57 research outputs found

    Towards Symbolic State Traversal for Efficient WCET Analysis of Abstract Pipeline and Cache Models

    Get PDF
    Static program analysis is a proven approach for obtaining safe and tight upper bounds on the worst-case execution time (WCET) of program tasks. It requires an analysis on the microarchitectural level, most notably pipeline and cache analysis. In our approach, the integrated pipeline and cache analysis operates on sets of possible abstract hardware states. Due to the growth of CPU complexity and the existence of timing anomalies, the analysis must handle an increasing number of possible abstract states for each program point. Symbolic methods have been proposed as a way to reduce memory consumption and improve runtime in order to keep pace with the growing hardware complexity. This paper presents the advances made since the original proposal and discusses a compact representation of abstract caches for integration with symbolic pipeline analysis

    Integrating Abstract Caches with Symbolic Pipeline Analysis

    Get PDF
    Static worst-case execution time analysis of real-time tasks is based on abstract models that capture the timing behavior of the processor on which the tasks run. For complex processors, task-level execution time bounds are obtained by a state space exploration which involves the abstract model and the program. Partial state space exploration is not sound. Symbolic methods using binary decision diagrams (BDDs) allow for a full state space exploration of the pipeline, thereby maintaining soundness. Caches are too large to admit an efficient BDD representation. On the other hand, invariants of the cache state can be computed efficiently using abstract interpretation. How to integrate abstract caches with symbolic-state pipeline analysis is an open question. We propose a semi-symbolic domain to solve this problem. Statistical data from industrial-level software and WCET tools indicate that this new domain will enable an efficient analysis

    PRECISE YET SCALABLE RESOURCE ANALYSIS VIA SYMBOLIC EXECUTION

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Program Semantics in Model-Based WCET Analysis: A State of the Art Perspective

    Get PDF
    Advanced design techniques of safety-critical applications use specialized development model based methods. Under this setting, the application exists at several levels of description, as the result of a sequence of transformations. On the positive side, the application is developed in a systematic way, while on the negative side, its high-level semantics may be obfuscated when represented at the lower levels. The application should provide certain functional and non-functional guarantees. When the application is a hard real-time program, such guarantees could be deadlines, thus making the computation of worst-case execution time (WCET) bounds mandatory. This paper overviews, in the context of WCET analysis, what are the existing techniques to extract, express and exploit the program semantics along the model-based development workflow

    Tight integration of cache, path and task-interference modeling for the analysis of hard real time systems

    Get PDF
    Traditional timing analysis for hard real-time systems is a two-step approach consisting of isolated per-task timing analysis and subsequent scheduling analysis which is conceptually entirely separated and is based only on execution time bounds of whole tasks. Today this model is outdated as it relies on technical assumptions that are not feasible on modern processor architectures any longer. The key limiting factor in this traditional model is the interfacing from micro-architectural analysis of individual tasks to scheduling analysis — in particular path analysis as the binding step between the two is a major obstacle. In this thesis, we contribute to traditional techniques that overcome this problem by means of by passing path analysis entirely, and propose a general path analysis and several derivatives to support improved interfacing. Specifically, we discuss, on the basis of a precise cache analysis, how existing metrics to bound cache-related preemption delay (CRPD) can be derived from cache representation without separate analyses, and suggest optimizations to further reduce analysis complexity and to increase accuracy. In addition, we propose two new estimation methods for CRPD based on the explicit elimination of infeasible task interference scenarios. The first one is conventional in that path analysis is ignored, the second one specifically relies on it. We formally define a general path analysis framework in accordance to the principles of program analysis — as opposed to most existing approaches that differ conceptually and therefore either increase complexity or entail inherent loss of information — and propose solutions for several problems specific to timing analysis in this context. First, we suggest new and efficient methods for loop identification. Based on this, we show how path analysis itself is applied to the traditional problem of per-task worst-case execution time bounds, define its generalization to sub-tasks, discuss several optimizations and present an efficient reference algorithm. We further propose analyses to solve related problems in this domain, such as the estimation of bounds on best-case execution times, latest execution times, maximum blocking times and execution frequencies. Finally, we then demonstrate the utility of this additional information in scheduling analysis by proposing a new CRPD bound

    Microarchitecture modeling for timing analysis of embedded software

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Memory Optimizations for Time-Predictable Embedded Software

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Contributions to worst-case execution time reduction using compilation techniques

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2017Abstract: A wide range of systems are distinct from the general purpose computingsystems due to the need of satisfying rigorous timing requirements, oftenunder the constraint of available resources, they are generally called realtimesystems. The development of a predictable system is concerned withthe challenges of building systems whose time requirements can be guaranteeda priori. Although, these challenges become even greater when usingprocessors architectural features for performance increase, as cachesand pipelines, which introduce a high degree of uncertainty, making difficultto provide any kind of guarantee. Parallel to this, there are the toolsneeded to develop and execute an application, such as languages, compilers,runtime support, communication systems and scheduling, which mayfurther make difficult the assertion of guarantees. In these systems, theresults of computations must be generated at the right time and faults oftemporal nature can result in catastrophic consequences both in the economicsense as in human lives. These systems are present in countlessapplications, such as in industrial plants, aviation, and the complexity ofthem imposes serious restrictions on the hardware that can be used. Toprovide timing guarantees, we must know the worst-case execution timefor each tasks of the system. In a general purpose architecture aimed atthe average case, the execution time of a program or task can be so greatin the worst case that invalidates the design constraints, or even be impossibleto be calculated or estimated with a reasonable effort. In thisthesis, we integrate compilation with WCET calculation. A compiler canprovide relevant data to facilitate the process of WCET estimation. Toimprove this process, we also use an architecture whose purpose is toconciliate performance with determinism. Considering compilation andWCET integration we present the following contributions: (1) a differentway to perform loop unrolling on data-dependent loops using codepredication targeting WCET reduction, because existing techniques onlyconsider loops with fixed execution counts. (2) considering static branchpredication techniques, we show that a very small gain or even none canbe obtained with new optimization techniques targeted to worst-case executiontime reduction. To achieve this objective, we compare several techniquesagainst the perfect branch predictor. (3) the difference between theWCET of a task and its actual execution time is called gain time. Wepropose a technique that finds specific points of a program (called gainpoints), where there will be an amount of statically estimated gain time inthe case that path is taken by the execution.Uma grande gama de sistemas se distinguem dos sistemas de computaçãode propósito geral pela necessidade de satisfação de requisitos detemporização rigorosos. O desenvolvimento de um sistema previsível preocupasecom os desafios de construção de sistemas cujos requisitos temporais possamser garantidos a priori. Estes desafios tornam-se ainda maiores quandose utiliza recursos arquiteturais para aumento de performance, como cachese pipelines, os quais introduzem um alto grau de incertezas, tornando difícilo provimento de qualquer tipo de garantia. Paralelamente a isto, existem asferramentas necessárias ao desenvolvimento e execução da aplicação, comolinguagens, compiladores, runtime de execução, sistemas de comunicação eescalonamento, os quais podem dificultar ainda mais a asserção de garantias.Nestes sistemas, os resultados das computações devem estar corretosnão somente do ponto de vista lógico, mas também devem ser gerados nomomento correto. As falhas de natureza temporal nestes sistemas são, emalguns casos, consideradas críticas no que diz respeito às suas consequências.Nos sistemas tempo real críticos (hard real-time) o não atendimento de umrequisito temporal pode resultar em consequências catastróficas tanto no sentidoeconômico quanto em vidas humanas. Quando os requisitos temporaisnão são críticos (soft real-time) eles apenas descrevem o comportamento desejado.O não atendimento de tais requisitos reduz a utilidade da aplicaçãomas não a elimina completamente nem resulta em consequências catastróficas.Estes sistemas estão presentes em diversas aplicações, como em plantasindustriais, aviação e eletrônica automotiva, telecomunicações e sistemasespaciais. Em várias destas aplicações, a complexidade dos sistemas de softwareimpõe sérias restrições quanto ao hardware que poderá ser utilizado.Este deverá ter capacidade suficiente para sustentar a aplicação em questão,além de poder estar submetido a restrições não funcionais do projeto, comocusto e eficiência energética.Arquiteturas modernas e de propósito geral possuem como premissabásica aquela que diz que os programas devem executar o mais rápido possívelna maioria das vezes. Este tempo médio é geralmente chamado deACET - Average-case Execution Time. Entretanto, em alguns casos, o tempode uma execução de uma aplicação poderá ser grande em relação ao caso médio,mas ainda estará amortizado entre as diversas execuções do programa.Esta priorização de caso médio impõe certas problemáticas quanto à utilizaçãodeste tipo de arquitetura em sistemas de tempo real. Tais sistemas podemexigir garantias de tempo de execução difíceis de serem obtidas ou muitasvezes inviáveis. Estas garantias exigem o conhecimento do pior tempo deexecução de um programa ou tarefa em um determinado processador, o qualgeralmente é chamado de WCET - Worst-case Execution Time. Em uma arquiteturade propósito geral que vise o caso médio, o tempo de execução nopior caso de um programa ou tarefa pode ser tão grande que inviabilize asrestrições de projeto, ou mesmo ser impossível de ser estimado.Atualmente, existem vertentes acadêmicas que sugerem a utilização deprocessadores e arquiteturas voltadas para aplicações de tempo real. Taisarquiteturas adotam características de hardware que tornam as análises referentesà obtenção de WCET mais simples e rápidas.Uma característica importante é que o desempenho em arquiteturas específicas,como as voltadas para tempo real, pode estar intimamente relacionadoao compilador e as técnicas de compilação empregadas, como exploraçãoestática de paralelismo. Dada a possibilidade de ser obter o WCET deprogramas para uma arquitetura específica, pode-se utilizar estas informaçõesno processo de otimização incremental dos mesmos. Estas otimizações visama redução do WCET, visto que abordagens tradicionais de transformação decódigo feitas por compilador podem até mesmo aumentar o WCET de umprograma.ObjetivosO objetivo deste trabalho é contribuir com aspectos relacionados à compilaçãopara sistemas de tempo real, cujo objetivo primário seja a reduçãode WCET ou melhoria de aspectos relacionados à escalonabilidade. A tesea ser demonstrada é que o íntimo acoplamento de um compilador com umanalisador WCET pode beneficiar tanto a análise quanto a síntese de um programaexecutável ou sistema completo para uma arquitetura determinista. Autilização de uma arquitetura determinista representa uma característica importantedeste trabalho, bem como o desenvolvimento do respectivo analisadorWCET.Dentre os elementos relacionados ao compilador essenciais para a reduçãodo WCET, pode-se citar: Mecanismos para o cálculo de WCET de programas em processo decompilação. Isto implica acoplamento do compilador com o analisadordesenvolvido. Identificação de potenciais pontos a serem beneficiados por otimizações.Este processo envolve interpretação dos resultados do analisador. Descarte de alterações de códigos que aumentem o WCET. Novamente,decisões deverão ser tomadas com base em análises sucessivas.Além dos elementos relacionados, podemos destacar a eficiência doprocesso. O uso de uma arquitetura projetada para aplicações em tempo realpermite o uso de um analisador muito mais rápido e preciso, que visa trazereficiência ao processo. Embora a arquitetura se baseie em um ISA comercial,não existe compilador livre disponível para esta, então, a implementação deum gerador de código inteiramente funcional fez-se necessária como requisitopara realização do trabalho de tese.Entre os elementos considerados como foco desta tese, têm-se: Técnicas de loop unrolling: Laços são frequentemente bons candidatosalvopara otimizações de compilação para extrair o desempenho emprocessadores modernos. Algumas técnicas foram propostas na literaturapara alcançar a redução do WCET usando o loop unrolling, comoem (ZHAO et al., 2006) e (LOKUCIEJEWSKI; MARWEDEL, 2010).Nestes trabalhos, apenas os laços com contagens de execução fixas sãoconsiderados. Previsão estática de desvios: Previsores de desvio são utilizados paraaumentar o desempenho de programas em arquiteturas modernas. Previsoresestáticos podem depender do compilador para definir o comportamentode cada desvio condicional. Esse comportamento é entãoadotado pelo processador para toda a execução do programa. O uso daprevisão estática de desvio como mecanismo para redução do tempo deexecução de pior caso é uma alternativa conhecida e foi primeiramenteproposta por (BODIN; PUAUT, 2005) e (BURGUIERE et al., 2005). Identificação de tempo ganho em programas: Tempo ganho (ou gaintime) (AUDSLEY et al., 1994) (AVILA et al., 2003) (HU et al., 2002)(HU et al., 2003) é a diferença entre o WCET de uma tarefa e o tempode execução real. Uma abordagem comum é identificar o gain timeem tempo de execução comparando o tempo de execução real (medido)com o WCET calculado estaticamente. A identificação do tempo deganho precoce é útil para aumentar a utilização do sistema em tempo deexecução e para economizar energia do sistema, por exemplo.Alcançar a redução do pior tempo de computação em tarefas que compõemum sistema de tempo real é importante pois permite que recursos computacionaisnão sejam desperdiçados, impactando diretamente no custo. Outraimportância para tal redução é a aceitação de tarefas do tipo soft real-time,pois quanto menor o WCET das tarefas do tipo hard, mais tempo de processadorpode ser alocado para este tipo de tarefa.ContribuiçõesAs contribuições desta tese para o estado da arte são:1. A proposição de uma maneira diferente de executar o loop unrollingsobre laços cujas execuções são dependentes de dados usando a predicaçãode código visando redução de WCET, porque as técnicas existentesconsideram apenas laços com contagens de execução fixas. A técnicaproposta também foi combinada com abordagens de loop unrollingexistentes. Os resultados mostraram que esta combinação pode produziragressivas reduções de WCET quando comparadas com o códigooriginal.2. Em relação às técnicas de predição estática de desvios, são mostradosque somente ganhos pequenos ou mesmo nenhum ganho pode ser obtidocom novas técnicas de otimização direcionadas para a redução do tempode execução do pior caso. Para alcançar esse objetivo, foram comparadasvárias técnicas contra o previsor de desvio perfeito. Este previsorpermite estimar a redução máxima de WCET que pode ser obtida comabordagens estáticas. Além da técnica clássica da literatura, foi incluídana comparação uma nova técnica centrada em WCET que atua comouma abordagem de força bruta para aproximar os resultados do preditorperfeito. A comparação também inclui técnicas de compilação nãodiretamente orientadas para redução de WCET. Como resultado, sãomostradas que as técnicas consideradas nesta tese estão próximas do resultadoótimo obtido pelo previsor perfeito. Também é mostrado quea técnica proposta produz resultados ligeiramente melhores do que asdemais técnicas. Como contribuição secundária, é mostrado que as técnicasinconscientes de WCET também podem ser usadas em ambientesem tempo real porque apresentam bons resultados e baixa complexidade.As técnicas de previsão foram avaliadas usando um conjunto deexemplos dos benchmarks para WCET de Mälardalen.3. Um problema do WCET é que ele é relativo a um único caminho de execução,especificamente o caminho de execução do pior caso (WCEP).Quando uma aplicação em tempo real executa sobre um caminho diferentedo WCEP, seu tempo de execução será provavelmente menor doque o WCET. A diferença entre o WCET de uma tarefa e seu tempo deexecução real é chamado de tempo ganho. Neste trabalho, é propostauma técnica que encontra pontos específicos de um programa (chamadospontos de ganho), onde haverá uma quantidade de tempo ganhoestimado estaticamente no caso de esse caminho ser tomado pela execução.Como estudo de caso, é apresentado o tempo ganho obtido pelaaplicação estratégia proposta a um benchmark da série de benchmarkspara WCET de Mälardalen. Para o benchmark selecionado, foram identificadosvários pontos de ganho e alguns deles com uma quantidadesignificativa de tempo ganho detectado estaticamente.ConclusãoSistemas de tempo real estão presentes em diversos segmentos da indústria,desde sistemas aviônicos a eletrônica automotiva, passando por sistemasindustriais. No passado, tais sistemas eram bastante simples, considerandoa demanda por recursos computacionais e interdependência entretarefas. Porém hoje o cenário é outro: têm-se aplicações com altíssimo nívelde complexidade, por vezes geradas sem intervenção humana a partir de modelosformais. Cada tarefa componente destas aplicações possui seu próprioprazo e por vezes depende de resultados provenientes de outras tarefas (possivelmenteatravés de uma rede), levando a necessidade de estimativa tambémde prazos fim-a-fim.Levantado o cenário anterior, percebe-se que processadores simples,como microcontroladores, não são capazes de atender aplicações de temporeal como atendiam no passado. Neste caso, torna-se necessária a utilizaçãode processadores com maior capacidade computacional, com mecanismos deaumento desempenho, como pipelines, caches e execução especulativa. Oproblema com estes mecanismos é a dificuldade de cálculo do pior caso notempo de computação, devido a fatores como anomalias temporais. Entretanto,algumas vertentes da literatura sugerem o uso de arquiteturas voltadaspara tempo-real, ou seja, deterministas.Neste trabalho, foi objetivada a geração e otimização de código parauma arquitetura determinista mas com mecanismos de aumento de performance.O objetivo primário foi a redução de WCET de programas, bemcomo o levantamento de alguns parâmetros úteis no projeto de um sistemade tempo real. A redução de WCET importante para não sobre-dimensionarsistemas, não desperdiçando assim, recursos computacionais. A utilizaçãode uma arquitetura determinista aliada a redução de WCET induz a sistemasbem dimensionados em termos de recursos.Usando técnicas como loop unrolling usando predicação de código eprevisão estática de desvios, foi possível reduzir o pior caso no tempo decomputação de tarefas. A caracterização de tempo ganho, do ponto de vistapuramente estático, também pôde ser alcançada neste trabalho
    corecore