, memories in
KeyV are simply modelled in the test bench, which limits the
relevance of performance and energy comparisons. Instead, we
have developed SynV—our own synchronous alternative to
KeyV—to explore design trade-offs. SynV is based on an in-
order six-stage pipeline. It reuses most of the modules used
in KeyV, implements the same variant of the ISA, and was
synthesized using the same technology and EDA tools, with
and without clock-gating. We emphasize making a fair com-
parison between the processors to uncover, among the char-
acteristics of the KeyV processors, those that are attributable
to the KeyRing microarchitecture. The KeyV and SynV pro-
cessors are synthesized with a 65 nm ASIC design kit from
TSMC, using Synopsys EDA tools (DC and PrimeTime). Their
comparisons are based on postsynthesis timing simulations
using the CoreMark benchmark [22], combined with activity-
aware power analysis.

We first discuss the microarchitectures of KeyV (Section
5.1). We then present our experimental protocol along with the
design flow adapted to KeyV (Section 5.2). Finally, we validate
our EDA methodology using postsynthesis results and
compare KeyV and SynV in synthesis time, area, performance,
and power consumption (Section 5.3).

5.1 | Microarchitecture

Figure 7 shows the block diagram of the KeyV and the SynV
processors. Both the SynV pipeline and the KeyV EUs are
composed of six stages—Fetch (F), Decode (D), Register Read
(R), Execute (E), Memory (M), Register Write (W)—and rely
on the same sequential modules: the PC controls the address
bus of the instruction memory (IMEM); the Decode module
decodes RV32IM instructions; the RF is a 32 � 32 bits array of
registers; the ALU contains an adder, a shifter, and logical
submodules, as well as a multiplier and a divider (mul/div)
submodule; the LSU is interfaced with the data memory

(DMEM); and finally the system (SYS) module is responsible
for handling system tasks, including Control Status Register
instructions that provide access to the performance counters.
As already mentioned, memories are not part of the pro-
cessors. For simplicity, we used behavioural models with an
ideal latency of one cycle.

In KeyV, each resource uses a different clock coming from
the KeyRing, while in SynV, the resources use the global clock.
In addition to generating self-timed clocks, and orchestrating
the stages concurrency across EUs, the KeyRing also generates
control signals—sel in Figure 7a—to arbitrate the access to
shared resources in the XBS. Resources are triggered by
different clocks depending on the stage at which they are
operated. Clocks coming from the same stage of different EUs
are ORed together before going to a resource, as illustrated in
Figure 7a. For example, the F clock triggering the IMEM is
driven by F0 or F1 or … or Fe. Following this reasoning, the
PC is clocked by the W clock, the Decode module is clocked by
the D clock, the ALU is clocked by the E clock, and the LSU,
DMEM, and SYS modules are clocked by the M clock. Note
that KeyV also uses a synchronous clock for the performance
counters that is synchronized with the M stages.

Figure 8 illustrates the main differences between the
KeyV362 and the KeyV661 microarchitectures. Following the
design principles developed in Section 3, these two micro-
architectures correspond to two possible KeyRing configura-
tions for a fixed number of stages S = 6: three and six EUs.
KeyV362 comprises three EUs of six stages with a dependency
shift between stages α = 2, which provides an ILP of 3.
Although EUs have six stages, only three of them can be
exploited concurrently because of the value of α—M, R, F, or
W, E, D—, as shown in Figure 8a. KeyV661 comprises six EUs
of six stages with a dependency shift between stages α = 1,
which provides a level of parallelism of 6, equal to that of
SynV. Indeed, similarly to the six-stage pipeline, six EU stages
can be exploited concurrently, as shown in Figure 8b. The
reason for considering the KeyV362 microarchitecture is its
resilience against hold violations. Figure 8 illustrates protocol-
level hold RTCs (see Section 4) between D and R stages in
KeyV processors, with dashed and plain arrows (respectively
launch and capture paths). Data exposed from the D1 stage to
the RF should be clocked by the R1 clock before data from the
D2 stage is updated and reaches the RF through the XBS. In
KeyV661, since R and D stages are concurrent, this hold
condition can only be enforced through timing constraints. In
KeyV362, by contrast, this hold condition is architecturally
enforced through KUs dependencies in the KeyRing; thus, it is
always met.

In KeyV, microarchitectural hazards are caused by the
overlapping of instructions across EUs. First, structural haz-
ards that would arise from concurrent access to shared re-
sources by multiple EUs are addressed by the KeyRing. In
addition, concurrent access to the RF at the R and W stages by
different EUs would cause a structural conflict between their
clocks. To solve it, the RF is only clocked by R clocks, and the
result of instruction i is written back to the RF at the R stage of
instruction i + 1. Then, data hazards that would occur when at

FIORENTINO ET AL. - 421

least one operand used by an EU instruction is used as a
destination register by another EU's preceding instruction are
addressed by the XBS. Finally, control hazards that would arise
because of branching instructions are handled by flushing out
instructions from EUs. Both SynV and KeyV use a simple
predicted-not-taken branching strategy, where the branch
outcome is computed during the E stage and exposed from the
M register. In SynV, the four preceding stages are flushed,
while in KeyV all other EUs are flushed, and the EU
responsible for the branch is also the EU in which the desti-
nation instruction is processed.

The multiplication and division operations (part of the
ALU) require 32 cycles to complete. In SynV, preceding stages
are stalled during the computation of a mul/div instruction,
while in KeyV, the E stage is stalled—the E clock is not
released—until the operation completes. By means of succes-
sive dependencies in the KeyRing, all the clocks are halted until
the operation finishes. In KeyV, the mul/div modules are
clocked by a dedicated KeyRing that we call the inner-
KeyRing. It has the same architecture as the main KeyRing,
but it is composed of only one KU (E = 1, S = 1, α = 1). It is

started after the R stage of a mul/div instruction, stopped after
having released 32 clocks, and synchronized with the E stage.
The details of the inner-KeyRing are not covered further here.

5.2 | Design flow

The KeyV and SynV processors have been synthesized with
Synopsys DC, using the TSMC65GP 65 nm ASIC design
kit from TSMC. We set the operating conditions to the
typical case at TT/1 V/25°C. The timing-driven synthesis
is performed in two incremental steps: A first optimization
pass is geared towards fixing setup violations, and a second
optimization pass tries to fix hold violations. In synchro-
nous designs, hold optimizations are generally performed
during the place and route flow to address issues due to
the clock tree delays. In KeyRing designs, by contrast, hold
optimizations must be performed during synthesis, as DEs
and KUs are the backbone of the clock trees. The only
differences between the KeyV and the SynV synthesis flows
are the timing constraints. The SynV timing constraints are

F I GURE 7 Block diagram of the RISC-V (RV32IM) processors compared in this work. KeyV uses in-order KeyRing microarchitectures, and SynV uses an
in-order six-stage pipeline. They both use the same modules and are synthesized using the same technology and EDA tools with a timing-driven design flow

F I GURE 8 Comparison of instruction-level
parallelism in KeyV processors

422 - FIORENTINO ET AL.

standards targeting a global clock of 500 MHz base fre-
quency, and the KeyV timing constraints are based on
Algorithm 2. We have adjusted the size of DEs using in-
cremental synthesis with the objective of maximizing per-
formance. To support the specification of the KeyRing
timing constraints, we developed a generic tcl library that
facilitates the modelling of KeyRing circuits within standard
EDA tools. We used this library to create the timing
constraints of KeyV362 and KeyV661. As opposed to most
EDA methods proposed in the literature that need to
reload the timing constraints after each implementation
step, the proposed KeyRing EDA flow relies on a single
definition of the timing constraints, and KeyV achieves
similar levels of optimization as SynV.

5.3 | Results and discussion

Table 1 provides a summary of the KeyV (KeyV362 and
KeyV661) and SynV (SynV and its clock-gated version, SynVcg)
synthesis results. First, it shows that the number of clock
definitions used to constrain KeyV is much larger than those
used for SynV, which is expected (see Section 4). Similarly, the
synthesis run time is also much more important for KeyV than
for SynV, which is likely due to the complexity of the timing
constraints. Then, the area reported for each core shows a
reduced size of SynV processors compared with KeyV pro-
cessors. Because modules are the same, this area overhead is
due to replicated data paths in EUs, and the added area of the
KeyRing and the XBS.

Figure 9 shows one of the 334 timing reports in KeyV661 as
a practical example illustrating how the proposed timing con-
straints are interpreted by the STA tool. The proposed timing
constraints are based on the KeyRing microarchitecture and its
associated timing model, which is the main contribution of this
work. The report is a minimum delay (hold) analysis of the
paths between the R5 launch clock and the R0 capture clock.
Consistent with the RTC definitions represented in Figure 6b,
the launch clock (K_main_02_hold_right_launch, corre-
sponding to hle;se−1;s in Algorithm 2) activates the path from R5

((5, 2) KU), through the clock path reaching E5 ((5, 3) KU),
and then through the data path reaching a register data pin at
the R stage clocked by R0 ((0, 2) KU). Alongside, the capture
clock (K_main_02_hold_right_capture, corresponding to
hce;se−1;s in Algorithm 2) activates the path from R5 through the
clock path reaching the registers at the R stage triggered by R0.
Notice that the synthesis engine has automatically sized the rf/
rf_reg register to meet the timing constraints: it uses a flip-flop
cell with a drive of 1 (EDFCNQD1), which is faster than the
default (EDFCNQD0). Having the setup and hold KeyRing
RTCs accurately translated in timing reports, combined with
this automated gate sizing, contributes to demonstrating the
effectiveness of the proposed timing-driven EDA flow. The
other contribution to this demonstration is the successful
execution of postsynthesis timing simulations of KeyV
processors.

Figure 10 shows postsynthesis results obtained from the
performance and the power analysis of the processors based
on the execution of the CoreMark benchmark in timing
simulations. Figure 10a compares the performance and po-
wer efficiency of the KeyV and SynV processors. It shows
that KeyV362 performance is 4� lower than SynV, while
KeyV661 has performance only 1.3� lower than that of
SynV. The reduced performance of KeyV362 is mainly
attributable to its level of parallelism, which as discussed in
Section 5.1, is half that of KeyV661 and SynV. The per-
formance of KeyV661 is mainly limited by the DEs sizes.
Very tight hold constraints—including artificial hold margins
to address interclock hold violations—and extremely long
synthesis runs were the two main factors that prevented us
from further improving the performance of KeyV661.
Figure 10b shows the power consumption of the KeyV and
SynV processors broken down by modules. The low power
consumption of KeyV362 is mainly attributable to the
reduced activity due to its poor performance. In terms of
power efficiency, KeyV362 performs 1.3� better than SynV,
and KeyV661 surpasses SynV by a factor of 1.5�. SynVcg is
2.68� more power-efficient than SynV, and 1.77� more
power-efficient than KeyV661. When looking at the power
breakdown, it appears that the RF, the pipeline/EUs, and
the ALU are the main sources of power consumption. In
particular, the RF is the primary source of power reduction
in KeyV and SynVcg. In KeyV, this reduced power con-
sumption (9.05� for KeyV362 and 3.18� for KeyV661) is
explained by reduced activity of the RF due to (i) a lower
average frequency of operation due to reduced performance,
and (ii) a more controlled use of the clocks. In SynVcg,
there is a 9.46� reduction in the RF power consumption,
which is due to the control of each register by a dedicated
clock-gating cell. Despite their area overhead, EUs consume
less power than the SynV pipeline, even clock-gated. As for
the RF analysis, part of this reduced power consumption
can be attributed to the reduced performance of KeyV, and
part can be attributed to a more controlled activity of the
clocks by the KeyRing. This analysis also applies to the
ALU, in which the registers of the mul/div submodules in
KeyV are only activated when the inner-KeyRing is in use.
Finally, additional power is consumed by the XBS and the
KeyRing in KeyV, which do not find their equivalent in
SynV. Although KeyV661 is not as power-efficient as SynVcg,
its power efficiency is improved over SynV, indicating that
this work is a step in the right direction.

TABLE 1 Summary of KeyV and SynV synthesis results

Core #clock definitions Synthesis time Area (mm2)

SynV 2 ∼5 min 0.44

SynVcg 2 ∼10 min 0.40

KeyV362 212 ∼100 h 0.69

KeyV661 534 ∼150 h 0.98

FIORENTINO ET AL. - 423

6 | CONCLUSION

This paper presented the KeyRing self-timed microarchitecture
and a framework for the timing-driven synthesis of KeyRing
circuits using standard EDA flows. The KeyRing micro-
architecture was derived from the microarchitecture of the
AnARM processor as a generic adaptation of its underlying ad
hoc asynchronous design style to the case of in-order
sequential systems. The main modifications were contributed
to the self-timed clock management system, which was shown
to be more robust than the original and to provide better
compatibility with standard timing engines. An abstract model

of KeyRing circuits was proposed to derive relations linking
performance and ILP with microarchitectural parameters and
support a dedicated timing model. The RTC formalism was
used to rigorously define setup and hold timing conditions in
KeyRing circuits. These timing definitions were advantageously
translated into practical timing constraints fully compatible
with a standard synthesis flow (i.e. timing-driven synthesis and
STA). The KeyRing microarchitecture and its associated EDA
flow were showcased through the design of the RV32IM KeyV
processors (KeyV362 and KeyV661). KeyV362 is more robust to
timing violations at the cost of important performance deg-
radations, while KeyV661 provides better performance but

F I GURE 9 Simplified hold timing report between R5 and R0 in KeyV661

F I GURE 1 0 KeyV and SynV performance comparison based on postsynthesis timing simulations of the CoreMark benchmark with activity-aware power
analysis

424 - FIORENTINO ET AL.

relies on more complex timing constraints. Two synchronous
alternatives to KeyV based on a six-stage pipeline—SynV
(without clock-gating) and SynVcg (with clock-gating)—were
used as a baseline for performance and power consumption
comparisons. The combination of timing reports analysis with
the successful execution of the CoreMark benchmark in
postsynthesis timing simulations demonstrated the validity of
our proposed design methodology. Postsynthesis results first
showed that the synthesis time of KeyV processors is
extremely long because of the complexity of the timing con-
straints. Area reports clearly showed an overhead due to logic
replication in EUs. Finally, power-efficiency figures showed
that KeyV661 is superior to KeyV362 and SynV but inferior to
SynVcg.

ACKNOWLEDGEMENTS
The authors would like to thank CMC for providing the
necessary CAD tools, and NSERC (Canada) for providing
partial funding. This work was funded by the Canadian
Network for Research and Innovation in Machining Technol-
ogy, Natural Sciences and Engineering Research Council of
Canada (NSERC).

ORCID
Mickael Fiorentino https://orcid.org/0000-0002-7998-
9004

REFERENCES
1. Horowitz, M.: 1.1 Computing's energy problem (and what we can do

about it). In: 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 10–14 (2014)

2. Nowick, S.M., Singh, M.: Asynchronous design—Part 1: Overview and
recent advances. IEEE Design Test. 32(3), 5–18 (2015)

3. Nowick, S.M.: Asynchronous design—Part 2: systems and methodolo-
gies. IEEE Design Test. 32(3), 19–28 (2015)

4. Yakovlev, A., Vivet, P., Renaudin, M.: Advances in asynchronous logic:
from principles to GALS amp;amp; NoC, recent industry applications,
and commercial CAD tools. In: 2013 Design, Automation Test in
Europe Conference Exhibition (DATE), 1715–1724 (2013)

5. Carmona, J., et al.: Elastic circuits. IEEE Trans. Comput. Aided Des
Integrated Circ. Syst. 28(10), 1437–1455 (2009)

6. Laurence, M.: Introduction to octasic asynchronous processor technol-
ogy. In: 2012 IEEE 18th International Symposium on Asynchronous
Circuits and Systems, 113–117 (2012)

7. Awad, T., et al.: Clock signal propagation method for integrated circuits
(ICs) and integrated circuit making use of same. US Patent US8 130
019B1, Mar 2012. https://patents.google.com/patent/US8130019B1

8. Awad, T.: Method for sharing a resource and circuit making use of same.
US Patent US8 689 218B1, Apr 2014. https://patents.google.com/pate
nt/US8689218B1

9. Fiorentino, M., et al.: AnARM: a 28nm energy efficient ARM processor
based on Octasic asynchronous technology. In: 2019 25th IEEE Inter-
national Symposium on Asynchronous Circuits and Systems (ASYNC),
58–59 (May 2019)

10. Trudeau, L.C., et al.: A low-latency, energy-efficient L1 cache based on a
self-timed pipeline. In: 2015 21st IEEE International Symposium on
Asynchronous Circuits and Systems, 17–18 (May 2015)

11. Benyoussef, M., Thibeault, C., Savaria, Y.: A prediction model for
implementing DVS in single-rail bundled-data handshake-Free

asynchronous circuits. 2019 IEEE International Symposium on Circuits
and Systems (ISCAS), 1–5 (May 2019)

12. Hasib, O.A.-T., Savaria, Y., Thibeault, C.: Optimization of small-delay
defects test quality by clock speed selection and proper masking based
on the weighted slack percentage. IEEE Trans. Very Large Scale Integr.
Syst, 28, 1–13 (2020)

13. Zhang, Q., et al.: Method and apparatus for asynchronous processor with
a token ring based parallel processor scheduler. US Patent US20 150 074
680A1, Mar 2015. https://patents.google.com/patent/US20150074
680A1

14. Huang, T., et al.: Method and apparatus for asynchronous processor
pipeline and bypass passing. US Patent US9 846 581B2, Dec 2017.
https://patents.google.com/patent/US9846581B2

15. Peeters, A., et al.: Click elements: an implementation style for data-driven
compilation. In: 2010 IEEE Symposium on Asynchronous Circuits and
Systems, 3–14 (May 2010)

16. Stevens, K., Ginosar, R., Rotem, S.: Relative timing (asynchronous
design). IEEE Trans. Very Large Scale Integr. Syst. 11(1), 129–140 (Feb.
2003)

17. Stevens, K., Xu, Y., Vij, V.: Characterization of asynchronous templates
for integration into clocked CAD flows. In: 2009 15th IEEE Symposium
on Asynchronous Circuits and Systems, 151–161 (May 2009)

18. Manoranjan, J.V., Stevens, K.: Qualifying relative timing constraints for
asynchronous circuits. In: 2016 22nd IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC), 91–98 (May 2016)

19. Gimenez, G., et al.: Static timing analysis of asynchronous bundled-data
circuits. In: 2018 24th IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC), 110–118 (May 2018)

20. Gimenez, G., Simatic, J., Fesquet, L.: From signal transition graphs to
timing Closure: Application to bundled-data circuits. In: 2019 25th IEEE
International Symposium on Asynchronous Circuits and Systems
(ASYNC). Hirosaki, Japan: IEEE, 86–95 (May 2019)

21. Waterman, A., Asanovic, K.: The RISC-V instruction set manual volume
I: User-level ISA. RISC-V, Tech. Rep. (May 2017)

22. “CPU Benchmark – MCU Benchmark – CoreMark – EEMBC Embedded
Microprocessor Benchmark Consortium. https://www.eembc.org/core
mark/

23. Mead, C., Conway, L.: Introduction to VLSI systems. Addison-Wesley
(1980)

24. Beerel, P.A., Ozdag, R.O., Ferretti, M.: A designer's guide to asynchro-
nous VLSI. Cambridge University Press (2010)

25. Roncken, M., et al.: Naturalized communication and testing,. In: 2015
21st IEEE International Symposium on Asynchronous Circuits and
Systems, 77–84 (May 2015)

26. Hennessy, J.L., Patterson, D.A.: Computer architecture: a quantitative
approach. Elsevier (Oct. 2011)

27. Traylor, R.L.: Self-timed data pipeline apparatus using asynchronous
stages having toggle flip-flops. US Patent US5 386 585A, Jan 1995.
https://patents.google.com/patent/US5386585A/en

28. Quinton, B.R., Greenstreet, M.R., Wilton, S.J.E.: Practical asynchronous
interconnect network design. IEEE Trans. Very Large Scale Integr. Syst.
16(5), 579–588 (2008)

29. Tang, K., Padubidri, S.: Diagonal and toroidal mesh networks. IEEE
Trans. Comput. 43(7), 815–826 (1994)

30. Cormen, T.H., et al.: Introduction to algorithms. MIT Press (2001)
31. Sutherland, I.E.: Micropipelines. Commun. ACM. 32(6), 720–738 (1989)
32. Singh, M., Nowick, S.M.: MOUSETRAP: high-speed transition-signalling

asynchronous pipelines. IEEE Trans. Very Large Scale Integr Syst. 15(6),
684–698 (2007)

33. Sparsø, J.: Current trends in high-level synthesis of asynchronous circuits.
In: 2009 16th IEEE International Conference on Electronics, Circuits
and Systems - (ICECS 2009), 347–350 (Dec. 2009)

34. Smirnov, A., Taubin, A.: Synthesizing asynchronous micropipelines with
design compiler. SNUG, 35 (2006)

35. Edwards, D., Bardsley, A.: Balsa: an asynchronous hardware synthesis
language. Comput. J. 45(1), 12–18 (2002)

FIORENTINO ET AL. - 425

https://orcid.org/0000-0002-7998-9004
https://orcid.org/0000-0002-7998-9004
https://orcid.org/0000-0002-7998-9004
https://patents.google.com/patent/US8130019B1
https://patents.google.com/patent/US8689218B1
https://patents.google.com/patent/US8689218B1
https://patents.google.com/patent/US20150074680A1
https://patents.google.com/patent/US20150074680A1
https://patents.google.com/patent/US9846581B2
https://www.eembc.org/coremark/
https://www.eembc.org/coremark/
https://patents.google.com/patent/US5386585A/en
https://orcid.org/0000-0002-7998-9004

36. Cortadella, J., et al.: Desynchronization: synthesis of asynchronous cir-
cuits from synchronous specifications. IEEE Trans. Comput. Aided Des.
Integrated Circ. Syst. 25(10), 1904–1921 (2006)

37. Fiorentino, M., et al.: A practical design method for prototyping self-
timed processors using FPGAs. In: 2016 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), 1754–1757 (May 2016)

38. Mardari, A., Jelčicová, Z., Sparsø, J.: Design and FPGA-implementation
of asynchronous circuits using two-phase handshaking. In: 2019 25th
IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), 9–18 (May 2019)

39. Andrikos, N., et al.: A fully-automated desynchronization flow for syn-
chronous circuits. In: 2007 44th ACM/IEEE Design Automation Con-
ference, 982–985 (Jun. 2007)

40. Fiorentino,M., Savaria, Y., Thibeault, C.: FPGA implementation of Token-
based Self-timed processors: a case study. In: 2017 15th IEEE International
New Circuits and Systems Conference (NEWCAS, 313–316 (Jun. 2017)

How to cite this article: Fiorentino, M., Thibeault, C.,
Savaria, Y.: Introducing KeyRing self-timed
microarchitecture and timing-driven design flow. IET
Comput. Digit. Tech. 15(6), 409–426 (2021). https://
doi.org/10.1049/cdt2.12032

426 - FIORENTINO ET AL.

https://doi.org/10.1049/cdt2.12032
https://doi.org/10.1049/cdt2.12032

	Introducing KeyRing self‐timed microarchitecture and timing‐driven design flow
	1 | INTRODUCTION
	2 | THE AnARM PROCESSOR
	2.1 | Taxonomy
	2.2 | Microarchitecture
	2.2.1 | Multicycle operations
	2.2.2 | Resource tokens
	2.2.3 | EU stage
	2.2.4 | Timing conditions
	2.2.5 | Instruction‐level parallelism

	3 | KeyRing MICROARCHITECTURE
	3.1 | KeyRing template
	3.2 | KeyRing protocol
	3.3 | Performance

	4 | TIMING‐DRIVEN DESIGN FLOW
	4.1 | Background
	4.1.1 | Standard cells
	4.1.2 | Logical synthesis
	4.1.3 | Timing analysis

	4.2 | Relative timing constraints of KeyRing circuits
	4.3 | Static timing analysis of KeyRing circuits
	4.3.1 | Root clocks
	4.3.2 | Launch & capture clocks
	4.3.3 | Margins
	4.3.4 | Exceptions
	4.3.5 | Miscellaneous

	5 | CASE STUDY: KeyV PROCESSORS
	5.1 | Microarchitecture
	5.2 | Design flow
	5.3 | Results and discussion

	6 | CONCLUSION
	ACKNOWLEDGEMENTS

