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Abstract. The 2-Opt heuristic is a very simple, easy-to-implement local
search heuristic for the traveling salesman problem. While it usually
provides good approximations to the optimal tour in experiments, its
worst-case performance is poor.

In an attempt to explain the approximation performance of 2-Opt, we
analyze the smoothed approximation ratio of 2-Opt. We obtain a bound
of O(log(1/c)) for the smoothed approximation ratio of 2-Opt. As a lower

bound, we prove that the worst-case lower bound of Q(log’ﬁ) ) for the

approximation ratio holds for o = O(1/y/n).

Our main technical novelty is that, different from existing smoothed
analyses, we do not separately analyze objective values of the global and
the local optimum on all inputs, but simultaneously bound them on the
same input.

1 2-Opt and Smoothed Analysis

The traveling salesman problem (TSP) is one of the best-studied combinatorial
optimization problems. Euclidean TSP is the following variant: given points
X C [0,1)%, find the shortest Hamiltonian cycle that visits all points in X (also
called a tour). Even this restricted variant is NP-hard for d > 2 [17].

While Euclidean TSP admits a polynomial-time approximation scheme [1,
16], heuristics that are simpler and easier to implement are often used in practice.
A very simple and popular heuristic for finding near-optimal tours quickly is the
2-Opt heuristic: starting from an initial tour, we iteratively replace two edges by
two other edges to obtain a shorter tour until we have found a local optimum.
Experiments indicate that 2-Opt converges to near-optimal solutions quickly and
produces solutions that are within a few percent of the optimal solution [10,11].
In contrast to its success on practical instances, 2-Opt performs poorly in the
worst case: the worst-case running-time is exponential even for d = 2 [8] and its
worst-case approximation ratio of O(logn) has an almost matching lower bound
of £2(logn/loglogn) for Euclidean instances [6].

In order to explain the performance of algorithms whose worst-case perfor-
mance guarantee does not reflect the observed performance, smoothed analysis
has been introduced [19], which is a hybrid of worst-case analysis (which is
often too pessimistic) and average-case analysis (which is often dominated by

(© Springer — ICALP 2015



completely random instances that have special properties not shared by typ-
ical instances). In smoothed analysis, an adversary specifies an instance, and
then this instance is slightly randomly perturbed. The smoothed performance is
the expected performance, where the expected value is taken over the random
perturbation. The motivating assumption of smoothed analysis is that practical
instances are often subjected to a small amount of random noise that can, e.g.,
come from measurement errors or numerical imprecision. Smoothed analysis of-
ten allows more realistic conclusions about the performance of an algorithm than
mere worst-case or average-case analysis.

Smoothed analysis has been applied successfully to explain the running time
of the 2-Opt heuristic [8,15] as well as other local search algorithms [2,3,14]. We
refer to two surveys for an overview of smoothed analysis [13,20].

Much less is known about the smoothed approximation performance of al-
gorithms. Karger and Onak have shown that multi-dimensional bin packing
can be approximated arbitrarily well for smoothed instances [12] and there are
frameworks to approximate Euclidean optimization problems such as TSP for
smoothed instances [4,7]. However, these approaches mostly consider algorithms
tailored to solving smoothed instances.

With respect to concrete algorithms, we are only aware of analyses of the
jump and lex-jump heuristics for scheduling [5,9] and an upper bound of O(¢'/?)
for the smoothed approximation ratio of 2-Opt in the so-called one-step model [8].
Here, ¢ is an upper bound on the density functions according to which the
points are drawn. Translated to Gaussian perturbation, we would obtain an up-
per bound of O(1/0) if we truncate the Gaussian distribution such that all points
lie in a hypercube of constant sidelength.

In order to explain the practical approximation performance of 2-Opt, we
provide an improved smoothed analysis of its approximation ratio. More pre-
cisely, we provide bounds on the quality of the worst local optimum, when the n
data points from [0, 1]¢ are perturbed by Gaussian distributions of standard devi-
ation o. Our bound of O(log(1/c)) improves significantly upon the direct trans-
lation of the bound of Englert et al. [8] to Gaussian perturbations (see Section 3
for how to translate the bound to Gaussian perturbations). It smoothly interpo-
lates between the average-case constant approximation ratio and the worst-case
bound of O(logn).

In order to obtain our improved bound for the smoothed approximation ratio,
we take into account the origins of the points, i.e., their unperturbed positions.
Although this information is not available to the algorithm, it can be exploited in
the analysis. The smoothed analyses of approximation ratios so far [4,5,7-9,12]
essentially ignored this information. While this simplifies the analysis, being
oblivious to the unperturbed positions seems to be too pessimistic. In fact, we
see that the bound of Englert et al. [8] cannot be improved beyond O(1/0) by
ignoring the positions of the points (Section 3). The reason for this limitation
is that the lower bound for the global optimum is obtained if all points have
the same origin, which corresponds to an average-case rather than a smoothed
analysis. On the other hand, the upper bound for the local optimum has to



hold for all choices of the unperturbed points, most of which yield higher costs
for the global optimum than the average-case analysis. Taking this into account
carefully yields our bound of O(log(1/c)) (Section 4).

To complement our upper bound, we show that the lower bound by Chandra
et al. [6] remains true for o = O(1/4/n) (Section 5). We conclude our paper by
discussing our results and pointing out open questions (Section 6). Due to lack
of space some proofs had to be omitted, which we defer to a full version of this
article.

2 Preliminaries

Throughout the paper, we consider input in the Euclidean space [0,1]¢ and
assume the dimension d to be a fixed constant. Given a sequence of points
X = (Xy,...,X,) in R? we call a collection T' C [n] x [n] of edges a tour, if T
is connected and every i € [n] = {1,...,n} has in- and outdegree exactly one
in T. (Note that we consider directed tours, which is useful in the analysis, but
our distances are always symmetric.) Given any collection of edges S, its length
is denoted by L(S) = > (, ,)es d(u,v), where d(u,v) denotes the Euclidean
distance between points X, and X,. We call a tour T 2-optimal, if d(u,v) +
d(w, z) < d(u,w) 4+ d(v, z) for all edge pairs (u,v), (w, z) € T. Equivalently, it is
not possible to obtain a shorter tour by replacing (u,v) and (w, z) in a 2-optimal
tour T' by two new edges. The 2-Opt heuristic replaces a pair of edges (u,v) and
(w, z) by (u,w) and (v, 2) if this decreases the tour length while this is possible.
Thus, it terminates with a 2-optimal tour.

We call a collection T' C [n]? a partial 2-optimal tour if T is a subset of a tour
and d(u,v) +d(w, z) < d(u, w)+d(v, z) for all edges (u,v), (w, z) € T. Our main
interests are the traveling salesman functional TSP(X) := mingou, 7 L(T") and
the following functional mapping the point set X to the length of the longest
2-optimal tour through X: 20PT(X) := maxz optimal tour 7 L(T)-

We note that the results in Section 3 hold for metrics induced by arbitrary
norms in R? (Lemma 2 and 3) or typical £, norms (Lemma 4 and 5), not only
for the Euclidean metric. We conjecture that also the upper bound in Section 4
holds for more general metrics, while the lower bound in Section 5 is probably
specific for the Euclidean metric. Still, we think that the construction can be
adapted to work for most natural metrics.

Perturbation models. In the Gaussian perturbation model (also called two-step
model) for smoothed analysis, an adversary specifies points z1,. .., z, in [0, 1]¢
that serve as unperturbed origins. Each such point x; is perturbed independently
by adding a normally distributed random variable of mean 0 and standard de-
viation ¢ independently to each coordinate. Equivalently, we draw n random
noise vectors Z; ~ N(0,02), where by abuse of notation A(0,0?) refers to the
multivariate normal distribution with covariance matrix diag(c?), to obtain the
perturbed input X1 = x1 + Z1,...,X, = x, + Z,. For compactness, we denote
the set of unperturbed points by X = {zy,...,7,} and the set of perturbed



points by X = {X3,...,X,}. We write X <« pert,(X) to make explicit from
which point set X the points in X are obtained.

Note that we may assume o < 1 without loss of generality. If o > 1, we
can rescale the instance to be contained in [0,1/0]¢ and perturb the points by
Gaussians with standard deviation 1 instead, which gives an equivalent instance.
Thus, every upper bound for ¢ = 1 carries over to larger values of o.

The ¢-bounded perturbation model (also called one-step model) lets the ad-
versary directly specify (not necessarily identical) distributions by choosing prob-
ability density functions fi,..., f, : [0,1]% = [0, ¢]. The perturbed input is then
generated by independently sampling X; ~ f1,..., X, ~ f,. Note that the re-
sulting input is always contained in [0, 1]? and with higher ¢, the adversary can
concentrate points to smaller regions of the input space. Roughly speaking, when
translating Gaussian perturbations to the one-step model, ¢ is proportional to
o4 for fixed d.

The following technical lemma provides a convenient way to bound the de-
viation of a perturbed point from its mean in the two-step model.

Lemma 1 (Chi-square bound [19, Cor. 2.19]). Let x be a Gaussian random
vector in RY of standard deviation o centered at the origin. Then, for t > 3, we
have Pr[||x\| > 03\/dlnt] < =294

3 Length of 2-optimal Tours under Perturbations

In this section, we provide an upper bound for the length of any 2-optimal tour
and a lower bound for the length of any global optimum. These two results yield
an upper bound of O(1/c) for the approximation ratio.

Chandra et al. [6] proved a bound on the worst-case length of 2-optimal tours
that, in fact, already holds for the more general notion of partial 2-optimal tours.
For an intuition why this is true, let us point out that their proof strategy is to
argue that not too many long arcs in a tour may have similar directions due to
the 2-optimality of the edges, while short edges do not contribute much to the
length. The claim then follows from a packing argument. It can be verified that
it is never required that the collection of edges is closed or connected.

Lemma 2. Letd > 2. There exists a constant cq such that for every sequence X
of n points in [0,1]¢, any partial 2-optimal tour has length less than cq - pl=1/d,

While this bound directly applies to any perturbed instance under the one-
step model, Gaussian perturbations fail to satisfy the premise of bounded sup-
port in [0, 1]¢. However, Gaussian tails are sufficiently light to enable us to trans-
late the result to the two-step model by carefully taking care of outliers.

Lemma 3. Let d > 2. There exists a constant by such that for any o < 1 the
following statement holds. The probability that any partial 2-optimal tour on X
has length greater than by - n*=/¢ i.e., 20PT(X) > by - n' =Y/, is bounded by
exp(—{2(y/n)). Furthermore,

EX<—pert (X) [2OPT<X)] < bq - nlil/d'



We complement the bound above by a lower bound on tour lengths of per-
turbed inputs, making use of the following result by Englert et al. [8] for the
one-step model.

Lemma 4. Let X1,..., X, be a ¢-perturbed instance. Then with probability 1 —
exp(—£2(n)), any tour on X1, ..., X, has length at least 2(n'=/4/J/3).

It also follows from their results that this bound translates to the two-step
model consistently with the intuitive correspondence of ¢ ~ o~? between the
one-step and the two-step model.

Lemma 5. Let Xq,...,X, be an instance of points in the unit cube perturbed
by Gaussians of standard deviation o < 1. Then with probability 1 —exp(—{2(n))
any tour on X1,..., X, has length at least 2(on'=1/4).

Note that Lemmas 3 and 5 almost immediately yield the following bound on
the approximation performance for the two-step model.?

Observation 1 Let X1,...,X, be an instance of points in the unit cube per-
turbed by Gaussians of standard deviation o < 1. Then the approzimation per-
formance of 2-Opt is bounded by O(1/c) in expectation and with probability

1 - exp(~2(y/)).

We remark that this bound is best possible for an analysis of perturbed
instances that separately bounds the lengths of any 2-optimal tour from above
and gives a lower bound on any optimal tour.

4 Upper Bound on the Approximation Performance

In this section, we establish an upper bound on the approximation performance
of 2-Opt under Gaussian perturbations. We achieve a bound of O(log 1/0). Due
to the lower bound presented in Section 5, we cannot expect an approximation
ratio of o(log(1/0)/loglog(1/c)). Thus, our bound is almost tight.

As noted in the previous section, to beat O(1/0) it is essential to exploit the
structure of the unperturbed input. This will be achieved by classifying edges
of a tour into long and short edges and bounding the length of long edges by a
(worst-case) global argument and short edges locally against the partial optimal
tour on subinstances (by a reduction to an (almost-)average case). The local
arguments for short edges will exploit how many unperturbed origins lie in the
vicinity of a given region.

The global argument bounding long edges follows from the worst-case O(logn)
bound on the worst-case approximation performance [6] that we rephrase here
for our purposes.

Lemma 6. Let T be a 2-optimal tour and OPT denote the length of the op-
timal traveling salesman tour Topr. Let T; contain the set of all edges in T
whose length is in [OPT/2!, OPT/2"1]. Then L(T;) = O(OPT). In particular,
it follows that L(T) = O(logn) - OPT.

3 To show the expected approximation ratio, we additionally make use of Lemma 6.



In the proof of our bound of O(log1/c), the above lemma accounts for all
edges of length [£2(0),0(1)]. A central idea to bound all shorter edges is to
apply the one-step model result to small parts of the input space. In particular,
we will condition sets of points to be perturbed into cubes of side length o. The
following technical lemma helps to capture what values of ¢ suffice to express
the conditional density function of these points depending on the distance of
their unperturbed origins to the cube. This allows for appealing to the one-step
model result of Lemma 4.

Lemma 7. Letc € [0,0]? and k = (k1,...,kq) € N&. Let Y be the random vari-
able X ~ N (c,0?) conditioned on X € Q := [ky0, (k1+1)0]x - X [kqo, (kqa+1)0]
and fy be the corresponding probability density function. Then fy is bounded
from above by exp(||k||, + (3/2)d)o 2.

The main result of this section is the following theorem.

Theorem 2. Let X = (X1,...,X,) be an instance of points in [0,1]¢ perturbed
by Gaussians of standard deviation o < 1. With probability 1 —exp(—2(n/?~%))
for any constant € > 0, we have 20PT(X) < O(log(1/0))-TSP(X). Furthermore,

. [2OPT(X)] = O(log(1/0)).

TSP(X)

Since the approximation performance of 2-Opt is bounded by O(logn) in the
worst-case, we may assume that 1/0 = O(n®) for all € > 0, since otherwise our
smoothed result is superseded by Lemma 6. In what follows, let Topr and T be
any optimal and 2-optimal, respectively, traveling salesman tour on X,..., X,.

4.1 Outliers and Long Edges

We will first show that the contribution of almost all points outside [0, 1] is
bounded by O(on'~'/?) with high probability and in expectation, similar to
Lemma 3. For this, we subdivide C into growing cubes A; := [—a;, 1 + a;]%.
Here, we set a; := 304/diln(3/c) for i > 1 and Ay = [0,1]¢. Let n; be the
number of points not contained in A;_;. For every point X;, Lemma 1 with
t:= (3/0)" bounds Pr[X; ¢ A;] < (0/3)294(=1 (note that we have chosen the
a; such that ¢ > 3). Thus, E[n;] < n(o/3)>% =1 For any tour T, we define E;
as the set of edges of T' contained in A; with at least one endpoint in A; \ A;_1.
We first bound the contribution of the E; with i > 2.

Lemma 8. With probability 1 — exp(—2(n'/?=%)) for any constant ¢ > 0, we
have "2, L(E;) = O(on'~Y4). Additionally, E[> 2, L(E;)] = O(on'~1/4).

In the remainder of the proof, we bound the total length of edges inside A;.
Define C' := A; and note that all edges in C' have bounded length v/d(1+ a1) =
O(1). Recall that for any 2-optimal tour T, T; contains the set of all edges in
T whose length is in [OPT /2!, OPT/2""!]. Let k; be such that Vd(1 + a;) €
[OPT/2%1,OPT/2%~1]. Then L(T}) = 0 for all k < ki, since no longer edges
exist. Let ko be such that ¢ € [OPT/2%2, OPT/2*2~1]. Then Zﬁikl L(Ty) =



O((ky — k1) - OPT) = O(log(1/0)OPT) by Lemma 6. This argument bounds
the contribution of long edges, i.e., edges longer than o, in the worst case, after
observing the perturbation of the input points.

4.2 Short Edges

To account for the length of the remaining edges, we take a different route: Call
an edge that is shorter than o a short edge and partition the bounding box C' into
a grid of (o X - -+ x o)-cubes Cy,...,Cy with M = O((c/(1+a1))"%) = O(c~%),
which we call cells. All edges in T}, for k > ko, i.e., short edges, are completely
contained in a single cell or run from some cell C; to one of its 3¢ — 1 neighboring
cells. For a given tour T, let E¢,(T) denote the short edges of T for which at
least one of the endpoints lies in Cj.

We aim to relate the length of the edges F¢,(T) for any 2-optimal tour T to
the length of the edges E¢, (Topr) of the optimal tour Topr. This local approach
is justified by the following property.

Lemma 9. For any tour T, the contribution L(Ec,(T)) of cell C; is lower
d—2
bounded by TSP(X N C;) — O(a|X N C;|4=1).

Intuitively, a cell C; is of one of two kinds: either few points are expected
to be perturbed into it and hence it cannot contribute much to the length of
any 2-optimal tour (a sparse cell), or many unperturbed origins are close to the
cell (a heavy cell). In the latter case, either the conditional densities of points
perturbed into C; are small, hence any optimal tour inside C; has a large value
by Lemma 4, or we find another cell close to C; that has a very large contribution
to the length of any tour.

To formalize this intuition, fix a cell C; and let n; be the expected num-
ber of points X; with X; € C;. Assume for convenience that a;/c and (1 +
a1)/o are integer. We describe the position of a cube C; canonically by indices
pos(C;) € {—%, ..., 1E%}d For two cubes C; and Cj, we define their distance
as dist(Cy, C;) = [|pos(C;) — pos(Cy)l|;. For k > 0, let Dy denote all cells of
distance k to C; and let n(Dy) denote the cardinality of unperturbed origins
located in a cell in Dy. We call a perturbed point X, € C; with unperturbed
origin xz, € C}, for some C; € Dy, a k-successful point. Let Sj, denote the set of
all k-successful points. Then n; = >~ E[|Sk|].

Lemma 10. Let K > 0 and define S<x := So U ---U Sk as the set of k-
successful points for k < K. Let p = E[|S<k|]. If K = o(logp), then with
probability 1 — exp(p), we have

opl=1/d

L(Ec,(Topr)) > pOE+1))°

Proof (Sketch). The claim follows from Lemma 9 and by regarding S<x as a
¢-perturbed instance. For this, Lemma 7 bounds the maximum density of the
distributions and Lemma 4 bounds the optimal tour length from below. O



Lemma 11. Let o := M7, ky := ~vloglog(1/o) and ke := (1/9")+/log1/c for
sufficiently small constants vy,~'. Then we can classify each cell C; with n; > =
into one of the following two types.

(T1) With probability 1 — exp(—2(n*/2=2)) for any constant ¢ > 0, we have
L(Ec,(T)) = O(log 1/0) L(Ec,(Topr))-
(T2) There is some C; € Dy, U- - -UDy, such that for any f(1/0) = polylog(1/0),

we have
L(Ec,(Topr))
ffe) -
with probability 1 — exp(—2(n'/?%)) for any constant £ > 0.

Proof (Sketch). By Lemma 2, we can bound L(E¢,(T)) = O(ang_l/d). If we
have E[|S<g,|] = 2(n;), then Lemma 10 already proves C; to have type TL.
Otherwise, by tail bounds for the Gaussian distribution, we argue that some cell
C; in a cell of distance at most ks contains at least n; exp(£2((log logn)?)) unper-
turbed origins. These are sufficiently many to let C; contribute f(l/o)angfl/d,
for any f(1/0) = polylog(1/0), to the optimal tour length. O

4.3 The Total Length of 2-optimal Tours

To bound the total length of short edges, consider first sparse cells Cj, i.e.,
n; < n/a. For each such cell, Chernoff bounds yield that with probability 1 —
exp(—{2(n/a)), at most 2n/a points are contained in C;, since each point is per-
turbed independently. By union bound, no sparse cell contains more than 2n/«
points with probability at least 1 — M exp(—§2(n/c)). In this event, Lemma 2
allows for bounding the contribution of sparse cells by

> LEe,1) < M) () " =0 (M“”> — O(on'~H). (1)

in;<n/a a4

For bounding the length in the remaining cells, the heavy cells, let 77 :=

{i | C; has type T1} and Tz := {i | C; has type T2}. We observe that with

probability at least 1 — M exp(—2(n'=¢)) = 1 — exp(—2(n'~9)), all type-T1
cells C; satisfy L(Eq,(T)) = O(log1/o)L(E¢,(Topt)). Thus,

> L(Ec,(T) < ¥, O(log 1/0)L(Ec, (Torr)) < O(log 1/o)OPT,  (2)
€Ty €Ty

where the last inequality follows from Zf\il Le,(Topt) < 2- OPT, which holds
since every edge in OPT (inside C) is counted twice on the left-hand side.

Let A: T3 — {1,..., M} be any function that assigns to each type-T2 cell
C; a corresponding cell Cy(;y € D, U---U Dy, satisfying the condition in (T2).
We say that C; charges C4(;y. We can choose any f(1/0) = polylog(1/0) and



have with probability at least 1 — M exp(—2(n'=¢)) = 1 — exp(—2(n'~¢)) that
L(Eo . (T
L(Ec,(T)) = % for all i € T5. Assume that this event occurs. Since

every cell C; can only be charged by cells in distance ky < k < ko, each cell can
only be charged 222:1@1 |Di| = O(kg) times. Hence,

M
Y L(Ec,, (Topr)) < O(k) Y L(Ec,(Topr)) = O(k3)OPT.
i€T2 i=1

Since k¢ = polylog(1/c), choosing f(1/0) = polylog(1/c) sufficiently large yields

L(Ec,,. (T d
; L(Ec,(T)) < ; ( CJ;“g/(U;)PT) ) < O(fk(“'l)gT — 0(OPT).  (3)

Proof (of Theorem 2). By a union bound, we can bound by 1—exp(—£2(n'/27¢)),
for any constant € > 0, the probability that (i) OPT = 2(on'~/) (by Lemma 5),
(ii) all edges outside C' contribute O(on'~1/4) = O(OPT) (by Lemma 8), (iii) all
sparse cells contribute O(on'=/?) = O(OPT) (by (1)), (iv) the type-T1 cells C;
induce a cost of O(log1/0)OPT (by (2)), and (v) the type-2 cells induce a cost
of O(OPT) (by (3)). Since the remaining edges are long edges and contribute
only O(log(1/c) - OPT), we obtain that every 2-optimal tour has a length of at
most O(log 1/0)OPT with probability 1 — exp(—2(n'/27¢)).

Since a 2-optimal tour always constitutes a O(logn)-approximation to the
optimal tour length by Lemma 6, we also obtain that the expected cost of the
worst 2-optimal tour is bounded by

O(log1/0) - OPT + exp(—2(n'/?7¢)) - O(logn) - OPT = O(log 1/c) - OPT.

5 Lower Bound on the Approximation Ratio

We complement our upper bound on the approximation performance by the
following lower bound: for o = O(1/+/n), the worst-case lower bound is robust
against perturbations. For this, we face the technical difficulty that in general, a
single outlier might destroy the 2-optimality of a desired long tour, potentially
cascading into a series of 2-Opt iterations that result in a substantially different
or even optimal tour.

Theorem 3. Let o = O(1/+/n). For infinitely many n, there is an instance X of
points in R? perturbed by normally distributed noise of standard deviation o such
that with probability 1 — O(n~*) for any constant s > 0, we have 20PT(X) =
2(logn/loglogn) - TSP(X). This also yields

= Tser | = ()
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Fig. 1. Parts V4 and V3 of the lower bound instance. Each point is contained in a
corresponding small container (depicted as brown circle) with high probability. The
black lines indicate the constructed 2-optimal tour, which on V5 runs analogously.

We remark that our result transfers naturally to the one-step model with ¢ =
£2(n) and interestingly, holds with probability 1 over the random perturbations.

Furthermore, even when we initialize the tour using the nearest neighbor
heuristic, 2-Opt might, with probability O(1), return a 2-optimal tour of length
2(logn/loglogn)-TSP(X) on perturbed inputs. For space reasons, the necessary
changes to the construction below are deferred to a full version of this article.

Proof of Theorem 3. We alter the construction of Chandra et al. [6] to strengthen
it against Gaussian perturbations with standard deviation ¢ = O(1/4/n) (see
Figure 1). Let p > 3 be an odd integer and P := 3p??. The original instance
of [6] is a subset of the (P x P)-grid, which we embed into [0, 1] by scaling by
1/P, and consists of three parts V1, V5 and V3. The vertices in V; are partitioned
into the layers Lo, ..., L,. Layer ¢ consists of p?* + 1 equidistant vertices, each of
which has a vertical distance of ¢; = p??~2=1 /P to the point above it in Layer
i+ 1 and a horizontal distance of a; = p?*~%!/P to the nearest neighbor(s) in
the same layer. The set V5 is a copy of V; shifted to the right by a distance of
2/3. The remaining part V3 consists of a copy of Layer p of V; shifted to the
right by 1/3 to connect V; and V, by a path of points. We regard L; as the set
of Layer-i points in V7 U Vo U V3.

As in the original construction, we will construct an instance of n = ©(p*")
points, which implies p = O(logn/loglogn). Let 0 < t < p be the largest
odd integer such that p**1 < (30)~!. In our construction, we drop all Layers
t+1,...,pin both V; and V5, as well as Layer p in V3. Instead, we connect V;
and V5 already in Layer ¢ by an altered copy of Layer ¢ of V; shifted to the right
by 1/3. Let C be an arbitrary point of our construction, for convenience we will
use the central point of Layer ¢ in V3. We introduce p?? — 1 additional copies of
this point C'. These surplus points serve as a “padding” of the instance to ensure
n = O(p?). Note that the resulting instance has t + 1 layers Lo, ..., L;. We
chose t such that the magnitude of perturbation is negligible compared to the
pairwise distances of all non-padding points. Furthermore, the restriction on o
ensures that incorporating the padding points increases the optimal tour length
only by a constant.
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Lemma 12. With probability 1 — O(n™*) for any constant s > 0, the optimal
tour has length O(1).

We find a long 2-optimal tour on all non-padding points analogously to the
original construction by taking a shortcut of the original 2-optimal tour, which
connects V7 and V; already in Layer t (see Figure 1).

Consider the padding points, which are yet to be connected. Let Cy denote
the nearest point in Layer ¢ of V3 that is to the left of C'. Symmetrically, C,. is
the nearest point to the right of C'. Let TP be any 2-optimal path from Cy to C,.
that passes through all the padding points (including C). We replace the edges
(Cy,C) and (C, C}.) by the path TP, completing the construction of our tour T

Lemma 13. Let s > 0 be arbitrary. With probability 1 —O(n~%), T is 2-optimal
and has a length of 2(logn/loglogn).

By Lemmas 12 and 13, Theorem 3 follows.

6 Discussions and Open Problems

We have proved an upper bound of O(log 1/0) for the smoothed approximation
ratio of 2-Opt. Furthermore, we have proved that the lower bound of Chandra
et al. [6] remains robust even for ¢ = O(1/4/n) and even if it is initialized with
the nearest-neighbor heuristic. We leave as an open problem to generalize our
upper bounds to the one-step model to improve the current bound of O(/®) [8],
but conjecture that this might be difficult.

While our bound significantly improves the previously known bound for the
smoothed approximation ratio of 2-Opt, we readily admit that it still does not
explain the performance observed in practice. A possible explanation is that
when the initial tour is not picked by an adversary or the nearest neighbor
heuristic, but using a construction heuristic such as the spanning tree heuristic
or an insertion heuristic, an approximation factor of 2 is guaranteed even before
2-OPT has begun to improve the tour [18]. However, a smoothed analysis of the
approximation ratio of 2-Opt initialized with a good heuristic might be difficult:
even in the average-case, it is only known that the length of an optimal TSP is
concentrated around g - n“T for some constant Y4 > 0. But the precise value
of 74 is unknown [21]. Since experiments suggest that 2-Opt even with good
initialization does not achieve an approximation ratio of 1 + o(1) [10,11], one
has to deal with the precise constants, which seems challenging.

Finally, we conjecture that many examples for showing lower bounds for
the approximation ratio of concrete algorithms for Euclidean optimization such
as the TSP remain stable under perturbation for o = O(1/4/n). The question
remains whether such small values of ¢, although they often suffice to prove poly-
nomial smoothed running-time, are essential to explain practical approximation
ratios or if already slower decreasing ¢ provide a sufficient explanation.
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