
Applying MDE tools to defining domain specific languag-
es for model management

Gabriela Pérez 1, Jerónimo Irazábal 1,2, Claudia Pons 1,3 y Roxana Giandini 1
1LIFIA, Facultad de Informática, Universidad Nacional de La Plata

2CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas
Buenos Aires, Argentina

3CIC, Comisión de Investigaciones Científicas
Buenos Aires, Argentina

{gperez , jirazabal, cpons, giandini}@lifia.info.unlp.edu.ar

Abstract. In the model driven engineering (MDE), modeling languages play a cen-

tral role. They range from the most generic languages such as UML, to more individ-
ual ones, called domain-specific modeling languages (DSML). These languages are
used to create and manage models and must accompany them throughout their life
cycle and evolution.

In this paper we propose a domain-specific language for model management, to fa-
cilitate the user's task, developed with techniques and tools used in the MDE para-
digm.

Palabras clave: Model Driven Development, DSL, Domain Specific Language.

Domain Specific Language for Model Management.

1. Introduction

Modeling is important in order to address the complexity of the systems during the

development process and during maintenance. The Model Driven Engineering [1-3],
[5, 22] proposes a software development process in which the main elements are the
models. From them, engineers can accurately capture relevant aspects of a system
from a given perspective and at an appropriate level of abstraction in order to auto-
mate its development.

Models can be expressed using different languages: general purpose modeling lan-
guages (GPMLs) as UML, or domain specific modeling languages (DSML) [4], such
as the Business Process Modeling Notation (BPMN) for business process modeling.
The DSMLs are high level languages designed for particular tasks. They allow the
specification of a solution directly using problem domain concepts. As the language
concepts are already used within the organization, the learning time of the language is
significantly reduced. Domain experts can also understand, validate, modify and often
develop programs in the DSL. DSMLs have a simpler syntax (i.e., few constructs
focused to the particular domain) but their semantics is much more complex (because

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/159292084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

all the semantics of the particular domain is embedded into the language). Because
they are restricted to a particular domain, the code generation is more efficient, enabl-
ing significant improvements in productivity, interoperability, maintainability and
quality of the products generated. Based on experience, the use of DSMLs can simpli-
fy the development of complex software systems by providing domain-specific ab-
stractions for modeling the system and its transformations in a precise but simple and
concise way.

The DSMLs increase the expressive power but also increase the complexity. For
the end user, building a model means create and connect domain specific low-level
elements, which is an error-prone task. These difficulties could be eliminated provid-
ing another language to manage the domain-specific models in a more friendly way.
In that case, the user will be not longer responsible for the consistently manipulation
of the elements. This responsibility will be delegated to the management language by
using the operations offered by it.

Having the definition of a domain specific model management language DSMML
[28, 32] separated from the domain specific language will allow:
─ Independent evolution: The management language and the modeling language can

evolve independently. Some aspects of the domain-specific modeling language can
be improved without altering the management language interface (signature opera-
tions); or even changed radically. Similarly, you might modify, or extend opera-
tions of the management language without affecting the specific modeling lan-
guage.

─ Multiple management languages: multiple management languages can be provided
for the same specific modeling language. Different languages could be developed
with different operations that reflect the responsibilities of each user. For example,
a query language for basic users and another language with critical operations,
such as editing and deleting for advanced users.

─ Friendly interaction: For a standard domain-specific language, the management
language will improve the user confidence: defining a model management lan-
guage on a standard language such as BPMN, enable a more friendly interaction
with the standard language.

Figure 1 shows that the definition of a specific language for model management
helps users with the effective use of the language. At the top, the figure shows a user
who still has some doubts regarding the use of domain specific language (DSML). At
the bottom, the figure shows two users using two distinct domain specific model
management languages (DSMMLs). Each user is using the appropriate language for
each user type (basic or advanced). They can immediately make an effective use of
the language.

The problem to be faced consists in implementing this specific management lan-
guage. Currently there are very powerful frameworks for creating domain-specific
languages, as can be seen in [9-11]

This paper describes a proposal to define specific model management languages
and analyzes a novel way to define their semantics. Our proposal consists in using
MDE tools for the implementation of these languages, improving modularity and

reuse. The paper is organized as follows: section 2 introduces the main features of our
proposal. Section 3 presents a general approach for defining a model management
language on a well known domain, such as the domain of business processes. Section
4 shows an example. Section 5 compares our approach with other related research.
And finally we present conclusions and future work.

Figure 1: DSMML enable a more friendly interaction with the DSML.

2. DSMML: implementation schema

Any language consists of two main elements: a syntactic notation (syntax) which is

a possibly infinite set of elements that can be used in the communication, together
with their meaning (semantics). The term “syntax” refers to the notation of the lan-
guage. Syntactic issues focus purely on the notational aspects of the language, com-
pletely disregarding any meaning. On the other hand, the “semantics” assigns an un-
ambiguous meaning to each syntactically allowed phrase in the language. To be use-
ful in the computer engineering discipline, any language must come complete with
rigid rules prescribing the allowed form of a syntactically well formed program, and
also with formal rules prescribing its semantics.

In programming language theory, semantics is the field concerned with the rigor-
ous mathematical study of the meaning of languages. The formal semantics of a lan-
guage is given by a mathematical structure that describes the possible computations
expressed by the language. There are many approaches to formal semantics, among
them the denotational semantics approach is one of the most applied. According to
this approach each phrase in the language is translated into a denotation, i.e. a phrase
in some other language. Denotational semantics loosely corresponds to compilation,
although the "target language" is usually a mathematical formalism rather than anoth-
er computer language. Formal semantics allows a clear understanding of the meaning
of languages but also enables the verification of properties such as program correct-
ness, termination, performance, equivalence between programs, etc.

Technically, a semantic definition for a language consists of two parts a semantic
domain and a semantic mapping, denoted μ, from the syntax to the semantic domain.

DSML DSMML

DSMML’

In particular, our proposal consists in using a well known general propose transforma-
tion language as the semantic domain, such as ATL [6-7]. Then, the semantic function
μ is defined by a transformation written in a model-to-text transformation language
(such as MOFScript [16]). This M2T transformation takes a program written in the
DSMML as input, and generates a program written in ATL as output. The language
semantics is defined as described in Figure 2.

Figure 2: Transformation scenario

The advantage of this technique is that the well-known transformation language

has already a well defined semantics and provides an execution environment. So, the
semantics of the new language becomes formally described and it is executable. Addi-
tionally, the semantic definition is understandable and adaptable because it is ex-
pressed in terms of a well known high level language.

In the next sections we present examples of DSMMLs including the definition of
their syntax and semantics following the proposed approach.

3. Business Process Model Management Language.

Business Process Management (BPM) is the methodology based on business

processes. Its aim is to improve organizational performance through process man-
agement. For this, these processes must be designed, modeled, organized, documented
and optimized continuously. The proposal of BPM [23] has gained considerable atten-
tion recently from both the business management and computer science communities.
In this domain, the standard modeling language defined by the OMG [24-25] is Busi-
ness Process Modeling Notation (BPMN) has become popular. BPMN has been de-
veloped to provide a standard notation to business users, similar to how UML has
standardized the modeling concepts in the software engineering field.

program.dsmml

M 3

M2

M1

DSMML M2T

.

MOF

program.atl

confoms

confoms

confoms

confoms

confoms

 μ

MofScript
 input output

confoms

General Purpose Trans-
formation Language

(ATL)

3.1. Motivation for a Business Process Model Management Language

As we mentioned in the previous section, the BPMN language was developed to

provide a standard notation for domain BPM concepts. These concepts, like process,
activity or task were already used by business users, so the language learning time is
reduced.

A BPMN model might require some modifications along its life cycle. Despite
knowing the domain concepts, implementation details of this language are unknown
(where the instances should be store or the consequences of deleting an item).

Therefore, to carry out these changes, you must have a detailed knowledge of the
metamodel, as well as the relations between the elements. Making these changes by
hand, directly on the model, threatens the model integrity, and is an error-prone task.

To preserve the model integrity, it would be desirable to count with a management
language. This language must provide specific management operations for the BPMN
models and to hide the implementation details. Currently there are a variety of tools to
visually edit BPMN diagrams. These tools are mostly focused on the creation, editing
and deletion of model elements. However, it would be useful to have more complex
operations to facilitate and go together with the evolution of these models. For exam-
ple, replace a business process by other process previously described is a common
modification. With an appropriate management language, these tasks are much simp-
ler. The modifications details are hidden behind the specific management operations.

3.2. BPMML: a DSMML fitting the Business Process Modeling.

In this section we illustrate the definition of a DSMML for specifying modifica-

tions on business process models. This language is named Business Process Model
Management Language (BPMML). In the design process of BPMML we have consi-
dered those management operations that are frequently applied on business process
models. In particular, it is useful to count with operations based on commonly used
refactorings [26-27], such as the following ones.

─ The SubstituteFragment operation that allows process designer to replace a frag-
ment by another one, taking into account the relationships with the first fragment
as a source or target.

─ The ExtractFragment operation that allows extracting a fragment to generate a new
process, with the aim of eliminating redundancy, taking into account the relation-
ships with the fragment and creating similar relations with the new process.

─ The ReplaceFragmentbyReference operation that replaces a complex activity by a
reference.

─ In addition to these operations, we have defined further operations that are useful
in the domain of business process modeling, such as importing a process, swapping
the position between two process (allowing the latter to occur before the first),

breaking the connection between two processes, establishing a new connection be-
tween two processes, and so on.

The following code shows the concrete syntax expressed with the EMFText plugin
[33].

SYNTAXDEF bpmml
FOR <http://bpmml/1.0> <bpmml.genmodel>
START BPMML
RULES {

BPMML ::= "BPMML" "open" inputModelPath['"','"']
"{" (managements : Management)* "}";

ExtractGroup ::= "Extract" group[] ";";
RenameActivity ::= "Rename" name[] "to" newName[]";";
ReplaceSubProcess::= "Replace" oldSubProcess[] "by" new-

SubProcess[]";";
SubstituteSubProcess ::= "Substitute" oldSubProcess[]

"by" newSubProcess[] "located in" modelPath[]";";
ImportPool::= "Import pool" pool[] "located in" model-

Path[]";";
ImportSubProcess::= "Import subprocess" subProcess[] "to"

targetPool[] "located in" modelPath[]";";
DeletePool::= "Delete pool" pool[]";";
DeleteElementsFromPool::= "Delete elements from"

pool[]";";
SwapElements::="Swap" source[]"with" target[]";";
CreateActivityBetween::= "Create Activity" named[] "be-

tween" source[] "and" target[]";";
SplitFlow::= "Split Flow add" element[] "between"

source[] "and" target[]";";
AllActivitiesFirstUpper::= "Format name to all activi-

ties" ";";
}

3.3. BPMML implementation

In this section we present the implementation of our DSMML. Figure 3 explains

our translational approach for the definition of the semantics of the domain specific
management language. We implement such translation (or compilation) from the
domain specific management language to a general purpose transformation language
(i.e., ATL). The translation rules are written in the model to text transformation lan-
guage MOFScript. The generated ATL program is the semantic interpretation of our
DSMML.

Figure 3: DSMML implementation schema using a translational approach

Due to ATL restrictions, the generation of a separate ATL file for each BPMML

program statement was necessary. Then these files needed to be coordinated so that
they can run properly. Apache Ant was the tool used for this purpose. Figure 4 shows
the files that are generated by the MOFScript program: the sequence of atl files and
the build.ant script that coordinates them.

The following code shows the MOFScript transformation, separated into two mod-

ules. For one, the main module, it will take each management operation and translate
it to their respective ATL code.

import ("BPMML_Library.m2t");
 texttransformation BPMML_Semantic (in pmml:"http://bpmml/1.0"){
 bpmml.BPMML::main () {
 self.operations->forEach(operation:bpmml.Operation)
 operation.createATLFile(operation.
 getFilename(number));
 }
 self.createAntTask(self.inputModelPath, fileList, antLaunchs);
}

The following code shows the second module, which translates each operation to
ATL code.

texttransformation SemanticaBPMNTL_Library (in

bpmml:"http://bpmml/1.0")
{
bpmml.RenameActivity::printCode(){
println("-- @nsURI BPMN=http://stp.eclipse.org/bpmn");
println("module RenameActivity;");
println("create OUT : BPMN refining IN : BPMN; \n");
….

bpmml.SplitFlow::printCode(){}
bpmml.SubstituteSubProcess::printCode(){…}
…

The following example shows the ATL code that was generated from the Activity
Rename operation, which renames an activity called 'Start' with the name 'Experience
an unexpected behavior'. It uses the refinement mechanism to write code only for
items that will be affected by the transformation, while the rest of the model remains
unchanged.

-- @nsURI BPMN=http://stp.eclipse.org/bpmn
module RenameActivity;
create OUT : BPMN refining IN : BPMN;

 helper def: activityToRename: BPMN!Activity =
 BPMN!Activity.allInstancesFrom('IN')-> select(a | a.name =

'Start') ->first();

 helper def: notExistsActivityNamed: Boolean =

BPMN!Activity.allInstancesFrom('IN')-> select(a |
a.name = 'Experience an unexpected behavior')

 ->first().oclIsUndefined();

 rule Activity2Activity {

from activity: BPMN!Activity in IN (activity =
thisModule.activityToRename and thisModu-

le.notExistsActivityNamed)
 to activityOut: BPMN!Activity (
 name <- 'Experience an unexpected behavior',
 graph <- activity.graph
)
 }
}

4. An example

In this section we illustrate the applicability of the BPMML management language
through an example. Figure 4 shows an initial sketch of the process used to report a
bug in Bugzilla. Bugzilla is a web-based tool that allows developers to find bugs,
assign bugs to the appropriate developer, maintain progress information in a bug fix-
ing, etc.. This example was presented at EclipseCon 2008.

Figure 4. First draft of Bugzilla process model.

Looking carefully, we realize that we can make some modifications to this process,
including:

- To change the name of the input event by a more meaningful name, e.g. 'An Un-
expected Behavior Experience'.

- To add a research activity to the process, with the aim of ensuring that this task is
done properly. As this is a common process, already developed by other processes,
we can import it and insert it between the input event and the task that describes the
unexpected behavior.

- In addition, we could normalize the names of activities, so that all are written in
lowercase and begin with the first letter capitalized.

These changes are specified using the following code written in BPMML

BPMML open "bugzilla.bpmn" {
 Rename "Start" to "Experience an unexpected behavior";
 Import subprocess "Investigate" to "User" located in "other-

Project.bpmn";

 Split Flow add "Investigate" between "Experience an unex-
pected behavior" and "Describe unexpected behavior";

 Format name to all activities;
}

Figure 4 presented before shows the model which will be the input for applying

these modifications. Then figure 5 shows the output model, after applying the man-
agement program.

The coordinated ATL files were applied using the ant file created for that purpose.
The model output can be displayed in a graphical editor for bpmn.

Figure 5. Improved Bugzilla process model.

In this example it is evident that the specific language facilitated the management
of business model elements. Such management is clearly harder if carried out using
an ordinary graphic editor.

5. Related work

The works that have been analyzed are linked to the creation and use of domain
specific modeling languages . On one hand Kolovos [30-31] proposed Eugenia anno-
tation language that aims to reduce the learning barrier of GMF and thus make it more
accessible to users. GMF is a project that can generate graphical editors in Eclipse.

GMF needs a metamodel and based on this the definition of three models is required.
The first one is for the graphical definition, called GMFGraph, which defined shapes,
connectors, labels, etc. The second one is for the definition of tools, called GMFTool,
in which you specify which items are visible in the palette editor for its creation. And
the third one is a model that relates the metamodel elements with the tool and graphic
definitions. These three models and the metamodel will be the basis to generate a
fully functional graphical editor. Eugenia proposes an alternative to the construction
of these three models required by GMF: making annotations directly on the metamo-
del file and from them creating these models automatically. This proposal is similar to
ours since the new language becomes the existing language, in this case, GMF, more
user-friendly. Unlike our proposal, this new language is not defined for model man-
agement but for generating the GMF required models. Our approach proposes the
creation of one or more languages that will be used throughout the entire life cycle of
models management.

On the other hand, Kermeta [29] is a meta-modeling language for describing the
structure and behavior of models. It is designed to be fully compatible with EMOF
language and it provides an actions language to specify the behavior of the models.
As a difference, our proposal suggests a separation between the metamodel and speci-
fication of their behavior, giving them greater flexibility, allowing by one hand to
define and use multiple management languages and by the other hand, the free evolu-
tion of both languages.

Our approach can be seen as a technique for abstraction and modularization in that
each high level management (written in the DSMML) is associated with a lower level
management (written in a more general purpose language), but the users do not need
to be aware of the details of the low level management. In this sense, the works that
propose techniques to build complex transformations by composing smaller transfor-
mation units are related to our proposal. In this category we can mention the composi-
tion technique described by A. Kleppe in [17], the Model Bus approach [18], the
modeling framework for compound transformations defined by Jon Oldevik in [19]
and the module superimposition technique [20], among others. In contrast to these
works, our approach generates the composed transformation specification in a simpler
way, without introducing any explicit composition machinery.
If we look at languages that abstract from other languages we can mention the Meta-
Borg language [21]. MetaBorg is a transformation-based approach for the definition
of embedded textual DSLs implemented based on the Stratego framework. Similarly
to our work, the MetaBorg approach defines new concepts (comparable to our notion
of an abstract language) by mapping them to expansions in the host language (compa-
rable to our notion of a concrete language). An important distinction between these
works and our work is the application to the MDE field.
The AMMA framework [12] allows us to define the concrete syntax, abstract syntax,
and semantics of DSLs. In [13-15] the reader can analyze a number of scenarios
where the AMMA framework has been used to define the semantics of DSLs in terms
of other languages or in terms of abstract state machines (ASMs). Our proposal is
similar to the one of AMMA, but we present a novel alternative, where the language

semantics is realized as the interpretation of the DSMML into a general purpose mod-
el to text transformation language.

6. Conclusions

In this paper we have explained the concept of domain specific languages for mod-

el management to focus on a specific domain. In contrast to well known model man-
agement languages such as EOL [8] and ATL, these languages syntax and semantics
are directly related to a domain, making management programs easer to write and
understand.

Having a domain-specific language for model management has the following advan-
tages:
─ It allows users to interact with domain-specific models in a more friendly way. The

model modifications are less prone to errors, since the user will not be responsible
for generating elements and relate them consistently. This responsibility is dele-
gated to the model management language by using the operations offered by it.
Domain experts will feel more comfortable using a management language with
constructs reflecting well-known concepts.

─ DSMML designer and programmer roles are separated. Programmers do not need
to know the general purpose transformation language specification, as this infor-
mation is encapsulated in the operations offered by the DSMML.

─ The management language and the modeling language can evolve independently
from each other. Some aspects of the domain-specific modeling language can be
improved without altering the management language interface; or even changed
radically. Similarly, you might modify, or extend operations of the management
language without affecting the specific modeling language.

─ For a standard domain-specific language, the management language will make
users more confident in the use: defining a model management language on a stan-
dard language, such as BPMN, enable a more friendly interaction with the standard
language.

Furthermore, we propose that DSMML language semantics to be defined using a
general purpose transformation language. We present a proposal where a DSMML
instance is not compiled into source code but it is transformed to a general purpose
modeling transformation language. In the example we have used the ATL language.
This provides several advantages: the language semantics is formally described, and it
is executable. The semantics is understandable because it is written in a well known
language; it can be easily modified by adding new transformation rules, or radically
changing the target language. Although this transformation can be considered as a
compiler, the skills needed to create it are lower than if we create a source code com-
piler.

Going beyond you would think that the language developer is expert only in the

domain and not in the general purpose transformation languages. That knowledge is
the most important asset and should be enough to define complex operations. These

complex operations can be established from basic operations, such as a metaclass
instantiation, attribute access, or collection items addition. Our work now focuses on
how the language developer could count with these basic operations and use them. In
this way the translation of these operations to an existing transformation language
becomes transparent.

References

[1] Stahl, T. and Völter, M. Model-Driven Software Development. John Wiley &
Sons, Ltd. (2006).

[2] Claudia Pons, Roxana Giandini, Gabriela Pérez. “Model Driven Software Deve-
lopment. Concepts and practical application”. Editorial: EDUNLP and McGraw-
Hill Education. (2010).

[3] Kleppe, Anneke G. and Warmer Jos, and Bast, Wim. MDA Explained: The Mo-
del Driven Architecture: Practice and Promise. Addison-Wesley Longman Pu-
blishing Co., Inc., Boston, MA, USA. (2003)

[4] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop
domain specific languages. ACM Computing Surveys, 37(4):316–344, 2005.

[5] MOF QVT Adopted Specification 2.0. OMG Adopted Specification. November
2005. http://www.omg.org

[6] ATLAS team: ATLAS MegaModel Management (AM3) Home page,
http://www.eclipse.org/gmt/am3/. (2006)

[7] Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Satellite Events at
the MoDELS 2005 Conference. Volume 3844 of Lecture Notes in Computer
Science, Springer-Verlag (2006) 128–138

[8] Kolovos, DS, Paige, RF, Polack, FAC: The Epsilon Object Language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–
142. Springer, Heidelberg (2006).

[9] GME: The Generic Modeling Environment, Reference site,
http://www.isis.vanderbilt.edu/Projects/gme. (2006).

[10] Richard C. Gronback. Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit. Addison-Wesley Professional. ISBN: 0-321-53407-7, 2009.

[11] Steve Cook, Gareth Jones, Stuart Kent, Alan Cameron Wills. Domain-Specific
Development with Visual Studio DSL Tools. Addison-Wesley Professional.
ISBN 0321398203, 2007.

[12] Bézivin, J., Jouault, F., Kurtev, I., Valduriez, P.: Model-based DSL Frameworks.
(2006) OOPSLA Companion 2006:602-616[5].

[13] Frédéric Jouault, Jean Bézivin, Charles Consel, Ivan Kurtev, Fabien Latry: Buil-
ding DSLs with AMMA/ATL, a Case Study on SPL and CPL Telephony Lan-
guages. Proceedings of the 1st ECOOP Workshop on Domain-Specific Program
Development (DSPD), July 3rd, Nantes, France (2006).

[14] Barbero, M., Bézivin, J., Jouault, F. Building a DSL for Interactive TV Applica-
tions with AMMA. In Proceedings of the TOOLS Europe 2007 Workshop on
Model-Driven Development Tool Implementers Forum. Zurich, Switzerland (Ju-
ne 2007).

[15] Di Ruscio, D., Jouault, F., Kurtev, I., Bézivin, J., Pierantonio, A.: Extending
AMMA for Supporting Dynamic Semantics Specifications of DSLs.
http://hal.ccsd.cnrs.fr/docs/00/06/61/21/PDF/rr0602.pdf (Downloaded March
2009).

[16] Jon Oldevik. MOFScript User Guide. Version 0.6 (MOFScript v 1.1.11), 2006.

[17] Kleppe, Anneke. MCC: A Model Transformation Environment. A. Rensink and
J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 173 – 187, Spain, June
2006. (2006)

[18] Blanc,X., Gervais, M., Lamari, M. and Sriplakich, P.. Towards an integrated
transformation environment (ITE) for model driven development (MDD). In Pro-
ceedings of the 8th World Multi-Conference on Systemics, Cybernetics and In-
formatics (SCI’2004), USA, July 2004. (2004)

[19] Oldevik, J. Transformation Composition Modeling Framework. DAIS 2005.
Lecture Notes in Computer Science 3543, pp. 108-114. (2005)

[20] Wagelaar, Dennis. Composition Techniques for Rule-based Model Transforma-
tion Languages. Procs. of ICMT2008 – Int. Conference on Model Transforma-
tion. Zurich, Switzerland. July 2008. (2008)

[21] Bravenboer, M., Visser, E.: Concrete syntax for objects: Domain-specific lan-
guage embedding and assimilation without restrictions. In: Proc. 19th Annual
ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA'04), ACM Press (2004) 365-383

[22] OMG/MOF Meta Object Facility (MOF) 2.0. OMG Adopted Specification. Oc-
tober 2003. http://www.omg.org

[23] Weske Mathias, “Business Process Management: Concepts, Languages, Archi-
tectures”. Springer, Pag 3-67. ISBN 978-3-540-73521-2. 2008

[24] Object Management Group (OMG), http://www.omg.org

[25] Business Process Modeling Notation (BPMN) Version 1.2 OMG,
http://www.omg.org/spec/BPMN/1.2

[26] B. Weber and M. Reichert, Refactoring Process Models in Large Process Reposi-
tories. Bellahs`ene and L´eonard (Eds.): CAiSE 2008, LNCS 5074, pp. 124–139,
2008. Springer-Verlag Berlin Heidelberg 2008

[27] Fowler, M.: Refactoring-Improving the Design of Existing Code. Addison-
Wesley, Reading (2000)

[28] Claudia Pons, Jerónimo Irazábal, Roxana Giandini and Gabriela Pérez. On the
semantics of domain specific transformation languages: implementation issues.
Chapter 13 of the Book “Software Engineering: Methods, Modelling, and Tea-
ching", prefaced by Ivar Jacobson. (2011).

[29] Kermeta web site - http://www.kermeta.org

[30] Eugenia web site - http://www.eclipse.org/epsilon/doc/eugenia/

[31] Dimitrios S. Kolovos, Louis M. Rose, Saad Bin Abid, Richard F. Paige, Fiona
A.C. Polack, Goetz Botterweck. Taming EMF and GMF Using Model Transfor-
mation, accepted and to appear in Proc. International Conference on Model Dri-
ven Engineering Languages and Systems (MoDELS) Oslo, Norway, October
2010

[32] DSMML web site. http://www.lifia.info.unlp.edu.ar/eclipse/DSMML/

[33] EMFText web site - www.emftext.org/

