
Integrating Abstract Caches with Symbolic
Pipeline Analysis
Stephan Wilhelm1 and Christoph Cullmann1

1 AbsInt Angewandte Informatik GmbH, Science Park 1; D-66123 Saarbrücken,
Germany

Abstract
Static worst-case execution time analysis of real-time tasks is based on abstract models that
capture the timing behavior of the processor on which the tasks run. For complex processors,
task-level execution time bounds are obtained by a state space exploration which involves the
abstract model and the program. Partial state space exploration is not sound. Symbolic methods
using binary decision diagrams (BDDs) allow for a full state space exploration of the pipeline,
thereby maintaining soundness. Caches are too large to admit an efficient BDD representation.
On the other hand, invariants of the cache state can be computed efficiently using abstract
interpretation. How to integrate abstract caches with symbolic-state pipeline analysis is an open
question [11]. We propose a semi-symbolic domain to solve this problem. Statistical data from
industrial-level software and WCET tools indicate that this new domain will enable an efficient
analysis.

Digital Object Identifier 10.4230/OASIcs.WCET.2010.36

1 Introduction

The execution time of a task depends on the execution speed of the processor on which the
task runs, as well as on the executed program code and on input values. Further, complex
processors implement various features to reduce the average execution time, e.g., pipelines
and caches. Execution times on such processors also depend on the execution history and on
the start state of the hardware [7, 9]. As a consequence, tools for safe WCET prediction
have to cover all feasible program paths, inputs, and hardware states.

Static WCET analysis only becomes computationally feasible in practice by using abstrac-
tion, which is applied to both the modeling of processor and program behavior [5]. However,
abstraction loses information which leads to uncertainty, e.g., it may not be possible to
statically determine the exact address of a memory access. Furthermore, program inputs are
not precisely known in advance. At the level of the hardware model, this lack of information
is accounted for by non-deterministic choices. To be safe, the analysis has to explore all
possibilities. This can lead to state explosion making an explicit enumeration of states
infeasible due to memory and computation time constraints [10].

In [13] we presented a symbolic approach for pipeline analysis that avoids the explicit
enumeration of reachable pipeline states, and showed its effectiveness in alleviating the state
explosion problem in WCET analysis. The implementation cooperates efficiently with a
framework of static analyses based on abstract interpretation. A commonality of these
analyses is the fact that they run prior to pipeline analysis. Hence, cooperation boils down
to importing statically available analysis results. In contrast, the abstract interpretation
of caches [6] cannot be separated from pipeline analysis. The cache state depends on the
order of memory accesses and therefore on the state of the pipeline. The pipeline state in
turn is influenced by the latency of instruction and data fetches which depends on the cache
state. Explicit-state implementations of pipeline analysis establish a one-to-one relationship

© Stephan Wilhelm and Christoph Cullmann;
licensed under Creative Commons License NC-ND

10th International Workshop on Worst-Case Execution Time Analysis (WCET 2010).
Editor: Björn Lisper; pp. 36–43

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

S. Wilhelm and C. Cullmann 37

between pipeline and cache states, i.e., they combine each abstract cache state with a single
abstract pipeline state. The pipeline state triggers an update of its associated cache state
whenever the processor accesses a cached memory area.

Symbolic-state implementations cannot afford a one-to-one relation between pipeline and
cache states without losing the advantages of symbolic state space exploration. We present
experimental evidence that a one-to-one relation between pipeline and cache states is not
required in practically relevant scenarios. Furthermore, we describe a semi-symbolic domain
that efficiently integrates abstract interpretation based cache analysis with symbolic pipeline
analysis while preserving a high analysis precision.

2 The Problem

Notation. The sets of natural numbers and Boolean values are denoted by N and B,
respectively. I ⊂ N× N is the set of intervals such that ∀(l, u) ∈ I : l ≤ u. We write f · g for
conjunction, f + g for disjunction, and f for negation of Boolean functions and variables. A
vector of Boolean values is written as ~x.

Pipeline analysis [10, 4] computes upper bounds on the execution time of basic blocks using
an abstract pipeline model. The model accounts for timing-relevant processor components,
such as pipelining, speculation, and peripheral hardware. To reduce complexity, ALUs and
register files are handled by a dedicated value analysis [3]. Symbolic pipeline analysis [13]
uses BDD representations [2] of abstract pipeline models and sets of abstract states. The
involved BDDs are directed, acyclic graphs that represent Boolean functions of type Bn → B.
An example BDD for the Boolean function x0 · x1 · x2 · x3 · x4 · x5 + x0 · (x1 + x1 · x2) is
depicted in Fig. 2.

The idea behind the symbolic approach is, that an abstract pipeline model corresponds
to a finite state machine (FSM) with n Boolean state variables. Assignments of the state
variables define pipeline states, e.g., in terms of different positions of instructions (identified
by their addresses) in the pipeline. An FSM consists of a set of states Q ⊆ Bn, a set of
initial states S ⊆ Q and a transition relation T ⊆ Q×Q. Each set of states A ⊆ Q, as well
as the transition relation T , can be associated with a Boolean function A : Bn → B where
A(~x) = 1 ⇔ ~x ∈ A and T : Bn × Bn → B where T(~x, ~y) = 1 ⇔ (~x, ~y) ∈ T . We say that
A : Bn → B is the characteristic function of the set A. The pipeline model is given in terms
of its symbolic transition relation by the BDD TM. Static program information, such as
branch targets and intervals of register contents, are encoded into a BDD program relation
TL that restricts the possible transitions of TM. A set of pipeline states is represented
by a BDD A. State traversal is implemented by repeated application of a symbolic image
operator Img : (Bn × Bn → B)× (Bn → B)→ (Bn → B) [8]. The set of successor states for
the states in A is computed by Img(TM ·TL,A).

Cache analysis [6] operates on abstract representations of cache states. The abstract
representation allows to trade precision for efficiency. Soundness is maintained by losing
information only on the safe side, i.e., the result over-approximates the concrete cache states
but it never misses a reachable cache state. The interface of the cache analysis comprises
functions to query and update abstract caches with intervals of memory addresses. It also
features a join operator for joining two cache states into another cache state that over-
approximates both. The join operation may lose precision. There are two possibilities for
integrating a symbolic-state implementation of pipeline analysis with a cache representation:
1. Including the cache into the symbolic representation of pipeline states.

WCET 2010

38 Integrating Abstract Caches with Symbolic Pipeline Analysis

2. Associating an abstract cache representation with a symbolic representation of pipeline
states.

Let us consider the first approach. Even small caches are too large to admit a straightforward
BDD representation for symbolic state traversal. In [12] we proposed an alternative symbolic
representation for caches. Compactness was achieved by losing the correlation between the
abstract cache cells; the resulting BDD is no longer the characteristic function of a set of
hardware states. Unfortunately, it seems that – despite its compactness – the proposed
representation does not allow for an efficient state traversal. So far, attempts to design
efficient image operators, i.e., operators that avoid an exhaustive enumeration of the encoded
states, have not been successful.

The second possibility seems equivalent to the approach taken by explicit-state imple-
mentations. However, symbolic-state implementations cannot afford a one-to-one relation
between pipeline and cache states without losing the advantages of symbolic state space
exploration. The explicit handling of caches would require the same explicit enumeration of
pipeline states that the symbolic representation is trying to avoid. The next section presents
a domain that is based on this second possibility, but uses a more favorable relation between
pipeline and cache states.

3 Proposed Domain

We propose a semi-symbolic domain that integrates an abstract cache representation with
a symbolic representation of pipeline states. The explicit enumeration problem is avoided
by maintaining an efficient relation between pipeline and cache states. The basic idea is
that we combine a set of pipeline states (represented symbolically by a BDD) with a single
abstract cache state. The product of the pipeline and cache domains is thus based on an
n-to-one relation. This allows us to preserve the benefits of the symbolic representation by
manipulating sets of pipeline states symbolically.

Let Ĉ and Bn → B denote the abstract cache domain and the symbolic pipeline domain,
respectively. A partition of abstract hardware states is a tuple of type (Bn → B)× Ĉ and H
denotes the set of all partitions. The proposed domain D is the power set of H excluding the
empty set.

3.1 Updating partitions of abstract hardware states

We show the update of a single partition (A, â) ∈ H, where A : Bn → B is a BDD representing
a set of pipeline states and â ∈ Ĉ is an abstract cache state. Let AC be the set of all addresses
in cached memory that are accessed by the analyzed program. For the remainder of this paper
we assume that all memory accesses address cached memory regions. The pipeline model
then needs m = log2(|AC |) state variables for addressing memory. We require that these
variables appear first in the BDD representation. The addressed interval can be obtained by
a function acc : (Bn → B)→ I that inspects the first m BDD variables. Its implementation
is discussed in Sec. 3.3.

The classification function cl : Ĉ × I→ {(0, 1), (1, 0), (1, 1)} of the abstract cache domain
determines whether an access results in a cache hit (0, 1) or miss (1, 0). Note that the result of
this query can also be undecided (1, 1) if precise information has been lost due to abstraction
or if the interval comprises both, cache hits and misses. The result of cl(â, acc(A)) can
be encoded as a symbolic relation TC by a function enc : B2 → (Bn × Bn → B). The
computed relation restricts the possible transitions of the model relation TM. It only allows

S. Wilhelm and C. Cullmann 39

step(A, â) =
let I = acc(A) in
let TC = enc(cl(â, I)) in

(Img(TM ·TL ·TC ,A) , up(â, I))

Figure 1 Implementation of the update function step : H → H.

for transitions that correspond to the result of the cache query. This is analogue to the
construction of TL from statically available program information.

Let up : Ĉ × I→ Ĉ denote the update function for abstract cache states. The update of
a single partition (A, â) can then be computed by a function step : H → H as depicted in
Fig. 1. The step function first determines the interval I of memory addresses that is accessed
by the pipeline states in A. It then queries the cache domain to determine whether the
access hits or misses the cache and – based on this information – constructs the BDD TC for
restricting the reachable pipeline states. The constructed BDD is conjoined with the BDDs
TM and TL to obtain the effective transition relation for the next update. By application of
the image operator on the computed transition relation and the set of pipeline states A, it
computes the set of successor pipeline states. The next cache state is obtained by application
of the cache domain update function on the current cache â and the accessed interval I.

3.2 Balancing pipeline and cache states
In order to maintain a favorable n-to-one relation between pipeline and cache states, we
introduce a balancing operation to be applied in each round of the state traversal. The
balancing operation involves two steps: partition and join. The partition step is based on the
decomposition of the BDD of pipeline states. Decomposition of a BDD f : Bn → B into its
cofactors with respect to a variable xn means computing subfunctions g, h : Bn−1 → B such
that g(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0) and h(x1, . . . , xn−1) = f(x1, . . . , xn−1, 1). This
decomposition, also known as Shannon expansion, is a very efficient operation on BDDs and
the foundation of many basic BDD algorithms.

Let (A, â) ∈ H be a partition of abstract hardware states. The first m state variables
in A encode the accessed interval of memory addresses. We partition (A, â) by a function
part : H → D that recursively decomposes A into its cofactors with respect to the first m
state variables. A new partition is created for each cofactor together with a copy of the cache
state â. The decomposition proceeds until all satisfying paths of the BDD pass through the
variable m+ 1. As a result, all pipeline states in a new partition (Ax, â) ∈ part(A, â) access
the same interval of memory addresses. Note that step(Ax, â) yields a more precise successor
cache state than step(A, â).

Excessive partitioning might lead us back to the explicit enumeration problem. In the
worst case, each partition in a domain element D ∈ D encodes only a single pipeline state.
We prevent this by applying a join operator to partitions of D. Let t denote the join operator
for abstract caches [6]. The union of two sets of pipeline states is implemented by disjunction
of their characteristic functions. Two partitions (A, â) and (B, b̂) are joined by a function
join : H×H → H:

join((A, â), (B, b̂)) = (A + B, â t b̂)

WCET 2010

40 Integrating Abstract Caches with Symbolic Pipeline Analysis

To minimize the loss of cache precision, we join only partitions whose pipeline states
access the same interval of memory addresses. This restriction also prevents us from undoing
the partitioning. The loss in cache precision could be limited further by joining only hardware
states with similar caches. This however requires a similarity metric for abstract cache states.
A simple but efficient similarity metric would be, to only join two cache states â, b̂ ∈ Ĉ if one
of them already over-approximates the other, which is equivalent to

â t b̂ = â or â t b̂ = b̂

Besides balancing the relation between pipeline and cache states and optimizing the
representation for an efficient implementation of the function acc : Bn → I, the application
of regular partition and join operators also ensures a canonical representation of hardware
states; because of the balancing operations, a particular hardware state always ends up in
exactly one partition of an element of D. This property allows for an efficient equality check
of data flow elements by pairwise invocation of the equality operators of the two underlying
domains on the contained partitions. It is most efficient if the number of partitions is small.

3.3 State traversal and performance
The state traversal for micro-architectural analysis on the domain D is implemented by
repeated application of the function step : H → H to all elements of a domain element
D ∈ D. Partition and join functions are applied in each round of the traversal for balancing
pipeline and cache states before applying the step function.

The proposed domain is most efficient if each cache state is associated with a large number
of pipeline states. This allows for a small number of BDD operations which exploits the
caching of intermediate results that is typical for BDD algorithms. Moreover, it significantly
reduces the required number of cache updates since we perform a single cache update for all
of the associated pipeline states. Note that a small number of partitions per domain element
is also desirable.

A favorable relation between pipeline and cache states is maintained by the regular
application of the join operator. The prior application of the partition operator minimizes
the loss of cache precision and optimizes the BDD representation to allow for an efficient
implementation of the function acc : Bn → I. Its efficiency depends on the fact that

the variables for addressing memory appear first in the BDD, and
all encoded pipeline states access the same interval of addresses.

Hence, it suffices to enumerate the satisfying paths over the first m BDD variables. Let us
consider the example depicted in Fig. 2. The example BDD shows only the first 6 state
variables for accessing memory, i.e., we have m = 6. Note that in the full representation,
the terminal node 1 would be replaced by a subgraph that represents the set of associated
pipeline states. The BDD is evaluated by traversing the graph from the first variable node
x0 to one of the terminal nodes 1 or 0. Each variable node has two outgoing edges: the
solid edge indicates that the variable has value 1, the dashed edge corresponds to the value
0. Nodes whose values do not influence the final result are omitted in the BDD (dont-care
nodes). The terminal nodes represent the evaluation result. A path that ends at the terminal
node 1 is called a satisfying path. It corresponds to one or several satisfying assignments of
the variables. The satisfying paths over the example BDD of Fig. 2 are depicted in the first
table of Fig. 3. To determine the interval that corresponds to a satisfying path, we set all
dont-care nodes to 0 to obtain the lower bound (see table 3 in Fig. 3), and to 1 to obtain the
upper bound (see table 2 in Fig. 3). Finally, we obtain the represented interval by taking the
minimum and maximum of the intervals over all satisfying paths.

S. Wilhelm and C. Cullmann 41

?>=<89:;x0

��������

��.
.

.

?>=<89:;x1

���
�

�

��(((((((((((((((((((((((((((((((((((((((
?>=<89:;x1

���

��.
.

.

?>=<89:;x2

���
�
�

��.................................
?>=<89:;x2

�����������������������������������

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�

?>=<89:;x3

���
�
�

��3333333333333333333333333

?>=<89:;x4

���
�
�

��===================

?>=<89:;x5

���
�
�

''NNNNNNNNNNNNNN

1 0

Figure 2 BDD representation of the memory
access interval [8, 32]. In the full representation,
the terminal node 1 is replaced by a subgraph that
represents the set of associated pipeline states.

x0 x1 x2 x3 x4 x5

1 0 0 0 0 0
0 1 - - - -
0 0 1 - - -

1. satisfying paths

x0 x1 x2 x3 x4 x5 ub
1 0 0 0 0 0 32
0 1 1 1 1 1 31
0 0 1 1 1 1 15

2. upper bound

x0 x1 x2 x3 x4 x5 lb
1 0 0 0 0 0 32
0 1 0 0 0 0 16
0 0 1 0 0 0 8

3. lower bound

Figure 3 Computing the lower and upper
bounds of the intervals that correspond to the
satisfying paths. The complete interval is then
computed as [min{32, 16, 8},max{32, 31, 15}] =
[8, 32].

The example shows that the interval can be computed from the BDD without enumerating
all contained addresses. Note that the computational effort does not grow significantly if
the interval shares a larger address prefix (using additional state variables x6, x7, . . . , xm to
address memory). The additional state variables either allow only for a single assignment,
or most of them are dont-care nodes. The number of satisfying paths in the BDD will stay
small.

4 Typical Cache Access Patterns

We experimented with 6 tasks of a commercial, safety-critical real-time software1 to assess
the correlation between memory accesses from different pipeline states. The tasks have been
fully unrolled and annotated to avoid serious state explosion. The employed annotations
specify ranges for register contents at selected program points to improve the precision
of the value analysis and thereby reduce the reachable state space of the pipeline model.
Note that full unrolling is not feasible for all software but required to obtain results with
explicit-state implementations of very complex pipeline models. Otherwise, the analysis
would not terminate in acceptable time because of state explosion. The following results have
been obtained with the commercial, explicit-state pipeline model of the Motorola PowerPC

1 Closed source and confidential.

WCET 2010

42 Integrating Abstract Caches with Symbolic Pipeline Analysis

755 [10, 1]. With full unrolling and annotations, all analyses terminate in less than 5 minutes
running on an Intel i5 CPU at 2.67 GHz. We instrumented the pipeline model to print the
following information for each access into a cached memory area:
1. Type of access, i.e., instruction or data.
2. Address and context of the currently analyzed basic block.
3. Cycle count since start of current basic block.
4. Accessed address or address range.
For each type of access, we collect all accesses with equal basic block address, analysis context,
and cycle count. Symbolic pipeline analysis explores the model’s state space cycle-wise in
breadth-first order. Hence, all accesses in one set are issued from pipeline states in the same
exploration layer. We partition the sets depending on the accessed addresses to obtain the
number of different memory accesses from the same layer. The following tables list the results
of this experiment. For each task (numbered t1, . . . , t6) the first row gives the results for
instruction cache accesses, whereas the second row reports the same information for data
cache accesses.

Table 1 Avg. number of partitions per cycle.

t1 t2 t3 t4 t5 t6

2.19 1.51 1.94 2.03 2.13 1.52
1.38 1.11 1.29 1.35 1.35 1.02

Table 2 Max. number of partitions per cycle.

t1 t2 t3 t4 t5 t6

42 7 42 42 42 10
6 2 6 6 6 2

Table 3 Avg. number of states per partition.

t1 t2 t3 t4 t5 t6

17.24 35.35 25.49 25.61 35.63 19.96
10.82 28.07 20.76 25.94 25.61 7.87

Table 4 Max. number of states per partition.

t1 t2 t3 t4 t5 t6

4927 1311 8519 8190 8544 1091
1947 720 7140 7783 8115 268

According to Tab. 1, the average number of partitions is roughly 2. This number
corresponds directly to the expected average number of partitions of an element of the
proposed domain D. Tab. 3 shows the average sharing, i.e., the number of pipeline states that
can be encoded into a single BDD. The results indicate that the average relation between
pipeline and cache states is roughly 18 : 1 (by dividing the average sharing of Tab. 3 by the
average number of partitions of Tab. 1). The maximum number of partitions stays fairly
small as shown by the results in Tab. 2. On the other hand, the maximum number of pipeline
states per BDD can be quite large as shown by the results in Tab. 4.

All results indicate that the proposed domain operates on tuples with typical pipeline-
cache relations between 1 : 1 and 8544 : 1, with an average of 18 : 1. These numbers hold
under the assumption that the analysis maintains maximum cache precision. The proposed
domain allows higher numbers of pipeline states per partition if caches are joined more
aggressively. Larger numbers of pipeline states per partition can also be expected when the
analysis encounters cases of imprecise information, e.g., about memory accesses.

5 Conclusion

We presented a new domain that integrates a symbolic exploration of abstract pipeline
states with an abstract interpretation based domain for computing invariants of the cache
state. Sets of pipeline states are stored in BDDs and manipulated symbolically using BDD
operations. Abstract cache states are associated with sets of symbolically encoded pipeline

S. Wilhelm and C. Cullmann 43

states. Partition and join steps balance the representation to preserve a high analysis precision
while avoiding an explicit enumeration of pipeline and cache states. Statistical data indicates
that it is possible to maintain a favorable relation between pipeline and cache states, which
allows us to reap the benefits of symbolic state traversal for pipeline analysis.

Acknowledgements
We would like to thank the anonymous reviewers for their comments. We thank Daniel
Kästner and Reinhold Heckmann for proof-reading this paper and Marc Schlickling for
providing information about the Motorola PowerPC 755 pipeline model.

References
1 AbsInt. aiT WCET Analyzers. http://www.absint.com/ait, 2000.
2 R.E. Bryant. Graph based algorithms for boolean function manipulation. In IEEE Trans-

actions on Computers, 1986.
3 Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, Los Angeles, California, 1977.

4 Jakob Engblom. Processor Pipelines and Static Worst-Case Execution Time Analysis. PhD
thesis, Uppsala University, 2002.

5 C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling,
S. Thesing, and R. Wilhelm. Reliable and Precise WCET Determination for a Real-Life
Processor. In Proceedings of EMSOFT 2001, LNCS 2211, 2001.

6 Christian Ferdinand. Cache Behavior Prediction for Real-Time Systems. PhD thesis, Saar-
land University, 1997.

7 Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard Wilhelm. The
influence of processor architecture on the design and the results of WCET tools. Proceedings
of the IEEE, 91(7), 2003.

8 R. Ranjan, A. Aziz, R. Brayton, B. Plessier, and C. Pixley. Efficient BDD Algorithms for
FSM Synthesis and Verification, 1995.

9 Jan Reineke. Caches in WCET Analysis. PhD thesis, Saarland University, 2008.
10 Stephan Thesing. Safe and Precise WCET Determination by Abstract Interpretation of

Pipeline Models. PhD thesis, Saarland University, 2004.
11 Reinhard Wilhelm, Sebastian Altmeyer, Claire Burguière, Daniel Grund, Jörg Herter, Jan

Reineke, Björn Wachter, and Stephan Wilhelm. Static timing analysis for hard real-time
systems. In VMCAI, pages 3–22. Springer Verlag, 2010.

12 Stephan Wilhelm and Björn Wachter. Towards symbolic state traversal for efficient WCET
analysis of abstract pipeline and cache models. In Proceedings of Seventh International
Workshop on Worst-Case Execution Time Analysis, July 2007.

13 Stephan Wilhelm and Björn Wachter. Symbolic state traversal for WCET analysis. In
International Conference on Embedded Software, pages 137–146, October 2009.

WCET 2010

	Introduction
	The Problem
	Proposed Domain
	Updating partitions of abstract hardware states
	Balancing pipeline and cache states
	State traversal and performance

	Typical Cache Access Patterns
	Conclusion

