3 research outputs found

    Fine-Grained Complexity Analysis of Two Classic TSP Variants

    Get PDF
    We analyze two classic variants of the Traveling Salesman Problem using the toolkit of fine-grained complexity. Our first set of results is motivated by the Bitonic TSP problem: given a set of nn points in the plane, compute a shortest tour consisting of two monotone chains. It is a classic dynamic-programming exercise to solve this problem in O(n2)O(n^2) time. While the near-quadratic dependency of similar dynamic programs for Longest Common Subsequence and Discrete Frechet Distance has recently been proven to be essentially optimal under the Strong Exponential Time Hypothesis, we show that bitonic tours can be found in subquadratic time. More precisely, we present an algorithm that solves bitonic TSP in O(nlog2n)O(n \log^2 n) time and its bottleneck version in O(nlog3n)O(n \log^3 n) time. Our second set of results concerns the popular kk-OPT heuristic for TSP in the graph setting. More precisely, we study the kk-OPT decision problem, which asks whether a given tour can be improved by a kk-OPT move that replaces kk edges in the tour by kk new edges. A simple algorithm solves kk-OPT in O(nk)O(n^k) time for fixed kk. For 2-OPT, this is easily seen to be optimal. For k=3k=3 we prove that an algorithm with a runtime of the form O~(n3ϵ)\tilde{O}(n^{3-\epsilon}) exists if and only if All-Pairs Shortest Paths in weighted digraphs has such an algorithm. The results for k=2,3k=2,3 may suggest that the actual time complexity of kk-OPT is Θ(nk)\Theta(n^k). We show that this is not the case, by presenting an algorithm that finds the best kk-move in O(n2k/3+1)O(n^{\lfloor 2k/3 \rfloor + 1}) time for fixed k3k \geq 3. This implies that 4-OPT can be solved in O(n3)O(n^3) time, matching the best-known algorithm for 3-OPT. Finally, we show how to beat the quadratic barrier for k=2k=2 in two important settings, namely for points in the plane and when we want to solve 2-OPT repeatedly.Comment: Extended abstract appears in the Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016

    Towards Understanding the Smoothed Approximation Ratio of the 2-Opt Heuristic

    Get PDF
    The 2-Opt heuristic is a very simple, easy-to-implement local search heuristic for the traveling salesman problem. While it usually provides good approximations to the optimal tour in experiments, its worst-case performance is poor.\ud In an attempt to explain the approximation performance of 2-Opt, we analyze the smoothed approximation ratio of 2-Opt. We obtain a bound of O(log(1/sigma)) for the smoothed approximation ratio of 2-Opt. As a lower bound, we prove that the worst-case lower bound of Omega(log n/loglog n) for the approximation ratio holds for sigma=O(1/sqrt(n)).\ud Our main technical novelty is that, different from existing smoothed analyses, we do not separately analyze objective values of the global and the local optimum on all inputs, but simultaneously bound them on the same input

    Tight(er) bounds for similarity measures, smoothed approximation and broadcasting

    Get PDF
    In this thesis, we prove upper and lower bounds on the complexity of sequence similarity measures, the approximability of geometric problems on realistic inputs, and the performance of randomized broadcasting protocols. The first part approaches the question why a number of fundamental polynomial-time problems - specifically, Dynamic Time Warping, Longest Common Subsequence (LCS), and the Levenshtein distance - resists decades-long attempts to obtain polynomial improvements over their simple dynamic programming solutions. We prove that any (strongly) subquadratic algorithm for these and related sequence similarity measures would refute the Strong Exponential Time Hypothesis (SETH). Focusing particularly on LCS, we determine a tight running time bound (up to lower order factors and conditional on SETH) when the running time is expressed in terms of all input parameters that have been previously exploited in the extensive literature. In the second part, we investigate the approximation performance of the popular 2-Opt heuristic for the Traveling Salesperson Problem using the smoothed analysis paradigm. For the Fréchet distance, we design an improved approximation algorithm for the natural input class of c-packed curves, matching a conditional lower bound. Finally, in the third part we prove tighter performance bounds for processes that disseminate a piece of information, either as quickly as possible (rumor spreading) or as anonymously as possible (cryptogenography).Die vorliegende Dissertation beweist obere und untere Schranken an die Komplexität von Sequenzähnlichkeitsmaßen, an die Approximierbarkeit geometrischer Probleme auf realistischen Eingaben und an die Effektivität randomisierter Kommunikationsprotokolle. Der erste Teil befasst sich mit der Frage, warum für eine Vielzahl fundamentaler Probleme im Polynomialzeitbereich - insbesondere für das Dynamic-Time-Warping, die längste gemeinsame Teilfolge (LCS) und die Levenshtein-Distanz - seit Jahrzehnten keine Algorithmen gefunden werden konnten, die polynomiell schneller sind als ihre einfachen Lösungen mittels dynamischer Programmierung. Wir zeigen, dass ein (im strengen Sinne) subquadratischer Algorithmus für diese und verwandte Ähnlichkeitsmaße die starke Exponentialzeithypothese (SETH) widerlegen würde. Für LCS zeigen wir eine scharfe Schranke an die optimale Laufzeit (unter der SETH und bis auf Faktoren niedrigerer Ordnung) in Abhängigkeit aller bisher untersuchten Eingabeparameter. Im zweiten Teil untersuchen wir die Approximationsgüte der klassischen 2-Opt-Heuristik für das Problem des Handlungsreisenden anhand des Smoothed-Analysis-Paradigmas. Weiterhin entwickeln wir einen verbesserten Approximationsalgorithmus für die Fréchet-Distanz auf einer Klasse natürlicher Eingaben. Der letzte Teil beweist neue Schranken für die Effektivität von Prozessen, die Informationen entweder so schnell wie möglich (Rumor-Spreading) oder so anonym wie möglich (Kryptogenografie) verbreiten
    corecore