1,951 research outputs found

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Data in Business Process Models. A Preliminary Empirical Study

    Get PDF
    Traditional activity-centric process modeling languages treat data as simple black boxes acting as input or output for activities. Many alternate and emerging process modeling paradigms, such as case handling and artifact-centric process modeling, give data a more central role. This is achieved by introducing lifecycles and states for data objects, which is beneficial when modeling data-or knowledge-intensive processes. We assume that traditional activity-centric process modeling languages lack the capabilities to adequately capture the complexity of such processes. To verify this assumption we conducted an online interview among BPM experts. The results not only allow us to identify various profiles of persons modeling business processes, but also the problems that exist in contemporary modeling languages w.r.t. The modeling of business data. Overall, this preliminary empirical study confirms the necessity of data-awareness in process modeling notations in general

    Embedding Requirements within the Model Driven Architecture

    Get PDF
    The Model Driven Architecture (MDA) brings benefits to software development, among them the potential for connecting software models with the business domain. This paper focuses on the upstream or Computation Independent Model (CIM) phase of the MDA. Our contention is that, whilst there are many models and notations available within the CIM Phase, those that are currently popular and supported by the Object Management Group (OMG), may not be the most useful notations for business analysts nor sufficient to fully support software requirements and specification. Therefore, with specific emphasis on the value of the Business Process Modelling Notation (BPMN) for business analysts, this paper provides an example of a typical CIM approach before describing an approach which incorporates specific requirements techniques. A framework extension to the MDA is then introduced; which embeds requirements and specification within the CIM, thus further enhancing the utility of MDA by providing a more complete method for business analysis

    Applying MDE tools to defining domain specific languages for model management

    Get PDF
    In the model driven engineering (MDE), modeling languages play a central role. They range from the most generic languages such as UML, to more individual ones, called domain-specific modeling languages (DSML). These languages are used to create and manage models and must accompany them throughout their life cycle and evolution. In this paper we propose a domain-specific language for model management, to facilitate the user's task, developed with techniques and tools used in the MDE paradigm.Fil: Pérez, Gabriela. Universidad Nacional de la Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; ArgentinaFil: Irazábal, Jerónimo. Universidad Nacional de la Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pons, Claudia Fabiana. Universidad Nacional de la Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaFil: Giandini, Roxana Silvia. Universidad Nacional de la Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentin

    A Model-Driven Architecture Approach to the Efficient Identification of Services on Service-oriented Enterprise Architecture

    No full text
    Service-Oriented Enterprise Architecture requires the efficient development of loosely-coupled and interoperable sets of services. Existing design approaches do not always take full advantage of the value and importance of the engineering invested in existing legacy systems. This paper proposes an approach to define the key services from such legacy systems effectively. The approach focuses on identifying these services based on a Model-Driven Architecture approach supported by guidelines over a wide range of possible service types

    Ontology-based patterns for the integration of business processes and enterprise application architectures

    Get PDF
    Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI). SOA has the potential to bridge the gap between business and technology and to improve the reuse of existing applications and the interoperability with new ones. In addition to service architecture descriptions, architecture abstractions like patterns and styles capture design knowledge and allow the reuse of successfully applied designs, thus improving the quality of software. Knowledge gained from integration projects can be captured to build a repository of semantically enriched, experience-based solutions. Business patterns identify the interaction and structure between users, business processes, and data. Specific integration and composition patterns at a more technical level address enterprise application integration and capture reliable architecture solutions. We use an ontology-based approach to capture architecture and process patterns. Ontology techniques for pattern definition, extension and composition are developed and their applicability in business process-driven application integration is demonstrated

    Modelling and Analysis Using GROOVE

    Get PDF
    In this paper we present case studies that describe how the graph transformation tool GROOVE has been used to model problems from a wide variety of domains. These case studies highlight the wide applicability of GROOVE in particular, and of graph transformation in general. They also give concrete templates for using GROOVE in practice. Furthermore, we use the case studies to analyse the main strong and weak points of GROOVE

    Towards an interoperable metamodel suite: size assessment as one input

    Full text link
    In recent years, many metamodels have been introduced in the software engi- neering literature and standards. These metamodels vary in their focus across, for example, process, product, organizational and measurement aspects of software development and have typically been developed independently of each other with shared concepts being only accidental. There is thus an increasing concern in the standards communities that possible conicts of structure and semantics between these various metamodels will hinder their widespread adoption. The complexity of these metamodels has also increased significantly and is another barrier in their appreciation. This complexity is compounded when more than one metamodel is used in the lifecycle of a software project. Therefore there is a need to have interoperable metamodels. As a first step towards engendering interoperability and/or possible mergers between metamodels, we examine the size and complexity of various meta- models. To do this, we have used the Rossi and Brinkkemper metrics-based approach to evaluate the size and complexity of several standard metamodels including UML 2.3, BPMN 2.0, ODM, SMM and OSM. The size and complexity of these metamodels is also compared with the previous version of UML, BPMN and Activity diagrams. The comparatively large sizes of BPMN 2.0 and UML 2.3 suggest that future integration with these metamodels might be more difficult than with the other metamodels under study (especially ODM, SSM and OSM)

    Enhancing the correctness of BPMN models

    Get PDF
    While some of the OMG's metamodels include a formal specification of well-formedness rules, using OCL, the BPMN metamodel specification only includes those rules in natural language. Although several BPMN tools claim to support, at least partly, the OMG's BPMN specification, we found that the mainstream of BPMN tools do not enforce most of the prescribed BPMN rules. Furthermore, the verification of BPMN process models publicly available showed that a relevant percentage of those BPMN process models fail in complying with the well-formedness rules of the BPMN specification. The enforcement of process model's correctness is relevant for the sake of better quality of process modeling and to attain models amenable of being enacted. In this chapter we propose supplement the BPMN metamodel with well-formedness rules expressed as OCL invariants in order to enforce BPMN models' correctness.info:eu-repo/semantics/acceptedVersio
    corecore