
UNIVERSIDADE FEDERAL DE SANTA CATARINA - UFSC

PROGRAMA DE PÓS - GRADUAÇÃO EM ENGENHARIA DE

AUTOMAÇÃO E SISTEMAS - PPGEAS

Andreu Carminati

CONTRIBUTIONS TO WORST-CASE EXECUTION

TIME REDUCTION USING COMPILATION

TECHNIQUES

Florianópolis

2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da UFSC

https://core.ac.uk/display/200767844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Andreu Carminati

CONTRIBUTIONS TO WORST-CASE EXECUTION TIME

REDUCTION USING COMPILATION TECHNIQUES

A Thesis submitted to the Department
of Automation and Systems Engineer-
ing in partial fulfillment of the require-
ments for the degree of Doctor of Phi-
losophy in Automation and Systems
Engineering.
Supervisor: Rômulo Silva de Oliveira

Florianópolis
2017

,
Contributions to Worst-Case Execution Time Reduction Using Compilation

Techniques : / Andreu Carminati; orientador, Rômulo Silva de
Oliveira. - Florianópolis, Brazil 2017.
246 p.

- Universidade Federal de Santa Catarina - UFSC, Centro Tecnológico –
CTC. Programa de Pós - Graduação em Engenharia de Automação e Sistemas -
PPGEAS.

Inclui Referências

I. , . II. Universidade Federal de Santa Catarina - UFSC.
Programa de Pós - Graduação em Engenharia de Automação e Sistemas -
PPGEAS. II. Contributions to Worst-Case Execution Time Reduction Using
Compilation Techniques.

CONTRIBUTIONS TO WORST-CASE EXECUTION TIME
REDUCTION USING COMPILATION TECHNIQUES

Andreu Carminati

This Thesis is hereby approved and recommend for acceptance in partial
fulfillment of the requirements for the degree of “Doctor of philosophy in

Automation and Systems Engineering.”

October 26th, 2017.

Prof. Rômulo Silva de Oliveira, Dr.
Supervisor

Prof. Daniel Coutinho, Dr.
Coordinator of the Automation and Systems

Engineering Postgraduate Program

Examining Committee:

Prof. Rômulo Silva de Oliveira, Dr. - UFSC
Chair

Prof. Rodolfo Jardim de Azevedo, Dr. - UNICAMP

Prof. Luiz Cláudio Villar dos Santos, Dr. - UFSC

Prof. Joni da Silva Fraga, Dr. - UFSC

Our virtues and our failings are inseparable, like force and
matter. When they separate, man is no more.
Nikola Tesla

ACKNOWLEDGEMENTS

I thank to my advisor professor Rômulo Silva de Oliveira for his
readiness, dedication, and the remarkable suggestions that helped me
to stay in the right path of the work.

I thank my family for their trust and support during my aca-
demic life. In particular I thank my parents allowing access to high
end education. A special thank to my wife Kátia Morgana who en-
couraged and supported me for all these years.

I also thank to laboratory colleagues and friends for sharing ideas
and improvements. A special thank to my friend Renan Starke who
helped to make this work possible with the processor implementation,
long debugging sessions and priceless discussions.

Finally thanks to CAPES for the financial support.

ABSTRACT

A wide range of systems are distinct from the general purpose computing
systems due to the need of satisfying rigorous timing requirements, often
under the constraint of available resources, they are generally called real-
time systems. The development of a predictable system is concerned with
the challenges of building systems whose time requirements can be guar-
anteed a priori. Although, these challenges become even greater when us-
ing processors’ architectural features for performance increase, as caches
and pipelines, which introduce a high degree of uncertainty, making dif-
ficult to provide any kind of guarantee. Parallel to this, there are the tools
needed to develop and execute an application, such as languages, compil-
ers, runtime support, communication systems and scheduling, which may
further make difficult the assertion of guarantees. In these systems, the
results of computations must be generated at the right time and faults of
temporal nature can result in catastrophic consequences both in the eco-
nomic sense as in human lives. These systems are present in countless
applications, such as in industrial plants, aviation, and the complexity of
them imposes serious restrictions on the hardware that can be used. To
provide timing guarantees, we must know the worst-case execution time
for each tasks of the system. In a general purpose architecture aimed at
the average case, the execution time of a program or task can be so great
in the worst case that invalidates the design constraints, or even be im-
possible to be calculated or estimated with a reasonable effort. In this
thesis, we integrate compilation with WCET calculation. A compiler can
provide relevant data to facilitate the process of WCET estimation. To
improve this process, we also use an architecture whose purpose is to
conciliate performance with determinism. Considering compilation and
WCET integration we present the following contributions: (1) a differ-
ent way to perform loop unrolling on data-dependent loops using code
predication targeting WCET reduction, because existing techniques only
consider loops with fixed execution counts. (2) considering static branch
predication techniques, we show that a very small gain or even none can
be obtained with new optimization techniques targeted to worst-case exe-

cution time reduction. To achieve this objective, we compare several tech-
niques against the perfect branch predictor. (3) the difference between the
WCET of a task and its actual execution time is called gain time. We
propose a technique that finds specific points of a program (called gain
points), where there will be an amount of statically estimated gain time in
the case that path is taken by the execution.
Keywords: Real time systems, Compilation, Worst-Case Execution Time
(WCET) Analysis.

RESUMO EXPANDIDO

CONTRIBUIÇÕES PARA A REDUÇÃO DO PIOR TEMPO DE
COMPUTAÇÃO UTILIZANDO TÉCNICAS DE COMPILAÇÃO

Palavras-chave: Sistemas de tempo real, compilação, análise de pior tempo
de computação (WCET – Worst-case Execution Time)

Introdução

Uma grande gama de sistemas se distinguem dos sistemas de com-
putação de propósito geral pela necessidade de satisfação de requisitos de
temporização rigorosos. O desenvolvimento de um sistema previsível preocupa-
se com os desafios de construção de sistemas cujos requisitos temporais pos-
sam ser garantidos a priori. Estes desafios tornam-se ainda maiores quando
se utiliza recursos arquiteturais para aumento de performance, como caches

e pipelines, os quais introduzem um alto grau de incertezas, tornando difícil
o provimento de qualquer tipo de garantia. Paralelamente a isto, existem as
ferramentas necessárias ao desenvolvimento e execução da aplicação, como
linguagens, compiladores, runtime de execução, sistemas de comunicação e
escalonamento, os quais podem dificultar ainda mais a asserção de garantias.

Nestes sistemas, os resultados das computações devem estar corretos
não somente do ponto de vista lógico, mas também devem ser gerados no
momento correto. As falhas de natureza temporal nestes sistemas são, em
alguns casos, consideradas críticas no que diz respeito às suas consequências.
Nos sistemas tempo real críticos (hard real-time) o não atendimento de um
requisito temporal pode resultar em consequências catastróficas tanto no sen-
tido econômico quanto em vidas humanas. Quando os requisitos temporais
não são críticos (soft real-time) eles apenas descrevem o comportamento de-
sejado. O não atendimento de tais requisitos reduz a utilidade da aplicação
mas não a elimina completamente nem resulta em consequências catastrófi-
cas.

Estes sistemas estão presentes em diversas aplicações, como em plan-
tas industriais, aviação e eletrônica automotiva, telecomunicações e sistemas

espaciais. Em várias destas aplicações, a complexidade dos sistemas de soft-
ware impõe sérias restrições quanto ao hardware que poderá ser utilizado.
Este deverá ter capacidade suficiente para sustentar a aplicação em questão,
além de poder estar submetido a restrições não funcionais do projeto, como
custo e eficiência energética.

Arquiteturas modernas e de propósito geral possuem como premissa
básica aquela que diz que os programas devem executar o mais rápido pos-
sível na maioria das vezes. Este tempo médio é geralmente chamado de
ACET - Average-case Execution Time. Entretanto, em alguns casos, o tempo
de uma execução de uma aplicação poderá ser grande em relação ao caso mé-
dio, mas ainda estará amortizado entre as diversas execuções do programa.
Esta priorização de caso médio impõe certas problemáticas quanto à utiliza-
ção deste tipo de arquitetura em sistemas de tempo real. Tais sistemas podem
exigir garantias de tempo de execução difíceis de serem obtidas ou muitas
vezes inviáveis. Estas garantias exigem o conhecimento do pior tempo de
execução de um programa ou tarefa em um determinado processador, o qual
geralmente é chamado de WCET - Worst-case Execution Time. Em uma ar-
quitetura de propósito geral que vise o caso médio, o tempo de execução no
pior caso de um programa ou tarefa pode ser tão grande que inviabilize as
restrições de projeto, ou mesmo ser impossível de ser estimado.

Atualmente, existem vertentes acadêmicas que sugerem a utilização de
processadores e arquiteturas voltadas para aplicações de tempo real. Tais
arquiteturas adotam características de hardware que tornam as análises refer-
entes à obtenção de WCET mais simples e rápidas.

Uma característica importante é que o desempenho em arquiteturas es-
pecíficas, como as voltadas para tempo real, pode estar intimamente rela-
cionado ao compilador e as técnicas de compilação empregadas, como explo-
ração estática de paralelismo. Dada a possibilidade de ser obter o WCET de
programas para uma arquitetura específica, pode-se utilizar estas informações
no processo de otimização incremental dos mesmos. Estas otimizações visam
a redução do WCET, visto que abordagens tradicionais de transformação de
código feitas por compilador podem até mesmo aumentar o WCET de um
programa.

Objetivos

O objetivo deste trabalho é contribuir com aspectos relacionados à com-
pilação para sistemas de tempo real, cujo objetivo primário seja a redução
de WCET ou melhoria de aspectos relacionados à escalonabilidade. A tese
a ser demonstrada é que o íntimo acoplamento de um compilador com um
analisador WCET pode beneficiar tanto a análise quanto a síntese de um pro-
grama executável ou sistema completo para uma arquitetura determinista. A
utilização de uma arquitetura determinista representa uma característica im-
portante deste trabalho, bem como o desenvolvimento do respectivo anal-
isador WCET.

Dentre os elementos relacionados ao compilador essenciais para a re-
dução do WCET, pode-se citar:

• Mecanismos para o cálculo de WCET de programas em processo de
compilação. Isto implica acoplamento do compilador com o analisador
desenvolvido.

• Identificação de potenciais pontos a serem beneficiados por otimiza-
ções. Este processo envolve interpretação dos resultados do analisador.

• Descarte de alterações de códigos que aumentem o WCET. Novamente,
decisões deverão ser tomadas com base em análises sucessivas.

Além dos elementos relacionados, podemos destacar a eficiência do
processo. O uso de uma arquitetura projetada para aplicações em tempo real
permite o uso de um analisador muito mais rápido e preciso, que visa trazer
eficiência ao processo. Embora a arquitetura se baseie em um ISA comercial,
não existe compilador livre disponível para esta, então, a implementação de
um gerador de código inteiramente funcional fez-se necessária como requi-
sito para realização do trabalho de tese.

Entre os elementos considerados como foco desta tese, têm-se:

• Técnicas de loop unrolling: Laços são frequentemente bons candidatos-
alvo para otimizações de compilação para extrair o desempenho em
processadores modernos. Algumas técnicas foram propostas na liter-
atura para alcançar a redução do WCET usando o loop unrolling, como
em (ZHAO et al., 2006) e (LOKUCIEJEWSKI; MARWEDEL, 2010).

Nestes trabalhos, apenas os laços com contagens de execução fixas são
considerados.

• Previsão estática de desvios: Previsores de desvio são utilizados para
aumentar o desempenho de programas em arquiteturas modernas. Pre-
visores estáticos podem depender do compilador para definir o com-
portamento de cada desvio condicional. Esse comportamento é então
adotado pelo processador para toda a execução do programa. O uso da
previsão estática de desvio como mecanismo para redução do tempo de
execução de pior caso é uma alternativa conhecida e foi primeiramente
proposta por (BODIN; PUAUT, 2005) e (BURGUIERE et al., 2005).

• Identificação de tempo ganho em programas: Tempo ganho (ou gain

time) (AUDSLEY et al., 1994) (AVILA et al., 2003) (HU et al., 2002)
(HU et al., 2003) é a diferença entre o WCET de uma tarefa e o tempo
de execução real. Uma abordagem comum é identificar o gain time

em tempo de execução comparando o tempo de execução real (medido)
com o WCET calculado estaticamente. A identificação do tempo de
ganho precoce é útil para aumentar a utilização do sistema em tempo de
execução e para economizar energia do sistema, por exemplo.

Alcançar a redução do pior tempo de computação em tarefas que com-
põem um sistema de tempo real é importante pois permite que recursos com-
putacionais não sejam desperdiçados, impactando diretamente no custo. Outra
importância para tal redução é a aceitação de tarefas do tipo soft real-time,
pois quanto menor o WCET das tarefas do tipo hard, mais tempo de proces-
sador pode ser alocado para este tipo de tarefa.

Contribuições

As contribuições desta tese para o estado da arte são:

1. A proposição de uma maneira diferente de executar o loop unrolling

sobre laços cujas execuções são dependentes de dados usando a pred-
icação de código visando redução de WCET, porque as técnicas exis-
tentes consideram apenas laços com contagens de execução fixas. A téc-
nica proposta também foi combinada com abordagens de loop unrolling

existentes. Os resultados mostraram que esta combinação pode pro-
duzir agressivas reduções de WCET quando comparadas com o código
original.

2. Em relação às técnicas de predição estática de desvios, são mostrados
que somente ganhos pequenos ou mesmo nenhum ganho pode ser obtido
com novas técnicas de otimização direcionadas para a redução do tempo
de execução do pior caso. Para alcançar esse objetivo, foram compara-
das várias técnicas contra o previsor de desvio perfeito. Este previsor
permite estimar a redução máxima de WCET que pode ser obtida com
abordagens estáticas. Além da técnica clássica da literatura, foi incluída
na comparação uma nova técnica centrada em WCET que atua como
uma abordagem de força bruta para aproximar os resultados do predi-
tor perfeito. A comparação também inclui técnicas de compilação não
diretamente orientadas para redução de WCET. Como resultado, são
mostradas que as técnicas consideradas nesta tese estão próximas do re-
sultado ótimo obtido pelo previsor perfeito. Também é mostrado que
a técnica proposta produz resultados ligeiramente melhores do que as
demais técnicas. Como contribuição secundária, é mostrado que as téc-
nicas inconscientes de WCET também podem ser usadas em ambientes
em tempo real porque apresentam bons resultados e baixa complexi-
dade. As técnicas de previsão foram avaliadas usando um conjunto de
exemplos dos benchmarks para WCET de Mälardalen.

3. Um problema do WCET é que ele é relativo a um único caminho de ex-
ecução, especificamente o caminho de execução do pior caso (WCEP).
Quando uma aplicação em tempo real executa sobre um caminho difer-
ente do WCEP, seu tempo de execução será provavelmente menor do
que o WCET. A diferença entre o WCET de uma tarefa e seu tempo de
execução real é chamado de tempo ganho. Neste trabalho, é proposta
uma técnica que encontra pontos específicos de um programa (chama-
dos pontos de ganho), onde haverá uma quantidade de tempo ganho
estimado estaticamente no caso de esse caminho ser tomado pela exe-
cução. Como estudo de caso, é apresentado o tempo ganho obtido pela
aplicação estratégia proposta a um benchmark da série de benchmarks

para WCET de Mälardalen. Para o benchmark selecionado, foram iden-
tificados vários pontos de ganho e alguns deles com uma quantidade
significativa de tempo ganho detectado estaticamente.

Conclusão

Sistemas de tempo real estão presentes em diversos segmentos da in-
dústria, desde sistemas aviônicos a eletrônica automotiva, passando por sis-
temas industriais. No passado, tais sistemas eram bastante simples, con-
siderando a demanda por recursos computacionais e interdependência entre
tarefas. Porém hoje o cenário é outro: têm-se aplicações com altíssimo nível
de complexidade, por vezes geradas sem intervenção humana a partir de mod-
elos formais. Cada tarefa componente destas aplicações possui seu próprio
prazo e por vezes depende de resultados provenientes de outras tarefas (pos-
sivelmente através de uma rede), levando a necessidade de estimativa também
de prazos fim-a-fim.

Levantado o cenário anterior, percebe-se que processadores simples,
como microcontroladores, não são capazes de atender aplicações de tempo
real como atendiam no passado. Neste caso, torna-se necessária a utilização
de processadores com maior capacidade computacional, com mecanismos de
aumento desempenho, como pipelines, caches e execução especulativa. O
problema com estes mecanismos é a dificuldade de cálculo do pior caso no
tempo de computação, devido a fatores como anomalias temporais. Entre-
tanto, algumas vertentes da literatura sugerem o uso de arquiteturas voltadas
para tempo-real, ou seja, deterministas.

Neste trabalho, foi objetivada a geração e otimização de código para
uma arquitetura determinista mas com mecanismos de aumento de perfor-
mance. O objetivo primário foi a redução de WCET de programas, bem
como o levantamento de alguns parâmetros úteis no projeto de um sistema
de tempo real. A redução de WCET importante para não sobre-dimensionar
sistemas, não desperdiçando assim, recursos computacionais. A utilização
de uma arquitetura determinista aliada a redução de WCET induz a sistemas
bem dimensionados em termos de recursos.

Usando técnicas como loop unrolling usando predicação de código e
previsão estática de desvios, foi possível reduzir o pior caso no tempo de
computação de tarefas. A caracterização de tempo ganho, do ponto de vista
puramente estático, também pôde ser alcançada neste trabalho.

LIST OF FIGURES

Figure 1 – Example distribution of execution times of a hypothet-
ical program in a general purpose architecture (WIL-
HELM et al., 2008) 35

Figure 2 – Common pass structure of a compiler 47
Figure 3 – Control flow graph of the example 55
Figure 4 – Precedence DAG for the example 57
Figure 5 – Example showing the movement of instructions to above

lateral entry . 59
Figure 6 – Example showing the movement of instructions to be-

low lateral entry . 60
Figure 7 – Superblock formation example 63
Figure 8 – Example anomaly caused by speculation (WILHELM

et al., 2008) . 68
Figure 9 – Example of scheduling anomaly(WILHELM et al., 2008) 69
Figure 10 – Techniques to WCET search/calculation, obtained from

(ERMEDAHL, 2003) 77
Figure 11 – Example showing a WCEP switch after the application

of an optimization . 80
Figure 12 – Scenarios of invariances and possible WCEP switch . . 82
Figure 13 – Example of loop unswitching. (a) before, (b) after . . . 89
Figure 14 – Example illustrating the superblock formation 92
Figure 15 – Example illustrating the path duplication technique. . . 93
Figure 16 – Example of loop unrolling optimization and superblock

formation . 94
Figure 17 – Example of a sequence of basic blocks with and with-

out branch preload. 112
Figure 18 – Data path of the processor 113
Figure 19 – Possible use of Clang with LLVM and linking with

Binutils . 116
Figure 20 – Use of Clang with LLVM and finalization with a cus-

tom linker . 118
Figure 21 – Packaging instructions considering anti-dependencies . 121

Figure 22 – Instructions alignment in a basic block 122
Figure 23 – Example illustrating the formation of a complete CFG

(or ICFG) . 127
Figure 24 – A C program and its respective CFG 130
Figure 25 – Cache abstract reachable state example 134
Figure 26 – CONFLICT classification example. 137
Figure 27 – Example of timing composition of two successive ba-

sic blocks . 140
Figure 28 – IPET result . 146
Figure 29 – Multigraph of the example 148
Figure 30 – IPET result considering cache 149
Figure 31 – Diagram representing the tools that compose the in-

frastructure used . 153
Figure 32 – Control flow graph of Code 6.1. 159
Figure 33 – Control flow graph of Code 6.2. 160
Figure 34 – Control flow graph of Code 6.3. 163
Figure 35 – Control flow graph representing an If-Conversion of

the code from Code 6.3. 164
Figure 36 – Graphic comparison of WCET reduction of Table 11. . 175
Figure 37 – Example of an if-then-else sentence. 187
Figure 38 – Decision tree that describes when penalties occur (or

not) in the case of static branch prediction. 188
Figure 39 – Control flow graph of Code 7.1. 190
Figure 40 – Example of predictions of the branches of Figure 39. . . 191
Figure 41 – Bar chart representing the WCET improvement for each

technique in relation to the all-mispredicted case. . . . 204
Figure 42 – Graphic comparison of optimalities of Table 15. 205
Figure 43 – Control flow graph of Code 7.2 showing the selected

prediction of each approach. 206
Figure 44 – Control flow graph with a WCEP marked in black. . . . 210
Figure 45 – Control flow graph with a selected basic block (basic

block 2, with a thicker border). 211
Figure 46 – Control flow graph with the execution path passing over

the selected block. 212

Figure 47 – Reduced control flow graph produced by Algorithm 12. 213
Figure 48 – Gain times and WCET until the gain points 216

LIST OF TABLES

Table 1 – Instructions per basic block and resource demand for
the example . 56

Table 2 – Scheduling obtained for the example 58
Table 3 – Summary of techniques for WCET reduction 108
Table 4 – Execution units in each pipeline 113
Table 5 – Cycles for different types of instructions. 138
Table 6 – Hazards between operations. 139
Table 7 – Penalties for different types of flow transfers. 140
Table 8 – Used benchmarks from (GUSTAFSSON; BETTS, 2010) 174
Table 9 – Obtained results . 178
Table 10 – Obtained results . 179
Table 11 – Comparing predicatedLoopUnrolling with branchedLoop-

Unrolling . 180
Table 12 – Used benchmarks from (GUSTAFSSON; BETTS, 2010). 197
Table 13 – Definition of the maximum possible WCET improve-

ment considering the perfect predictor. 198
Table 14 – Results of optimizing the subset of benchmarks using

five different approaches. 203
Table 15 – Optimality of the five approaches (100% is the optimum).205
Table 16 – List of operation operands (STARKE, 2016) 241
Table 17 – List of supported operations (STARKE, 2016) 246

LIST OF SYMBOLS

bbi Basic block i

C Computation time of a task

D Relative deadline of a task

di_ j Transition edge from basic block i to j

δ Pipeline compensation factor

elbi Bound of the outer loop of basic block i

ilbi Bound of the loop where header is basic block i

lbi Loop bound of basic block i

T Period or activation interval of a task

ti Execution time of a basic block i

xi The number of times a basic block i is executed

LIST OF ABBREVIATIONS AND ACRONYMS

ACET Average-Case Execution Time

BB Basic Block

BCET Best-Case Execution Time

CFG Control-Flow Graph

DAG Directed Acyclic Graph

DSP Digital Signal Processor

FPGA Field-Programmable Gate Array

FSM Finite State Machine

ILP Instruction Level Parallelism

IPET Implicit Path Enumeration Technique

ISA Instruction Set Architecture

LLVM Low Level Virtual Machine compiler infrastructure

RAW Read-after-write

RG Regular Grammar

RI Intermediate Representation

SSA Static Single Assignment Form

VHDL VHSIC Hardware Description Language

VLIW Very Long Instruction Word

WCET Worst-Case Execution Time

WAR Write-after-read

WAW Write-after-write

CONTENTS

1 INTRODUCTION 33
1.1 Basic concepts and motivation 35
1.2 Current scenario 38
1.3 Objective of this Thesis 40
1.4 Original contributions 42
1.5 Organization of the text 43

2 COMPILATION 45
2.1 General aspects . 45
2.2 Dataflow analysis 49
2.3 Code generation . 52
2.3.1 Instruction selection 52
2.3.2 Register allocation 53
2.3.3 Instruction scheduling 53
2.4 Chapter summary 64

3 WCET ANALYSIS 65
3.1 Basic Concepts . 66
3.2 Main existing approaches 70
3.3 Static approach for WCET estimation 72
3.3.1 Value analysis . 72
3.3.2 Processor behavior analysis 72
3.3.3 Worst-case calculation or path search 75
3.4 Chapter summary 77

4 OPTIMIZATIONS FOR WCET REDUCTION . . 79
4.1 Dealing with WCEP switches 81
4.2 Characteristics exploited by otimizations 84
4.3 Otimizations to reduce WCET 84
4.3.1 At source code level 85
4.3.2 At assembly level 91
4.3.3 Through code layout 99

4.3.4 Through scratchpad allocation 105
4.4 Chapter summary 107

5 EXPERIMENTATION INFRASTRUCTURE . . . 109
5.1 Architecture and reference processor 109
5.1.1 Registers . 110
5.1.2 Instructions . 110
5.1.2.1 Branch prediction instructions 111

5.1.2.2 Predicated execution of instructions 111

5.1.3 Processor organization 113
5.1.4 Instruction coding 114
5.1.5 Procedure calling conventions 115
5.2 Code generation for the reference architecture . . . 116
5.2.1 Back-end support 117
5.2.2 Code Linking . 126
5.3 WCET Analysis . 128
5.3.1 Instruction cache analysis 131
5.3.1.1 Reachable and effective abstract state 132

5.3.1.2 Cache accesses classification 135

5.3.2 Pipeline Analysis 136
5.3.3 Worst-case path search 139
5.3.3.1 ILP Constraints . 142

5.4 Enabling WCET Reduction Schemes 150
5.4.1 Approach 1: Back-end adaptation To Use WCET

Information . 151
5.4.2 Approach 2: Code Optimizations Guided by an Ex-

ternal Planning Tool 152
5.5 Chapter Summary 153

6 CONTRIBUTION 1: COMBINING LOOP UNROLLING
STRATEGIES AND CODE PREDICATION 155

6.1 Introduction . 155
6.2 Summary of Related Work 157
6.3 Motivation . 158

6.4 Our loop unrolling approach 162
6.4.1 Example . 165
6.4.2 Combining Loop Unrolling techniques 166
6.4.3 Ensuring WCET reduction by unrolling factor se-

lection . 168
6.5 Evaluation . 172
6.5.1 Implementation aspects 172
6.6 Results . 173
6.7 Conclusion . 176

7 CONTRIBUTION 2: ON THE USE OF STATIC
BRANCH PREDICTION 181

7.1 Introduction . 181
7.2 The perfect branch predictor approach 184
7.3 A new technique to reduce WCET using branch pre-

diction . 186
7.3.1 Considerations on the classic approach 186
7.3.2 The proposed technique 192
7.4 Evaluation of techniques against the perfect predictor195
7.4.1 Results . 196
7.5 Conclusion . 201

8 CONTRIBUTION 3: STATIC GAIN POINT IDEN-
TIFICATION AND GAIN TIME ESTIMATION . 207

8.1 Introduction . 207
8.2 Related work . 208
8.3 Identification of gain time 209
8.4 Case study: applying on an example from the

Mälardalen benchmarks 214
8.4.1 Results . 215
8.5 Conclusion . 215

9 FINAL REMARKS 219
9.1 Publications . 222

9.2 Suggestions of future work 224

Bibliography . 227

ANNEX 239

ANNEX A – INSTRUCTIONS OF THE TARGET
ARCHITECTURE 241

33

1 INTRODUCTION

A wide range of systems are distinct from the general purpose
computing systems due to the need of satisfying rigorous timing re-
quirements, often under the constraint of available resources (AXER
et al., 2014), they are generally called real-time systems. The devel-
opment of a predictable system is concerned with the challenges of
building systems whose time requirements can be guaranteed a priori.
Although, these challenges become even greater when using processors’
architectural features for performance increase, as caches and pipelines,
which introduce a high degree of uncertainty, making it difficult to pro-
vide any kind of guarantee. Parallel to this, there are the tools needed
to develop and execute an application, such as languages, compilers,
runtime support, communication systems and scheduling, which may
further difficult guarantees assertion.

In these systems, the results of computations must be correct
not only from a logical point of view, but also must be generated at
the right time. In these systems, faults of temporal nature can be con-
sidered critical with respect to their consequences. In the literature,
real-time systems are classified according to the criticality of their time
requirements (FARINES et al., 2000). In hard real-time systems, the
failure to meet a time requirement can result in catastrophic conse-
quences both in the economic sense as in human lives. When timing
constraints are not critical (soft real-time) they only describe the de-
sired behavior. The non-compliance with such requirements reduces
the utility of the application but does not eliminate it completely nor
results in catastrophic consequences.

Real-time systems are present in countless applications, such as
in industrial plants, aviation, automotive electronics, telecommunica-
tions and space systems. In many of these applications, the complexity
of software imposes serious restrictions on the hardware that can be
used. This hardware should have sufficient capacity to support the
application in question, in addition to be subjected to non-functional
design constraints, such as cost and energy efficiency.

34 Chapter 1. Introduction

Modern general-purpose architectures require, as a basic premise,
that programs should run as fast as possible in most times. That is, on
average, the execution time of a program should be as small as possi-
ble. This average time is usually called ACET - Average-Case Execution
Time. Although, in some runs, the execution time of the application
may be greater when compared to its average case, it will be amortized
by the many executions of the program. Average-case prioritization
presents certain problems regarding its use in real-time systems. Such
systems may require run-time guarantees that are difficult to be ob-
tained or even unfeasible. These guarantees require knowledge of the
worst execution time of a program or task on a given processor, which
is generally called WCET - Worst-Case Execution Time. In a general
purpose architecture aimed at the average case, the execution time of
a program or task can be so great in the worst case that invalidates the
design constraints, or even be impossible to be calculated or estimated
with a reasonable effort.

The difficulty of obtaining the WCET is presented by (WIL-
HELM et al., 2008) and is illustrated in Figure 1. According to the
figure, we can see how far the WCET can be from the best possible ex-
ecution time, or BCET - Best-Case Execution Time, for a given program.
In fact, the WCET calculation problem is undecidable and involves the
halting problem, then we can only estimate upper limits for its value
in practice. Some factors that contribute to the difficulty of obtaining
WCET in modern general purpose architectures are pipelines, caches,
speculative execution, dynamic branch predictors among other perfor-
mance enhancement mechanisms.

Currently, there are academic lines that suggest the use of pro-
cessor architectures oriented for real-time applications (SCHOEBERL,
2009), (SCHOEBERL et al., 2011), (EDWARDS; LEE, 2007). Such
architectures adopt hardware features that make analysis related to
obtaining WCET estimations simpler and faster.

An important characteristic is that the performance of specific
architectures, as the ones aimed at real-time systems, may be closely
related to the compiler and compilation techniques employed. Given

1.1. Basic concepts and motivation 35

Figure 1 – Example distribution of execution times of a hypothetical pro-
gram in a general purpose architecture (WILHELM et al.,
2008)

the possibility of obtaining the WCET of programs for a specific ar-
chitecture, we can use this information in an incremental process of
optimization, as proposed by (FALK et al., 2006), (FALK; LOKU-
CIEJEWSKI, 2010) and (HUANG et al., 2012), which are applied to
complex architectures, with equally complex WCET analysis. These
optimizations are intended to reduce the WCET, since traditional code
transformations made by compilers may even increase the WCET of a
program (LOKUCIEJEWSKI; MARWEDEL, 2011).

1.1 BASIC CONCEPTS AND MOTIVATION

In control and industrial monitoring applications, automotive
and avionics, each function performed by the system is associated with
one or a set of tasks (LIU; LAYLAND, 1973). Some of these tasks run
in response to external events, while others are activated by system
timers or other tasks. Tasks are classified as aperiodic or sporadic.
Aperiodic tasks are associated with events which cannot be predicted
temporally (when the event may or may not occur). When we know
that the event has a minimum time interval between occurrences, we
associate this event with a sporadic task. When a task is enabled, it

36 Chapter 1. Introduction

needs to execute a sequence of instructions or perform its computation
(associated with the function executed by the task), whose running
time in the worst case (worst-case execution time) is denoted by C.
When there is a limit or time restriction for the task to execute its
computation, this is denoted by D, which is the relative deadline of the
task.

In general, tasks activated by timers are called periodic. The
activation interval of a periodic task is called period and is denoted by
T . When the deadline of a task is equal to its period, it is said that
this is an implicit deadline. If it is greater than the period then we call
it arbitrary and when it is lower than the period it is called restrict.
The most common model used in both literature and in real systems is
the periodic tasks with implicit deadlines.

A set of tasks, time constraints and resources, which can be pro-
cessors, other hardware devices and in-memory data structures (mutu-
ally exclusive data) comprise a scheduling problem. Task scheduling
can be summarized as the definition of orders in which the tasks can
access the resources in respect of all timing constraints specified. The
task scheduling is an NP-complete problem.

To schedule a set of tasks, one can construct a fixed and cyclical
timeline of execution, which defines the instants in which each task
should run. The feasibility of the timeline construction by itself already
guarantees the schedulability, but this procedure, which is called Cyclic
Executive, is restricted to small sets of tasks. A more general way
is to define a scheduling algorithm and an associated schedulability
test. If the set is accepted by the test, then it may be scheduled by
the algorithm without deadline misses, otherwise the system is not
schedulable or nothing can be proved on the corresponding task set.

The parameters typically used by schedulability tests are: activa-
tion frequency or period of a task i, denoted by Ti, the above mentioned
computation time Ci, and the deadline Di. A task set is said to be feasi-
ble with respect to a particular type of system, if there is an algorithm
that schedule all jobs (instances of a given task) of all tasks (in all
possible sequences) with all temporal constraints being guaranteed. A

1.1. Basic concepts and motivation 37

scheduling algorithm is optimal with respect to a type of system if it
is able to schedule any set of tasks that can be scheduled by any other
algorithm, or otherwise, any task set that is feasible.

There are two general categories of schedulability tests. A test
is said to be sufficient if all task sets that pass the test are guaranteed
to be schedulable, but nothing can be said if a set does not pass the
test. The second category of test is called necessary, which is simple
but not too restrictive. A necessary test ensures that, if the task set
fails the test, it is certainly not schedulable, but if approved, nothing
can be said. This type of test is useful to discard non-schedulable task
sets in a practical way.

Contextualizing a more general overview of guarantee provid-
ing, (THIELE; WILHELM, 2004) points out that the problem can be
related to all layers of a system:

Hardware architecture: This layer holds all aspects related to what is
below the instruction set, as microarchitecture and caches. In this
layer, predictability relates to variability in the execution time of
the program instructions.

Software development for a task: This layer represents all that is nec-
essary for the development of the software which implements the
functions of a task. This can involve code synthesis for model-
driven development, compilation and all analysis and optimiza-
tion tools. Nondeterminism is related to the structure and char-
acteristics of the generated code, such as limitation of loops and
indirect function calls.

Task level: If the application (tasks of the previous layer) is parti-
tioned as tasks and threads in an operating system, there will
be nondeterminism regarding scheduling, memory management
and management of various resources. This layer must perform
scheduling, as mentioned above.

Distributed operation: It is common for applications to use distributed
resources. This layer holds the distributed scheduling and net-

38 Chapter 1. Introduction

work communication. What matters for this layer are the end-
to-end deadlines.

As showed above, the WCET parameter is fundamental for the
schedulability of a task set. This parameter is strongly influenced by the
first two layers, in which we can highlight: processor architecture, the
tasks that make up the system and the compiler used in the design. The
estimation of this parameter is usually done directly on the executable
code of the task and is performed by an analyzer which takes into
account the behavior of the processor (cache, memories, pipelines and
other factors).

The motivation of this work is the fact that the compiler has
information needed to reduce WCET. A compiler can also provide rele-
vant data that are necessary to the proper WCET calculation, avoiding
duplicated steps in both tools. Traditionally, compilation and WCET
analysis are done isolated in the design and development flow of a real-
time system.

However, the compiler builds inherently a large amount of data
that would be useful to speed up and simplify the WCET analysis.
WCET analysis is also able to generate information that could be use-
ful in the compilation process. All this can be combined with an archi-
tecture whose purpose is to conciliate performance with determinism.

WCET reduction is useful for schedulability of the system as
a whole. Another utility of this work is cost reduction. With the
reduction of tasks’ WCET, we can use fewer hardware resources, or
increase the number of tasks executing on the same processor.

1.2 CURRENT SCENARIO

Nowadays, the common practice in the real-time system indus-
try is to develop applications according to their usual methodologies,
and only at the end of the process, verify whether the timing con-
straints are met. This constraint verification involves the estimation
of the application WCET, which can be done with special tools that

1.2. Current scenario 39

are developed for this purpose. In general, WCET calculation tools
require applications compiled without any CPI (cycles per instruction)
reduction optimization, for two main reasons:

1. Optimization can often increase the WCET (LOKUCIEJEWSKI;
MARWEDEL, 2011). We can not predict the effects of unre-
stricted optimizations in terms of WCET;

2. Optimization can cause the loss of the one-to-one mapping be-
tween an object code and its source code. Many analyzers require
annotations in the source code to inform constraints that are hard
to be extracted from a binary program. With code changes, these
restriction/annotations no longer make sense, possibly generating
an erroneous WCET. Another factor is that changes can leave the
code structure in a difficult way to be understood by the analyzer.

Available tools can employ various approaches to obtain the
WCET, as abstract interpretation (aiT1), code snippets measurement
on real hardware (RapiTime2), and even simulation.

A common strategy used in the industry is to explore perfor-
mance increase characteristics of processors, combined with the impo-
sition of a slack margin whenever the application has a high level of
criticality (AXER et al., 2014). The problem with this approach is
that timing requirements are possibly not fully guaranteed. Resources
can also be wasted, which can be problematic when we have energy
constraints, for example.

From an academic point of view, there are projects like PREDA-
TOR3, MERASA(UNGERER et al., 2010), PRET (EDWARDS; LEE,
2007; LIU et al., 2012) and T-CREST4 which aims at the adequacy or
the building of architectures for determinism and timing control.

In relation to advances in compilation, there are some works that
focus on reducing the WCET by applying optimizations in specific con-
1 http://www.absint.com/ait/
2 http://www.rapitasystems.com/products/rapitime
3 http://www.predator-project.eu
4 http://www.t-crest.org

40 Chapter 1. Introduction

texts. A compiler targeted to WCET reduction is presented in (FALK
et al., 2006). This compiler is coupled to the aiT WCET analyzer to
discover possible optimization potentials. In (ZHAO et al., 2005) it is
also used a compiler coupled with a WCET analyzer for optimization
purposes.

Some techniques rely heavily on the target architecture of the
compiler. In (ZHAO et al., 2005), an analyzer provides information
concerning the worst-case paths so that the compiler can organize the
code in order to reduce branch penalties. The architecture used is
the StarCore SC100, a DSP with different branch penalties. Another
technique is presented in (FALK; KOTTHAUS, 2011), which aims to
place basic blocks in memory to optimize the worst-case cache behavior.
This strategy was already used to reduce ACET. In this paper, the
authors use the concept of formal cache model which can capture the
behavior of all type of caches. This work was the first to consider code
positioning seeking to reduce WCET through cache behavior.

There are other works that try to adapt classic compiler opti-
mizations to the WCET reduction context. Techniques such as loop un-
rolling (ZHAO et al., 2006) (LOKUCIEJEWSKI; MARWEDEL, 2009)
and instruction scheduling approaches (LOKUCIEJEWSKI et al., 2010)
(LOKUCIEJEWSKI; MARWEDEL, 2011). Other optimizations will
be covered in the related work Chapter of this Thesis.

1.3 OBJECTIVE OF THIS THESIS

The objective of this work is to contribute to aspects related to
the compilation for real-time systems, whose primary goal is the WCET
reduction or improvement of aspects related to schedulability. The the-
sis to be demonstrated is that the close coupling of a compiler with a
WCET analyzer can benefit both the analysis and synthesis of an exe-
cutable program or a complete system to a deterministic architecture.
The use of a deterministic architecture represents an important feature
of this work. The development of WCET analyzer infrastructure for
the target architecture is also part of this work.

1.3. Objective of this Thesis 41

Among the elements related to the compiler that are essential to
reduce WCET, we can mention:

• Mechanisms for WCET calculation of programs in process of com-
pilation. This implies the coupling of the compiler with the ana-
lyzer developed.

• Identification of potential points to be benefited by optimizations.
This involves interpretation of the analyzer results.

• Discarding code changes that increase the WCET. Again, deci-
sions should be made based on successive analyzes.

In addition to the related elements, we can highlight the process
efficiency. Using an architecture designed for real-time applications
allows the use of a much faster and accurate analyzer, which aims to
bring efficiency to the process.

The architecture that was explored in this thesis, which was
developed in another work from the same research group (STARKE,
2016), imposes additional challenges. It uses techniques such as VLIW -
Very Long Instruction Word to increase performance. This technique re-
quires the static exploration of parallelism between instructions by the
compiler, unlike what usually happens in general-purpose processors.
For determinism, techniques such as execution of predicated branches,
predicated execution, scratchpad memory and absence of data cache
are present in the architecture. However, instruction cache is used
because it is more predictable than its data counterpart, because its
access pattern depends on the instruction sequences and can be easily
discovered a priory by an analysis tool.

Though the used architecture is based on a commercial ISA,
there is no free compiler available for this. Then, the implementation
of a fully functional code generator was required as a prerequisite for the
realization of this work. As the architecture was developed in parallel
to the compiler development, we had the exact measurement of what
was needed in both sides of the infrastructure, avoiding unnecessary
engineering and development.

42 Chapter 1. Introduction

1.4 ORIGINAL CONTRIBUTIONS

The contributions of this thesis to the state-of-the-art are:

1. The proposition of a different way to perform loop unrolling on
data-dependent loops using code predication targeting WCET
reduction, because existing techniques only consider loops with
fixed execution counts. We also combine our technique with exist-
ing unrolling approaches. Results showed that this combination
can produce aggressive WCET reductions when compared with
the original code.

2. Regarding static branch prediction techniques, we show that a
very small or even no gain can be obtained with new optimiza-
tion techniques targeted to worst-case execution time reduction.
To achieve this objective, we compare several techniques against
the perfect branch predictor. This predictor permits to estimate
the maximum WCET reduction that can be obtained with static
approaches. In addition to the classic technique of the literature,
we include in the comparison a new WCET-centered technique
which acts as a brute force approach to bring the results as close
as possible to the perfect predictor. The comparison also includes
standard compiler techniques not directly oriented to WCET re-
duction. As result, we show that the techniques considered in
this thesis are close to the optimal result obtained by the per-
fect predictor. We also show that our technique produces slightly
better results than the other techniques. As a secondary con-
tribution, we show that WCET-unaware techniques can also be
used in real-time environments because they present good results
and low complexity. We evaluate prediction techniques using a
set of examples from the Mälardalen WCET benchmarks.

3. One problem of the WCET is that it is relative to a single exe-
cution path, specifically the worst-case execution path (WCEP).
When a real-time application executes over a path different from

1.5. Organization of the text 43

the WCEP, its execution time will be probably smaller than the
WCET. The difference between the WCET of a task and its ac-
tual execution time is called gain time. We propose a technique
that finds specific points of a program (called gain points), where
there will be an amount of statically estimated gain time in case
that path is taken by the execution. As a case study, we present
the gain time obtained by applying our strategy to one bench-
mark from the Mälardalen WCET benchmarks suite. For the
selected benchmark, several gain points were identified and some
of them with a significant amount of statically detected gain time.

1.5 ORGANIZATION OF THE TEXT

This work is organized as follows: Compilation aspects are pre-
sented in Chapter 2. Approaches to WCET analysis are covered in
Chapter 3. Program optimization considering WCET reduction is the
theme of Chapter 4. The experimental infrastructure is presented in
Chapter 5. Our original contributions are presented in Chapters 9.2, 7
and 8. Finally, Chapter 9 presents our conclusions and final remarks.

45

2 COMPILATION

Compilers are tools present in current software development pro-
cesses. They are responsible for converting the representation of a pro-
gram in the humanly understandable way to useful representations for
computers or virtual machines.

In the current flow of software development, compilers have promi-
nent space because they are able to automatically apply optimizations
to improve the quality of executable code. But even modern compilers
are not able to generically optimize code for real-time systems because
they have no way of quantifying the impact of such optimizations over
time aspects. The WCET-oriented compilation is a recent approach,
with few published works. In the next sections, we will cover basic
compilation issues, leaving real-time aspects to the next chapters.

The major emphasis of this chapter lies in data flow analysis,
which is a technique related to compilation, but can be extrapolated
to other areas that depend on this type of information, such as WCET
analysis. We will also cover instruction-scheduling techniques for VLIW
architectures (very long instruction word). This emphasis was given due
to the use of such an architecture, as presented in the previous chapter.

2.1 GENERAL ASPECTS

According to (AHO et al., 2008), compilation is a mapping be-
tween a program written in a high level language and a program written
in a semantically equivalent machine language. This mapping process
can be seen as two steps, which are:

Analysis: This step breaks the program into parts, in which gram-
matical structures are imposed. The next step is to convert these
structures into an intermediate representation of the program. In
this step, syntactic and semantic analyzes of the program are per-
formed. The symbol table construction is also part of this step.
A symbol table stores information about the symbols (variables,

46 Chapter 2. Compilation

functions, etc.) and their respective validity scopes (global, local,
etc.).

Synthesis: Starting from the intermediate representation and the sym-
bol table, the synthesis step generates the final representation of
the program, which can be executed on machines (real or virtual)
that implement some specific instruction set architecture (ISA).

Traditionally, all steps of the compilation process are organized
in passes. In this way, each pass perform transformations from one
representation to another. Passes can perform transformations in the
context of a specific intermediate representation, such as those that
perform optimizations for example. From this perspective, a traditional
compiler can be viewed generically as having the structure shown in
Figure 2. In this figure the main passes and the information flowing
between them are highlighted. Those informations are called program
representations, and can be:

Source code: comprehensible representation for humans, that is, code
written in some programming language;

Syntax tree: a tree (or graph) that represents the syntactic structure,
which is related to the chosen language. In this representation,
operands are categorized as child nodes of nodes representing
operations;

Intermediate Representation (RI): the internal compiler code repre-
sentation is generally independent of any specific language and/or
architecture. The intermediate representation may be similar to
an assembly. Such assembly may have several properties, such as
being in the SSA form - static single assignment form (CYTRON
et al., 1991). The SSA property defines that we can assign a value
to a variable only once. When we have branch and join nodes,
we add a special form of assignment called φ− f unction, to unify
the two defined (in each path) variables/register in one.

2.1. General aspects 47

Target code: represents the generated code for a given target architec-
ture.

Lexical Analyzer

Syntactic Analyzer

Semantic Analyzer

Intermediate Code Generator

Independent Target Optimizer

Code Generator

Target Dependent Optimizer

Symbol Table

Source code

Target code

IR

Target code

IR

Syntax tree

Syntax tree

Token stream

Figure 2 – Common pass structure of a compiler

According to the grouping of passes previously presented, we can
describe the function of each specific pass:

Lexical Analyzer: also known as lexical analysis or scanning, has the
responsibility of reading the source code and grouping the char-
acters into sequences that make some sense, which are called lex-
emes. For each lexeme produced, the lexical analyzer produces

48 Chapter 2. Compilation

an output token, which is passed on to the next phase, which is
the syntactic analysis. This analyzer usually uses regular expres-
sions (or regular grammars - RGs) implemented in the form of
deterministic and finite automatas;

Syntactic Analyzer: the parser processes the tokens obtained by the
lexical analyzer into an intermediate representation, which is usu-
ally a syntax tree. This transformation uses context free gram-
mars and its recognizers are implemented in the form of stack
automata for identification of language patterns. If some pat-
tern can not be recognized, the tree can not be terminated and
a syntactic error is then reported. The syntactic analysis also
populates the symbol table of the program;

Semantic Analyzer: the semantic analyzer operates on the syntax tree
in conjunction with the symbol table. This analyzer checks the
program for inconsistencies, such as type mismatch, parameter
checking in procedure calls, and so on. Additional information
can be annotated in the symbol table and in the syntax tree;

Intermediate Code Generator: syntax trees are suitable for syntactic
and semantic analysis. More internal compiler operations gener-
ally require lower-level intermediate representations. Such opera-
tions often resemble the assembly of a virtual architecture. There
are numerous representations, such as three-address code, where
each operation has exactly three operands per instruction;

Target Independent Optimizer: this component is responsible for im-
proving the quality of the code that will be generated later. Op-
timizations can have several goals: performance, code size reduc-
tion and etc. The range of optimizations applied by a compiler
can vary from version to version of the tool or by user demand
(optimization level);

Code Generator: the code generator transforms the optimized inter-
mediate representation into a version that can be executable on

2.2. Dataflow analysis 49

the target processor. The assignment of registers to variables,
which is called register allocation, is also part of this process;

Target Dependent Optimizer: this component, if it exists in the com-
piler, can perform optimization that are specific to the target
architecture. Optimizations involving code scheduling for Instruc-
tion Level Parallelism improvement can also be attributed to this
optimizer. Punctual changes of instruction sequences (peephole
optimizations) can also be applied by this component.

An alternative classification of compiler components considers
architecture and language dependency. In this classification, the part
called front-end represents the portion of the compiler that is language
dependent, and must be ported when a new language is developed. At
the other side of the compiler is the back-end, which has the informa-
tion related to the target architecture, and is responsible for generat-
ing code. This part of the compiler must be ported to all supported
architectures. The most internal part is called middle-end, which con-
centrates the compiler part that is independent of both language and
architecture. Generally, this part is responsible for making generic
transformations/optimizations and being the point of contact between
the adjacent parts.

2.2 DATAFLOW ANALYSIS

Several parts of a compiler depend on what is called data flow
analysis. This type of analysis is also useful for WCET calculation
techniques, which is the subject of the next chapter. Such analyzes
extract relevant information about the flow of data along the paths
of execution of a program. In a basic block, the control go from the
beginning to the end, without interruptions and flow deviations, more
formally (MUCHNICK, 1997):

Definition 1. A basic block (BB) is a sequence of consecutive machine
instructions in which the flow of control enter at the beginning and leaves
at the end, without jump targets between them.

50 Chapter 2. Compilation

Starting from the definition of basic block, we can formally define
the structure that represents the possible paths that a program can
cross. Such a structure is called the Flow Control Graph (CFG). Given
the definition of the component that represents the node of the CFG,
we can then formally define it:

Definition 2. A control flow graph CFG = (V,E) is a directed graph,
where V is a set of nodes, representing basic blocks, and E ⊆V ×V is the
set of edges, representing the flow of control.

The edges representing the flow of control model the transitions
(calls, branches, jumps and sequential execution) between pairs of basic
blocks.

The data flows can be declared in terms of values entering and
leaving the blocks. For a given block B, the input and output data
flow values can be defined by IN[B] and OUT [B], respectively. IN[B]
and OUT [B] can be calculated by considering IN[s] and OUT [s], for
all instructions s of block B . The relationship between the data flow
values before and after the execution of instructions or basic blocks are
represented by transfer functions.

Transfer functions operate in two directions. Forward functions
convert data flow values that enter an instruction to the values that
leave it:

OUT [s] = Fs(IN[s])

On the other hand, backward functions convert data-flow values
after the instruction to values before the instruction:

IN[s] = Fs(OUT [s])

The relationship between statements of a basic block follows the
following constraints, assuming that such a block is composed of the
statements s1,s2, ...,sn:

IN[si+1] = OUT [si],∀i = 1,2, ...,n−1

2.2. Dataflow analysis 51

For basic blocks, IN[B] corresponds to IN[s1], that is, the input of
the first instruction of the basic block. The output OUT [B] corresponds
to the output of the last instruction OUT [sn]. Since fsi is the transfer
function of the i instruction of the basic block B, then the transfer
function of such a block can be written as fB = fsn ◦ ...◦ fs1.

The relationships between the begin and end of basic blocks
must take into account the possible existence of several successor and
predecessor basic blocks, as well as the direction of the analysis. These
relationships can be:

Forward Flow Relationship: When a forward flow problem is being
solved, the relationship between the begin and end of basic blocks
is:

OUT [B] = fB(IN[B])

IN[B] =
⋃

P predecessor o f B OUT [P]

Analysis of reachability of definitions and available expressions
are examples of forward flow problems.

Backward Flow Relationship: On the other hand, when we are solving
a backward flow problem, the relationship is given by:

IN[B] = fB(OUT [B])

OUT [B] =
⋃

S predecessor de B IN[S]

Live variable analysis is a backward flow problem.

Generally, iterative algorithms are used to solve data flow prob-
lems. Some important information that can be obtained by data flow
analysis are:

Reachability definitions: these definitions basically tell us if any defi-
nition for a variable x reaches a point p in a program. According

52 Chapter 2. Compilation

to (AHO et al., 2008), a definition d (dependent on x) reaches
a point p if there is any path starting from d to p, such that d
is not dead along that path. If there is any other definition of x
along the path, the definition d becomes dead.

Available expressions: the available expression analysis tells us whether
a given expression, such as x+y for example, is available at a point
p in a program. The expression x+ y will effectively be available
in p if it has ever been calculated before p and the values of x
and y have not been redefined.

Live variable analysis: The live variable analysis says that, if for a
variable x and a point p, such variable could be used in some
path starting at p. If a variable is used in a path that starts at
some point p, it is said to be alive at that point, otherwise it
is considered dead. This is a backward flow problem, and has
numerous utilities, such as guiding the allocation of registers.

2.3 CODE GENERATION

This section addresses aspects related to code generation, such
as instruction selection, instruction scheduling for VLIW architectures
and register allocation.

2.3.1 Instruction selection

The instruction selection aims to convert the intermediate repre-
sentation into valid instructions of the architecture. This step precedes
the instruction scheduling register allocation phases. The selection can
be done in several ways, the most common strategy consists on the
use of patterns. Such patterns convert a piece of the intermediate rep-
resentation (usually represented in tree) into a sequence of machine
instructions.

2.3. Code generation 53

2.3.2 Register allocation

Register allocation (AHO et al., 2008) consists of assigning a
small set of registers to the variables of a program (possibly large set).
It can be done in several granularities, such as locally in basic blocks,
whole functions, or considering function boundaries. The problem of
register allocation is isomorphic to the problem of graph coloring. Ac-
cording to this isomorphism, variables are represented by nodes in a
graph, and the edges represent interferences between them. There is
interference between two variables when both are considered alive si-
multaneously.

With a constructed graph, then, we have a problem of K-coloring,
where K represents the number of available registers. When we can not
colorize the graph with K colors, we must remove edges by choosing
variables to be put into memory (spilling). With a variable in memory,
the removal of certain edges is possible because the liveliness interval
of that variable is reduced. Although graph coloring is an NP-complete
problem, there are good heuristics in the literature for the case of reg-
ister allocation.

2.3.3 Instruction scheduling

Instruction scheduling is the establishment of instruction order-
ing and/or grouping of instructions with the purpose of improving the
execution of those instructions in a particular processor. In super-
scalar architectures, the discovery of instruction-level parallelism, usu-
ally called ILP, is done directly in the processor through out-of-order
execution techniques, for example. However, this process can be facil-
itated by the compiler’s action, which can sort/schedule instructions
so as to expose such parallelism more explicitly. On the other hand,
VLIW architectures do not have automatic ILP extraction mechanisms
for instruction flows, and this task is entirely attributed to the com-
piler developed for the architecture. There are basically two families of
instruction scheduling techniques:

54 Chapter 2. Compilation

Local: In these techniques, ILP is discovered at the basic block level.
In this type of scheduling, the code can be rearranged or sched-
uled into sets of operations that do not violate data precedence
and do not use more processor cycles than available. Scheduling
instructions in basic blocks is an NP-complete problem, so we can
expect that the optimal solution or scaling will be exponential to
the number of instructions in a basic block.

The most widespread local technique is List Scheduling, which is
a heuristic process that generates good results. In this technique,
we assign priorities the operations of a basic block. At each cycle,
operations with higher priorities are scheduled, with their prede-
cessor operations already scheduled and their processor resource
constraints met. This technique is based on the use of a depen-
dency graph (LOKUCIEJEWSKI; MARWEDEL, 2011) for each
basic block:

Definition 3. (Dependency graph) A dependency graph D = (V,E)
of a basic block B is a directed acyclic graph (DAG), where nodes
represent instructions i ∈ B, and edges E ⊆ V ×V connect two
nodes vi and v j ∈ V if, and only if, there is a data dependency be-
tween v j and vi. The dependencies can be:

True dependency or read-after-write (RAW): vi writes an operand
that is read by v j.

Anti-dependency or write-after-read (WAR): v j writes an operand
that is read by vi.

Output dependency or write-after-write (WAW): vi and v j write
to the same operand.

If the last statement of the basic block ilast ∈B is a branch or call in-
struction, edges between all previous statements and ilast are added
to maintain control flow. Otherwise, the scheduling algorithm could
move that instruction to any place in the basic block, violating its
definition.

2.3. Code generation 55

There are several approaches to prioritizing instructions. A sim-
ple but good heuristic is highest levels first. This heuristic assigns
priorities to the operations according to the longest chain in the
data dependency DAG, starting at the specified operation and
ending at a leaf node.

As an example of the application of list scheduling, we can con-
sider the example given in Table 1, which has been adapted from
(FISHER, 1981). This table presents a set of 5 basic blocks, each
containing a sequence of instructions. The demand for resources
associated with each instruction is also presented in the table. For
this example, we assume that the control flow graph of Figure 3
represents the structure of the program.

B1

B2

B3 B5

EXIT

B4

Figure 3 – Control flow graph of the example

Figure 4 presents the DAG of precedences for each basic block of
the example. By assigning priorities to highest levels first, we get
that the instructions above in the DAG will have higher priority
for execution in the scheduling process.

Considering the priorities and execution precedence of instruc-
tions in Figure 4, together with the resource demands enumerated
in Table 1, we can obtain the scheduling shown in Table 2. This
table represents, for each basic block, the sequence of instruc-

56 Chapter 2. Compilation

Table 1 – Instructions per basic block and resource demand for the exam-
ple

R1 R2 R3 R4
Block B1
I1 X X
I2 X
I3 X
I4 X X
I5 X
Block B2
I6 X X
I7 X X
I8 X
Block B3
I9 X
I10
I11 X
I12 X
I13 X
I14 X
Block B4
I15 X
I16 X
Block B5
I17 X

tions that are dispatched to execute each cycle, considering an
architecture that can execute two instructions simultaneously. In
the example shown, two instructions can execute simultaneously
only if they are independent in both data usage and processor
resources.

Local techniques tend to not be very efficient because, in general,
there is not much parallelism available if isolated basic blocks are
considered. To overcome this deficiency, global techniques were
proposed.

Global: Global techniques schedule different basic block instructions
simultaneously. These techniques operate by selecting a large set

2.3. Code generation 57

Block B1 Block B2 Block B3 Block B4 Block B5

1

2 3

4

5

6

8

7 9

11

10

12

13

14

1516 17

Figure 4 – Precedence DAG for the example

of instructions, which is typically larger than an isolated basic
block. This set is then scheduled with local techniques, such as list
scheduling. Global approaches can vary in terms of how this set
of instructions is constructed and how consistency is maintained
in relation to divergent flows. Consistencies must be considered
when moving instructions to above or below branches or branch
targets, since such operations can change the semantics of the
program. When scheduling decisions are global, some schedulings
can shorten the execution time of a path, while others paths can
have their execution time increased.

Considering the global scheduling of instructions, we will briefly
describe the main techniques available in the literature for exposing
ILP to processors.

Primitive methods (menu): According to (FISHER, 1981), scheduling
for VLIW has origins in microcode compression techniques (verti-
cal code transformation in horizontal), where programmers move
operations from one basic block to another to generate sets op-

58 Chapter 2. Compilation

Table 2 – Scheduling obtained for the example

Cycle Instruction
Block B1
1 I1
2 I2
3 I3
4 I4
5 I5
Block B2
1 I6
2 I7
3 I8
Block B3
1 I9,I10
2 I11
3 I12
4 I13
5 I14
Block B4
1 I15
2 I16
Block B4
1 I17

erations that could be executed simultaneously. This process,
usually called the menu method, was guided by a set of rules
applied to flow graphs, based on dependencies between instruc-
tions and register liveliness. Although the idea was to do manual
scheduling of code, the first automations of this process soon ap-
peared ((DASGUPTA, 1979) and (PATTERSON et al., 1979)).
The following constrains must be considered when we employ the
menu method:

1. Only code without loops is considered;

2. Each basic block is compacted separately;

3. Basic block execution orders are formed. This can be simply
block lists with the property that, if one block is executed

2.3. Code generation 59

during one program execution, the other will also be;

4. Blocks are examined in the order formed in the previous
step, and legal moves from the current block to blocks pre-
viously examined are considered. Movements are committed
if they save processor cycles.

The rules for moving instructions across basic block boundaries
are:

• If the instruction is moved down from a lateral entry (branch
whose entry is in the execution trace), then all instructions
between it and the old entry point should be copied to the
lateral entry. An example of this type of movement is shown
in Figure 5.

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

entry

(a) Before the movement

Instr 2

Instr 3

Instr 4

Instr 1

Instr 5

entry

Instr 3

Instr 4

(b) After the movement

Figure 5 – Example showing the movement of instructions to above lat-
eral entry

• If the instruction is moved to above a lateral entry, it should
also be copied to the lateral entry. An example of this type
of movement is shown in Figure 6.

• If an instruction i is moved to below from a lateral exit and
the flow values defined by it are alive for this lateral exit,
then i must be copied somewhere between the exit and future
uses of the values;

60 Chapter 2. Compilation

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

entry

(a) Before the movement

Instr 1

Instr 5

Instr 2

Instr 3

Instr 4

entry

Instr 5

(b) After the movement

Figure 6 – Example showing the movement of instructions to below lat-
eral entry

• Instruction moves to above lateral exits will only be allowed
if the data flow values are not alive for this exit. This restric-
tion can be alleviated if speculative execution is available.

Trace scheduling: The trace scheduling technique operates on traces or
execution paths in programs, rather than basic blocks. A trace
is a sequence of loop-free instructions that can be executed con-
tinuously for a certain choice of data. A trace can be formally
defined:

Definition 4. (Trace) There is a f ollowers function such that for a
given m instruction, the set f ollowers(m) gathers all instructions
that can be executed after m. If mi is in f ollowers(m j), then we say
that m j is a leader of mi. If there is more than one instruction in
f ollowers(m), then m is a conditional branch. Then, a trace can
be defined a sequence of instructions (m1,m2, ...,mt) such that for
every j, 1≤ j ≤ t−1,m j+1 is in f ollowers(m j).

The scheduling algorithm consists of successively selecting un-
compressed traces that are most likely to execute. After com-
pression, the rules of the menu method force the duplication of

2.3. Code generation 61

operations/instructions to locations outside of the current trace.
For each trace, the algorithm is summarized in 3 steps:

1. Select the trace as the most frequently executed path;

2. Schedule the trace. This phase involves constructing the de-
pendency DAG, assigning priorities to the instructions (us-
ing, for example, highest levels first) and subsequent schedul-
ing with list scheduling;

3. Bookkeeping phase. This phase performs the verification
and possible duplication of instructions in traces outside the
current one, in order to maintain the original semantics of
the program. The rules used are the same as the menu
method.

There are several ways to incorporate loops in trace scheduling.
A simple way is to schedule (or compress in the original termi-
nology) one loop at a time, in the order L1,L2, ...,Lp. Each time
a loop Li is ready to be scheduled, the loops L j included in this
loop, being j < i, will already have been compressed. Other more
powerful methods can be applied by considering the movement
of instructions out and into the loops.

Superblock scheduling: Trace scheduling schedules instructions by ig-
noring control flow transitions (exit branches and trace entry),
so checking and correcting consistency is necessary to make sure
the code that is outside the trace executes correctly. This book-
keeping has high complexity since all instruction moves need to
be checked, and in some cases there may be a need to insert code
into other traces.

With the idea of reducing the complexity of bookkeeping, su-
perblock scheduling (HWU et al., 1993) was proposed. Thus, this
technique can be seen as an improvement in trace scheduling.
A super block is a trace that has no lateral entries, or branch
targets. Lateral entries make it difficult to apply optimizations,
which is the main motivation of the technique.

62 Chapter 2. Compilation

The construction of the super block follows two steps:

1. Identification of traces, using static code analysis, or execu-
tion profiles;

2. Tail duplication. At this stage, any lateral entry to the su-
per block is removed by duplicating the super block’s tail,
starting from the point of entry to the end. All side entries
are directed to the duplicated blocks, these blocks can be
added to the end of the function or method. Basic blocks
in a super block need not be consecutive in the code as a
whole, but the restructuring improves cache performance.

The formation of a super block for a program segment containing
a loop (HWU et al., 1993) is shown in Figure 7. The control
flow graph is valued at nodes and edges. The count of each block
represents the execution frequency obtained for the basic block
(profile or static analysis) and the count of edges represent the
frequency of transfer of flow between blocks. Among all the pos-
sible paths, the most frequent one is the one that surrounds the
blocks {A, B, E, F }, so this path is the ideal candidate for su-
perblock formation and is represented in Figure 7a. From the
figure, we can see that there are two side entries in basic block
F, which are eliminated by duplicating such a block, as shown in
Figure 7b.

After the construction of the super block, some optimizations can
be done before proceeding with the scheduling itself:

Superblock enlargement optimizations: The purpose of these op-
timizations is to increase the size of superblocks often exe-
cuted in order to expose a greater number of instructions
to the scheduler. The greater the number of instructions,
the greater the chances of the scheduler to find indepen-
dent instructions. An important point is that these opti-
mizations only increase superblocks of interest, keeping the

2.3. Code generation 63

Y

A
100

1

Z

B
90

90

C
10

10

E
90

90

D
0

0

F
100

90

1

99

0 10

(a) Trace selection

Z

Y

A
100

1

B
90

90

C
10

10

E
90

90

D
0

0

F
100

90

1

99

F'
10

0

10

(b) Tail duplication

Figure 7 – Superblock formation example

overall code expansion under control. Among these opti-
mizations, we can mention: branch target expansion, Loop
peeling and loop unrolling.

Dependency removal optimizations: The second type of optimiza-
tion aims at the elimination of dependencies between in-
structions in frequently executed superblocks, increasing ILP.
These optimizations can also induce controlled code expan-
sions. Among these optimizations, we can mention 5: Regis-
ter renaming, operation migration, induction variable expan-
sion, accumulator variable expansion and operation combin-
ing.

Once the optimizations are done, it follows the scheduling. The
scheduling of a superblock consists of two steps: construction of

64 Chapter 2. Compilation

the dependency graph and list scheduling. Dependencies on data,
control, and branches are represented in this structure. Informa-
tion about the architecture used can be incorporated into the
scheduling process, such as instruction latencies and restrictions
related to processor resources.

2.4 CHAPTER SUMMARY

Compilation is a key aspect in computing nowadays. There are
compilers for the most diverse languages and architectures. The pur-
pose of this chapter is to provide an overview of the compilation process,
with an emphasis on data flow analysis and instruction scheduling. It
is not the purpose of this chapter to present an in-depth overview on
compilation, only an overview of the phases of the compilation process,
with emphasis on techniques related to the doctoral proposal and those
necessary for the development of experimental infrastructure.

Data flow analysis consists of techniques that allow we to dis-
cover certain properties and information that are useful to compilers.
This work proposes to perform code transformations in the context of
real-time systems, and most of the transformations require information
obtained by data flow analysis. In addition, this type of analysis is
useful for WCET analysis tools for example. Cache analysis can be
performed with the help of this type of technique.

Another topic addressed was instruction scheduling. Scheduling
Instructions is intended to unambiguously expose the order and paral-
lelism of instructions to VLIW processors, or even to help in the case
of superscalar processors. All of these concepts are important for the
context of this thesis, since the architecture used is dependent on the
scheduling of instructions made by the compiler.

65

3 WCET ANALYSIS

This chapter aims to introduce several WCET analysis tech-
niques. Some techniques mentioned here are used in the experimen-
tation infrastructure, as will be presented in Chapter 5. Beyond in-
troducing WCET techniques, analysis complicators are also presented
in this chapter. Analysis complicators are characteristics of both the
processors and programs under analysis that make difficult to obtain
a WCET. The presence of complicators certainly requires the use of
more sophisticated techniques.

The main objective of the WCET analysis is to determine the
worst-case execution time of a task or program when executed on a cer-
tain hardware. Analyzers can also provide estimates for code segments
that execute on interrupt handlers, for example. The worst execution
time is determined by the execution time of the instructions of the pro-
gram that are present in the worst-case execution path (WCEP). Often,
such a path is only discovered at the end of overall analysis process.
The most difficult part of this type of analysis is certainly the modeling
of processor behavior, considering all associated mechanisms.

The problem of obtaining WCET is undecidable and to solve it
means to solve the halting problem. So what we do in practice is the
calculation of estimates for a restricted set of programs that meet a
set of constraints: the program must terminate, then recursion levels
and number of loop iterations must be explicitly limited. According to
(ENGBLOM; ERMEDAHL, 1999), for a WCET estimate to be valid
it must be secure (not an underestimation), and to be useful it should
be as small as possible (small overestimation). Usually estimates take
into account that the code executes without interruption and without
background activities. Such aspects should be addressed at a higher
level, such as in scheduling for example.

The usual approach consists in to to split WCET analysis into
different subtasks. Some subtasks deal with flow-related characteristics
and their control, while others with the execution time of instructions
on the chosen hardware, taking into account cache and pipeline, for

66 Chapter 3. WCET analysis

example. In the next section we will present concepts related to the
WCET analysis. Some of these concepts are common in the compiler
literature.

3.1 BASIC CONCEPTS

The main artifacts of the subtasks that make up the WCET
analysis are the executable code itself, the Control Flow Graph (CFG)
and the Procedure Call Graph, which are often integrated into a single
structure. Each node of the CFG represents a single basic block. The
definition of Basic Block and Control Flow Graph was given in Section
2.2 from Chapter 2.

Generally, a CFG represents the flow of control of only a single
function. However, the control flow of an entire program can be repre-
sented by the Interprocedural Control Flow Graph (ICFG), which is a
composition of all function calls from the CFG of the main procedure
of the program, as described by (WILLIAM; BARBARA, 1991).

This graph contains all possible execution paths of a program,
from average execution paths to the path that generates the worst-case
execution time. Formally, we can define a path as follows:

Definition 5. A path in a CFG = (V,E), from a node v0 to vk, is a se-
quence {v0,v1, ...,vk} of nodes such that (vi−1,vi) ∈ E, for i = 1,2, ...,k.

Considering an execution path, we can define the concept of
dominance:

Definition 6. Node ni dominates n j, written ni dom n j, if every path from
the source to n j includes ni.

Another concept widely used in both compilation and WCET
techniques is loop. A simple definition of loop is the following (AHO
et al., 2008):

Definition 7. (Loop) A loop is a strongly connected component of the G
graph representing the CFG. A loop consists of a single header, which is
the entry point of the loop. This header dominates all other nodes in the

3.1. Basic Concepts 67

loop. There may be different edges that return from inner nodes of a loop
to the header, as well as different loop exit edges. Every return edge is
related to at least one loop.

A natural loop relative to a return edge n→ d is the set of nodes
dominated by d, and that can reach n. Natural loops are more easily
understandable by WCET analyzers than unrestricted loop structures.

There are many ways to build the CFG of a program. We can
build such a graph from the source code of the program, from the ex-
ecutable code, or in a less usual way, extract this information directly
with the compiler that generated the program executable. Some infor-
mation is usually annotated in CFG’s, such as the limits of execution
of loops, which are extracted by analysis or manually informed by an-
notations in the source code.

Considering the control flow graph and the behavior of the pro-
cessor used, WCET analysis may have several complicators. According
to (WILHELM et al., 2008), some complicators are:

Data-dependent flow: The WCET of a task is linked to a particular
execution path/flow described in the CFG. If this flow is depen-
dent on input data, and if such data is known, then the problem
can be solved easily by measuring the execution of the program
in hardware. The problem is that the data that leads to the worst
execution flow are generally not known and initial states of hard-
ware to start the measurement are extremely complex for such
an approach.

Context-dependent execution times: Old analysis techniques assumed
that execution times were context independent. Such an assump-
tion relies from the fact that older processors document latencies
of instructions in their manuals. For example, we can consider
the basic block C with two predecessors A and B. With context-
independent execution times, C will always have the same execu-
tion time, regardless of whether it has been reached by A or B.
However, with modern processors, this information is no longer

68 Chapter 3. WCET analysis

available due to a series of complications. The main complicators
are certainly the caches and pipelines. Currently, the behavior
of the processor should be analyzed as a specific subtask of the
WCET analysis.

Timing anomalies: The high complexity of current processors also dras-
tically affects the applicability of techniques that analyze proces-
sor behavior. Modern processors suffer from effects called timing
anomalies. Such effects are called anomalies because they are
counter intuitive, where a better local case may induce a worse
global case. Components of processors that can cause anoma-
lies are branch predictors with speculation, and mechanisms of
out-of-order execution.

Figure 8 shows an example of how speculation can cause timing
anomalies. In this example, a cache hit induces a larger global
execution time for the example. This is counterintuitive, but in
this example a cache miss from A prevents the speculative unit
from taking C from cache. When a hit occurs in the cache in A,
the speculative unit tries a path that is not what will actually
execute, generating a miss in C, costing more than the first hit.

Figure 8 – Example anomaly caused by speculation (WILHELM et al.,
2008)

As stated earlier, out-of-order execution may cause anomalies.
Such anomalies are called scheduling anomalies. In this type of
anomaly, the same sequence of instructions may have different
execution times, depending on the availability of resources in the

3.1. Basic Concepts 69

processor, such as pipeline units/memory access. This availability
is queried by the dynamic instruction scheduler of the processor
when generating the best execution orders for a certain instant.
An example of such an anomaly is shown in Figure 9. In this
example, the fact that A, which uses Resource 1, takes longer
to execute in the first case, induces a shorter global time. In
the second case of the example, the fact that A takes less, in
conjunction with the data dependencies between instructions and
availability of processor resources, generates an instruction scale
whose time is longer.

Figure 9 – Example of scheduling anomaly(WILHELM et al., 2008)

Timing anomalies invalidate assumptions that consider worst lo-
cal cases, since they do not guarantee worst global cases. Another
relevant factor is that with time anomalies it becomes not safe to
obtain the WCET from measurements with worst input data and
worst initial state of the processor, because it is not known which
state will culminate in the general worst-case of the processor.
Anomalies force the processor analysis to follow several succes-
sors in the solutions search space, whenever a non-deterministic
processor state is encountered. This can lead to extremely large
state space, even for small programs. A significant part of mod-
ern processors are considered non analyzable, which can be partly
attributed to the existence of timing anomalies.

A special case of timing anomaly is the so-called domino effect

70 Chapter 3. WCET analysis

(WILHELM et al., 2009). A processor exhibits domino effect if
there are two states s and t, such that the difference in execution
time of a program when started in these states is arbitrarily high,
not being limited by a constant factor. An intuitive example is a
loop, where iterations never converge to the same hardware state,
and the difference in execution time increases with each iteration.

We can classify the architectures according to the presence of
timing anomalies and domino effect(AXER et al., 2014):

Completely compositional in relation to time: If the abstract model of
an architecture does not present timing anomalies, this can be
classified as completely compositional with respect to time. So
the analysis can securely consider worst-case local paths. An ex-
ample of this type of architecture is the ARM7, which can be
analyzed in a very simple way. When a hazard occurs in the
pipeline, all components suffer stall until the resolution of this
hazard. Then, all analyzes for different components can be done
separately, whose results are composed at the end.

Compositional with limited and constant effects: This type of archi-
tecture has temporal anomalies, but does not exhibit domino ef-
fects. In this case, analyzes should consider all possible paths.
Infineon TriCore is considered a processor of this category, al-
though this has never been proven.

Non-compositional: These are architectures that exhibit both tempo-
ral anomalies and domino effect. The PowerPC 755 is an example
of this type of architecture. For this type of architecture, time
analysis must follow all paths, since a local effect can influence
future execution arbitrarily.

3.2 MAIN EXISTING APPROACHES

According to (LOKUCIEJEWSKI; MARWEDEL, 2011), tech-
niques for WCET estimation can be classified according to the used

3.2. Main existing approaches 71

approach:

Measurement-based In this approach, parts of the program (or the
entire program) are executed on real hardware or simulator using
a set of inputs, in order to obtain estimates of execution time.

One option is to perform end-to-end measurement of program
execution for the collection of execution time distributions, which
are then processed statistically.

A second option is to measure basic block times, such as those de-
scribed in the program’s CFG. Subsequently, the times obtained
are combined by some execution time limit calculation technique.
Measurement techniques can, in some ways, be used to replace
processor behavioral analysis, and can be implemented with code
instrumentation or hardware devices for information gathering.

One of the disadvantages of this type of technique is the lack of
precision or uncertainty of the results. However, such techniques
may be useful for validating static methods of analysis, or tracing
the task execution profile in real-time systems.

Static analysis: There are still techniques based on static analysis,
which solve the problem of obtaining the worst-case execution
time using analytical modeling and static code analysis. These
techniques are divided into two parts: processor behavior analy-
sis and the worst path search. Static analysis may rely on other
types of analyzes, many of them based on compiler theory, such
as value analysis.

Hybrid approaches: Hybrid approaches combine concepts of techniques
based on measurement and static analysis. Hybrid approaches
consist of identifying unique viable paths (single feasible path -
SFP). Unique viable paths are paths made up of basic blocks
whose executions are invariant to input data. Such paths are
identified by static analysis. Subsequently, the execution time of
the SFPs are measured in real hardware or in simulators with

72 Chapter 3. WCET analysis

cycle-accurate precision. The last step is to combine the result
of the measurements to obtain the worst path. Safety margins
can also be added to the end result, however hybrid techniques
suffer from the same problems of measurement-based techniques,
although they are more reliable.

3.3 STATIC APPROACH FOR WCET ESTIMATION

Static analysis covers techniques whose reliability can be assured
in the context of real-time critical systems. In the following sections
we will show the typical phases, variations and possible implementation
strategies.

3.3.1 Value analysis

Value analysis has the purpose of calculating the intervals of
values that each register can have in each point of the program, repre-
sented by the CFG. These values can be used to define memory access
address ranges or even automatic extraction of loop iteration bounds.
Another use for value analysis is the detection of non-viable execu-
tion paths in CFG. For example, this analysis may conclude, in certain
situations, that a branch will never be taken, since the register used
to evaluate the deviation will always have a value equivalent to false.
Such a path can be safely ignored in the worst-case path search. The
value analysis can be done through data flow analysis techniques, as
described in Chapter 2.

3.3.2 Processor behavior analysis

The processor behavior analysis aims to estimate the execution
time of each component of the program. This analysis phase is re-
quired to deal with the processor components that cause programs to
have context-dependent execution. The time of a particular instruc-
tion is affected by the execution history, that is, the execution of previ-
ous instructions. As mentioned earlier, several components may affect

3.3. Static approach for WCET estimation 73

the behavior of the program over the execution history, such as buses,
cache, state of pipeline. The behavior of the processor over all possible
execution sequences must be analyzed. The complexity of the archi-
tecture influences the precision and the analysis techniques adopted.
There are basically 3 approaches to estimate the execution time of in-
struction sequences in hardware:

Abstract interpretation: abstract interpretation is not a new technique
(COUSOT; COUSOT, 1977). This technique is based on the
representation of the computations of a program using abstract
values from some other descriptive universe. Consider the ex-
ample of the rule of the signs (COUSOT; COUSOT, 1977): the
operation −1515× 17 can be described in the abstract universe
{(+),(−),(±)}, where the semantics of operations are defined
by the rule of signals. The abstract execution of the opera-
tion −1515×17→−(+)× (+)→ (−)× (+)→ (−) proves that
−1515×17 is a negative number. Abstract interpretation is al-
ways concerned with a specific structure of the universe of compu-
tations, as the signal in the case of the previous example. Thus,
abstract interpretation is a form of interpretation in which value
descriptors or abstract values are used instead of concrete values.
Abstract values guarantee termination of analysis and describe
execution for all possible inputs.

This structure description of computations can be extrapolated
to the processor behavior domain, exactly what is done by works
such as (SCHNEIDER; FERDINAND, 1999) and (THESING,
2004). These works are based on the construction of an abstract
processor model. The complexity of the model depends on the
type of target processor that will be used. Simple 8-bit or 16-bit
processors tend to have equally simple models. Advanced 16-bit
or 32-bit scalar processors with pipelines and cache have complex
models, but analyzes of different processor components can be
done separately as there are no temporal anomalies. Advanced su-
perscalar processors with performance enhancement features such

74 Chapter 3. WCET analysis

as branch predictors and out-of-order execution have extremely
complex models, and analysis tends to be less modular than in
the previous case. For complex processors, this may be the only
possible approach. Abstract interpretation of programs consider-
ing complex processors can generate node explosion in the CFG,
due to the need to represent significantly different abstract states
for the same basic block or path, due to highly context-dependent
execution. An advantage of abstract interpretation is the ability
to analyze complex architectures. One drawback is the complex-
ity of the model, which can be extremely difficult to build. This
type of technique can be used in any type of architecture.

Basic block simulation: basic block simulation is an analysis technique
that uses an architecture simulator prepared for this purpose.
Simulation as a measurement technique that uses conventional
simulators combined with specific inputs does not fall into the
category described here. Basic block simulation can provide re-
liable results for compositional architectures. In (ENGBLOM;
ERMEDAHL, 1999) and (ENGBLOM, 2002) a technique is pre-
sented to obtain execution times in compositional architectures
with pipeline. In this technique, basic block sequences are sim-
ulated for the purpose of obtaining worse individual times. Se-
quences are used because, in some cases, basic blocks may suffer
interference from other blocks, so the worst time is only obtained
with the simulation of adjacent blocks. The final time composi-
tion considers a pipeline compensation factor (δ), since the ex-
ecution of isolated blocks differs from the sequential execution
within the pipeline.

Pipeline diagrams/reservation tables: for scalar pipelines, we can use
pipeline diagrams as described by (HEALY et al., 1999). This
technique constructs tables that represent the occupation of the
pipeline, taking into account hazards and stalls. This technique
can be used with cache analysis. Similarly, reservation tables are
used to compute the time of adjacent basic blocks considering

3.3. Static approach for WCET estimation 75

the impact of the resource reservation of the pipeline by the in-
structions. For both techniques, a detailed pipeline model must
be provided to the WCET analyzer.

3.3.3 Worst-case calculation or path search

When the worst-case is known for each basic block that makes
up the CFG of a program, in terms of cache and pipeline (time), we
must search for the worst execution path, or calculate the WCET it-
self. Such search should consider iteration bounds of loops and possible
divergent paths (if-then-else) of program flows. To solve this problem,
several techniques have been proposed, which use different strategies.
According to (WILHELM et al., 2008), the techniques are classified
into:

Structure-based calculation : This technique, described in (COLIN;
PUAUT, 2000), computes an upper bound of the execution time
through a bottom-up traversal of the program syntax tree. The
syntax tree, as its name says, describes the program in a high-
level structure (language level), where the basic blocks, which are
the nodes of the CFG itself, are placed on the leafs.

This traversal of the syntax tree works by combining computed
loop iteration bounds for expressions and uses composition rules
to reduce them. In this way, the program’s syntax tree is reduced
until it reaches a single node. In the process of reducing and
collapsing the nodes, their times are also combined, so that at
the end of the process, there is only one node in the syntax tree,
along with its respective WCET.

According to (WILHELM et al., 2008) this technique has some
problems. The first problem is inexpressiveness, since not every
flow of control can be represented, only simple structures. The
second problem is optimizations, which cause the generated code
to lose its match with the program’s syntax tree. As an example,
we consider the Figure 10. Subfigure 10(a) shows a CFG with

76 Chapter 3. WCET analysis

execution times annotated in the nodes, and a loop with iteration
limit of 100. The application of the structure-based technique is
shown in Figure 10(d).

Path-based calculation : In the path-based approach ((HEALY;WHA-
LEY, 1999), (STAPPERT; ALTENBERND, 2000), (STAPPERT
et al., 2001)), a WCET upper bound is computed composing
limits of several sub-paths of the CFG, searching the worst to-
tal path. In this technique, paths are represented explicitly, so
the number of paths grows exponentially with the number of
branches, as in nested loops for example. This explosion of paths
can be addressed with heuristic search for example. Figure 10(b)
shows an example of application of this technique.

Based on implicit path enumeration technique : The technique that
uses implicit path enumeration (IPET calculation) was proposed
by (LI; MALIK, 1995) and expanded to more complex models
by (LI et al., 1996), (ENGBLOM, 2002), (THEILING, 2002) and
(ERMEDAHL, 2003). This technique consists of modeling the
CFG of the program as a set of linear inequalities. Such in-
equalities describe the flow of the program in terms of execution
constraints and execution times of each basic block. In this tech-
nique, each basic block and each edge of the CFG is assigned a
coefficient tentity which represents the contribution of this compo-
nent over the total time for each time it is executed. The number
of times a component is executed is denoted by xentity.

For this problem, the solution is obtained by integer linear pro-
gramming, where the objective function is the maximization of
the flow in the CFG, that is, the flow that generates the WCET.
In other words the maximization the sum ∑∀i∈entities xi× ti. Cur-
rently, IPET is the most used technique by existing analyzers
because of its efficiency. As an example of application of this
technique, Figure 10(c) is considered.

3.4. Chapter summary 77

Figure 10 – Techniques to WCET search/calculation, obtained from (ER-
MEDAHL, 2003)

3.4 CHAPTER SUMMARY

We presented in this chapter concepts related to obtaining the
WCET of programs and their complicators. This obtainment must con-
sider elements of the architecture used, since these impact significantly
on the choice of techniques and their effectiveness. If the processor used
has temporal anomalies, the analysis may not be possible due to the
explosion of states in the calculation process or even produce useless
results.

Basically, WCET analysis must perform the processor behavior
analysis considering all its elements, such as caches and branch pre-
dictors, and the subsequent search for the worst possible path. The
behavior of the processor can be analyzed with abstract interpreta-

78 Chapter 3. WCET analysis

tion, resource reservation tables or even basic block simulation. When
the processor is sufficiently complex, abstract interpretation may be
the only alternative. When the processor has no temporal anomalies,
compositional techniques can be used. Compositional techniques are
interesting because they do not generate explosion on the search space
of the analysis, necessary to represent all possible contexts of each of
the basic blocks. This explosion induces a considerable increase in the
time taken to obtain the solution. In relation to the tools, there are
alternatives (commercial or not) such as AiT1, RapiTime2, BoundT3,
Sweet4 and Otawa5.

1 http://www.absint.com/ait/
2 http://www.rapitasystems.com/products/rapitime
3 http://www.bound-t.com/
4 http://www.mrtc.mdh.se/projects/wcet/
5 http://www.irit.fr/recherches/ARCHI/MARCH/OTAWA/doku.php

79

4 OPTIMIZATIONS FOR WCET REDUCTION

The objective of this chapter is to present the state-of-the-art in
optimizations for worst-case execution time reduction. Traditional opti-
mizations are often targeted to different goals, such as ACET (average-
case execution time) reduction, energy saving and code size reduction.
To be able to generate and optimize code aiming at WCET reduction,
a compiler must have an integrated analyzer capable of performing
temporal estimates about the program (ZHAO et al., 2006) (LOKU-
CIEJEWSKI; MARWEDEL, 2011), or be supplied with some kind of
information that complies with this objective. Otherwise, the compiler
would have difficulty in finding possible optimization potentials that
actually affect the WCET of the program. To have an effect on the
WCET of a program, an optimization must take into account the exis-
tence of the WCEP, or worst-case execution path, which is the execution
path in the CFG that generates the WCET, when executed.

According to (LOKUCIEJEWSKI; MARWEDEL, 2011), if we
want to reduce WCET, it is not appropriate to conduct all desired
optimizations looking to a single initial WCET calculation. The reason
is the instability of the WCEP, which can change at every optimization
application. Figure 11 shows an example of WCEP instability. In
this example, the numbers represent the worst-case times of the basic
blocks, while solid edges represent the WCEP. In the original version
(Figure 11a), we have a WCET of 140 cycles, which is related to the
path a→ b→ c→ f . The reduction of 30 cycles of the original WCET,
however, decreased only 20 cycles of the WCET, because the WCEP
was changed to a→ d→ e→ f .

We can observe in the previous example that any optimization
that changes the WCEP can change the WCET. The reduction of x
cycles in the WCEP does not imply in a reduction of the WCET in x
cycles.

Compiler optimizations designed to WCET reduction, as well as
any kind of optimization, must meet the following general objectives
(AHO et al., 2008):

80 Chapter 4. Optimizations for WCET reduction

a
20

b
60

d
40

c
40

f
20

e
40

(a) Original code

a
20

b
30

d
40

c
40

f
20

e
40

(b) After optimization of ba-
sic block b

Figure 11 – Example showing a WCEP switch after the application of an
optimization

• They must be correct, ie, preserve the semantics of the com-
piled program: the correctness is of extreme importance because
a compiler that generates faster, but incorrect code is useless.

• They should improve the performance of many programs: op-
timizations should be effective in performance improvement for
many of compiled programs. For example, performance can be
understood as execution speed or in the case of embedded sys-
tems, size of the generated code. As this work focuses on real-
time systems, performance increase can be characterized also as
WCET reduction.

• They must keep the compilation time reasonable: to support
rapid development and debugging cycles, the compilation/opti-
mization should be performed with the shortest time possible.
This objective is partly easy to achieve, since today’s computers
become faster and faster. Optimizations for real time tend to
be extremely slow because the need of invoking external WCET
analyzers, which are in turn generally slow.

4.1. Dealing with WCEP switches 81

• They must require manageable engineering effort: compilers are
extremely complex software. Maintenance costs of any internal
component must be appropriate. Many optimizations can cer-
tainly be implemented with great effort, but we should only con-
sider those that offer benefits for a reasonable amount of pro-
grams.

According to (LOKUCIEJEWSKI; MARWEDEL, 2011), reduc-
ing WCET in compilers is difficult by the following reasons:

• There is a need for a timing model of the target processor or
equivalent data must be supplied by some WCET external tool.

• The need of new optimization paradigms, which are not targeted
to ACET, as these are not suitable for WCET.

• Any code transformation must be aware of WCEP switches.

4.1 DEALING WITH WCEP SWITCHES

If the compiler is aware of possible WCEP changes, it can choose
two options when applying an optimization: try to find out the new
WCEP, or ignore it and continue exploring the initial estimate, with
the risk of optimizing paths not beneficial to WCET. If the compiler
chooses to get the updated version of WCEP at every optimization
application, the total compilation time may be impractical for complex
applications due to successive invocations to the analyzer.

In (LOKUCIEJEWSKI et al., 2009) is presented a technique
called Accelerating Optimization by the Invariant Path, which is more
easily applied to representations at source code level. This technique
relies on the fact that, in some cases, may be unnecessary to perform
the calculation of the WCET and its corresponding WCEP after some
optimizations as this can not have been changed. The WCET calcu-
lation can be avoided when optimizations are applied to basic blocks
belonging to the invariant path. The invariant path is a subpath of the
WCEP that is always in the WCEP, regardless of the changes applied

82 Chapter 4. Optimizations for WCET reduction

to the program being compiled. The consideration of the invariant path
can accelerate the application of optimizations for WCET reduction,
since it reduces the time needed for analysis. All linear path that is con-
tained in WCEP, and not in a mutually exclusive subpath is considered
an invariant path. Programs with CFGs containing divergent flows and
mutually exclusive subpaths represent a challenge in the identification
of invariant paths, for both compiler and for WCET analyzer.

WCEP
Control flow

Invariant path

condition

then

...

(a) Invariance in an if-then sentence

WCEP
Control flow

Invariant path

condition

then else

...

(b) Invariance in an if-then-else structure

WCEP
Control flow

Invariant path

condition

then else

...

(c) Possible WCEP switch

Figure 12 – Scenarios of invariances and possible WCEP switch

Invariance scenarios are shown in Figure 12, considering struc-

4.1. Dealing with WCEP switches 83

tures of the ANSI C language:

If-then invariance: The if-then branch structure shown in Figure 12a
is a conditional execution sentence. Depending on the condition,
either the path containing the conditional then block executes,
or the path that deviates the then block executes. In this case,
either the WCEP pass through the then block or the then does not
contribute to the WCET. In terms of invariant path, the WCEP
going through a conditional then is also part of the invariant path,
this because the other viable path of the if (else block) sentence
does not contain code that can become the new WCEP.

When we use context sensitive WCET analysis, there are chances
of the WCEP to pass through both paths in different contexts, as
shown in Figure 12a. In this case, optimizations applied to the
conditional then certainly do not alter the WCEP.

If-then-else invariance: In case of the if-then-else structure (Figure
12b), sensitive analysis context can determine that both the then
block and the else block are traversed in different situations. This
means that both blocks always contribute to the WCET, then
both can be declared as included in the invariant path. Opti-
mizations can be safely applied to the two paths without the
need of WCEP recalculations. WCET analysis can detect that
the condition of the if-then-else structure will always be evalu-
ated as true or false. As a result, one of the paths will never be
executed and may be declared as dead subpath, converting the
if-then-else structure in a simple if-then structure, allowing the
classification of the remaining path as invariant.

Non invariance: When the analyzer can not statically infer which path
will be taken in a if-then-else structure (Figure 12c), any mutually
exclusive path could become part of the WCEP. In this case, an
update of WCEP at every optimization application is necessary.

Another approach consists in performing an approximatedWCET
recalculation using ILP (integer linear programming) inside the com-

84 Chapter 4. Optimizations for WCET reduction

piler. This alternative is feasible, but it is only an approximation,
not replacing the traditional analysis of WCET. Such an approach is
achieved by using initial data obtained in a traditional WCET analysis,
reapplied in a simplified model used by the compiler.

4.2 CHARACTERISTICS EXPLOITED BY OTIMIZATIONS

Regarding the computer architecture, optimizations can explore
different features, such as:

Parallelism: current processors often exploit instruction level paral-
lelism. This parallelism can appear in two ways. The first way
is transparent to the programmer. In this strategy, the program
is written to be executed in a fully sequential manner, where the
hardware checks at runtime dependencies between instructions,
and issues these in parallel whenever possible. Nevertheless, the
compiler can rearrange instructions to help the hardware in the
issuing work.

The second form of parallelism appears explicitly in the instruc-
tion set architecture (ISA). In this alternative, also known as
VLIW (very long instruction word), each machine instruction may
issue multiple operations in parallel. In this case, the compiler
is responsible to schedule independent operations in a same in-
struction.

Memory Hierarchies: a memory hierarchy consists of multiple levels
of memory, with the faster (but smaller) being the closest to
the processor. Generally, fast memories operate as caches of the
slowest. In a program, the average access time to the memory is
reduced when most accesses are satisfied by the fast memory.

4.3 OTIMIZATIONS TO REDUCE WCET

Optimization involving WCET reduction can be applied in dif-
ferent internal representations of a compiler, reflecting different stages

4.3. Otimizations to reduce WCET 85

of compilation. Some techniques work at source code level, others at
assembly level or in the organization of the final code (layout). The
following representative techniques existing in the literature will be
presented according to this classification.

4.3.1 At source code level

Source code level optimizations are important because they act
in the high-level representation of compilers, ie they are portable. This
type of optimization also increases the opportunities for further opti-
mizations in the compiler, such as those that occur in lower level repre-
sentations. A requirement to perform these type of optimizations is the
use of back-annotations. Back-annotations transform WCET informa-
tion regarding low-level intermediate representations in equivalent in-
formation, but mapped to high-level representations. In the literature,
it is reported that few compilers implement back-annotations of WCET
information, as TUBOUND(PRANTL et al., 2008) and WCC(FALK
et al., 2006). The following optimizations exist at source code level to
reduce WCET:

Procedure cloning: Also known as specialization of functions (LOKU-
CIEJEWSKI; FALK, 2008), it is typically applied to source code
level and is widely known in ACET reduction context. Many real-
time applications have their executions highly dependent on input
data and parameters. Procedures may have internal loops whose
iteration counts are affected/defined by call parameters. When
this is the case, WCET analyzers generally consider the worst
possible parameter as iteration bound, which may be pessimistic
for a wide range of uses of the considered function. WCET ana-
lyzers can also perform context sensitive analysis, but this often
affect the complexity of the analysis, leading to the explosion of
states in case of nested loops. The procedure cloning allows the
creation of specialized copies, ie, with statically defined parame-
ters for each of the callers procedures, facilitating and increasing

86 Chapter 4. Optimizations for WCET reduction

the accuracy of the analysis. Increased precision is commonly
observed as consequence of:

• More accurate definitions of iteration bounds of loops due
to the replacement of parameters by constants in the cloned
version;

• Elimination of possible infeasible paths. The use of con-
stants in conditional expressions allows the identification
and removal of infeasible paths;

• Often, cloned versions do not generate functions with lower
WCET but opens chances for future cloning.

There are different strategies to select functions/procedures as
candidates for optimization. Some parameters must be consid-
ered: definition of the maximum size of the function to be cloned.
Another parameter to be considered is relative to the restrictions
on the occurrence of constants as function arguments. For exam-
ple, we may consider only cloning functions whose calls involving
a given constant as parameter represent at least a half of total
calls of this function. If the considered frequency is not met, then
the function is discarded for cloning (considering the parameter
chosen).

Superblock Optimizations (1): The application of optimizations often
fails to exploit all the potential opportunities in a program due
to the limitations imposed by basic block boundaries. To over-
come this problem, we can use a superblock structure, which has
already been explained in Chapter 2. A superblock contains sev-
eral basic blocks, and allows the application of optimizations that
cross the borders of these. This technique is already used to min-
imize ACET. For superblocks formation, basic block execution
counts are required. In the case of ACET minimization, such
information can be obtained through profiling. For real-time sys-
tems, the formation of superblocks should be guided by WCET

4.3. Otimizations to reduce WCET 87

information. Considering the optimization presented in (LOKU-
CIEJEWSKI et al., 2010), there is still the difference (in rela-
tion to the traditional superblock formation) that superblocks are
formed at source level (WCET-aware source code superblocks),
not at assembly level. Such change allows an initial code restruc-
turing that can expose more opportunities for future optimiza-
tions.

In order to select the trace to form a superblock in a control flow
graph, we can use weights of the nodes (basic block execution
count) or edges (flow transfer counts), with the last generating
the best results. Starting from the CFG, we must select the trace
that maximizes the sum of the weights (nodes or edges), and that
has not been previously selected. After the selection, we proceed
with the operations necessary to form a superblock.

The (LOKUCIEJEWSKI et al., 2010) technique uses IPET to
ensure that subsequent optimizations do not operate on an out-
of-date WCEP. The initial IPET information is obtained from an
initial invocation to a full-featured analyzer. The IPET estimates
are less accurate, but they also are less expensive than invoking
the analyzer at each trace selection.

Using the superblock, optimizations such as elimination of com-
mon subexpressions and elimination of dead code are applied. As
a result, WCET is reduced for many cases of the benchmark suite
utilized.

Loop unrolling (1): loops always have good optimization potentials in
modern architectures. The loop unrolling technique has been
used as an effective strategy to improve the average performance
of programs. This technique consists of replicating the loop body
a few times, inserting extra code to verify the stay/exit condi-
tions, when necessary. The number of replications is called un-
rolling factor u, and the loop in which optimizations are applied
is commonly called rolled loop. The benefits of the technique are:

88 Chapter 4. Optimizations for WCET reduction

• Reducing overhead of increment operations and condition
tests;

• Increase instruction level parallelism, which in turn enables
other types of optimizations.

However, some negative effects can be observed if the technique
is not carefully applied:

• Impact on the instruction cache due to resulting code in-
crease;

• Increase of the code required for register saving operations
(spill), due to the increased pressure on them.

The technique, when applied in its traditional form may not pro-
duce WCET gains. In (LOKUCIEJEWSKI; MARWEDEL, 2010)
they present a technique that considers the benefits for WCET by
evaluating each loop individually as well as the possible negative
effects. The technique is applied at source level to enable possi-
ble future optimizations. The essential point of the technique is
which unrolling factor must be used for each loop, which depends
on the following parameters:

1. Iteration limits for each loop. Using context-sensitive tech-
niques, it is possible to obtain several bounds;

2. Constraints about the available memory for the program and
cache parameters;

3. Estimating the amount of generated spill code.

Then, the values considered for rolling factor should:

• Be between the least common prime factor (LCPF) among
all context-sensitive iteration bounds and 1. This is done
to avoid unnecessary branches in loops. Then, the unrolling
factor must be such that the stay/exit conditions must be
checked only once at each iteration. This is due to the fact

4.3. Otimizations to reduce WCET 89

f o r (i = 0 ; i < 100 ; i ++){
x [i] = x [i] + y [i] ;
i f (w) {

y [i] = y [i] ∗ 2 ;
} e l s e {

y [i] = 1 ;
}

}

i f (w) {
f o r (i = 0 ; i < 100 ; i ++){

x [i] = x [i] + y [i] ;
y [i] = y [i] ∗ 2 ;

}
} e l s e {

f o r (i = 0 ; i < 100 ; i ++){
x [i] = x [i] + y [i] ;
y [i] = 1 ;

}
}

(a) (b)

Figure 13 – Example of loop unswitching. (a) before, (b) after

that branches introduce possible degradations in the pipeline
and inaccuracies in the WCET analysis. Note that the value
should be as large as possible between 1 and the LCPF of the
obtained bounds, which satisfies the following restrictions;

• Should cause the loop to not exceed the available memory;

• Should make the loop to fit into cache.

Considering the unrolling factors obtained, the most promising
loops are optimized, that is, the ones with the best benefits with
respect to WCET and code size.

Loop unswitching: loop unswitching optimization is a well-known trans-
formation used for ACET reduction that can also be applied for
WCET reduction (LOKUCIEJEWSKI et al., 2009). This trans-
formation consists of moving out of the loop conditions that are
invariant. In the case of if-then-else sentences, the body of the
loop is replicated within the block then and else. The benefits
of this transformation are reducing the number of branches, im-
proving pipeline performance, and exposing more opportunities
for loop parallelization. An example of the application of the
technique can be seen in Figure 13.

90 Chapter 4. Optimizations for WCET reduction

Like loop unrolling, this technique can not be applied extensively
across all candidate loops if there are memory constraints. In
this case, we should also consider a trade-off between execution
time gains (ACET or WCET, depending on the goal) and code
increase.

The technique for WCET reduction consists of:

• Perform a WCET analysis to obtain data such as condition
execution counts and WCEP, as well as to obtain informa-
tion about the available memory for the program;

• Perform the selection of all candidate loops, including those
outside the WCEP. This is done because a loop could become
a member of the WCEP after possible WCEP switch;

• Optimize the loops according to the order: loops whose
execution frequencies of the invariant condition are larger
(WCET analysis) are optimized first. In case of a tie, we
consider the branch with the highest WCET. In the case of
a WCET tie, the branch with the least amount of code is
chosen. For each loop optimization, the available memory
must be considered, and in the end, the WCEP must be
recalculated due to possible path changes. The notion of
invariant path can be useful to avoid possible unnecessary
calculations of WCET/WCEP.

Function inlining: The decision to inline a function is usually guided
by compiler heuristics. It is common to consider the size of the
called function in statements or generated instructions. Then we
compare his size with a certain threshold, and we can discard the
possibility of inlining if it exceeds such value. Generally, these
type of heuristics tend to be very conservative, operating only
on very small functions to avoid effects such as excessive code
expansion.

In (LOKUCIEJEWSKI; MARWEDEL, 2011) it is shown that
the application of a simple function selection heuristic ends up

4.3. Otimizations to reduce WCET 91

degrading the WCET in a selected set of applications. Then,
that work proposes the use of machine learning based heuristics
to reduce WCET by function inlining.

4.3.2 At assembly level

Assembly-level optimizations operate directly in the machine
language of the target processor. These optimizations are applied on
the final stages of compilation, since the code generation has already
been achieved.

Superblock formation (2): The formation of superblocks at the assem-
bly level for optimizations is explored by (ZHAO et al., 2006).
WCET information is generated by the compiler with the purpose
of selecting the trace that will originate the superblock. An ex-
ample of superblock formation from WCEP information is shown
in Figure 14. In Figure 14a the blocks and transitions that com-
pose the WCET are highlighted, while Figure 14b presents the
superblock formed for this example.

With a superblock, we can, for example, eliminate flow transfers
by grouping blocks wherever possible. After the formation of
the superblock, other optimizations can be applied, such as the
following ones.

Path duplication: The path duplication technique (ZHAO et al., 2006)
is useful for architectures where flow transfer is considered costly.
This technique consists of duplicating the path (included in the
WCEP) in a certain loop, after the formation of the superblock.
An example can be seen in Figure 15, which represents the ap-
plication of this optimization on the example of Figure 14b. In
this example, it is possible to significantly reduce flow transfers,
for successive loop iterations.

Loop Unrolling (2): In this technique (ZHAO et al., 2006), applied to
the program at assembly-level, the entire loop is duplicated, not

92 Chapter 4. Optimizations for WCET reduction

1

2

3 4

5

6 7

8

9

(a) Before the superblock for-
mation

1

2

3

5'

4

5

6'

8'
7 6

8

9

(b) Superblock formed

Figure 14 – Example illustrating the superblock formation

just the WCEP components inside it, like occurs in the path
duplication. In (ZHAO et al., 2006) only innermost loops are
considered, and the unrolling factor is set to 2 to limit code in-
crease. An example of the loop unrolling application of (ZHAO
et al., 2006) can be seen in Figure 16. In Figure 16a the loop
is unrolled twice, highlighting the components of the WCEP. Fi-
nally, the formation of the superblock for the example of Figure
16a is shown in Figure 16b using the blocks that are components
of the WCEP. Experimental results indicate that path duplication
results in less code increase, however loop unrolling has a better
WCET reduction. Experiments using a processor with no caches
showed that a WCET reduction of up to 10% was achieved for
all benchmarks.

Trace scheduling: Trace scheduling has already been presented in the

4.3. Otimizations to reduce WCET 93

1

2

3

5'

4

5

2'

3'

5''

6'

8'

7
6''

8''
6

8

9

Figure 15 – Example illustrating the path duplication technique.

compilation chapter. Here it is a variant of the technique that
considers WCET information for trace selection (LOKUCIEJEW-
SKI; MARWEDEL, 2011). The idea of the algorithm is to use
the worst path obtained in the WCET analysis to select the trace,
using parameters such as maximum number of blocks. The re-
maining steps follow the traditional technique, which involves the
construction of the dependency graph and list scheduling. The
process is repeated while there are non-scheduled blocks or a
timeout expires. The WCET information is also updated fre-
quently so that the algorithm always selects the trace that most

94 Chapter 4. Optimizations for WCET reduction

1

2

3 4

5

6 7

8

2'

3' 4'

5'

6' 7'

8'

9

(a) Application of loop unrolling
in the example of Figure 14a

2

3

5''

4

5

6''

8''

2''

7

3''

5'''

4'
6'''

5'''

7'

9

1

6

8

2'

3'

5'

6'

8'

(b) Superblock formation for the example of
Figure 16a

Figure 16 – Example of loop unrolling optimization and superblock for-
mation

impacts on the WCET. At the end of the process, if the original
program still gets the best WCET, then the optimized version
will be discarded by a rollback mechanism. As a result, WCET
is reduced for most benchmarks.

Through static branch prediction: dynamic branch predictors are used

4.3. Otimizations to reduce WCET 95

to improve program performance by reducing idle cycles that this
type of operation can generate. Dynamic predictors are usually
accurate if a branch is to be taken. However, they impose difficul-
ties in obtaining WCET, since they depend on execution history.
On the other hand, static predictors are inherently deterministic
from the WCET analysis point of view. Such mechanisms can
be configured considering that the branch will always be taken,
or that it will never be taken (branch not taken, or fallthrough).
Some architectures allow we to choose the direction of the branch,
through specific instructions. In these architectures, the com-
piler can give compile-time suggestions about the behavior of each
branch. These suggestions can be given based on profile informa-
tion (FISHER; FREUDENBERGER, 1992) or directly by static
analysis (PATTERSON, 1995). However, these alternatives con-
sider only the average execution case, and are not suitable for
WCET reduction.

When the predictor can be handled by the compiler, it hints the
direction of each branch, like the technique of (BODIN; PUAUT,
2005). The basic principle of the algorithm is to statically predict
all conditional branches that appear along the WCEP (Worst-case
execution path, i.e., the path that generates the worst-case exe-
cution time when traversed in a program execution), considering
possible path changes. This approach can be used in proces-
sors with support for compiler-directed branch prediction. The
approach is modeled by Algorithm 1 and it uses the following
notation: CFG represents the program control flow graph, which
is supposed to be known at compile time. The nodes of a CFG
are basic blocks (BB). Basic blocks are sequential instructions
and they can end at a control flow instruction and begin at a
control flow target. A basic block may end at an arithmetic in-
struction if the next instruction in memory is a branch target. If
a basic block ends with a conditional branch, then the function
is_conditional_branch returns true. When such a branch exists

96 Chapter 4. Optimizations for WCET reduction

in a basic block, BB.tk and BB. f t represent a taken target and
the fall-through basic blocks respectively. The taken target ba-
sic block is the next basic block when a branch is actually taken
and the fall-through is the “adjacent address” basic block after
the branch instruction when the branch is not taken. Each ba-
sic block can be in one of two states: BB.predicted = true or
BB.predicted = f alse.

If a basic block containing a branch instruction is not predicted,
both successors BB.tk and BB. f t are considered mispredicted, im-
plying a penalty for both of them when calculating the WCET.
This penalty for both branch targets depends on a change on how
the WCET is calculated by the analyzer, because this relates to a
pessimistic behavior that simulates a branch with no direction (or
prediction). This pessimistic behavior is not a common feature
present in WCET analyzers, so, a custom implementation may be
necessary. Another requirement is a worst-case execution count
for each basic block. Fortunately this information is commonly
provided by WCET analyzers.

If a basic block is considered predicted (BB.predicted = true),
then we have a predicted direction for it, which can be taken
or fall-through. The entire procedure relative to WCET analy-
sis is abstracted by function estimate_WCET . The result of a
WCET analysis is the worst-case execution path (WCEP) anno-
tated with the worst-case execution count for each basic block,
which is denoted by count. Basic blocks with higher count val-
ues execute more times than basic blocks with lower count values
in the worst-case execution. For a more detailed description of
this technique, see (BODIN; PUAUT, 2005). We will call this
technique classic approach.

The work of (BURGUIERE et al., 2005) proposes the use of a
CFG structure to statically predict branches. This technique re-
quires a well-structured program, e.g., all loops have only one
exit, and a branch is taken to exit from it. Branches inside loops

4.3. Otimizations to reduce WCET 97

Algorithm 1 Algorithm for static branch prediction (BODIN; PUAUT,
2005).

1: procedure SET_PREDICTIONS(CFG). Set predictions along the WCEP
2: bool converged← f alse
3: int dir← unde f ined
4: for all BB ∈CFG do
5: BB.predicted = f alse
6: end for
7: {Step 1: WCET estimation}
8: WCEP = estimate_WCET (CFG)
9: while converged = f alse do

10: {Step 2: Issue static branch predictions along the WCEP}
11: for all BB ∈WCEP do
12: if is_conditional_branch(BB) then
13: if BB. f t ∈WCEP∧BB.tk ∈WCEP then
14: if count(BB.tk)≥ count(BB. f t) then
15: dir← taken
16: else
17: dir← f all− through
18: end if
19: if BB.predicted = f alse then
20: BB.predicted← true
21: BB.direction← dir
22: end if
23: else
24: if BB.tk ∈WCEP then
25: dir← taken
26: else
27: dir← f all− through
28: end if
29: if BB.predicted = f alse then
30: BB.predicted← true
31: BB.direction← dir
32: end if
33: end if
34: else
35: BB.predicted← true
36: end if
37: end for
38: {Step 3: WCET estimation}
39: WCEP← estimate_WCET (CFG)
40: if ∀BB ∈WCEP, BB.predicted = true then
41: converged← true
42: end if
43: end while
44: end procedure

must be predicted as not taken. With this prediction, if a loop
iterates n times, then we have n correct predictions and 1 mispre-

98 Chapter 4. Optimizations for WCET reduction

diction at the end of the execution. If a loop is repeated m times,
then we have m×n correct predictions and m mispredictions. For
conditional structures, the prediction should be to the path that
has the longest execution when the branch is mispredicted. To
do this, an analyzer that can process parts of a program is neces-
sary. The algorithm predicts branches in a bottom-up way over
a control tree produced by the structural analysis.

Through Register Allocation: The next alternative for WCET reduc-
tion presented in this chapter refers to register allocation strate-
gies. Graph-based algorithms for register allocation employ sim-
ple heuristics to decide which registers will be stored in memory
(spill). To reduce WCET, it is necessary for compilers to have
some knowledge about the timing model of the target architec-
ture, in order to effectively allocate registers for WCET reduction.

In (FALK, 2009) the traditional graph coloring algorithm is ex-
tended for WCET reduction. Since the allocation of registers
requires WCET information and a program can only be executed
or analyzed after the allocation of registers, there is a problem
of mutual dependence. This problem is solved by calculating the
WCET of the program assuming pessimistically that all virtual
registers or variable of the program will suffer spill. This initial
calculation and its respective WCEP serve as input to the graph
coloring algorithm proposed in the paper. The register selection
heuristic operates by trying to reduce the amount of spill code
generated along the worst possible path, which is recalculated at
regular intervals to address the worst path instability problem.
The proposed technique can significantly reduce the WCET of
programs when compared to the traditional graph coloring tech-
nique.

In (FALK et al., 2011) is presented a technique that offers better
results than the one based on graph coloring. This technique,
based on integer linear programming, models the costs of spill
operations by considering the execution of these in the pipeline,

4.3. Otimizations to reduce WCET 99

and worst-case execution time is also modeled. The result is ob-
tained by the traditional ILP register allocation technique com-
bined with the modeled constraints.

Register allocation together with instruction scheduling consid-
ering WCET is the proposal of (HUANG et al., 2012). In this
work, they consider clustered VLIW architectures. In such archi-
tectures, registers and functional units are grouped into clusters,
where functional units in a same cluster have access to a same
subset of registers. This is done to reduce processor bottlenecks,
reducing propagation and communication delays. The technique
of (HUANG et al., 2012) consists of first performing a static anal-
ysis of WCET on a program P, subjected to aggressive scheduling
and a cluster assignment without considering registers pressure
issues1. Then, a node representing a basic block is selected for
register allocation, where the rescheduling of instructions is taken
into account. For the instructions of the selected basic block, in-
structions rescheduling and cluster assignment are done during
the register allocation, in order to reduce the execution of expen-
sive spills. At the end of the process, the WCEP is updated and
the next node is selected, and the process is repeated until all
nodes have been selected.

4.3.3 Through code layout

Another way to reduce program WCET is by reorganizing/repo-
sitioning its code. Techniques that work by altering the code layout are
intended to improve the instruction’s locality in cache access, thereby
reducing cache misses and jump penalties. Traditional code position-
ing optimizations can use profile information to find the best ordering
of basic blocks. However, programs’ profiles refer to the execution of
the code in their ACET and are not useful for improving WCET. Ba-

1 Pressure on Registers occurs when there are fewer available registers than the optimal num-
ber of these, inducing a greater number of spill and reload operations.

100 Chapter 4. Optimizations for WCET reduction

sic block positioning techniques and procedures should be based on
strategies related to the worst flow of the program.

Positioning to improve branch performance: In (ZHAO et al., 2005)
is presented the first proposed technique for code positioning at
the basic block level based on worst-case information. In this
work, a WCET analyzer coupled to a compiler is used. The an-
alyzer provides information about the worst paths so that the
compiler can organize the code in order to reduce branch penal-
ties. The architecture used is the StarCore SC100, a DSP with
different branch and jump penalties.

In this work, a path-based analyzer is coupled to the compiler.
The paper argues that structure-based schemas are not suitable
for code-positioning because they reflect the high-level structure
of the program, and any optimizations cause one-to-one matching
between the compiled code and the high-level program to become
invalid. It is also said that IPET-based approaches, although sim-
ple, consume time for solution and the result is represented by a
single numerical value (the WCET itself), which can not be used
to guide optimizations. The article also discards symbolic execu-
tion because it is slow and significantly increases the compilation
time.

The goal of this technique is to minimize the execution time of
all paths, since any path that has its time increased may be a
new candidate for worst path. To accomplish the objectives, the
technique tries to discover the best permutation of basic blocks
in a function. Brute force approaches are not always feasible,
because if there are n blocks, there will be n! permutations, which
will increase the compilation time excessively.

The central idea of the positioning algorithm is to first mark each
edge of the CFG as “not positioned” and, at each iteration, find
the edge of the CFG that most contributes to the WCET and
then place the blocks connected by this edge continuously in the

4.3. Otimizations to reduce WCET 101

memory. This step will potentially generate a new worst path.
The next step is to recalculate WCET for all paths, and again
choose a new edge for repositioning. The algorithm ends when
all the edges have been positioned.

An advantage of the technique is that it often improves the average-
case execution time too (ACET). The technique also presents the
same results as the brute force algorithm. One of the disadvan-
tages of the technique is compile time since the WCET analyzer
must be invoked at each edge positioning. Another disadvantage
is that the path analysis of the analyzer itself is not the most
efficient technique among those available in the literature.

Block placement to improve cache behavior : Another technique is pre-
sented in (FALK; KOTTHAUS, 2011), which seeks to position
the basic blocks in memory in order to optimize cache behavior
and in the worst case. In this work they use the concept of a for-
mal cache model, which can capture all current types of cache.
This work was the first to consider code positioning to reduce
WCET considering cache. The motivation of the technique is
that code fragments that are mapped to the same cache line and
have high temporal locality (execute on the same loop iteration,
for example), evict each other from cache. The resulting cache
faults are called conflict misses, because the code fragments con-
flict if their cache lines overlap. This overlapping of cache lines
can be resolved by positioning such code fragments continuously
into memory, resulting in less conflict.

For block placement, a conflict graph is constructed. This graph
G = (V,E,w) is a directed graph where the nodes have weights.
A node vi denotes a basic block. The set of nodes V = v1, ...,vn

includes a node vi if this node conflicts with some other node v j.
The set of edges E contains an edge ei, j, if a line of cache contain-
ing code of vi can be replaced (evicted) by v j code. The weight wi, j

of an edge ei, j, approximate the number of cache misses that oc-
cur during execution of vi, which are caused by v j, since v j evicts

102 Chapter 4. Optimizations for WCET reduction

cache lines from vi. The obtainment of the aforementioned graph
is done from a WCET analysis, applying the formal cache model,
where further refinements are done using control flow analysis,
may analysis and layout analysis of memory.

Positioning heuristics act through the following greedy approach:
edge weights are used to identify code fragments with greater po-
tential of cache misses. Starting from the heavier edge, the algo-
rithm evaluates the influence on WCET and the cache conflicts
when relocating the basic blocks from the latter to a continu-
ous position. If there is a WCET reduction, the reallocation is
maintained and the algorithm continues through the next heavier
edge, and so on. This ensures that the WCET of an earlier step
will always be worse than that of a later step. As a result, the
positioning algorithm is able to reduce WCET in programs com-
piled for the Infineon TriCore TC1797 processor, using the aiT
analyzer for conflict graph generation. Differently from the prior
technique, significant improvements in ACET were not obtained,
and in some cases there was worsening. This worsening may be
explained by the insertion of additional jumps when relocating
basic blocks. As in the prior technique, there is a high cost as-
sociated with invoking the WCET analyzer at each iteration of
the algorithm, where the total time can take many minutes (240
seconds on average on a typical computer) for some benchmark
programs used.

Positioning Functions to Improve Cache Previous techniques were con-
cerned with positioning code in a basic block level. There is also
an optimization technique that works with procedure or function
positioning (LOKUCIEJEWSKI et al., 2008). In the context of
traditional systems, this theme has been studied for some time by
(GLOY; SMITH, 1999), (GUILLON et al., 2004) and (LIANG;
MITRA, 2010), however the proposed techniques consider only
reduction of the average execution time, which is not suitable
for real-time systems. Finding the optimal position with respect

4.3. Otimizations to reduce WCET 103

to WCET involves the computation of all possible permutations,
which becomes exponential with the number of procedures.

Positioning functions to reduce WCET, or WCET-Centric Call
Graph-Based Procedure Positioning was primarily proposed by
(LOKUCIEJEWSKI et al., 2008). The work proposes two op-
timization algorithms that exploit the memory hierarchy to re-
duce WCET. WCET reduction is a result of better utilization of
instruction cache memory. Both associative caches and directly-
mapped caches can benefit from such a technique. The algorithm
at its core is similar to traditional procedural positioning, except
that it uses annotated procedure call graph with WCET informa-
tion instead of profile data. There were basically two variations
of the algorithm:

Greedy Version: In the greedy approach the algorithm reorders
procedures that are more promising for WCET reduction.
At each step, the WCET is recalculated before the final com-
mit of the change. At each step, the annotated call graph
also needs to be generated together with WCET.

Heuristic Version: A second approach is to position the proce-
dures based on a single instance of WCET and call graph,
which are generated based on the original program. This
version of the algorithm exploits the continuous positioning
of nodes with higher call frequencies, as these will certainly
be in the worst-case path. This version of the algorithm
gains a lot in processing time compared to the previous one,
but does not produce such good results, and in some cases,
the WCET of the program may be worsened.

The presented variations obtained, for the benchmarks used, a
mean reduction of 10% for the greedy algorithm and 4% for the
heuristic version. The authors point out that the techniques can
be improved with the use of the procedure cloning technique,
which specializes certain functions, whose execution bounds are

104 Chapter 4. Optimizations for WCET reduction

context dependent. One of the disadvantage of the techniques
was the time spent by the algorithms, which reached 183 minutes
for one benchmark.

Regarding positioning of functions, the work of (FALK; KOT-
THAUS, 2011), which was previously presented, can be used for
the positioning of complete functions.

Positioning of functions by COP: (MARREF; BETTS, 2011) proposes
another technique aiming at WCET reduction with procedure
repositioning. The proposed technique is based on Constraint-
Optimization Problem (COP). The objective of this technique is
the same of the previous one: to position the basic blocks in or-
der to reduce cache misses. The article explains how to model
the code positioning problem for WCET minimization as a COP
problem. It is also presented that the technique never increases
the WCET of programs, and can be used in conjunction with
other traditional memory positioning techniques. The article does
not present real implementations done in compilers, for evalua-
tion using benchmarks.

Incremental function positioning: In (MEZZETTI; VARDANEGA, 2013)
they present a technique that proposes a fast approach for posi-
tioning functions, favoring incremental development. The justi-
fication of the work is that the previous techniques are not suit-
able for use in the industry, because they are implemented as
optimizations applied at the end of development, contradicting
the inclination to the incremental techniques used in those insti-
tutions. They argue that the rationale for positioning functions
rather than basic blocks is that compilers generally do not sup-
port block reordering. The idea behind the technique is that
annotated call graphs may not be expressive enough to capture
all possible sources of cache conflict. Effects such as subsequent
calls to distinct functions within loops are not captured. To cir-
cumvent this problem, a special type of graph called the “loop
call graph” is used, which concurrently models aspects of normal

4.3. Otimizations to reduce WCET 105

calls and nested loop calls. This technique is not based on WCET
analysis, being applied generically throughout the program (all
possible paths). This means that improvements can be observed
both in relation to ACET and WCET.

4.3.4 Through scratchpad allocation

Caches are problematic for critical real-time systems due to the
difficulty of (FALK; LOKUCIEJEWSKI, 2010) access prediction. WCET
estimates, in some cases, can be considerably overestimated by the ex-
istence of caches. Optimization techniques that focus on cache effects
to reduce WCET do not always solve the problem. So, what is done
in practice in critical real-time systems is the disable of this type of
resource, leading to a very low average case performance, since each
access to the memory ends up being served directly by the main mem-
ory, which generally operates in speeds much slower than the processor.
An alternative to caches are the scratchpad memories, which provide
good performance for both the worst case and the average case. There
are some techniques in the literature that promote the reduction of
WCET by allocating data or executable code segments to the scratch-
pad memory whenever possible.

In (SUHENDRA et al., 2005) is presented a technique for static
allocation of data in scratchpad memory. In this technique, the data
allocation is performed using an combination of ILP with branch-and-
bound, considering that all execution paths are feasible. It is considered
static because the same data remains in the scratchpad during the entire
execution of the program.

In (DEVERGE; PUAUT, 2007), the authors present a dynamic
and hybrid strategy for allocating data in scratchpad memory. It is
considered hybrid because it combines ILP with iterative heuristics.
According to this technique, at each iteration, the WCEP is computed
using a WCET analyzer, then it is decided which data will go to the
scratchpad using ILP. It is dynamic because the data is placed and
removed from scratchpad at run time, resulting in a software-controlled

106 Chapter 4. Optimizations for WCET reduction

cache.
In (WAN et al., 2012) two techniques are proposed for dynamic

allocation of data in scratchpad that offer better results than the tech-
nique of (DEVERGE; PUAUT, 2007). The first technique consists of a
heuristic that selects variables to be stored in the scratchpad based on
their impact on the longest k paths of the program. The second heuris-
tic uses the problem of coloring graphs, analogous to the allocation of
registers.

In (PUAUT, 2006) a technique is presented for selecting content
in instruction caches with lockable content. Caches with lockable con-
tent behave similarly to scratchpad memories. This approach is based
on the knowledge of the access pattern of a program, and does not
necessarily provide optimal results.

In (FALK et al., 2007) they use an explicit search through the
WCEP to select candidate blocks to lock in cache. Such a technique is
highly costly since it consists of continuously exploiting the program’s
CFG. A similar technique is proposed in (PUAUT, 2006), where mul-
tiple optimization steps are applied considering a single WCEP path.
After applying these steps, the WCEP is recomputed and the algorithm
continue with the next steps.

In (FALK; KLEINSORGE, 2009) is presented a static and op-
timal technique that allocates executable code in scratchpad memory
based on the work of (SUHENDRA et al., 2005). This technique is con-
sidered optimal because it generates the smallest possible WCET, con-
sidering the use of scratchpad. For each basic block, two WCET values
are calculated: (1) considering the existence of a cache and (2) consid-
ering the execution of the entire program in a hypothetical scratchpad
of arbitrary size. With WCET values and flow description, the deci-
sion on the destination of a basic block, whether in normal memory or
scratchpad, is made using ILP. The latter technique can also be used
for data allocation, according to (FALK; LOKUCIEJEWSKI, 2010).

4.4. Chapter summary 107

4.4 CHAPTER SUMMARY

In this chapter we presented the most relevant optimizations in
the literature for reducing WCET at compile time. The techniques con-
sidered include code transformation at program level, assembly level,
source code level, data and instructions in scratchpad memory alloca-
tion, registers allocation and static branch prediction. Any technique
aimed at reducing the WCET must be based on the use of the WCET
analysis itself. The efficiency of the techniques is also related to the
treatment given to the so-called WCEP switch effect. Techniques that
recalculate WCET to verify WCEP switches tend to obtain better re-
sults. If the WCEP switch is not considered, then we run the risk
of optimizing code that will not even contribute to the WCET of the
application. In this chapter we have presented versions of classic opti-
mizations aimed at reducing WCET, such as: loop unrolling and loop
unswitching techniques.

The techniques presented are summarized in Table 3. In this
table, the techniques appear in the order they were presented in this
chapter. The columns indicate the name of the technique, followed
by the type of strategy adopted. It can be seen in this table that
some techniques rely on the transformation of source code while others
in the assembly representation of the programs. Optimizations can
also work on the program’s layout, that is, the way that parts of the
program are mapped into memory. Finally, some techniques move parts
of the program or data into the scratchpad memory, especially those
that directly impact on the application’s WCEP/WCET. This use of
scratchpad may be static, where the desired content is loaded before
program execution, and remains in this memory until the end of it. It
can also be dynamic, where the content that will go to scratchpad is
defined a priori (at compile time), but copying data from memory to it,
or vice versa, is done by the software. In this latter strategy, the use of
scratchpad behaves like a cache with software-controlled substitution
policy. We will retake an overview of some of the related works to
clarify some specific issues in the chapters related to the contributions.

108 Chapter 4. Optimizations for WCET reduction

Source
code opt.

Assembly
opt.

Layout
opt.

Scratchpad

WCET-aware procedure cloning
(LOKUCIEJEWSKI; FALK, 2008)

X

Superblock optimizations (1) (WCET-
aware superblock scheduling) (LOKU-
CIEJEWSKI et al., 2010)

X

WCET-aware Loop Unrolling (LOKU-
CIEJEWSKI; MARWEDEL, 2010)

X

WCET-Aware Loop Unswitching
(LOKUCIEJEWSKI; MARWEDEL,
2009)

X

WCET-aware Function Inlining (LOKU-
CIEJEWSKI; MARWEDEL, 2011)

X

Superblock Formation (ZHAO et al.,
2006)

X

WC Path Duplication (ZHAO et al.,
2006)

X

Loop Unrolling (2) (ZHAO et al., 2006) X
WCET-aware trace scheduling (LOKU-
CIEJEWSKI; MARWEDEL, 2011)

X

Static branch prediction for WCET re-
duction(HUANG et al., 2012).

X

Register allocation by graph coloring
considering WCET (FALK, 2009)

X

Register allocation by ILP considering
WCET(FALK et al., 2011)

X

Register allocation together with instruc-
tion rescheduling considering WCET
(HUANG et al., 2012).

X

Basic block positioning to improve
branch performance (ZHAO et al., 2005)

X

Function positioning to improve cache
(LOKUCIEJEWSKI et al., 2008)

X

Function positioning by COP (MAR-
REF; BETTS, 2011)

X

Incremental function positioning
(MEZZETTI; VARDANEGA, 2013)

X

Static allocation of data in scratchpad
with ILP + branch-and-bound (SUHEN-
DRA et al., 2005)

X

Dynamic data allocation in scratchpad
with with ILP + heuristic search (DEV-
ERGE; PUAUT, 2007)

X

Dynamic data allocation in scratch-
pad by longest paths and graph color-
ing(WAN et al., 2012)

X

Content selection by access pattern for
instruction caches with lockable content
(PUAUT, 2006)

X

Content selection by access pattern for
instruction caches with lockable content
(FALK et al., 2007) using an explicit
search through the WCEP cache.

X

Selection of blocks of instructions for
scratchpad with optimal result(FALK;
KLEINSORGE, 2009)

X

Table 3 – Summary of techniques for WCET reduction

109

5 EXPERIMENTATION INFRASTRUCTURE

This chapter provides an overview of the experimentation infras-
tructure used for the development and validation of the thesis. This
infrastructure consists of a target processor, a compiler backend and
a WCET analyzer. The compiler was based on an existing solution,
while the WCET analyzer was built in a joint effort with other doc-
toral (STARKE, 2016) thesis. The analyzer has been developed using
classical techniques for of pipeline analysis, cache analysis and search
of the worst-case path. In the next section, we will describe aspects
related to the target architecture.

5.1 ARCHITECTURE AND REFERENCE PROCESSOR

The architecture used as the target of this work was developed
using VHDL in another doctoral work (STARKE, 2016) (STARKE et
al., 2017). Such architecture is based on the ST231 (STMICROELEC-
TRONICS, 2004) processor, which is a member of the ST200 series.
Some relevant features inherited from ST231:

• Parallel execution units, including ALUs (arithmetic logic units)
and multipliers.

• Predicated execution through select operations.

• Efficient branch architecture, with condition registers or flags.

• Immediate encoding greater than 32 bits.

The ST231 is a very long instruction word (VLIW) processor.
VLIW processors use a technique in which instruction-level parallelism
is explicitly exposed by the compiler. In VLIW processors, a set of
RISC-style operations are grouped into packages or bundles. All op-
erations present on a given bundle are executed in parallel. While
the delay between issuing a instruction and its ending is the same for
all instructions, some internal results may be available early through
bypassing paths.

110 Chapter 5. Experimentation infrastructure

VLIW processors are simpler than superscalar processors. This
is due in part to the fact that instruction scheduling is performed by
software development tools that are used in support for architectures.
Superscalar processors have dedicated hardware logic for dispatching
concurrent and/or out-of-order operations.

5.1.1 Registers

The processor features a bank of 64 32-bit registers, where the
only non-general purpose registers are the LR (link register) with num-
ber 63, which is changed by procedure call statements and the ZERO
register, which always retain the value 0. There are still some general
purpose registers which are conventionally used for specific purposes.
Such registers are:

SP: Stack pointer, whose number is 12.

GP: Global pointer used for reference to certain data types, whose
number is 13.

TP: Thread pointer, whose number 14.

The other registers should be used according to the procedure
call convention, which will be detailed later.

Another bank with 8 1-bit registers is still available. These regis-
ters, called branch registers, are used as flags for branching operations
and to store carry values of some arithmetic operations.

5.1.2 Instructions

Basically, the processor implements the same general instruc-
tions of the ST231. Except for division operations support. The
ST231 features only one DIVS (non-restoring division stage) instruc-
tion that allows the implementation of software divisions, while the
processor used allows hardware divisions. Like ST231, there is no sup-
port for floating-point operations. The conditional branch instructions

5.1. Architecture and reference processor 111

are predicated, that is, they depend on previously calculated values,
which can be true or false.

5.1.2.1 Branch prediction instructions

Another difference in relation to the ST231 is the static branch
prediction support. The processor used has a new special instruction
that allows the compiler to indicate whether a given path is more likely
to be executed. That instruction is called branch preload or preld at
ISA level (STARKE et al., 2016). When a branch is more likely to be
taken, a preld instruction can be scheduled in a previous bundle. The
overhead of the preld instruction/operation will be zero if we can find a
free slot in an existing bundle. The exact position of a preld operation
is 2 cycles before a branch operation. The preld instruction works
by anticipating the calculation of the branch target address, forcing
the branch ahead to follow a taken behavior. In this way, the preld
instruction emulates the existence of an entry in a branch target buffer
(BTB) relative to the next branch. If such a preld instruction does
not exist for a determined branch, it has a not taken or fall-through
behavior.

A usage example of the preld instruction is presented in Figure
17. In Subfigure 17a, we want a not taken behavior for the branch
operation in the third bundle of basic block 1, so we do not need a
preload instruction. Alternatively, if we want a taken behavior for the
same branch, we must insert a preld instruction 2 cycles before the
referred branch, as showed in Subfigure 17b.

5.1.2.2 Predicated execution of instructions

The used processor has an ISA extension that enables code pred-
ication in a simplified way through the thirtieth bit, which is otherwise
unused. If an operation has its 30th bit enabled, then the result of the
instruction will only be committed if the predication flag is configured
to true. If the predication flag has false as value, then the operation
will produce no effect (or nop). The predication flag is a 1-bit register

112 Chapter 5. Experimentation infrastructure

BB 1

BB 2 BB 3

slot 0

slot 1

slot 2

slot 3

slot 0

slot 1

slot 2

slot 3

br BB3

slot 1

slot 2

slot 3

slot 0

slot 1

slot 2

slot 3

slot 0

slot 1

slot 2

slot 3

(a) Without branch preload (not
taken behavior)

BB 1

BB 2 BB 3

preld BB 3

slot 1

slot 2

slot 3

slot 0

slot 1

slot 2

slot 3

preld antecipates the
 address calculation (BB 3)

 of the br instruction

br BB 3

slot 1

slot 2

slot 3

slot 0

slot 1

slot 2

slot 3

slot 0

slot 1

slot 2

slot 3

(b) With branch preload (taken behavior)

Figure 17 – Example of a sequence of basic blocks with and without
branch preload. Solid lines mean adjacent basic blocks/bun-
dles, whereas dotted lines denote successor basic blocks that
are reached by branch instructions. With the preld instruction
the address calculation of the branch instruction is anticipated
to reduce penalties in the case of a correct prediction

that can be accessed through comparison instructions. This flag is con-
nected to the branch register number 4 that is already defined by the
ISA. In this way, the branch register number 4 controls the execution of
predicated instructions. To enable or disable the predicated execution
mode of the processor, two instructions where added: par_on to enable
and par_off to disable.

Table 16 and 17 of Annex A, shows operands used in instructions
and all instructions of the used architecture, respectively.

5.1. Architecture and reference processor 113

5.1.3 Processor organization

The processor is able to start the execution of 4 operations at
each clock cycle. This means that it has 4 parallel pipelines. Although
they have the same number of stages, each pipeline has access to dif-
ferent functional units. The functional units available in each pipeline
are shown in Table 4. Each pipeline provides in-order execution and
presents 5 stages.

Table 4 – Execution units in each pipeline

Pipeline 0: Call/Branch Mult Div Alu Mem
Pipeline 1: Mult Alu Mem
Pipeline 2: Alu
Pipeline 3: Alu

Graphically, we can see the simplified data path in Figure 18.

C
a
c
h

e
 B

u
ff

e
r

W
ri

te
 B

a
c
k

In
s
.

B
u

n
d

le
 D

e
c
o
d

in
g

ALU

ALU

ALU
MUL

ALU
MUL
DIV

O
p

.
D

e
c
.

O
p

.
D

e
c
.

O
p

.
D

e
c
.

O
p

.
D

e
c
.

LD/ST

C
a
ll
 a

n
d

B
ra

n
c
h

Figure 18 – Data path of the processor

114 Chapter 5. Experimentation infrastructure

Regarding the memory hierarchy, the processor has a direct
mapped instruction cache, where each line contains 8 32-bit words,
with a total of 32 rows. There is no data cache, but there is a config-
urable scratchpad memory.

Regarding forward paths, the following connections exist on the
processor:

• Output of the ALUs for the input of the ALUs.

• Output of the ALUs to the memory access unit.

• Output of the ALUs to the call/branch unit.

However, for the following situations there is no forward path,
but there is interlocking:

• Output of the ALU to the input of the conditional branch unit.
If a branch operation (in a bundle) requires the value of a register
recorded in an operation of the previous bundle, the interlock will
put a stall between the two bundles.

5.1.4 Instruction coding

As we are dealing with a VLIW architecture, sets of operations
must be encoded in a single instruction. Each instruction can have a
variable number of 1 to 4 operations. The configuration presented in
Table 4 imposes the following restrictions on the organization of valid
bundles:

• Because the processor has only one call/branch unit, only one of
such operation can be included in a bundle. If such an operation
exists, it must be the first one in the coding.

• There are only two multiplication units. This means that at most
2 multiplication operations can be encoded in a bundle. Such
operations shall be coded as the first and/or second operation of
the bundle.

5.1. Architecture and reference processor 115

• Only one division unit is available. Divisions should be encoded
as the first operation of a bundle.

• Logical and arithmetic operations can reside in any position of
the bundle, since all pipelines have an ALU.

In addition to the above restrictions, there is still one more re-
lated to memory operations. Although both pipeline 0 and pipeline 1
can accommodate memory access operations, only one can be contained
in a bundle.

The coding adopts a compression strategy. Instead of inserting
empty spaces in bundles to represent nop instructions (empty opera-
tion), we compress bundles using stop bits. When an operation must
be the last one in a bundle, it must have its most significant bit set to
1.

Like other VLIW architectures, there are code alignment con-
straints related to cache. A bundle must be entirely contained in a
cache line. This means that the end of a cache line should always
match a bundle end (stop bit enabled). Alignment is done by inserting
nops.

5.1.5 Procedure calling conventions

The procedure calling convention used is not the ST231 stan-
dard. A specific convention, defined as follows:

Registers to argument passing: Arguments must be passed by the fol-
lowing registers, which can also be used to return values: R16,
R17, R18, R19, R20, R21, R22, R23.

Preserved registers: The registers that must be preserved are: R1, R2,
R3, R4, R5, R6, R7.

Scratch registers: Registers that do not need to be preserved by called
functions are: R8, R9, R10, R11, R24, R25, R26, R27, R28, R29,
R30, R31, R32, R33, R34, R35, R36, R37, R38, R39, R40, R41,

116 Chapter 5. Experimentation infrastructure

R42, R43, R44, R45, R46, R47, R48, R49, R50, R51, R52, R53,
R54, R55, R56, R57, R58, R59, R60, R61, R62.

Actually, the registers TP and GP are not used.

5.2 CODE GENERATION FOR THE REFERENCE ARCHITECTURE

A new code generator was developed in LLVM as compiler in-
frastructure. LLVM (LATTNER; ADVE, 2004) is a modern and exten-
sible infrastructure for compilation and optimization. It is composed
of a large number of tools, ranging from profilers/interpreters and even
just-in-time compilation helpers. In its usual manner, a LLVM-based
tool chain resembles the diagram of Figure 19. In this scheme, one can
observe that the compilation process is shared by both Clang 1, which
is the front-end of the compiler, and LLVM. LLVM is also responsible
for assembling the code, i.e., object code generation. The finalization,
which is the linking of the compiled code, must be performed by an
external tool, such as with ld present in the package binutils 2.

Sources
(*.c) Compiler Assembler

*.o
Linker

Final
executable

Clang BinutilsLLVM

Figure 19 – Possible use of Clang with LLVM and linking with Binutils

LLVM is fundamentally organized in passes, and everything is
implemented as passes. The fundamental unit for representing pro-
grams in LLVM is the Module class, which is an intermediate code unit
containing as data global variables, symbols and function instructions.
Passes can operate over modules, functions, loops, regions, and other
units that can compose a program. The passes are managed and sched-
uled by what is called Pass Manager. A pass can analyze or modify the
1 http://clang.llvm.org
2 http://www.gnu.org/software/binutils

5.2. Code generation for the reference architecture 117

intermediate representation of the program (optimization), and may
be dependent on information/analysis generated by other passes. To
ensure that the information is available when needed, the pass manager
schedules passes in order to solve all required dependencies.

When we have a module containing functions and a set of passes
to execute through this module, all these passes are executed on each of
these functions in a chained way that are isolated from other functions.
We call this chained execution as pipeline. This strategy of pipelined
execution of passes ensures efficient memory and cache utilization, be-
cause analyzes are performed in very close time intervals relating to
their use (temporal locality). When all passes are executed on a func-
tion, the pass manager can safely deallocate all data relating to the
analysis of this function, since they are no longer needed for the next
function. If code generation must occur, it will be performed by the last
passes executed on a function. It can be said that the LLVM is stateless
with respect to analysis data, when considering isolated functions.

However, as mentioned above, LLVM only comprises the back-
end functions of the compiler, requiring a frontend to complete the
infrastructure. An existing frontend that operates in conjunction with
the LLVM is Clang, which supports almost the entire family of lan-
guages derived from C (C, C ++ and Objective-C). We did not need
to change Clang because our work addresses code generation and not
programming languages. We only added information needed by Clang
to recognize the new target and use the appropriate tools that were
developed for the architecture, such as the assembler and linker, for
example.

5.2.1 Back-end support

The compilation infrastructure can be outlined by Figure 20.
Note the use of a customized linker instead of an existing solution.

The implementation of the support for the new architecture was
performed as follows:

• The register of a new compilation target (LLVM Target). This

118 Chapter 5. Experimentation infrastructure

Sources
(*.c) Compiler Assembler *.o

(Elf32)
Linker

Image
(*.mif)

Clang LLVM
Custom
linker

Figure 20 – Use of Clang with LLVM and finalization with a custom
linker

is accomplished by adding a set of classes that extend abstract
classes previously existing in the compiler, as it is developed ac-
cording to the paradigm of object orientation.

• Specification of instructions and registers, as well as their coding.
This is done through a tool called TableGen. This tool helps us
keep records of information on specific areas of the compiler, thus
avoiding duplication of information. Specification using Table-
Gen enables automated generation of parts of the backend as
assembly generator, instruction selector and instruction encoder.

• Implementation of passes responsible for lowering (or legaliza-
tion3) IR (intermediate representation). Code legalization in-
cludes:

Type promotion: Types of reduced representation (one bit for
example) that are not natively supported should be pro-
moted to larger representation types (8, 16 or 32 bits for
example).

Type expansion: A type that requires more bits than the larger
word supported by the processor, should be expanded in
several of these words.

Operation expansion: Intermediate representation operations not
natively supported by the processor should be expanded in a

3 It is called legalization because common operations from the intermediate representation of
the LLVM are converted into operations that are legally supported by the target architecture.
An operation is considered illegal if it has no equivalent in the target architecture

5.2. Code generation for the reference architecture 119

series supported operations. For some operations, the com-
piler does not require the backend for such a transformation.
Though, some complicated transformations must be done by
the backend.

We also use the standard VLIW instructions scheduler of LLVM.
The scheduler takes into account the structural dependencies speci-
fied in the description of the instructions, via definition of scheduling
itineraries for each of these. Such descriptions are used in a class called
Hazard Recognizer, which provides access to resource reservations ta-
bles, necessary for scheduling. This is used in conjunction with the
instruction priority DAG. The instruction scheduling is performed in a
stage prior to register allocation, then the instructions are still repre-
sented in SSA (static single assignment form) form.

Two another passes are still necessary to complete the code gen-
eration process:

Instruction packetization: The instruction scheduling, which executes
on stage prior to register allocation, only reorders individual in-
structions. This pass implements packetization routines used to
define which instructions must form each bundle after register
allocation. In assembly, the semicolon is used as end of bundle
marker. Given the sequences of instructions generated by the
scheduler, the packaging should take into account the following
restrictions:

Data dependency: In a same bundle, instruction should not have
certain types of data/registers dependencies. Such depen-
dencies can be:

Data: This kind of dependence is also called true depen-
dence, where an instruction defines the content a regis-
ter that will be used by another instruction. Instruc-
tions with data dependencies must reside in distinct
bundles, respecting the order of execution. An example
of this type of dependence can be seen in the code 5.1.

120 Chapter 5. Experimentation infrastructure

In this example there is a data dependency between the
second and third operations, in relation to the register
r18.

Code 5.1 – Example of data dependency be-
tween instructions

add $r11 = $r19 , $r10
shru $r18 = $r18 , 11
add $r9 = $r9 , 1

;

s t h 2[$r10] = $r18
;

Output: In this type of dependence, two instructions write
to the same register. As in the previous case, instruc-
tions with output dependency must be placed in differ-
ent bundles, respecting the order defined in the schedul-
ing.

There is still a kind of dependence called anti-dependency.
In this type of dependency, an instruction writes a register
previously read by another instruction. This kind of depen-
dency is ignored in the packaging phase, because it does not
represents a problem for the used architecture. An example
of packaging considering and disregarding anti-dependencies
can be seen in Figure 21.

Multiple control flow instructions: Each bundle must contain at
most one control flow instruction, as conditional/uncondi-
tional branches and procedure calls.

Multiple memory access instructions: Each bundle must contain
at most two memory access instructions, whether they are
loads or stores.

Long instructions: Some instructions can use two entries in a
bundle. As example we can cite instructions with 32-bit

5.2. Code generation for the reference architecture 121

s t h 0[$r10] = $r19
add $r16 = $r16 , 2

;

shr $r10 , $r18 , 18
add $r8 = $r8 , 1

;

s t h 0[$r10] = $r19
add $r16 = $r16 , 2
shr $r10 , $r18 , 18
add $r8 = $r8 , 1

;

Figure 21 – Packaging instructions considering anti dependencies (left),
and disregarding (right). Note that there is a anti-dependency
in relation to the register r10 between the first and third in-
structions.

immediate. This type of instruction can not be divided in
two bundles.

Bundle alignment: The architecture requires that the bundles are aligned
in cache. When a cache line is fetched from memory, it must con-
tain only complete bundles, i.e., there will be a stop bit in the last
instruction from this line. Without an additional alignment pass,
we can have bundles that pass the cache line frontier, which is an
illegal situation from the processor point of view. The alignment
procedure operates by shifting code using nop instructions.

The alignment procedure operates in one function at a time. For
this purpose, it considers that function beginnings (first bundle)
are aligned, which should be respected by the linker later. Start-
ing from the first bundle, the subsequent bundles are checked. At
this point, two situations may occur:

• Aligned bundle: nothing must be done, because the bundle
is already aligned.

• Unaligned bundle: the unalignment must be corrected. For
this purpose, we calculate how many instructions are neces-
sary to put in this line to shift the unaligned bundle entirely
to the next cache line. The calculated instructions are then

122 Chapter 5. Experimentation infrastructure

translated into nop instructions that are placed in the pre-
vious bundle to make the shifting of the current bundle.

At the end, more nop operations are added to the end of the func-
tion, so that the next function will start at an aligned memory
position, as required by the algorithm. Figure 22 shows an exam-
ple of bundle alignment. In this example we consider that the first
bundle starts in a aligned memory position (start of a cache line)
and each cache line holds up four words. So, the third bundle is
unaligned (divided in two cache lines). To fix this unalignment,
we put a nop operation in the second bundle.

s h l $r16 , $r8 , 2
;

add $r17 = $r16 , $ r9
add $r8 = $r8 , 1

;

/ / u n a l i g n e d bu nd l e
ldw $r17 = 0[$r17]
add $r16 = $r16 , $r10

;

stw 0[$r16] = $r17
;

s h l $r16 , $r8 , 2
;

add $r17 = $r16 , $ r9
add $r8 = $r8 , 1
/ / a l i g n m e n t nop
nop

;

ldw $r17 = 0[$r17]
add $r16 = $r16 , $r10

;

stw 0[$r16] = $r17
nop

;

Figure 22 – Alignment instructions in a basic block. Considering that the
initial address of the basic block is aligned with the beginning
of a cache line, then in the example on the left, the third bun-
dle is misaligned. In the example on the right example, the
basic block was aligned by inserting nops.

Promotion memory references to registers: One characteristic of the
implemented architecture is that it does not have data cache,
due to the difficulty of analyzing this type of resource consider-
ing WCET. So, any memory access will result in large amount
of processor stalls. One of the major sources of memory access

5.2. Code generation for the reference architecture 123

identified in the compiler comes from the use of the procedure
stack in which each access is usually preceded by a load opera-
tion and followed by a store operation. In this way, we can try
to promote as much data as possible from stack to register, as
the architecture has a large number of them. By default, this is
not done by the LLVM, however there is an available pass that
performs this procedure at intermediate representation level, i.e.,
before the code generation. The pass in question is based on the
work of (SREEDHAR; GAO, 1995).

Determination of loop bounds: We also implemented a pass to dis-
cover worst-case iteration counts of all loops. This execution
counts are necessary to WCET analysis. The compiler itself
can estimate worst-case counts for simple and data-independent
loops. For more complicated or data-dependent loop structures,
those worst-case execution counts must be provided through an-
notations in the source code. Figure 5.2 shows an example of loop
annotation. In this example, the inner loop is data-dependent on
the outer loop, with a worst-case bound of 5 iterations.

Code 5.2 – Example of data dependency between in-
structions

f o r (i = 0 ; i < 5 ; i ++){
j ++;
/ / @loop−bound : 4
f o r (i n t m = 0 ; m < i ; m++){

j ++;
}

}

If the compiler cannot bind an iteration bound for a loop, the
compilation is aborted and a message is shown to inform which
loop must be annotated by the user. These loop bounds are
exported within the CFG, as we will show soon.

124 Chapter 5. Experimentation infrastructure

Static branch prediction (optional): An optional pass was implemented
to perform static branch prediction. LLVM perform analyses that
can be used to statically predict the behavior of a branch. Such
analyses can, for example, estimate the probability of each branch
to be taken by the program. These probabilities are obtained
through a set of heuristics that act on the structure of loops and
its exit conditions. The examination of comparison operations
that precede a branch instruction is also a key aspect of these
heuristics. In this case, we used branch probabilities obtained
from the Machine Branch Probability Info pass, which is an anal-
ysis pass available on the LLVM infrastructure. This strategy is
summarized by Algorithm 2.

Algorithm 2 Algorithm for static branch prediction using compiler infor-
mation.

1: procedure SET_PREDICTIONS(CFG). Set predictions to each branch
2: branch_probability_analyzis(CFG)
3: for all BB ∈CFG do
4: if is_conditional_branch(BB) then
5: if prob(BB,BB.tk)> prob(BB,BB. f t) then
6: BB.direction← taken
7: else
8: BB.direction← f all− through
9: end if

10: end if
11: end for
12: end procedure

When a branch is predicted as taken, we insert a branch preload
instruction 2 cycles before such operation, according to the static
branch prediction support of the architecture.

CFG extraction: An additional step is still executed to extract the con-
trol flow graph of the application. This graph is useful for WCET
analysis, as will be seen later. Each graph node stores informa-
tion relevant to the basic block represented. If a node represents
a loop header, then we also associate it with worst-case iteration
counts previously obtained. We also export information related
to control flow operations. By default, all branches of a program

5.2. Code generation for the reference architecture 125

are statically predicted as not taken, but these predictions can
change if we enable the static branch prediction pass previously
explained. In these way, considering a basic block terminating
with a branch/jump/call/return, we can have 7 types of succes-
sors that are exported in the CFG:

Jump successor: The successor is reached through a jump oper-
ation.

Call successor: The successor is reached through a call opera-
tion.

Return successor: The successor is reached through a return op-
eration.

Not taken successor: This case represents that the successor ba-
sic block is the not taken target of the actual block, consid-
ering a default not taken prediction.

Taken successor: This case represents that the successor basic
block is the taken target of the actual block, considering a
default not taken prediction.

Not taken successor (predicted as taken): This case represents that
the successor basic block is the not taken target of the actual
block, considering a taken prediction.

Taken successor (predicted as taken): Finally, this case represents
successors that are in the taken target of basic blocks, con-
sidering a taken prediction.

In the current version, a single graph is generated for the entire
program. In this graph, each procedure call is replaced by a full
copy of the called procedure. Then, it is considered that this
graph is a composition of the control flow graph with the graph
of procedure calls, as a single graph stores all the information.
As an example, we can consider the Code 5.3, which represents
a C program that calculates fibonacci numbers in an iterative
way. The procedures CFGs fib and main, can be seen in Figures

126 Chapter 5. Experimentation infrastructure

23b and 23a, respectively. The composition of these two graphs
results in the graph that is shown in Figure 23c, where the num-
bering represents the unique identifier of each node. This graph is
called Interprocedural Control Flow Graph (ICFG) (WILLIAM;
BARBARA, 1991).

Code 5.3 – Program that calculates fibonacci numbers
in an iterative way

i n t f i b (i n t n) {
i n t i , Fnew , Fold , temp , ans ;

Fnew = 1 ; Fold = 0 ;
f o r (i = 2 ;

i <= 30 && i <= n ;
i ++)

{
temp = Fnew ;
Fnew = Fnew + Fold ;
Fold = temp ;

}
ans = Fnew ;

re turn ans ;
}

i n t main () {
i n t a ;

a = 3 0 ;
f i b (a) ;
re turn a ;

}

5.2.2 Code Linking

The code generated by the compiler can not be directly executed.
It is still necessary to define the program layout, ie, how it should be
mapped into memory for execution on the target processor. Compil-
ers generally do not make any addresses definition, they only provide

5.2. Code generation for the reference architecture 127

CFG for 'main' function

%0

(a) CFG of the main function

CFG for 'fib' function

%0

%2

T F

%5

%9

T F

%11 %20

%17

(b) CFG of the fib function

main:0

fib:1

fib:3

fib:4

fib:5

fib:2fib:6

main:7

(c) Complete CFG of the
fibcall program

Figure 23 – Example illustrating the formation of a complete CFG (or
ICFG)

128 Chapter 5. Experimentation infrastructure

some relocation tables with the binary, which describe what should be
adjusted and configured in the program. When the address for an item
of data is defined, we should adjust each instruction that accesses this
data, so that it can use its correct address. Entries or records in the
relocation table store the position of instructions and the type of ad-
justment that must be made to access a specific data item. All this
information is in the object code, which is stored in a file called ELF
(Executable and Linkable Format) (SCO, 2013). In this file type, text
sections, data and constants, symbol tables and relocation tables are
stored in specific sections.

In addition to the definition of program layout and relocation
of symbols, it is also the linker’s task to define what will be the final
format of the file that contains the executable code. As we are using
an architecture implemented in FPGA, our linker generates a MIF
file (Memory Initialization Format) used to initialize the ROM memory.
In this case, none initialization of data is performed by the linker,
the application itself must copy and initialize the data from ROM to
RAM. So, for execution purposes, every application is compiled with
initialization routines, that is, a boot loader.

5.3 WCET ANALYSIS

The implementation of a WCET analyzer considered the choice
of the most appropriate and accurate techniques, but kept the ba-
sic premise of simplicity of analysis. The chosen techniques basically
regards cache analysis, pipeline analysis and finally worst-case path
search.

The input for the WCET analyzer is a compiled and link-edited
program, and a CFG. The CFG is obtained from the compiler, as de-
scribed above. By using the CFG obtained from the compiler we have
some advantages:

• We do not need to reconstruct the CFG directly from the ma-
chine code, because this information is already available in the

5.3. WCET Analysis 129

compiler;

• Recognition of structures that are hard to be reconstructed by
static analysis, as jump tables (indirect addressing) used to im-
plement switches. The compiler always knows all possible targets
of a switch statement.

The compiler also must generate code in a pattern that allows
complete construction of the CFG. This pattern includes absence of
indirect function calls and indirect recursion. These assumptions are
not too restrictive and are adopted by many WCET analyzers. The
steps executed by the analyzer can be summarized as follows:

Loop detection: loops are not described in the CFG. The detection of
loops uses the Tarjan’s algorithm (LENGAUER; TARJAN, 1979)
for identifying strongly connected components in graphs.

Instruction cache analysis: analysis for classification of cache accesses
in always miss, always hit, first miss and conflict.

Detection of memory accesses: Detection of accesses targeted to the
main memory and not to the scratchpad memory. This analysis
is quite simple and work by inspecting load and store instructions,
so it will not be detailed.

Stack utilization analysis: This analysis calculates the stack utiliza-
tion of a program by interpretation of function calls. This analy-
sis is useful to guarantee that the target program will respect its
stack budged. This analysis does not affect the resultant WCET,
but helps to avoid possible stack overflow errors.

Pipeline analysis: This analysis calculates the basic block times when
executed in the processor pipeline, disregarding cache effects.

Worst-case path search: This phase searches for the worst-case path
and its respective computation time (WCET), considering the
previous analyzes. We used IPET (LI; MALIK, 1995) for this
purpose, as we will show further.

130 Chapter 5. Experimentation infrastructure

Since the used architecture does not suffer from timing anoma-
lies, we can conduct each analysis isolated and combine the results at
the path search phase.

For the remainder of this section, we will consider the example
of Figure 24, consisting of a C program and its corresponding CFG.
In this example there is a program consisting of a loop and an if-then-
else sentence. In the CFG of the example, the start node is explicitly
drawn and is purely symbolic, not representing any real basic block.
There is another symbolic node representing the end of a program in
the CFG, but this node is omitted from the drawing. The edges follow
the definition presented earlier, where an edge di_ j ∈E means the basic
block j can be executed after the execution of the basic block i.

i n t main (i n t argc , char∗∗ a rgv) {

i n t i = 1 ;
i n t j = 0 ;

f o r (j = 0 ; j < 5 ; j ++){

i f (i < 6){
i ++;
i +=1;
i +=2;
i +=3;

} e l s e {
i−−;
i −=1;
i −=2;
i −=3;

}
}

}

start

bb: 7
t=7

dstart7

bb: 0
t=14

bb: 2
t=9

d0_2

bb: 1
t=9

d1_2

bb: 3
t=9

d2_3

bb: 6
t=8

d2_6

bb: 4
t=15

d3_4

bb: 5
t=15

d3_5

d4_1 d5_1

bb: 8
t=5

d6_8

d7_0

Figure 24 – A C program and its respective CFG

Like most WCET analyzers, the implemented one is context sen-
sitive. The analyzer considers the paths by which each node of the CFG
can be reached, and computes the behavior of cache and executions for
each node in each of these contexts. For example, loops may have a dif-

5.3. WCET Analysis 131

ferent execution time for the first iteration, when instructions must be
loaded to the cache. This behavior can be extracted by cache analysis,
which is the subject of the next subsection.

5.3.1 Instruction cache analysis

Cache memories are necessary to minimize the gap between pro-
cessor and memory performances. Usually, main memory has a clock
that is slower than the processor so a fast cache is placed between them
where the most recent data is stored promoting faster access. We use
a direct-mapped instruction cache memory, so some sort of analysis
is necessary to model cache misses during WCET analysis. Usually
cache analysis is performed using abstract interpretation as described
in (ALT et al., 1996) but here we used traditional data flow analysis to
compute cache states. Similar analyzes are also used in (MUELLER;
WHALLEY, 1995) and (LEE et al., 1998).

A cache memory is characterized by its capacity, line size and
associativity.

Definition 8. (Capacity) Capacity is the caches’ total number of bytes.

Definition 9. (Line or block size) Line size is the quantity of bytes trans-
ferred from memory to cache when a cache miss occurs. A cache could
have n = capacity

line. size lines.

Definition 10. (Associativity) It consists of the mapping of various main
memory addresses to cache lines. A direct-mapped cache has unitary
associativity, where a main memory specific address is always mapped
to the same cache line. If associativity is 2, a main memory address is
mapped to 2 different cache lines. When associativity is not unitary, some
sort of replacement policy must exist to decide which line will have data
for eviction. The relation n

assoc. defines the number of sets of a cache.

In the context of this work, we will focus only on the unitary as-
sociativity (direct mapping) where one memory block can reside only
in a specific cache line. This feature does not impose a restriction

132 Chapter 5. Experimentation infrastructure

upon the analysis, but is related to the used direct mapping configu-
ration in the hardware. A direct-mapped cache memory is formed by
a sequence of lines L = l1, l2, ln... which store a set of memory blocks
M = m1,m2...ms. A memory block m with address addr is stored in the
line li following Equation 5.1. The operator % represents the modulus
or remainder of the division.

li = addr(m) % n (5.1)

In the case of the existence of a particular instruction in the
cache, we define:

Definition 11. An instruction could be in the cache if: 1) there was a
CFG transition sequence where the block corresponding to the instruction
memory had been referenced in previous basic blocks; 2) this memory
block is referenced previously in the same basic block.

Definition 12. (Abstract state) An abstract state of the cache of a basic
block is the subset of all memory blocks that can be cached before execut-
ing the basic block.

Definition 13. (Reachable abstract state) A reachable abstract state is
the subset of all memory blocks that can be reached by CFG transitions.

Definition 14. (Effective abstract state) An effective abstract state of a
basic block is a subset of all memory blocks that can be reached by con-
sidering all the CFG paths to the basic block in the analysis.

5.3.1.1 Reachable and effective abstract state

We can construct reachable abstract state where we can map all
memory blocks accessed by every basic block. This analysis uses the
same principles of reaching definitions in traditional data flow analysis
and it follows Algorithm 3.

Figure 25 shows an example of the results of Algorithm 3 execu-
tion. The abstract reachable state (RMBbb(cl) = data) is beside each

5.3. WCET Analysis 133

Algorithm 3 Reachable abstract state for every basic block
1: change← true
2: while change do
3: change← f alse
4: for all i ∈ BB do
5: for all c ∈ cache_blocks(i) do
6: . p: predecessors of i
7: RMBini(c)←

⋃
∀p RMBoutp(c)

8: temp← RMBouti(c)
9: . If this cache block is the last accessed by i

10: if lasti(c) 6= /0 then
11: RMBi(c)← lasti(c)
12: else
13: RMBi(c)← RMBini(c)
14: end if
15: if RMBi(c) 6= temp then
16: change← true
17: end if
18: end for
19: end for
20: end while

output edge. bb is the basic block number, cl is the cache line and data
represents an identifier of the memory data, the memory address index.
Figure 25 also shows which cache line is accessed by a basic block and
its memory address index inside the nodes (l0 = 0 for basic block 0 and
l1= 1 for basic block 4). It is very easy to know the cache contents after
execution of a basic block, we have only to inspect basic block instruc-
tions addresses. The RMBs track the possible state of cache lines after
the “execution” of all basic blocks. We know, for instance, when bb3

executes, cache line 0 should have data which index is 0 (RMB3(0) = 0)
because to reach basic block 3, bb0 must execute. This same logic fol-
lows for RMB3(1) = 1 and RMB3(2) = 0, where RMB3(1) = 1 comes
from bb2 and RMB3(2) = 0 comes from execution of bb2 itself.

Some conditions must hold when using this analysis to address
cache hits and misses. First, loops must iterate at least once. If this
is not true, we cannot assume a hit in bb4 in Figure 25 because bb2

will never execute and l1 will never receive data index 1 used by bb4.
Secondly, some path checking should be done during the analysis. A
hit could only exist in bb4 if the worst-case path passes at least once

134 Chapter 5. Experimentation infrastructure

RMB 0(0)= 0
RMB 0(1)= 1
RMB 0(2)= 0

RMB 0(0)= 0
RMB 0(1)= 1
RMB 0(2)= 0

0

RMB 0(0)= 0
RMB 0(1)= 1
RMB (2)= 0

RMB 1(0)= 0
RMB 1(1)= 1
RMB 1(2)= 0

RMB 2(0)= 0
RMB 2(1)= 1
RMB 2(2)= 0

RMB 3(0)= 0
RMB 3(1)= 1
RMB 3(2)= 0

RMB 4(0)= 0
RMB 4(1)= 1
RMB 4(2)= 0

Figure 25 – Cache abstract reachable state example

through bb2. In this case we are pessimistic and assume a miss in bb4.
This type of cache analysis could be optimistic if we use only abstract
reachable states without path checking.

The path checking is performed constructing the effective ab-
stract state using Algorithm 4.

Algorithm 4 Effective cache state for every basic block
1: for all i ∈ BB do
2: for all c ∈ RMBi(c)∨|RMBi(c)|= 1 do
3: . If this block is accessed by BBi
4: if lasti(c) 6= /0 then
5: EMBi(c)← c
6: else
7: . P: paths that leads to i
8: if c ∈ last j(c) | j ∈ ∀P then
9: EMBi(c)← c

10: end if
11: end if
12: end for
13: end for

The effective abstract cache set EMBi(c) is constructed from
reachable abstract set RMBi(c). First, on Line 2 it is checked if the
set cardinality is 1 (|RMBi(c)| = 1). If this cache block is accessed by

5.3. WCET Analysis 135

the basic block, it is added in the abstract set on Line 5. Otherwise it
checks if this memory reference is accessed by all paths leading up to
the basic block in question.

Considering the example in Figure 25 and the basic block 4, the
algorithm has the following execution in the construction of effective
abstract state for the cache line 1 of the basic block 0 (EMB0(1)):

• if vertex 0 accessed l1 = 1, we could terminate and it will be
classified as a cache hit;

• following vertex 0, we check 3, where there is no access;

• following vertex 3, we check 2. In this vertex, l1 = 1 is accessed
and this path search is ended;

• following vertex 3, we check 1. There is not a l1 = 1 access and
we continue;

• following vertex 1, we check 0. Vertex 0 was already visited. We
can conclude that there is a path where l1 = 1 is not referenced;

• l1 = 1 does not belong to effective abstract state of basic block 0
and therefore there is a cache miss in basic block 4.

5.3.1.2 Cache accesses classification

We classify all program instructions in “always miss”, “always
hit”, “first miss” and “conflict” after the data flow analysis in conjunction
with path checking – reachable and effective abstract state.

Definition 15. (A_MISS) There is a fault in the cache every time this
instruction is executed – always miss.

A_MISS classification occurs in compulsory or capacity faults.
For example, a compulsory miss occurs in bb0 in Figure 25 since the first
instruction of the program is not in the cache memory at the beginning
of the program execution. A_Miss is also the correct classification for
the instruction of bb4, since l1 = 1 does not exist in the effective abstract
state of bb0 (predecessor of bb4).

136 Chapter 5. Experimentation infrastructure

Definition 16. (A_HIT) There is a hit in the cache every time this instruc-
tion is executed – always hit.

A_HIT is the class for instructions where: 1) they are not the
basic block first instruction or the first instruction of a cache line; 2)
they are in the cache effective state. In the case of the Figure 25, all
instructions of the bb1 can be classified as hits, because its line will
always be previously accessed by the bb0.

Definition 17. (F_MISS) This classification is related to loops. There is
a cache miss only the first iteration of the loop – first miss;

In the case of F_MISS, if a loop iterates 100 times, there is a
cache miss only the first iteration. Others 99 iterations, there are cache
hits. This classification occurs in the bb2 of Figure 25 for l1 = 1 since
it is not accessed by any predecessor except itself.

Definition 18. (CONFLICT) This classification occurs when there are
multiple reachable paths to a particular basic block and each of these
paths has a different effective cache state, which may cause faults or
misses depending on the path flow.

CONFLICT occurs, for example, in Figure 26 in bb3. If the
execution flow is 0→ 2→ 3, there is a hit in the cache since l1 = 1 is
accessed in bb2; if the execution flow is 0→ 1→ 3, there is a cache miss
since there are no references to l1 = 1 in predecessors basic blocks.

After the instruction classifications, we can count the number of
faults (A_MISS) that impact directly on the basic block time. The
classes F_MISS and CONFLICT are used during the path analysis to
determine the program flow that maximizes the execution time.

5.3.2 Pipeline Analysis

The objective of this analysis is to determine the execution time
of instructions and basic blocks when executed in the processor pipeline.
This analysis does not consider hardware elements like main memory
latencies and instruction cache.

5.3. WCET Analysis 137

bb: 0
l0 = 0

bb: 1
l0 = 0

RMB0(0)= 0
RMB0(1)=

bb: 2
l1 = 1

bb: 3
l1 = 1

RMB1(0)= 0
RMB1(1)=

RMB 2(0)= 0
RMB 2(1)= 1

RMB 3(0)= 0
RMB 3(1)= 1

RMB0(0)= 0
RMB0(1)=

Figure 26 – CONFLICT classification example.

In processors with pipeline, the execution of a single instruction
in cycles will be equivalent to the number of pipeline stages. However,
this time may be higher if any hazard occurs involving data dependen-
cies of previous instructions. Considering that the used architecture
has 5 stages of pipeline it would take 5 cycles for an instruction to
be executed. If there were two instructions, the total time will be 6
cycles, and so forth. Algorithm 5 shows our approach to calculate the
execution time of a specific basic block.

In this algorithm, represented by the calculateBasicBlockTime
function, we compose the basic time (number of bundles) with the num-
ber of extra cycles generated by certain instructions in these bundles.
Table 5 shows instructions that need more than one cycle to execute.
For multicycle operations (Line 10), extra cycles are calculated sep-
arately for instructions that execute when the predication bit is true
or false, because these extra cycles overlap in the bundle execution, in
other words, they are not cumulative. For control flow operations (Line
13) the instructions latency is added directly to the basic time, because
these instructions are unconditionally executed, independently of the
value of the predication bit.

Between bundles may occur data hazards (Line 17) due to data

138 Chapter 5. Experimentation infrastructure

Algorithm 5 Basic block timing calculation
1: function CALCULATEBASICBLOCKTIME(bb). Procedure to calculate the execution time of

a basic block
2: bundles← getBundles(bb)
3: basicTime← |bundles|
4: extraTime←{0,0}
5: prevBundle← nil
6: for all b ∈ bundles do
7: operations← getOperations(b)
8: for all op ∈ operations do
9: pred← getPredicationBit(op)

10: if isMulticycle(op) then
11: extraTime[pred]← getCycles(op)
12: end if
13: if isControlFlow(op) then
14: basicTime← basicTime+getCycles(op)
15: end if
16: if prevBundle 6= nil then
17: if hasHazard(op, prevBundle) then
18: extraTime[pred]← hazardCycles(op)
19: end if
20: end if
21: end for
22: prevBundle← b
23: end for
24: basicTime← basicTime+max(extraTime[0],extraTime[1])+ pipelineLength−1
25: return basicTime
26: end function

Table 5 – Cycles for different types of instructions.

Operation isMulticycle isControFlow Cycles

Multiplication x 3
Division x 19
Memory x 2
Call x 4
Goto x 4
Branch x 4

dependencies. Table 6 shows when we can have stalls due to hazards for
operations in adjacent bundles. For example, if we have a comparison
operation followed by a conditional branch that depends on the result of
such operation, then we will have a stall. As multicycle operations, the
calculation are stored separately for different values of the predication
bit.

5.3. WCET Analysis 139

Table 6 – Hazards between operations.

First op.
Second op. Branch Goto with register

ALU operation 1 0
Memory load 0 1

The final execution time is given by Line 24, which the maximum
extra time of the different values of the predication bit. However, to
model the execution flow we should apply a correction similar to (EN-
GBLOM, 2002), as shown in Figure 27. In this figure, we want to get
the execution time of the flow between basic blocks 1 and 2 with times
8 and 6 cycles respectively. The sum of the execution times of both
blocks is 14 cycles and this does not represent the real execution time
of the flow. The correct execution time is 10 cycles as shown in Figure
27 due to “an amendment” in the pipeline between both basic blocks.
Thus, during the flow analysis and WCET obtaining, we must subtract
δ = 4 cycles for each edge transition between basic blocks. This correc-
tion is applied directly in the problem formulation using integer linear
programming for obtaining the WCET of the entire program, as we
shown in the following subsection.

Although, we can only use δ = 4 when we have two sequential
basic blocks without any branch instruction between them. As control
flow operations always penalize the execution by 4 cycles, we must use
the appropriated delta for each type of successor. Table 7 shows the
penalization and δ value for each type of successor. For example, if we
have a Not taken successor, there is no penalization, then we must use a
δ = 8, to compensate the pipelineLength−1+getCycles(Branch) = 8
portion of the first basic block timing.

5.3.3 Worst-case path search

We previously referenced IPET (LI; MALIK, 1995) (OTTOS-
SON; SJODIN, 1997) as being an efficient technique to search worst-

140 Chapter 5. Experimentation infrastructure

cycle

F:

0 1 2 3 4 5 6

D:

O:

E:

W:

7
cycle

0 1 2 3 4 5

bb1 = 8 cycles bb2 = 6 cycles
cycle

0 1 2 3 4 5 6 7 8 9

F:

D:

O:

E:

W:

bb1 bb2 = 10 cycles

8 cycles
+

6 cycles
=

14 cycles

t1 = 8 t = 62 δ = 4

t = t1 + t2 - δ

t = 8 + 6 - 4

t = 10

12

12

12

Figure 27 – Example of timing composition of two successive basic
blocks

Table 7 – Penalties for different types of flow transfers. In Direct flow,
does not exists control flow instructions between the considered
basic blocks.

Flow type δ Penalty

Direct 4 0
Not taken successor 8 0
Taken successor 4 4
Not taken successor (predicted) 7 1
Taken successor (predicted) 2 2
Call successor 4 4
Jump successor 4 4
Return successor 4 4

case paths. In this part we present the modeling of linear constraints
made in the context of the implemented analyzer. The modeling follows
an approach similar to (LI; MALIK, 1995).

We consider that each basic block bbi is executed xi times with
execution time ti for modeling the optimization problem. Then the

5.3. WCET Analysis 141

objective function is to maximize equation (Equation 5.2):

ob j = maximize ∑
∀bbi

xi× ti (5.2)

Note that, with the approach used to obtain the basic block
times, this estimate becomes pessimistic. Such analysis considers the
time from the first instruction of the basic block entering the pipeline
until the exit of the last instruction. However, the execution of suc-
cessive basic blocks is amended within the pipeline, as showed in the
previous subsection. This can be expressed in ILP as a discount of δ

each time a basic block is executed. Then we have (Equation 5.3):

ob j = maximize ∑
∀bbi

xi× ti− xi×δ (5.3)

We can rewrite the previous equation considering the edges of
the CFG, instead of nodes (basic blocks) to facilitate the modeling of
execution contexts. Given that the execution time of a basic block xi

can be rewritten using edges as xi = ∑∀bb j→bbi d j_i. We get the final
objective as described by Equation 5.4.

ob j = maximize ∑
∀bbi

(
∑

∀bb j→bbi

d j_i× ti−d j_i×δ

)
(5.4)

For the example of Figure 24 we obtain the objective (in GNU
MathProg) showed in Code 5.4.

Code 5.4 – IPET problem objective in MathProg for the example
of Figure 24

maximize wcet : d7_0∗14 − d7_0∗4 +
d4_1∗9 − d4_1∗4 + d5_1∗9 − d5_1∗4 +
d0_2∗9 − d0_2∗4 + d1_2∗9 − d1_2∗4 +
d2_3∗9 − d2_3∗4 + d3_4∗15 − d3_4∗4 +
d3_5∗15 − d3_5∗4 + d2_6∗8 − d2_6∗4 +
d s t a r t 7 ∗7 − d s t a r t 7 ∗4 + d6_8 ∗5 ;

142 Chapter 5. Experimentation infrastructure

5.3.3.1 ILP Constraints

The objective function presented above requires linear constraints
to operate, otherwise it cannot converge. The IPET technique consists
of a set of constraints which mainly consider flow conservation and
loop bounding. According to IPET, the following restrictions shall be
applied:

Start and end of execution constraint: all program execution must have
a beginning and an end. So the flow must pass exactly once by
the CFG entry and exit nodes, which are represented in the CFG
as dstart and dend respectively. The constraint is modeled by
Equation 5.5.

dstart = 1 & dend = 1 (5.5)

Flow conservation constraint: all flow entering a basic block from a
predecessor, should come out from a successor. The flow must be
maintained during the execution of the program. This restriction
is modeled by Equation 5.6, which must be valid for each basic
block bbi.

∑
∀bb j→bbi

d j_i− ∑
∀bbi→bbk

di_k = 0 (5.6)

For the example of Figure 24 we extract the control flow conser-
vation constraints presented in Code 5.5.

5.3. WCET Analysis 143

Code 5.5 – Control flow conservation constraints for the ex-
ample of Figure 24

s . t . xc0 : d7_0 − d0_2 = 0 ;
s . t . xc1 : d4_1 + d5_1 − d1_2 = 0 ;
s . t . xc2 : d0_2 + d1_2 − d2_3 − d2_6 = 0 ;
s . t . xc3 : d2_3 − d3_4 − d3_5 = 0 ;
s . t . xc4 : d3_4 − d4_1 = 0 ;
s . t . xc5 : d3_5 − d5_1 = 0 ;
s . t . xc6 : d2_6 − d6_8 = 0 ;
s . t . xc7 : d s t a r t 7 − d7_0 = 0 ;
s . t . xc8 : d6_8 − dend8 = 0 ;

Loop bound constraint: basic blocks should execute according to the
bounds of the loops to which they belong. A basic block can
belong to several loops, provided that they are nested. If a basic
block is the header of a loop, it can execute once more at the end
to test the exit condition. For limitation of loops, the constraint
of Equation 5.7 must be valid for each basic block bbi with loop
bound lbi.

∑
∀bb j→bbi

d j_i <= lbi (5.7)

For the example of Figure 24 we derived loop bound constraints
presented in Code 5.6.

144 Chapter 5. Experimentation infrastructure

Code 5.6 – Loop bound constraints for the example of Figure
24

s . t . x0 : d7_0 <= 1 ;
s . t . x1 : d4_1 + d5_1 <= 5 ;
s . t . x2 : d0_2 + d1_2 <= 6 ;
s . t . x3 : d2_3 <= 5 ;
s . t . x4 : d3_4 <= 5 ;
s . t . x5 : d3_5 <= 5 ;
s . t . x6 : d2_6 <= 1 ;
s . t . x7 : d s t a r t 7 = 1 ;
s . t . x8 : d6_8 <= 1 ;

Loop execution constraint: a loop is an auto conservative or strongly
connected component, it only shall be considered part of the
WCET if it is effectively executed. A loop is executed when
the flow enters its header. Equation 5.8 ensures this constraint.

∑
∀bb j→bbi

∧bb j /∈loop(bbi)

d j_i× ilbi− ∑
∀bbi→bbk

∧bbk∈loop(bbi)

di_ j = 0 (5.8)

The previous equation must be valid for every basic block bbi

which is loop header. ilbi represents the bound of the loop of
which this basic block is header, and loop(bbi) represents the
respective loop. In this constraint, the edges that come from the
header to the inner loop blocks can be traversed by the flow if
this flow comes from an outer edge of the loop. According to the
definition of (LI; MALIK, 1995), these restrictions may also be
classified as Program Execution Constraints.

Considering the example of Figure 24 we can obtain loop the loop
execution constraint presented in Code 5.7.

5.3. WCET Analysis 145

Code 5.7 – Loop execution constraint for the example of Fig-
ure 24

s . t . x a l 2 : d0_2∗5 − d2_3 = 0 ;

With the above constraints, we can obtain the solution to the
problem of the example. Figure 28 graphically shows the result. In this
figure, the black edges belong to WCEP (worst-case execution path)
and are computed on WCET. Moreover, the gray edges are not part
of WCEP. This means that in the worst case, the flow will not pass
through the basic block 5.

In the example of Figure 28, the cache memory was not yet
considered. In order to estimate its influence, new ILP constraint must
be developed as described further.

Instruction cache constraints: the WCET of a program must take into
account that the flow through certain basic blocks can be im-
pacted by different cache behaviors. Another factor is that now
the execution of basic blocks is context dependent: a basic block
C may have distinct execution times when reached from the pre-
decessors A or B. To represent this effect we associate weights of
edges with the execution times of basic blocks when reached by
these edges.

Our cache modeling follows, in general, the technique proposed
by (LI et al., 1996), except that the modeling presented here
takes into account only CFG edges as variable/problem entities.
As the IPET modeling considers only edges, we simply associate
the weights of these with the execution times of the basic blocks
when reached by such edges.

As an example, consider the CFG of Figure 29 with the instruc-
tion cache. Basic block 1 can have one execution time when
reached by the basic block 4 and another time when reached by
the basic block 5, due to distinct cache states.

146 Chapter 5. Experimentation infrastructure

WCET CFG > wcet: 157 cycles | backend: GLPK | time: 0.0016 secs

start

bb: 7
total: 7(4.46%)

dstart7=1*7

bb: 0
total: 14(8.92%)

bb: 2
total: 54(34.4%)

d0_2=1*9

bb: 1
total: 45(28.7%)

d1_2=5*9

bb: 3
total: 45(28.7%)

d2_3=5*9

bb: 6
total: 8(5.1%)

d2_6=1*8

bb: 4
total: 75(47.8%)

d3_4=5*15

bb: 5
total: 0(0%)

d3_5=0*15

d4_1=5*9 d5_1=0*9

bb: 8
total: 5(3.18%)

d6_8=1*5

d7_0=1*14

Figure 28 – IPET result

From the three considered cache states, only one of them needs
special attention in the IPET model, which is the first miss. First
miss occurs only once for each basic block that has it, each time
the loop which contains this basic block is executed. So, all first
misses in a loop occur in the first iteration of each complete exe-
cution of this loop. To address this, the CFG is expanded into a
multigraph, and the first miss modeled as a separate edge. With
a dedicated edge, it is possible to model constraints that control
the occurrence of this event. The formal definition of the Control

5.3. WCET Analysis 147

Flow Multigraph is given as follows:

Definition 19. (Control Flow Multigraph) A Control Flow Multi-
graph is a directed graph G = (V,E, i), where the nodes (V) rep-
resent basic blocks and edges are defined by dtipo ∈ E ⊆ V ×V ,
as the previous definition of control flow graph. If there is a first
miss between pairs of basic blocks, then a pair of edges between the
two blocks exists, one representing the first miss d f m (type = f m)
and another representing flows of subsequent iterations (hits) dh

(type = h). The third edge type represents all other situations (al-
ways hit, always miss and conflict). The weights of edges W (di_ j)
represent the cost to execute the basic block j, when preceded by
the basic block i, considering cache effects.

In Figure 29, one can see that will occur a first miss in the basic
block 4 represented by the thicker edge.

The “fm” edges means first miss and “h” represents the further
flow transfers, where occur cache hits. We do not need a special
treatment for always-hit, always-miss and conflict, since the re-
sulting time for the reached basic blocks is always fixed when it
is succeeded by a given predecessor.

For modeling first misses, we must follow different approaches for
basic blocks that are loop headers and blocks that are not:

• In loop header, a first miss (if any) will occur only by the
outer edge of the loop. The constraint is modeled by Equa-
tion 5.9:

∑
∀bb j→bbi∧bb j /∈loop(bbi)

d j_i≤ elbi (5.9)

elbi is the bound of the outer loop bbi.

• For normal basic blocks the constraint is modeled by Equa-
tion 5.10, for each bbi:

148 Chapter 5. Experimentation infrastructure

∑
∀bb j→bbi

d j_i≤ elbi (5.10)

start

bb: 7

dstart7

bb: 0

bb: 2

d0_2

bb: 1

d1_2

bb: 3

d2_3fmd2_3h

bb: 6

d2_6

bb: 4

d3_4fm d3_4h

bb: 5

d3_5h d3_5fm

d4_1 d5_1

bb: 8

d6_8

d7_0

Figure 29 – Multigraph of the example

For the used example, we can extract the cache constrains pre-
sented in Code 5.8.

Code 5.8 – Cache constraints for the example of Figure 29
s . t . xcache3 : d2_3fm <= 1 ;
s . t . xcache4 : d3_4fm <= 1 ;
s . t . xcache5 : d3_5fm <= 1 ;

5.3. WCET Analysis 149

By joining all the previous constrains, we can calculate theWCET
for the previous example. The result is shown in Figure 30. One can
see that the worst-case execution time for the analyzed program is 421
processor cycles, and the result was obtained in 0.00176 seconds. The
solver used by our tool for solving the problem is GLKP (MAKHORIN,
2008).

WCET CFG > wcet: 421 cycles | backend: GLPK | time: 0.00176 secs

start

bb: 7
total: 19(4.51%)

dstart7=1*19

bb: 0
total: 50(11.9%)

bb: 2
total: 78(18.5%)

d0_2=1*33

bb: 1
total: 93(22.1%)

d1_2=5*9

bb: 3
total: 57(13.5%)

d2_3fm=1*21 d2_3h=4*9

bb: 6
total: 32(7.6%)

d2_6=1*32

bb: 4
total: 39(9.26%)

d3_4fm=1*39 d3_4h=0*15

bb: 5
total: 132(31.4%)

d3_5h=3*27 d3_5fm=1*51

d4_1=1*9 d5_1=4*21

bb: 8
total: 17(4.04%)

d6_8=1*17

d7_0=1*50

Figure 30 – IPET result considering cache

150 Chapter 5. Experimentation infrastructure

5.4 ENABLING WCET REDUCTION SCHEMES

It is difficult to performWCET-oriented optimization using LLVM
due to its highly optimized passmanager that isolates the treatment of
each function of a compilation unit. Due to this fact, we cannot op-
timize the program as a whole aiming at WCET reduction using the
standard LLVM pass manager because the generated code is only fully
materialized at the end of the complete process. Moreover, the pass
manager deallocates any machine related code representation structure
of a function after writing its generated object code to file at the end
of the pass manager execution. So, when we can finally calculate the
WCET of a program, we cannot use this data to change the code (op-
timization application), because the needed intermediate structures no
longer exist.

To apply WCET reduction techniques, or any technique that re-
lies on this type of information, there must be an integration of the
compiler with some WCET analyzer for identification of potential op-
timization points. The way the LLVM was built complicates some
aspects of the application of WCET reduction techniques, as follows:

• Impossibility to undo changes in an automated manner. When
applying an optimization involving WCET reduction, we may
test if this application is effective in reducing WCET, and if so,
the optimization is maintained, otherwise it will be undone. In
LLVM there is no simple way to reverse code changes. There is
no way to copy the data structures and objects to save an specific
state of a program being compiled.

• Independence in the treatment of functions. When the LLVM
pass manager is processing a function, specifically applying passes
for the code generation, there is no information available on the
generated code of other functions. This happens in two scenarios:

– A function of interest (other than the current, in process-
ing) has been processed and the code generated for this is

5.4. Enabling WCET Reduction Schemes 151

already stored at the final object code, with all the inter-
mediate structures which have been used deallocated by the
manager. This occurs because the LLVM adopts a mecha-
nism of passes that automatically releases all data relative
to a given function, after the execution of all passes over
this.

– A function of interest has not yet been touched by the pass
manager. The data has not been generated to be deallo-
cated.

The problem of those characteristics to reducing WCET is that
we can only see one function at a time (in machine code). The
application of optimizations for WCET requires a view of the
whole program in terms of generated code. It is not possible to
calculate the WCET of an isolated function because it depends
on the context in which this can be called and times of functions
called within the function. For example, a function A can contain
a if-then-else sentence, where the branch then calls a function B
and the branch else another function C. In this case, it is im-
possible to know whether the WCEP of function A follows the
branches then or else if we do not know the WCET of the called
functions.

Due to this fact, strategies like that proposed by (FALK et al.,
2006), where the analyzer is invoked directly by the compiler to take
optimization decisions cannot be used. Another approach is presented
by (PUSCHNER et al., 2013). In this approach, the compilation is
coordinated with the WCET analysis by a higher level planning tool.
In the next subsections, we describe how we worked around those issues.

5.4.1 Approach 1: Back-end adaptation To Use WCET Information

To conduct WCET-oriented optimization, the compiler back-end
and the WCET analyzer where integrated as proposed by (FALK et
al., 2006). LLVM has been modified to not destroy the objects and

152 Chapter 5. Experimentation infrastructure

data structures for the machine code generated at the end of the pass
manager execution. This information is retained until the moment of
destruction and deallocation of intermediate representation as a whole,
which is the module and its functions. This allows us to make any
changes to any function and regenerate the object code file, at the
end of all LLVM code generation passes. With this LLVM adaptation,
any change at the machine code level can be done in any function,
followed by an entire object code generation, many times as needed.
Using the previously explained LLVM modification with a WCET tool
integration, we can perform any WCET-oriented optimization in an
iterative way.

5.4.2 Approach 2: Code Optimizations Guided by an External Plan-
ning Tool

The second approach is similar to the (PUSCHNER et al., 2013)
approach. In this approach, a tool in a higher or planning level is
responsible to select the parts of the program that must be optimized,
using WCET information as guidance. This tool shares a database with
the compiler that is used as communication channel. This database
stores facts about the structure of the program and values that specify
if such structure must be touched by a specific optimization. The tool
invokes the compiler to generate the object code and data used as input
for the WCET analyzer. After that, WCET information is obtained
through the WCET analyzer. Using this information, the planning tool
updates the database using optimization heuristics. This task repeats
until WCET stabilization or when the entire code is already analyzed
by the planning tool.

Using this strategy, we can perform any WCET-oriented opti-
mization in an iterative way. Optimizations must keep consistency be-
tween the transformed code and the annotations provided in the source.
Figure 31 shows a simplified diagram of our tools and their connection.
As we can see, both LLVM infrastructure and planning tool share a
data-base containing information about the program structure, which

5.5. Chapter Summary 153

is empty at the first program compilation. From the first compilation,
the planning tool can invoke the WCET analyzer tool and execute
strategies to guide the optimization process.

LLVM

Optimize Selected Points

Program info
data-base

Program info
data-base

Planning tool

Select Points

WCET analyzerWCET analyzerProgramProgram

Figure 31 – Diagram representing the tools that compose the infrastruc-
ture used

5.5 CHAPTER SUMMARY

This chapter presented the tools developed to compose the exper-
imental infrastructure used in this work. This chapter also briefly de-
scribed the target architecture used in our work. The first tool that we
presented was the compiler, with its packetizing and alignment passes.
We also incorporated into the compiler a pass for extracting the con-
trol flow graph used in the second tool, which is WCET analyzer. The
backend has approximately 25k lines of code.

The second tool developed is responsible for calculating the worst-
case execution time of programs. This tool has input, the control flow
graph and annotations representing worst-case iteration counts of loops.
The development of this tool has required the study and implementa-
tion of various techniques related to obtaining WCET such as those
presented in (LI; MALIK, 1995), (ENGBLOM; ERMEDAHL, 2000).
This tool has approximately 10 thousand lines of C++ code. The tool
has been implemented completely from scratch, and the only library

154 Chapter 5. Experimentation infrastructure

used is the integer linear programming solver GLPK.
The last part of this chapter presented how we connected the

compiler and the WCET analyzer in order to enable WCET-aware
optimizations.

155

6 CONTRIBUTION 1: COMBINING LOOP UNROLLING
STRATEGIES AND CODE PREDICATION

The goal of this chapter is to propose a different way to perform
loop unrolling on data-dependent loops using code predication target-
ing WCET reduction, because existing techniques only consider loops
with fixed execution counts. We also combine our technique with ex-
isting unrolling approaches. Results showed that this combination can
produce aggressive WCET reductions when compared with the original
code. This contribution was firstly published in (CARMINATI et al.,
2017).

6.1 INTRODUCTION

Loops are frequently good target candidates for compiler opti-
mizations to extract performance of modern processor architectures.
Loop unrolling is a well-known technique used to improve average-case
performance of programs. This technique consists in replicating the
loop body for a certain number of times to avoid branch and jump
overhead and to reduce the number of increment/decrement opera-
tions, inserting extra code to verify exiting corner cases, if necessary.
The number of body replications is often called unrolling factor and the
original loop is called rolled loop.

Loop unrolling can contribute to improve the instruction level
parallelism (ILP) and execution performance of programs, by enabling
more optimization that are affected by code expansion. Although, this
code expansion can lead to instruction-cache performance degradation,
if not carefully applied. If loop unrolling is applied before the regis-
ter allocation phase, register pressure can be increased, leading to the
insertion of more spill and reload operations in the code. However, a
standard compiler cannot use loop unrolling directly if worst-case ex-
ecution time (WCET) reduction is desirable, due to the instability of
the execution path that generates the worst possible execution time
and negative cache effects. Some techniques were proposed in the lit-
erature to achieve WCET reduction using loop unrolling, as in (ZHAO

156 Chapter 6. Contribution 1: Combining Loop Unrolling Strategies and Code Predication

et al., 2006) and (LOKUCIEJEWSKI; MARWEDEL, 2010). In these
works, loops are carefully unrolled to promote WCET reduction and
limit code increase. But, only loops with fixed execution counts are
considered.

The contribution of this chapter is twofold. Firstly, we propose
an alternative way to perform loop unrolling on loops with arbitrary
(or variable) execution counts. Traditionally, loops with unknown exe-
cution counts are unrolled with fixed unrolling factors, with the corner
conditions (i.e, the unrolling factor is not a multiple of the number of
iterations) treated with branch instructions. The approach adopted in
this work is to treat the same corner conditions using code predica-
tion instead of instructions that perform control flow changes. Code
predication is already used in software pipelining of loops, but its appli-
cation directly with loop unrolling was not reported in the literature.
Code predication also can be explored using a transformation called
If-Conversion, which is a standard compiler optimization that converts
control dependencies into data dependencies, removing branches.

The second contribution of this chapter is the combination of our
technique with other standard unrolling approaches for data dependent
loops and loops with fixed execution counts. In this way, we can decide
on a per loop level which of the approaches should be used for loop un-
rolling. This combination of techniques is important because not every
loop can be unrolled in the same way. For example, loops with variable
number of iterations must include compare and branch instructions to
treat different exit conditions, but loops with static execution counts
can be unrolled without these instructions. The necessity of compare
and branch instructions is not the only difference when unrolling these
two types of loops, but the selection of a valid unrolling factor is also
different. In loops with a static number of iterations, we can only con-
sider unrolling factors that perfectly divide such number of iterations.
Until the present moment, no work addressing the combination of dif-
ferent unrolling techniques was identified in the literature.

The remainder of this chapter is organized as follows: Section
6.2 outlines the related work on loop unrolling directed to WCET re-

6.2. Summary of Related Work 157

duction. Section 6.3 shows the motivations of this chapter. Section
6.4 explains the proposed approach to perform loop unrolling targeting
real-time applications. In Section 6.5 we describe briefly our testbed.
Section 6.6 presents the obtained results using a benchmark suite. Sec-
tion 6.7 presents our conclusions and final remarks.

6.2 SUMMARY OF RELATED WORK

The first work that concerns WCET reduction using loop un-
rolling, consists in applying this optimization directly at assembly level
(ZHAO et al., 2006). In this work, only innermost loops with fixed
number of iterations are unrolled and the unrolling factor used for all
loops is 2. Although, not all candidate loops are unrolled, but only
those that are present in the worst-case execution path (WCEP), and
they are kept unrolled only if WCET reduction is achieved. At every
optimization application, the WCET information must be re-calculated
to update the worst-case path information that drives the algorithm.
This recalculation is necessary because any code change that affects the
WCET may result in a WCEP change. These WCET recalculations
are a common strategy employed by compilers focused in worst-case
execution time reduction. This technique is explained in Section 4.3.2
of Chapter 4.

Another approach to perform loop unrolling aiming at WCET
reduction was proposed in (LOKUCIEJEWSKI; MARWEDEL, 2010).
Here, the optimization is applied at the source code level and uses
a processor with instruction cache and scratchpad memory. As the
optimization is applied at the source code level, the success of next op-
timizations performed by the compiler is enhanced, specially for those
that benefit from code expansion. The key aspects of the technique
are: (1) choose the most profitable loops concerning WCET reduction
and (2) calculate an unrolling factor considering memory constraints.
Consequently, the algorithm balances memory utilization and WCET
reduction. This technique is explained in Section 4.3.1 of Chapter 4.

Both the previously presented approaches consider only loops

158 Chapter 6. Contribution 1: Combining Loop Unrolling Strategies and Code Predication

with fixed number of iterations. In fact, both techniques can be used
to unroll loops with arbitrary counts or data-dependent loops, provid-
ing necessary code to exit the loop when the termination condition is
reached. This code is commonly generated as branch instructions.

If-Conversion (ALLEN et al., 1983) is a technique used to convert
control dependencies into data dependencies. The basic principle con-
sists in eliminating gotos and branches and inserting logical variables to
control the execution of instructions in the program. If-Conversion can
be performed at IR-level or machine-level as stated by (JORDAN et al.,
2013) and is related to region enlargement techniques used to expand
the instruction scheduling scope beyond a single basic block, which is
specially beneficial for very long instruction word machines (VLIW).

The application of If-Conversion techniques in loops is not a
novel idea. Software pipeline (CHARLESWORTH, 1981) can bene-
fit from If-Conversion and code predication to control the execution
of prologue and epilogue of pipelined loops (DEHNERT et al., 1989).
Another technique that can benefit from If-Conversion is loop flatten-
ing (HANXLEDEN; KENNEDY, 1992). Loop flattening is a form of
software pipelining that merges nested loops into a single loop body,
providing necessary code to control the execution and the flow of data
between blocks. In (POP et al., 2010) If-Conversion is used to eliminate
back-edges of flattened loops. The next section outlines the motivation
and the key ideas behind the proposed unrolling technique.

6.3 MOTIVATION

We can consider the loop of Code 6.1 as a motivational example.
This code shows a loop with the number of iterations dependent on
the value of a variable (called data-dependent loop). For this loop, a
compiler commonly generates a control flow structure that is shown in
Figure 32. In this structure, a simple for loop has two basic blocks
called header and body which are surrounded by an entry and an exit
basic blocks.

There are some approaches to perform the loop unrolling opti-

6.3. Motivation 159

Code 6.1 – Simple data-dependent
loop.

1 void l oop (i n t a) {
2 i n t i , j = 0 , k = 0 ;
3
4 f o r (i = 0 ; i < a ; i ++){
5 j ++;
6 k ++;
7 }
8 }
9

10 i n t main (i n t a) {
11 loop (9 0) ;
12 }

entry

header

body exit

Figure 32 – Control flow graph of Code 6.1.

mization considering this loop. The simpler strategy consists in opti-
mizing only loops with fixed counts. In this case, the compiler chooses
an unrolling factor that exactly divides the number of iterations of the
loop. If a compiler is able to optimize data-dependent loops with un-
known number of iterations, it must take care of left-over iterations.
Another problem with data-dependent loops is the difficulty to choose
an effective unrolling factor.

Code 6.2 shows the application of loop unrolling on the data-
dependent loop of Code 6.1 (in C code for simplicity). Is this case,
if the compiler is not able to calculate the number of iterations for

160 Chapter 6. Contribution 1: Combining Loop Unrolling Strategies and Code Predication

Code 6.2 – Unrolled loop.
1 void l oop (i n t a) {
2 i n t i , j = 0 , k = 0 ,L = 0 ;
3
4 f o r (i = 0 ; i < a ; i +=L) {
5 L = 1 ;
6 j ++;
7 k ++;
8 i f (i +L >= a) break ;
9 j ++;

10 k ++;
11 L++;
12 i f (i +L >= a) break ;
13 j ++;
14 k ++;
15 L++;
16 }
17 }

entry

header

body 1

exit body 3

body 2

Figure 33 – Control flow graph of Code 6.2.

the loop, or determine whether this number is odd or even, it must
check the exit condition on every body replication, as done by the if
statements. This condition checking leads to a control flow graph that
is shown in Figure 33.

6.3. Motivation 161

Note that with this approach, the number of branching instruc-
tions is augmented, also increasing the number of basic blocks. From
the WCET perspective, by increasing the number of basic blocks, we in-
crease the search space that contains the worst-case execution path that
produces the WCET. From the code generation point of view, a branch
may need up to 3 intermediate operations that are not necessarily in
this order: (1) condition calculation, (2) target address calculation and
(3) branch execution. Depending on the target architecture, all pre-
vious operations are executed by one instruction or are segmented in
sequences of 2 or 3 instructions.

Considering the use of a target architecture with instruction
predication support, it is possible to remove branch operations (if any)
from loops that are unrolled. For this purpose, we can consider the
loop of Code 6.3 and its respective CFG shown in Figure 34. This loop
is semantically equivalent to the loop of Code 6.2. If we can rewrite an
unrolled loop in terms of conditional expressions, as done to Code 6.2
to obtain Code 6.3, it is possible to apply If-Conversions to the code.
Until the writing of this work, no technique exist in the literature to
perform these transformations to unrolled data-dependent loops. As
we stated before, If-Conversion is an optimization technique that con-
verts control dependence into data dependence through the definition
of guards to control the execution of instructions. If the target ar-
chitecture supports instruction predication, If-Conversion can result in
branchless code, reducing code size and number of basic blocks. Gener-
ically, an application of If-Conversion to the code of Code 6.3 would
produce the control flow graph of Figure 35. The prefix (p) means that
the execution of the basic blocks body 2 and body 3 are conditioned to
some predication guard p.

From the WCET perspective, the common behavior of analyzers
is to consider the complete execution of the loop iterations. In this
way, the last iteration will be considered fully executed, even with the
possibility of an early loop exit if the condition is reached. If a loop
is always fully executed in the worst case, it is beneficial to reduce
the number of instructions of the unrolled loop, and if premature exits

162 Chapter 6. Contribution 1: Combining Loop Unrolling Strategies and Code Predication

Code 6.3 – Unrolled loop rewritten
with conditional expres-
sions.

1 void l oop (i n t a) {
2 i n t i , j = 0 , k = 0 ;
3
4 f o r (i = 0 ; i < a ;) {
5 j ++;
6 k ++;
7 i ++;
8
9 i f (i < a) {

10 j ++;
11 k ++;
12 i ++;
13 }
14 i f (i < a) {
15 j ++;
16 k ++;
17 i ++;
18 }
19 }
20 }

will never be taken (branch instructions), we can eliminate them from
the code using predication. Using code predication, we decrease the
number of instructions while preserving the semantics of the code.

In the next section, we present our approach to perform loop
unrolling which applies simultaneously code predication directly in ma-
chine code. The technique starts from a simple data-dependent loop
and directly generates an unrolled and predicated version, as done step-
by-step in this section. The main improvement of our approach is that
it avoids the use of branch instructions, differently from what is usually
done by traditional techniques.

6.4 OUR LOOP UNROLLING APPROACH

Our loop unrolling algorithm performs code predication in con-
junction with the unrolling steps. In this way, sophisticated If-Conversion
strategies can be avoided. The algorithm must be used directly in as-

6.4. Our loop unrolling approach 163

entry

header

body 1
 if 1 exit

jump

body 2

if 2

body 3

Figure 34 – Control flow graph of Code 6.3.

sembly representation. The architectural requirement of the technique
is the existence of full-predication mechanisms to control the execu-
tion of instructions. As example of such mechanisms, we can cite IA-
64 (GEVA; MORRIS, 1999) and ARM (FURBER, 1996) (except for
Thumb instructions). The technique also benefits from branches that
are segmented in sequences of more than one operation.

The steps to unroll a loop are shown by Algorithm 6. The algo-
rithm assumes that every loop that will be unrolled is composed by a
header and a body. This constraint must be ensured by the caller of
the algorithm procedure. Another requirement is the implementation
of loop headers with compare instruction followed by branch instruc-
tions to control the loop exit.

164 Chapter 6. Contribution 1: Combining Loop Unrolling Strategies and Code Predication

entry

header

body 1
(p)body 2
(p)body 3

exit

Figure 35 – Control flow graph representing an If-Conversion of the code
from Code 6.3.

Algorithm 6 Predicated Loop Unrolling algorithm.
1: procedure PREDICATEDLOOPUNROLLING(Loop, U , P). Unroll loop u times
2: Header← loopHeader(Loop)
3: Body← loopBody(Loop)
4: removeUncondBranch(Body)
5: BodyCopy← createCopy(Body)
6: for i← 1 to U−1 do
7: NewHeader← createCopy(Header)
8: removeConditionalBranch(NewHeader)
9: changeCompareOut put(NewHeader,P)

10: Body← uni f y(Body,NewHeader)
11: NewBody← createPredCopy(BodyCopy,P)
12: Body← uni f y(Body,NewBody)
13: end for
14: insertUncondBranch(Body,Header)
15: end procedure

The algorithm works as follows: First, header and body are iden-
tified, which is done by Lines 2 and 3. The second step removes the
unconditional branch from the loop body to the header. This branch
instruction will be re-inserted at the end of the algorithm, as a last
instruction (Line 14). The next step is to unroll the loop using the
provided unrolling factor, using the original loop body as first copy.

For each unroll step, we create a copy of the header, converting
control flow instructions into instructions that control the predication
of subsequent copies of the loop body (Lines 7, 8, 9 and 10). Then,

6.4. Our loop unrolling approach 165

Code 6.4 – Example
of loop in
assembly
code.

1 add $r8 = $zero , 0
2 add $r9 = $zero , 0
3 add $r10 = $zero , 0
4 HEADER:
5 cmpl t $br0 , $r9 , $r16
6 b r f $br0 , $EXIT
7 BODY:
8 add $r10 = $r10 , 1
9 add $r8 = $r8 , 1

10 add $r9 = $r9 , 1
11 go to $HEADER
12 EXIT :
13
14
15
16
17
18

Code 6.5 – Unrolling
using code
predica-
tion.

1 add $r8 = $zero , 0
2 add $r9 = $zero , 0
3 add $r10 = $zero , 0
4 HEADER:
5 cmpl t $br0 , $r9 , $r16
6 b r f $br0 , $EXIT
7 BODY:
8 add $r10 = $r10 , 1
9 add $r8 = $r8 , 1

10 add $r9 = $r9 , 1
11 cmpl t $p , $r9 , $r16
12 (p) add $r10 = $r10 , 1
13 (p) add $r8 = $r8 , 1
14 (p) add $r9 = $r9 , 1
15 go to $HEADER
16 EXIT :
17
18

Code 6.6 – Unrolling
using the
standard
approach.

1 add $r8 = $zero , 0
2 add $r9 = $zero , 0
3 add $r10 = $zero , 0
4 HEADER:
5 cmpl t $br0 , $r9 , $r16
6 b r f $br0 , $EXIT
7 BODY0:
8 add $r10 = $r10 , 1
9 add $r8 = $r8 , 1

10 add $r9 = $r9 , 1
11 cmpl t $br0 , $r9 , $r16
12 b r f $br0 , $EXIT
13 BODY1:
14 add $r10 = $r10 , 1
15 add $r8 = $r8 , 1
16 add $r9 = $r9 , 1
17 go to $HEADER
18 EXIT :

we make a predicated copy of the body that is amended at the end of
the original body (Lines 11 and 12). The algorithm basically removes
forward branches used to exit the loop and inserts boolean guards to
control the execution of the remaining part of the loop. These guards
are stored in the P variable.

It is relevant to notice that the first copy of the loop body does
not need to be predicated, because the header condition verification
ensures that at least one iteration (in relation to the rolled loop) must
be executed, otherwise the loop must be already terminated. In this
way, the first copy of the body represents exactly the original basic
block of the loop.

6.4.1 Example

As an example, the algorithm is applied the Code 6.1. The
assembly code dialect used is referent to the ST231 ISA, which is also
used in our testbed. We omit bundles delimitation in code listings for
simplicity. Before the unroll, the sequence of instructions generated is
shown in Code 6.4.

After the application of the algorithm and using an unrolling

166 Chapter 6. Contribution 1: Combining Loop Unrolling Strategies and Code Predication

factor of 2, we obtain the code as shown in Code 6.5. The sequence
(p) means that the operation execution is conditioned to the content of
the flag register p, which is a common notation of predicated code. For
comparison purposes, the same code is unrolled in the standard way as
shown in code listing of Code 6.6. Comparing the two approaches, we
can see that the predicated version presented fewer instructions than
the standard counterpart (with branches).

6.4.2 Combining Loop Unrolling techniques

As each loop unrolling technique can be applied to a set of loops
that share a certain characteristic, it makes more sense to combine
the techniques to get a more aggressive WCET reduction, instead of
comparing them. In this way, we decide in a per loop level which
approach should be applied.

Depending on loop attributes, we consider three unrolling alter-
natives:

Standard without branches For loops that are not data-dependent
(fixed execution counts), we can use the simplest loop unrolling
approach. This approach replicates the loop body using an un-
rolling factor that divides the execution count of the loop. As this
approach is a common strategy considering compiler optimiza-
tion, we will omit its representation in pseudo-code. We will refer
to this approach as simpleLoopUnrolling (loop,unrollingFac) as
the algorithm representation and its parameters.

Standard with branches For data-dependent loops with some kind of
control flow change inside of the loop body, we can use loop un-
rolling with compare and branch instructions to exit the loop
when the condition is reached. For simplicity, we apply this un-
rolling alternative to loops with call instructions in the body.
This approach is also a common strategy considering compiler
optimization, and we will omit its representation in pseudo-code.
We will refer to branchedLoopUnrolling (loop,unrollingFac) as

6.4. Our loop unrolling approach 167

the algorithm representation and its parameters if we must use
this approach. This approach cannot be used with function in-
lining, although this is not a problem because we do not use this
type of optimization for two reasons: (1) we do not apply any
optimization when we cannot quantify WCET effects. (2) with
inlining, we lose the one-to-one mapping between the object code
and source code, which is necessary to perform WCET calcula-
tion.

Predicated For data-dependent loops with simple loop bodies, we can
use the predicated version. We cannot use this type of unrolling
in loops with call instructions because condition or flag regis-
ters are not commonly exposed to the calling conventions used
in processors. If we had to save the flag registers, it would be
better to use the previous approach. We will call this approach
as predicatedLoopUnrolling, as presented by Algorithm 6.

Algorithm 7 chooses the adequate unrolling technique through
inspection of the loop characteristics. The field loop.u f represents
the unrolling factor that must be used for a specified loop. We cannot
choose unrolling factors arbitrarily if our objective is WCET reduction.
In the next section, we will show how to use WCET information to
choose adequate unrolling factors.

Algorithm 7 Optimization algorithm that is executed by the compiler
1: procedure OPTIMIZELOOPS(Program).
2: LoopList← getLoops(Program)
3: for each loop ∈ LoopList do
4: if not loop.isDataDep then
5: simpleLoopUnrolling(loop, loop.u f)
6: else if loop.hasCall then
7: branchedLoopUnrolling(loop, loop.u f)
8: else
9: predicatedLoopUnrolling(loop, loop.u f ,P)

10: end if
11: end foreach
12: end procedure

In relation to the predication flag that must be given as param-

168 Chapter 6. Contribution 1: Combining Loop Unrolling Strategies and Code Predication

eter of Algorithm 6 in Line 9 (of Algorithm 7), the same register can
be used to hold all conditions for all loops, because each copy of the
loop body must be guarded by only one condition, i.e., that related to
the exit condition of the loop, which is updated before the execution of
this body copy. In this way, we can pass any register or flag that can
be used to predicate instructions. In this algorithm, we consider can-
didates for loop unrolling: (1) innermost loops and (2) loops composed
by two basic blocks header and body, as the example of Figure 32. We
use these restrictions to process only small loops, where we can easily
achieve gains using loop unrolling.

6.4.3 Ensuring WCET reduction by unrolling factor selection

The previous algorithm is responsible for unrolling the loops of a
program using a set of unrolling factors. It is also necessary to choose
a unrolling factor for each loop that minimizes the WCET. As we are
interested only in verifying the effectiveness of our technique, we are
not concerned in choosing an optimal unrolling factor considering code
increase and WCET reduction.

We adopted a scheme that tries to iteratively choose an unrolling
factor for each loop in the program. If the loop has no impact on the
worst-case execution time, i.e. resides outside the WCEP (worst-case
execution path), it will be kept rolled, otherwise it will be unrolled. The
set of unrolling factors will vary according to characteristics of the loop,
such as data dependency and parity of execution counts.

If the unrolled loop increases the WCET, then it will be also
kept rolled. Otherwise it will be maintained unrolled using the factor
that best minimizes the WCET considering the previously considered
ones from the set. Each loop is processed exactly once, and after each
loop handling the WCET (and WCEP) information must be updated
to guide the treatment of the next loops. To verify if a WCET in-
crease occurs, it is necessary to perform a program recompilation and
an invocation to the WCET analyzer. We do not reconsider loops in
case of path changes, since typically all loops in a program are on the

6.4. Our loop unrolling approach 169

WCEP, as stated by (LOKUCIEJEWSKI; MARWEDEL, 2010). We
only check if the current loop is on the WCEP.

Algorithm 8 presents our approach for selection of unrolling fac-
tors. This algorithm is designed to be executed as a complementary
part of the compilation process, and can be implemented as a separated
tool. Regarding the flow of information point of view, it is necessary
the following interactions between the compiler and the algorithm:

• Compiler → Algorithm: the compiler must export all informa-
tion related to all loops that can be unrolled. The information
must allow the correlation between the loops and the worst-case
execution time related data. Execution counts must be exported
as well. In case of data-dependent loops, execution counts can be
provided as annotations in the source code, for example. These
execution counts are also necessary for the calculation of the
worst-case execution time.

• Algorithm→ Compiler: The algorithm can provide unrolling fac-
tors for all loops that were exported for a determined program.
If such unrolling factors are not provided, the compiler keeps the
loops rolled. To decide which unrolling factor to use, the algo-
rithm uses WCET analysis and loop information.

As we can see, the previous relation between compiler and algo-
rithm forms a cyclic and incremental approach to optimize loops. The
parameter of Algorithm 8 is the representation of a compiled program.
The first step of the algorithm is to retrieve a list of (exported) loops
of the program representation (Line 2) followed by a WCET analysis
(Line 3). The main loop of the algorithm iterates over the loop list
(Line 4), considering only loops that are in the WCEP (Line 5). Then,
we assume that it will be kept rolled (Line 6) if its is not possible to
choose an unrolling factor. The next step consists of testing different
unrolling factors in the interval [2,17], which was obtained experimen-
tally. If a loop can be unrolled, we have basically two alternatives to
consider an unrolling factor as valid:

170 Chapter 6. Contribution 1: Combining Loop Unrolling Strategies and Code Predication

Data independent loops for data-independent loops (Line 8), the un-
rolling factor must exactly divide the execution count of the loop
(Line 9), because we do not want to generate instructions to con-
trol the reaching of the exit condition inside the replicated copies
of the body.

Data dependent loops for data-dependent loops (sentence of Line 8 is
evaluated to false) we do not test if the unrolling factor divides the
execution count, because leftover iterations are treated explicitly
by compare and branch or compare and predicate instruction,
depending on the approach. However, we use a heuristic ap-
proach that considers factors whose parity is equal to the the
loop bounds’ parity (Line 13).

Note that a loop can have more than one possible unrolling factor
from the interval [2,17]. In this case, we will use the one that reduces
the WCET most. Experience says that even small unrolling factors can
produce instruction cache degradation, so, the interval [2,17] is able to
cover a useful range of unrolling factors for real programs. Although,
depending on the compiler used and processor characteristics, these
values can be tuned experimentally. If such unrolling factor exists, we
recompile the program and test for WCET changes. In case of WCET
increase (Line 21), we use the last chosen unrolling factor (Line 22) and
skip to the next loop. Otherwise we use the actual factor updating the
WCET (Line 24 and 25).

The algorithm only cares about data dependency and parity of
execution counts to choose unrolling factors. The final decision about
which unrolling approach must be applied to data-dependent loops is
left to the compiler that implements Algorithm 7.

The time complexity of Algorithm 8 is, at least, O(n2), where n
is the number of loops. We consider at least because we do not know
the exactly complexity of the compiler’s internal algorithms. In fact,
there will be, for any program, one initial invocation to the analyzer
to estimate the WCET and other invocations for each loop to test the
considered unrolling factors, giving a total of 1+16×n invocations to

6.4. Our loop unrolling approach 171

Algorithm 8 Algorithm that defines unrolling factors for all optimizable
loops in Program.

1: procedure CALCULATEUNROLLINGFACTORS(Program). Algorithm executed by the optimization
planning tool

2: LoopList← getLoops(Program)
3: wcetData← calculateWCET (Program)
4: for each loop ∈ LoopList do
5: if isInWCEP(loop,wcetData) then
6: lastUF ← 0
7: for i← 2 to 17 do
8: if not loop.isDataDep then
9: if not divides(loop.bound, i) then

10: continue
11: end if
12: end if
13: if parity(loop.bound) = parity(i) then
14: loop.u f ← i
15: recompile(Program)
16: newWcet← calculateWCET (Program)
17: if newWcetData.value >= wcetData.value then
18: loop.u f ← lastUF
19: else
20: wcetData← newWcetData
21: lastUF ← i
22: end if
23: end if
24: end for
25: end if
26: end foreach
27: end procedure

the analyzer. The worst case occurs when all loops are data indepen-
dent and can be divided by factors in the interval [2,17]. In practice,
this situation only occurs when the loop count represents a common
multiple of all considered unrolling factors. For each loop considered in
this algorithm, an invocation to recompile(Program) must be performed
(Line 15). In this invocation, all loops will be unrolled (Algorithm 7
is invoked inside the compiler), justifying the quadratic complexity.
Although our approach is simple, complex heuristics that try to bal-
ance code expansion and WCET as proposed by (LOKUCIEJEWSKI;
MARWEDEL, 2010) can be applied as well. Our combination of loop
unrolling strategies can increase the compilation time due to the fact
that we need to process more code that in the original program. Choos-
ing adequate unrolling factors can also increase considerably the com-
pilation time due to the necessity of WCET analyses. As pointed by
(LOKUCIEJEWSKI; MARWEDEL, 2010), performance improvement

172 Chapter 6. Contribution 1: Combining Loop Unrolling Strategies and Code Predication

is a primary focus of embedded systems, being longer compilation times
of less importance.

6.5 EVALUATION

To evaluate the technique proposed in this chapter we conducted
experiments using the infrastructure described in Chapter 5. In the
next subsections, we will give a short description of the used resources
of the target architecture and implementation aspects. The the last but
one section of this chapter presents numerical results obtained from the
use of the proposed technique applied to a set of benchmarks commonly
used in the literature.

6.5.1 Implementation aspects

As processor resource, we used the extension that enables code
predication through the 30th bit, as described in Subsection 5.1 of
Chapter 5. The unrolling technique was implemented in our back-end
at the end of machine code generation. It is difficult to performWCET-
oriented optimization using LLVM due to its highly optimized pass-
manager that isolates the treatment of each function of a compilation
unit. Due to this fact, we cannot optimize the program as a whole
aiming at WCET reduction using the standard LLVM pass-manager
because the generated code is only fully materialized at the end of
the complete process. To overcome this situation, we implemented our
technique using the approach described in Subsection 5.4.2 of Chapter
5. In this way, the planning tool uses the heuristics of Subsection 6.4.3
to update the database shared with the compiler. The planning tool
chooses the loops and unrolling factors and invokes compiler repeatedly
until WCET stabilization or when the entire code is already analyzed
by the planning tool. From the first compilation, the planning tool can
invoke the WCET analyzer tool and execute Algorithm 8 to choose an
unrolling factor for each loop.

6.6. Results 173

6.6 RESULTS

We used the Mälardalen WCET benchmarks (GUSTAFSSON;
BETTS, 2010) to evaluate the effectiveness of the proposed technique.
These benchmarks are widely used to evaluate and compare methods
and techniques related to WCET analysis. We excluded benchmarks
with indirect recursion. We considered a constant time for complex
library function calls, as those that are used to handle floating point
numbers. The description of each benchmark is shown in Table 8.

The results of the experiments are shown in Table 9. The column
Initial WCET shows the WCET of the benchmark without the applica-
tion of the loop unrolling. Initial code size presents the size of the code
(in bytes) in this initial scenario. Optimized WCET presents the WCET
of the optimized version with its respective code size (Optimized code
size). The columns WCET reduction and Code increase present the per-
centage of WCET reduction and its relative code augmentation, respec-
tively. WCET reduction is calculated as Initial WCET−Optimized WCET

Initial WCET ×100
and Code increase as Optimized code size−Initial code size

Initial code size × 100. We omitted
in this table benchmarks where no gain was obtained. In this way, a
total of 18 from 33 benchmarks are shown.

Table 10 shows how many loops of each type were unrolled and
the maximum unrolling factor (Max. uf) in each benchmark.

Analyzing the obtained results, we can see that the combina-
tion of techniques was able to reduce the WCET of half of the bench-
marks. For example, considering the adpcm.c benchmark, we achieved
a small WCET reduction (1.19%) in contrast with a higher code in-
crease (31.10%). If we look at Table 10 we can see that two loops
of adpcm.c were unrolled (one with fixed execution count and another
with a call instruction), and the maximum unrolling factor used was
2. On the other hand, we can see a high WCET reduction for the ex-
ptint.c benchmark, with less code increase then in the adpcm.c. In this
benchmark, only one loop was unrolled, with an unrolling factor of 7.
The average WCET reduction considering all benchmarks was 6.72%,
while the average code increase was 15.56%. As maximum values, we

174 Chapter 6. Contribution 1: Combining Loop Unrolling Strategies and Code Predication

Table 8 – Used benchmarks from (GUSTAFSSON; BETTS, 2010)

Benchmark Description

adpcm Adaptive pulse code modulation algorithm.
bs Binary search for the array of 15 integer elements.
bsort100 Bubblesort program.
cnt Counts non-negative numbers in a matrix.
compress Data compression program.
cover Program for testing many paths.
crc Cyclic redundancy check computation on 40 bytes of data.
duff Using "Duff’s device" from the Jargon file to copy 43 byte

array.
edn Finite Impulse Response (FIR) filter calculations.
expint Series expansion for computing an exponential integral

function.
fac Calculates the faculty function.
fdct Fast Discrete Cosine Transform.
fft1 1024-point Fast Fourier Transform using the Cooly-

Turkey algorithm.
fibcall Simple iterative Fibonacci calculation, used to calculate

fib(30).
fir Finite impulse response filter (signal processing algo-

rithms) over a 700 items long sample.
insertsort Insertion sort on a reversed array of size 10.
janne_complex Nested loop program.
jfdctint Discrete-cosine transformation on a 8x8 pixel block.
lcdnum Read ten values, output half to LCD.
lms LMS adaptive signal enhancement. The input signal is a

sine wave with added white noise.
ludcmp LU decomposition algorithm.
matmult Matrix multiplication of two 20x20 matrices.
minver Inversion of floating point matrix.
ndes Complex embedded code.
ns Search in a multi-dimensional array.
nsichneu Simulate an extended Petri Net.
prime Calculates whether numbers are prime.
qsort-exam Non-recursive version of quick sort algorithm.
qurt Root computation of quadratic equations.
select A function to select the Nth largest number in a floating

point array.
st Statistics program.
statemate Automatically generated code.
ud Calculation of matrixes.

got 32.44% and 80.19%, for WCET reduction and code increase, re-
spectively.

Our approach could be applied to 7 benchmarks, which are
compress.c, duff.c, edn.c, fft1.c, fir.c, insertsort.c and lms.c. To un-
derstand how much WCET reduction we can achieve with the pred-
icated loop unrolling, we unrolled those three benchmarks with the
branchedLoopUnrolling instead of predicatedLoopUnrolling algorithm,

6.6. Results 175

because every loop that can be unrolled with the last method can be
unrolled with the first as well. The results are shown in Table 11 with
WCET reduction percentages highlighted in Figure 36. We can observe
that the predicated loop unrolling has noticeable effects considering the
duff.c, fir.c and insertsort.c benchmarks. For insertsort.c and fir.c bench-
marks, using the branched approach, we simply do not achieve WCET
reduction, so the loop is kept rolled, which also explains the difference
in code sizes. As we can see, the predicated approach, even with its
limited applicability, can exploit cases where the standard approach
fails to get WCET reduction. In the edn.c case, we achieved WCET
reduction with negative code decrease because the algorithm could use
a higher unrolling factor with the predicated version (9 instead 5 for a
branch).

Figure 36 – Graphic comparison of WCET reduction of Table 11.

It is important to say that these results can be enhanced using
heuristics to find better unrolling factors to control code expansion
(LOKUCIEJEWSKI; MARWEDEL, 2010), which is out of the scope
of this work.

176 Chapter 6. Contribution 1: Combining Loop Unrolling Strategies and Code Predication

6.7 CONCLUSION

Loop unrolling for WCET reduction is considered by (ZHAO et
al., 2006) and (LOKUCIEJEWSKI; MARWEDEL, 2010). Though, in
both works only loops with fixed iteration counts are unrolled. We pro-
posed in this chapter an alternative way to perform loop unrolling with
arbitrary iteration counts. Traditionally, this type of loop is unrolled
using compare and branch operations to control different exit condi-
tions or contexts. What we propose is the use of code predication to
control the loop execution under different exit conditions, since worst-
case analyzers tend to consider that each loop, even unrolled, is always
fully executed up to its execution bound. The approach can be used in
architectures with full predication support and is best applicable when
branch operations are segmented in more than one step.

We introduced an algorithm that performs this code transforma-
tion directly at the machine code level (or assembly). In our framework,
each data dependent loop of each benchmark is annotated with a safe
loop bound that represents an upper bound on the execution count.
After loop unrolling application, the annotation is transformed to re-
flect the new loop bound of the unrolled loop. Since our technique does
not depend on branches, the number of instructions is reduced and the
instruction scheduling scope is enhanced, as the whole body of the un-
rolled fits in a single basic block. This scope enhancement can enable
more optimizations to be applied to the code.

We also proposed a strategy that selects which unrolling tech-
nique to apply in a per loop basis. For loops with fixed execution
counts, we applied the standard technique that unrolls loops using un-
rolling factors that perfectly divide execution counts to avoid compare
and branch instructions. For data dependent loops, we used our pred-
icated or the branch-based approach, depending on the case. The ap-
proach described here was published in (CARMINATI et al., 2017).

We observed in the experiments that the combination of un-
rolling techniques was able to reduce the WCET of 18 from 33 bench-
marks. For six benchmarks we obtained gains above 20%. In the

6.7. Conclusion 177

experiments, we also showed that the predicated approach, even with
its limited applicability, can exploit cases where the standard approach
fails to get WCET reduction.

As we are not interested in code increase limitation, higher code
expansion was observed as well. To work around this situation, tech-
niques like (LOKUCIEJEWSKI; MARWEDEL, 2010) can be applied
to our heuristic of unrolling factor selection.

178 Chapter 6. Contribution 1: Combining Loop Unrolling Strategies and Code Predication

Table
9

–
O

btained
results

B
enchm

ark
Initial

W
C

E
T

Initial
code

size
O

ptim
ized

W
C

E
T

O
ptim

ized
code

size
W

C
E

T
reduction

C
ode

increase

adpcm
.c

19607
10208

19373
14816

1.19%
31.10%

bsort100.c
272623

432
271985

560
0.23%

22.86%
cnt.c

9046
752

8566
864

5.31%
12.96%

com
press.c

140139
4912

137162
5488

2.12%
10.50%

crc.c
113846

2048
112671

2624
1.03%

21.95%
duff.c

1859
592

1397
816

24.85%
27.45%

edn.c
96871

2336
73042

3296
24.60%

29.13%
expint.c

113473
1540

76661
1812

32.44%
15.01%

fft1.c
1034634

19984
727844

44272
29.65%

54.86%
fir.c

509930221
976

444387758
1616

12.85%
39.60%

insertsort.c
2720

304
2111

432
22.39%

29.63%
jfdctint.c

3947
1264

3568
1536

9.60%
17.71%

lm
s.c

352360015
14016

303674957
70768

13.82%
80.19%

ludcm
p.c

43902
3296

43622
4320

0.64%
23.70%

m
atm

ult.c
268362

1008
225657

1968
15.91%

48.78%
ndes.c

146612
5376

144282
7248

1.59%
25.83%

qsort-exam
.c

503582
2528

480816
2784

4.52%
9.20%

st.c
1480353

5088
1198582

5856
19.03%

13.11%
Average

6.72%
15.56%

M
axim

um
32.44%

80.19%

6.7. Conclusion 179

Table 10 – Obtained results

Benchmark Simple With pred. With branch Max. uf

adpcm.c 2 0 2 2
bsort100.c 1 0 0 5
cnt.c 0 0 1 2
compress.c 1 1 0 2
crc.c 0 0 1 2
duff.c 0 1 0 10
edn.c 4 1 0 9
expint.c 0 1 0 7
fft1.c 0 1 2 13
fir.c 0 1 0 6
insertsort.c 0 1 0 3
jfdctint.c 1 0 0 4
lms.c 0 1 3 15
ludcmp.c 0 0 1 5
matmult.c 1 0 1 4
ndes.c 2 0 1 2
qsort-exam.c 0 0 1 2
st.c 0 0 1 4

180 Chapter 6. Contribution 1: Combining Loop Unrolling Strategies and Code Predication

Table
11

–
C

om
paring

predicatedLoopU
nrolling

w
ith

branchedLoopU
nrolling

B
enchm

ark
B

ranched
un-

roll.W
C

E
T

B
ranched
code

size
Predicated

unroll.
W

C
E

T

Predicated
code

size
W

C
E

T
reduction

C
ode

size
reduction

com
press.c

138875
5968

137162
5488

1.23%
8.04%

duff.c
1515

912
1397

816
7.79%

10.53%
edn.c

73181
3072

73042
3296

0.19%
-7.29%

fft1.c
727868

44272
727844

44272
0.00%

0.00%
fir.c

509930221
976

444387758
1616

12.85%
-65.57%

insertsort.c
2720

304
2111

432
22.39%

-42.11%
lm

s.c
305531002

83248
303674957

70768
0.61%

14.99%

181

7 CONTRIBUTION 2: ON THE USE OF STATIC BRANCH PRE-
DICTION

The goal of this chapter is to show that a very small or even
no gain can be obtained with new optimization techniques targeted
to worst-case execution time (WCET) reduction using static predic-
tors. To achieve this, we compare several techniques against the perfect
branch predictor. This predictor can estimate the maximum WCET
reduction considering static approaches. The comparison includes a
new WCET-centered technique which acts as a brute force approach to
bring the results as close as possible to the perfect predictor. The com-
parison also includes standard compiler techniques. As result, we show
that all compared techniques are close to the optimal result. We also
show that our technique produces slightly better results and WCET-
unaware techniques can also be used in real-time environments.

7.1 INTRODUCTION

Most commercial processors available today have resources that
increase performance but impose additional difficulties on WCET esti-
mation. A performance enhancement feature can be really problematic
for WCET estimation if it causes timing anomalies or domino effects
(AXER et al., 2014), as dynamic branch predictors and out-of-order
pipelines. Though, real-time applications demand more and more hard-
ware performance, as any computer application. This increasing per-
formance demand pushes the development or the use of deterministic
performance enhancement features in real-time systems as well.

A common performance enhancement feature present in advanced
modern processors is the so called dynamic branch predictor. Dynamic
branch predictors usually have high precision, but they depend on the
execution history of the program. This type of predictor increases the
average performance but can cause timing anomalies when associated
with other performance enhancement features, like instruction caches,
as stated by (AXER et al., 2014). Although there are works related
to dynamic predictors and WCET (COLIN; PUAUT, 2000) (BATE;

182 Chapter 7. Contribution 2: On the Use of Static Branch Prediction

REUTEMANN, 2004) (BURGUIERE; ROCHANGE, 2007) (LOUISE,
2011), its support is not a common feature present in WCET analyzers
(WILHELM et al., 2008).

An alternative to dynamic branch predictors is the static branch
predictor. These predictors may depend on the compiler to define the
behavior of each conditional branch. This behavior is then adopted by
the processor for the entire program execution. This strategy for branch
prediction can be easily analyzable by WCET tools, although it has in-
ferior average case performance in contrast with the dynamic solution.
A usual approach in static branch prediction is to tune the application
(or its branches) using profile data (FISHER; FREUDENBERGER,
1992) or static program analysis (PATTERSON, 1995). Regardless of
that, the focus of both strategies is to improve the average case per-
formance, which sometimes contradicts real-time performance. We can
cite PowerPC 7451 and the MIPS R4000 family as examples of proces-
sors with this type of predictor. Simpler static branch predictors that
do not depend on the compiler exist as well, like those that are based
on the target address (backward taken, forward not taken for example).
Infineon TriCore processor TC1796 has this type of branch predictor.
Several simple static branch prediction schemes and their accuracy are
discussed in (SMITH, 1981) considering execution performance.

The use of static branch prediction as a mechanism for worst-
case execution time reduction is a well-known alternative and was firstly
proposed by (BODIN; PUAUT, 2005). The proposed scheme is an iter-
ative algorithm that works on the program control flow graph. Another
work that proposes reducing WCET using static branch predictors and
a compiler is (BURGUIERE et al., 2005). One secondary result pre-
sented by (BURGUIERE et al., 2005) is that a compiler directed static
branch prediction scheme can improve the WCET more than a dynamic
one, considering predictors without aliasing of branches. Another way
to reduce WCET based on static branch prediction is by changing the
code layout of a program, as done in (PLAZAR et al., 2011). Though,
this technique is applied to predictors that can not be tuned by the com-
piler. The technique of (BODIN; PUAUT, 2005), is explained in details

7.1. Introduction 183

in Chapter 4, more specifically in the assembly level optimizations sub-
section. The work of (BURGUIERE et al., 2005) is also explained in
Chapter 4.

The contributions of our work are:

• To show that the use and development of new techniques aiming
at WCET reduction using static branch prediction techniques
reached the limit in terms of worst-case execution time improve-
ment. Regardless of the approach employed to predict the behav-
ior of each branch of a program, the result will always be close
to an optimal result. Though this is the main objective of our
work, it will be achieved as a corollary result of the two next
contributions.

• To obtain an optimal WCET in terms of static branch prediction
we use the concept of perfect branch predictor (COLIN; PUAUT,
2000). This is a virtual branch predictor that can be easily an-
alyzable by a WCET analyzer, but can not be implemented in
practice. This predictor can give an asymptotic limit for the
gain in terms of WCET reduction, considering static prediction
schemes. We also used this predictor to calculate the effective
zone of actuation of static prediction techniques. This zone is a
WCET interval where, for every program, the maximum value
considers that every branch will be mispredicted and minimum
value considers a correct prediction of all branches.

• We compare several prediction schemes against the perfect branch
predictor. Approaches that do not depend on WCET calcula-
tion are also considered, because they are a cheaper alternative
than the WCET-centered ones. As an example of such approach,
we can cite the use of standard compiler information to predict
branches. At the time of writing this chapter, no work exists
comparing the worst-case performance of several static predic-
tion schemes, with the purpose of exposing trade-offs of usability
concerning real-time systems. We also include in this compari-

184 Chapter 7. Contribution 2: On the Use of Static Branch Prediction

son a new technique that explores a situation where the classic
approach makes sub-optimal choices. This approach does not de-
pend on specific changes considering WCET analyzers, and it acts
as a brute force approach to bring the results as close as possible
to the perfect predictor (or the optimal result).

The remainder of this chapter is organized as follows. Section
7.2 revises the perfect predictor approach. Section 7.3 presents our
WCET branch prediction approach, and Section 7.4 presents how we
evaluated all considered approaches against the perfect predictor and
shows the obtained results. In Section 7.5, we present our conclusions.

7.2 THE PERFECT BRANCH PREDICTOR APPROACH

A perfect branch predictor (COLIN; PUAUT, 2000) is a concep-
tual predictor that knows the correct target of each branch before the
execution, which means that it never misses a branch prediction. This
predictor does not suffer from misprediction penalties, which does not
imply the non-existence of control flow transfer penalties. Although
not implementable, this predictor behavior can be easily included in
a WCET analyzer. Assuming that we can calculate the WCET of
a program using the perfect predictor, it is possible to estimate an
asymptotic limit for the WCET of any static branch prediction config-
uration of this program. We consider this limit as asymptotic because
it refers to hardware states that can not be reached in practice. For
a program P, we can define some possible WCET values considering
different prediction schemes:

• WCETall−mispredicted(P): these values represent the WCET con-
sidering that all branches will be mispredicted, i.e., penalization
is considered for taken and fall-through targets. This scenario
represents the opposite behavior of the perfect predictor.

• WCETper f ect(P): these values represent a situation when the per-
fect branch predictor is used.

7.2. The perfect branch predictor approach 185

• WCETX (P): finally, these values represent the WCET for some
static branch prediction scheme X .

We can also define a relationship between the previous values
such that: WCETall−mispredicted(P)≥WCETX (P)≥WCETper f ect(P) for
any X and P. In this way, we can verify the effectiveness of any WCET
reduction scheme X applied to a program P measuring the distance be-
tween the values of WCETX (P) and WCETper f ect(P). It is important to
say that this inequalities are valid only for architectures without timing
anomalies. If we assume that for every program P, a WCETper f ect(P)
represents the optimal WCET, we can can define the effective zone of
actuation between the best WCET and the worst possible WCET:

[WCETper f ect(P),WCETall−mispredicted(P)] (7.1)

Using interval from Equation 7.1, we can calculate the per-
centage of optimality of a prediction scheme over a program P. If
WCETX (P) = WCETall−mispredicted(P) for a prediction scheme X , we
say that this prediction scheme is 0% optimal. On the other hand, if
we have WCETX (P) = WCETper f ect(P) we call this prediction scheme
100% optimal. For intermediate cases, we can calculate the optimality
with the following equation (Equation 7.2):

WCETall−mispredicted(P)−WCETX (P)
WCETall−mispredicted(P)−WCETper f ect(P)

×100 (7.2)

Equation 7.2 will be used to compare the overall performance of
all used prediction schemes in the evaluation section.

From the WCET analysis perspective, we can obtain a perfect
behavior by removing all penalties attributed to the execution of branch
operations. Unconditional control flow transfer penalties shouldn’t be
removed because their execution are not effected by branch prediction
units. Usually, branch overhead is modeled as edge weight (from one
basic block to another) in the CFG of a program under WCET analysis,
or directly in the basic block times. If this is the case, we can reduce
these weights/times to reflect the always well-predicted behavior.

186 Chapter 7. Contribution 2: On the Use of Static Branch Prediction

This behavior can not be implemented in practice because it
needs a clairvoyant BTB (branch target buffer) and a processor that is
capable of executing speculatively and simultaneously both fall-through
and taken successors of each branch until the condition resolution.

7.3 A NEW TECHNIQUE TO REDUCE WCET USING BRANCH
PREDICTION

Before the presentation of our new technique, we will discuss
some aspects of the classic approach (Algorithm 1).

7.3.1 Considerations on the classic approach

Considering commercial WCET analyzers, we can not change
them to mispredict a specific branch in both directions on demand,
then, we must consider the behavior of branch instructions when ex-
ecuted in hardware. In this case, the penalty is only considered in
the case of a wrong prediction. A wrong prediction occurs when the
processor follows a different branch target from that indicated by the
compiler. Furthermore, for some processors, only commercial analyz-
ers are available and we can not change them to support misprediction
penalties for both targets of a branch.

The advantage of using an unchanged WCET analyzer is that
we can produce better results when conducting any WCET-aware code
optimization. With more precise WCET estimates (considering caches,
for example), we can consider more realistic cases of WCEP changes. In
this work, we apply the techniques to a deterministic processor without
timing anomalies. But, if these techniques are applied to an architec-
ture with timing anomalies such as PowerPC 755, different predictions
of a branch can lead to different timing behaviors of instructions that
are executed after that branch, affecting the WCET of the path in a
non-obvious way. These anomalies are related to the instruction cache
and are called speculation-caused anomalies, as showed in (WILHELM
et al., 2008).

7.3. A new technique to reduce WCET using branch prediction 187

If we consider an unchanged WCET analyzer, branch prediction
guided by WCET information of a program can lead to WCET increase
if we use Algorithm 1. To illustrate this situation, let’s consider the
example shown by Figure 37. It represents the CFG of a hypothetical
program that is basically an if-then-else structure.

Fall Through
Branch Target

Jump Target

BB 1: 2 cycles

BB 2: 4 cycles BB 3: 5 cycles

BB 4: 2 cycles

Figure 37 – Example of an if-then-else sentence.

In processors with static branch predictors, we must choose a
static branch direction for each branch. If we do not know the common
direction of each branch, a default one must be used. The most common
approach is to use the not taken direction (fall-through path) as default,
because this choice results in less penalty in the case of a misprediction.
To explain how misprediction penalties occur, we may consider the
decision tree of Figure 38. If a branch is predicted as not taken and the
condition is evaluated to false, no penalty occurs, because fall-through
path, which is the correct one, has already been taken by the processor
pipeline. However, if this same condition is evaluated to true, the fall-
through path must be flushed from the pipeline and the program flow
must be resumed along the correct path (branch target).

On the other hand, if a branch is predicted as taken, and the
branch target address is determined, its path is executed until the res-

188 Chapter 7. Contribution 2: On the Use of Static Branch Prediction

Branch

Taken

predicted as

Fall-through

predicted as

Taken

evaluated as
true

Fall-through

evaluated as
false

Fall-through

evaluated as
false

Taken

evaluated as
true

no penalty no penalty misprediction
penalty

misprediction
penalty

Figure 38 – Decision tree that describes when penalties occur (or not) in
the case of static branch prediction.

olution of the condition. If the condition is evaluated to true, we possi-
bly have only the overhead of the cycles needed for the address calcu-
lation, that is generally executed some cycles after the decode stage of
a pipelined processor. Such overhead appears as a sequence of pipeline
stalls between the branch instruction and the instruction located at
the taken address. But, if the condition is evaluated to false, the taken
path must be flushed and the execution must be resumed along the
fall-through path.

Considering a default not taken approach, we can calculate the
WCET of the example illustrated by Figure 37. So we have two possible
execution paths for this example:

• BB 1 → BB 2 → BB 4: The time of this path is the sum of the
basic-block times added with the penalization of a jump (or un-
conditional branch) between basic blocks BB 2 and BB 4. There
is no penalty between basic blocks BB 1 and BB 2, because BB
2 is in the fall-through path of BB 1, and not taken is the predic-
tion. So, the time of this path will be 2+4+2+ jumpPenalty =

7.3. A new technique to reduce WCET using branch prediction 189

8+ jumpPenalty.

• BB 1 → BB 3 → BB 4: The time of this path is the sum
of the basic-block times added with the penalization of a mis-
predicted branch between basic blocks BB 1 and BB 3 and a
jump penalization between basic blocks BB 3 and BB 4. So, the
time of this path will be 2+5+2+mispredictionPenaltynotTaken+

jumpPenalty, which results in 9+mispredictionPenaltynotTaken +

jumpPenalty.

Comparing the previous paths, one can see that the worst-case
path is BB 1 → BB 3 → BB 4. If we apply the WCET-oriented static
branch prediction scheme in this example (misprediction penalty for
only one successor), we will set the direction of the branch present in
BB 1 as taken, to reduce the penalty from transferring the control from
BB 1 to BB 3. Doing this, we will reduce the time of this path (factor
mispredictionPenaltynotTaken). Although, by predicting this branch as
taken, we will impose a penalization over the fall-through path, when
the condition is evaluated to false. Now the time of the path BB 1
→ BB 2 → BB 4 is augmented by one branch penalization and be-
comes 8+mispredictionPenaltytaken + jumpPenalty. In this scenario, a
WCEP switch can occur, followed by a WCET increase. This WCEP
switch can occur because a misprediction penalty of a branch originally
predicted as taken is higher than an originally predicted as not taken
(mispredictionPenaltytaken > mispredictionPenaltynotTaken).

To illustrate another aspect of the classic approach, we can con-
sider the code snippet of Code 7.1. This code relates to a sequence of
three loops, and its control-flow graph is presented by Figure 39. This
situation occurs when the compiler optimizes the initialization of loop
counters. For example, Clang/LLVM may generate code in this way
depending on the optimization level used or the optimizations carried
in the target code generator.

If we apply Algorithm 1 to this example it will encounter the
following situation for the basic block related to the first loop header
(header 0 of Figure 39) and its successors:

190 Chapter 7. Contribution 2: On the Use of Static Branch Prediction

Code 7.1 – Code snippet relative to a sequence of three loops

i n t i , j , k ;

/∗ Loop 0 ∗ /
f o r (i = 0 ; i < 1 0 ; i ++) {

/∗ . . . ∗ /
}
/∗ Loop 1 ∗ /
f o r (j = 0 ; j < 1 0 ; j ++) {

/∗ . . . ∗ /
}
/∗ Loop 2 ∗ /
f o r (k = 0 ; k < 1 0 ; k ++) {

/∗ . . . ∗ /
}

header 0
11 times

body 0
10 times

header 1
11 times

body 1
10 times

header 2
11 times

body 2
10 times

Figure 39 – Control flow graph of Code 7.1.

7.3. A new technique to reduce WCET using branch prediction 191

• Both successors header 1 and body 1 are on the WCEP. In this
situation, Line 13 of Algorithm 1 will be evaluated to true.

• The control transfer to the successor with the highest count (in
this case, header 1) must be predicted (Line 14 of Algorithm 1)
to reduce the control flow penalization. Depending on how the
code is generated, loop headers always execute once more on the
last iteration when the exit branch is taken.

However, this prediction will highly penalize the execution of the
first loop, because the flow transfer from header 0 to body 0 always will
be mispredicted, despite of the header 0 to body 0 transfer be executed
only once. This situation is repeated for Loop 1. For Loop 2 this
situation does not occur because Header 1 does not have a successor
with a count higher than the basic block Body 2. The final prediction
(in bold edges) is showed in Subfigure 40a. This figure shows that Loop
0 and 1 will be penalized by the chosen predictions. For comparison
purposes, Subfigure 40b shows an optimal prediction, that optimize the
execution of all loops.

header 0
11 times

body 0
10 times

header 1
11 times

body 1
10 times

header 2
11 times

body 2
10 times

(a) Branches predicted by Algorithm 1.

header 0
11 times

body 0
10 times

header 1
11 times

body 1
10 times

header 2
11 times

body 2
10 times

(b) Optimal prediction of branches.

Figure 40 – Example of predictions of the branches of Figure 39. Edges
in bold represent the predicted target of the branch.

192 Chapter 7. Contribution 2: On the Use of Static Branch Prediction

7.3.2 The proposed technique

This subsection describes the technique proposed in this chapter,
its motivation and computational complexity. One motivation behind
the algorithm is that, if we use an unchanged WCET analyzer for
a processor with static branch prediction for complete programs, the
assumption that a branch is not predicted for both taken and fall-
through successors can not be used, and that is necessary for Algorithm
1.

Our approach for static prediction of branches consists in itera-
tively choosing predictions along the WCEP of the program, like the
classic approach. Differently from the classic approach, our strategy
does not assume that a misprediction will occur in both taken and
fall-through. We only consider that there is a penalization to execute
successors that are different from the successor executed by default
by the processor. In this way, if a processor executes by default its
fall-through successor on branch operations, we will consider the pe-
nalization only when the execution path follows the taken successor.
Doing so we can use this technique in conjunction with any WCET
analyzer that supports processors with static branch prediction. The
technique is showed in Algorithm 9.

The first task of the algorithm is to mark all basic blocks as
unpredicted, and set a default direction as fall-through, which is done
by Lines 4 to 9. The first iterative step of the algorithm (Step 1)
is to calculate the WCET of the program (Line 11). The procedure
estimate_WCET returns an object that contains both the WCEP and
its total execution time (WCET) in processor cycles. The entire inter-
face with a WCET analyzer is encapsulated by this procedure. Step 2
consists of predicting the behavior of branches while there are WCEP
changes. For this purpose, the algorithm iterates over all basic blocks
in the WCEP and:

• If a basic block is marked as predicted, it will be ignored. Oth-
erwise, it will be marked as predicted (Lines 16 and 17) and the
algorithm executes the next stage.

7.3. A new technique to reduce WCET using branch prediction 193

Algorithm 9 Proposed approach for static branch prediction.
1: procedure SET_PREDICTIONS(CFG). Set predictions along the WCEP
2: bool converged← f alse
3: bool wcet_changed← f alse
4: for all BB ∈CFG do
5: BB.predicted← f alse
6: if is_conditional_branch(BB) then
7: BB.direction← f all− through
8: end if
9: end for

10: {Step 1: WCET estimation}
11: WC← estimate_WCET (CFG)
12: while converged = f alse do
13: {Step 2: Issue static branch predictions along the WCEP}
14: wcet_changed← f alse
15: for BB ∈WC.WCEP∧wcet_changed = f alse do
16: if BB.predicted = f alse then
17: BB.predicted← true
18: if is_conditional_branch(BB) then
19: if count(BB.tk)> count(BB. f t) then
20: BB.direction← taken
21: new_WC← estimate_WCET (CFG)
22: {Step 3: Verify any WCET increase}
23: if new_WC.WCET >WC.WCET then
24: BB.direction← f all− through
25: else
26: WC← new_WC
27: wcet_changed← true
28: end if
29: end if
30: end if
31: end if
32: end for
33: if ∀BB ∈WC.WCEP, BB.predicted = true then
34: converged← true
35: end if
36: end while
37: end procedure

• If a basic block ends with a conditional branch (Line 18, which is
given by function is_conditional_branch) we predict this branch
as taken, if the taken successor executes more than the fall-through
successor (Lines 19 and 20). If this is the case, we must recalculate
the WCET and verify if it was increased (Lines 21 and 23) which
is called Step 3. If a WCET increase is detected, then we must
return the prediction to fall-through and proceed to the next

194 Chapter 7. Contribution 2: On the Use of Static Branch Prediction

basic block. If the WCET has not increased, we must update
the current WCET information and restart the iteration over the
new WCEP (Lines 26 and 27).

The algorithm ends with WCET convergence, i.e., when all basic
blocks in the current WCET are marked as predicted. This algorithm
is intended to be a generalization of the classic algorithm. In this
way, it prevents the WCET increase when we have no control on how
the WCET is calculated. We can summarize the differences of the
technique proposed here and the classic approach:

• Analyzer requirement: Algorithm 1 needs a change of the WCET
analyzer to support misprediction penalties at every branch di-
rection. In this way, each execution path is penalized a priori of
the execution of the algorithm. Our algorithm does not require
a tailored analyzer. Our algorithm only requires a worst-case
execution count for each basic block.

• WCET recalculation due to WCEP switches: Algorithm 1 recal-
culates the WCET at the end of path traversal. As we do not use
an all-mispredicted WCET analyzer feature, each static branch
prediction can lead to a WCET increase and a WCEP switch.
Testing WCET increases and WCEP switches on the fly permit
us to explore more possibilities of prediction.

The complexity of the algorithm is proportional to the number
of branches that exist in a program. In the worst case, all n conditional
branches that appear in the program will also appear in the WCEP.
In this case, there will be n WCET calculations, because the algorithm
tries to predict each branch as taken exactly once. This algorithm has a
higher overhead when compared with the the classic approach, because
it calculates the WCET after an entire WCEP traversal. As stated
by (LOKUCIEJEWSKI; MARWEDEL, 2011), compilation overhead is
acceptable for embedded real-time system, where WCET reduction is
important to enhance the schedulability of the system, or even reduce
resource demand.

7.4. Evaluation of techniques against the perfect predictor 195

In the next section we will explain the concept of perfect branch
predictor, as a tool to evaluate WCET reduction schemes related to
static branch prediction.

7.4 EVALUATION OF TECHNIQUES AGAINST THE PERFECT PRE-
DICTOR

To evaluate the techniques, we conducted experiments using us-
ing the infrastructure described in Chapter 5. We also included in the
comparison a compiler heuristic and a simple “not taken” approach.
The compiler heuristic used is a standard compiler feature and will be
discussed further.

As processor resource, we used the extension that enables static
branch prediction through a special instruction that allows the compiler
to indicate whether a given path is more likely to be executed. This
resource is described in Subsection 5.1 of Chapter 5.

Both techniques were implemented in our back-end at the end of
machine code generation. It is difficult to perform WCET-oriented op-
timization using LLVM due to its highly optimized pass-manager that
isolates the treatment of each function of a compilation unit. To over-
come this situation, we implemented our technique using the approach
described in Subsection 5.4.1 of Chapter 5. Such approach allows us
to make any change to any function and regenerate the object code
file, at the end of all LLVM code generation passes. With this LLVM
adaptation, any change at the machine code level can be done in any
function, followed by an entire object code generation, many times as
needed.

In relation to the implementation of the static prediction schemes
inside the compiler, a free slot is always reserved in a bundle to hold
a preld instruction for each branch instruction found in a program. If
a branch is predicted a taken, a preld instruction is generated in such
slot. Hence, if a branch is predicted as not taken, a nop is generated
instead. We do this to generate binaries with the same number of
instructions, no matter the prediction scheme used. Different number

196 Chapter 7. Contribution 2: On the Use of Static Branch Prediction

of instructions can produce different cache timing behavior due to the
code alignment, for example. In this way, we can execute experiments
and only observe timing variations caused by the prediction influence
on the WCET. At the linking stage, we use scratchpad memory (SPM)
to hold all program data and stack, except instructions that are stored
in an instruction memory. Although scratchpad allocation strategies
could be employed as well, it is not the objective of this chapter.

7.4.1 Results

We used a set of examples from the Mälardalen WCET bench-
marks (GUSTAFSSON; BETTS, 2010) to evaluate the effectiveness
of the techniques. These benchmarks are commonly used to evaluate
and compare methods and techniques related to WCET analysis. We
excluded benchmarks which use library functions that are directly or
indirectly called by the generated code, floating-point calculations and
indirect recursion. The description of each benchmark is shown in Ta-
ble 12. The restriction of absence of library function calls exists because
we have a very simple runtime support (including boot loader) that is
linked with the application. This runtime does not implement library
support, therefore the application must be self-contained.

Table 13 shows the WCET values for all used benchmarks con-
sidering all mispredicted and perfect approaches. It also shows the
improvement of the perfect over the all mispredicted scheme. This is
the asymptotic limit for any static branch prediction scheme that aims
at WCET reduction. The effective zone size for each benchmark is also
shown in this table. This size represents the termWCETall−mispredicted(P)
- WCETper f ect(P) from Equation 7.2, for each benchmark P.

The results of the experiments with the other methods are shown
in Table 14. This table shows the results in clock cycles for each bench-
mark, considering five cases:

• Not taken: In this case, all branches are predicted as not taken.

• WCEP-aware: This scenario shows the application of Algorithm

7.4. Evaluation of techniques against the perfect predictor 197

Table 12 – Used benchmarks from (GUSTAFSSON; BETTS, 2010).

Benchmark Description

adpcm.c Adaptive pulse code modulation algorithm.
bs.c Binary search for the array of 15 integer elements.
bsort100.c Bubblesort program.
cnt.c Counts non-negative numbers in a matrix.
cover.c Program for testing many paths.
crc.c Cyclic redundancy check computation on 40 bytes of data.
duff.c Using "Duff’s device" from the Jargon file to copy 43 byte

array.
edn.c Finite Impulse Response (FIR) filter calculations.
fac.c Calculates the faculty function.
fdct.c Fast Discrete Cosine Transform.
fibcall.c Simple iterative Fibonacci calculation, used to calculate

fib(30).
insertsort.c Insertion sort on a reversed array of size 10.
janne_complex.c Nested loop program.
jfdctint.c Discrete-cosine transformation on a 8x8 pixel block.
lcdnum.c Read ten values, output half to LCD.
matmult.c Matrix multiplication of two 20x20 matrices.
ndes.c Complex embedded code.
ns.c Search in a multi-dimensional array.
nsichneu.c Simulate an extended Petri Net.
prime.c Calculates whether numbers are prime.

1 that is related to the classic approach. In this scenario, the
WCET calculation uses a 2-way misprediction penalty for non-
predicted branches, as required by the algorithm. We call this
algorithm WCEP-aware because it only relies on the WCEP of a
program. We call this misprediction penalty as 2-way because it
is considered for both fall-through and taken successors.

• WCET-aware: This scenario shows the application of the tech-
nique proposed in this chapter (Algorithm 9), which uses the
standard behavior of the WCET analyzer. We call this algo-
rithm WCET-aware because it depends on the numerical values
of the WCET, and not only on the WCEP.

• Compiler native heuristic: Some compilers perform analyses that
can be used to statically predict the behavior of a branch. Such
analyses can, for example, estimate the probability of each branch
to be taken by the program using heuristics. For example, both
LLVM(LATTNER; ADVE, 2004) and GCC can calculate this in-

198 Chapter 7. Contribution 2: On the Use of Static Branch Prediction

Table 13 – Definition of the maximum possible WCET improvement con-
sidering the perfect predictor for a subset of the Mälardalen
benchmarks(GUSTAFSSON; BETTS, 2010). The improve-
ment is calculated using All mispredicted as baseline.

Benchmark All mis-
predicted

Perfect Improv. Effectiv.
zone size

adpcm.c 20747 18484 10.91% 2263
bs.c 378 308 18.52% 70
bsort100.c 447176 269259 39.79% 177917
cnt.c 10981 8995 18.09% 1986
cover.c 5760 4125 28.39% 1635
crc.c 164734 112978 31.42% 51756
duff.c 1966 1615 17.85% 351
edn.c 118332 96135 18.76% 22197
fac.c 1560 1318 15.51% 242
fdct.c 1984 1922 3.13% 62
fibcall.c 750 486 35.20% 264
insertsort.c 3161 2591 18.03% 570
janne_complex.c 6333 3684 41.83% 2649
jfdctint.c 4033 3752 6.97% 281
lcdnum.c 1073 860 19.85% 213
matmult.c 323938 266989 17.58% 56949
ndes.c 152390 141446 7.18% 10944
ns.c 29452 22438 23.82% 7014
nsichneu.c 59620 51695 13.29% 7925
prime.c 42625 34037 20.15% 8588

formation examining the structure of the CFG of the program, if
an execution profile is not available. This information is obtained
through a set of heuristics that act on the structure of loops and
its exit conditions. The examination of comparison operations
that precede a branch instruction is also a key aspect of these
heuristics. In this case, we used branch probabilities obtained
from the Machine Branch Probability Info pass of LLVM version
3.3, which is an analysis pass available on the LLVM infrastruc-
ture. This heuristic can be implemented in any compiler with
such analysis available, although, results can vary depending on
the obtained probabilities. The objective of this scheme is to
assert if non WCET-centric schemes can be used for WCET re-
duction. This strategy is summarized by Algorithm 2 presented
in Subsection 5.2.1 of Chapter 5.

We did not included in the comparison the approach proposed

7.4. Evaluation of techniques against the perfect predictor 199

in (BURGUIERE et al., 2005), because that technique needs a better
structured program regarding loops than what is generated by our com-
piler. That technique also needs the ability of calculating the WCET
of parts of a program, which is not a feature commonly available in
analyzers.

Table 14 also shows the improvement of each technique in rela-
tion to the all mispredicted column of Table 13.

The results of Table 14 show that all techniques presented sim-
ilar results. Disregarding tied cases, the best results were obtained by
the WCET-aware approach. An interesting result is that the compiler
heuristic obtained more WCET reduction than the WCEP-aware strat-
egy for some benchmarks. This effect can be observed in the examples
crc.c, jfdctint.c and nsichneu.c, which means that the WCEP-aware was
not able to identify the best direction for some branches of the bench-
marks. The Not taken approach was responsible for the worst result,
but still tied in several cases.

Comparing the results against the perfect branch predictor, one
can see that the best results obtained for each benchmark are close to
the WCET calculated considering the perfect case. Figure 41 graphi-
cally shows the WCET reduction in relation to the all-mispredicted case
for the three approaches plus the reduction obtained with the perfect
predictor for all benchmarks. We can see in this graph that the results
obtained with these approaches are so close to the result obtained with
the perfect predictor, that little or none gain can be achieved with the
development of new techniques for static prediction of branches aiming
at WCET reduction.

To better understand the results, we can use the effective zone
(defined in Section 7.2) for each benchmark, and use it to calculate
how far from the optimal prediction each approach is. The results are
shown in Table 15 and were calculated using Equation 7.2. This table
also shows the count of the best results obtained for each technique con-
sidering the used benchmark. The obtained results can also be seen in
Figure 42, which is a graphic representation of Table 15. As we can see,
all approaches exhibited similar optimality percentage. The best result

200 Chapter 7. Contribution 2: On the Use of Static Branch Prediction

was obtained for the WCET-aware, whereas the worst was given by the
Not taken strategy. The second best result was obtained by the WCEP-
aware algorithm. Though, the compiler heuristic presented very good
results when compared with WCET-centered approaches. This result
shows that a simple and fast heuristic can be used as well to reduce the
WCET of applications. The Not taken approach stays approximately
15% below the other approaches. Table 15 also shows which technique
produced the best result for each benchmark. We consider as best
result the technique that achieved greater WCET reduction, which is
marked as bold in the table. Regarding the overall average case, the
technique proposed in this chapter is able to produce better results,
when compared with the other techniques.

Analyzing the results of Table 15 we can see that we obtained
a distinguished difference between WCEP-aware and WCET-aware ap-
proaches considering the jfdctint.c benchmark. The code snippet re-
sponsible for this difference is presented in Code 7.2. In function
jpeg_fdct_islow, we have two loops that have the same number of itera-
tions that is 8. The control flow graph of this piece of code can be seen
in Figure 43. If we apply Algorithm 1 to jdfctint.c, it will encounter a
situation similar to that found in the example from Code 7.1.

This situation is avoided by our approach, because it checks for
any WCET increase along the process. If we consider only execution
counts, some branches can not have the best prediction that is possible.
Figure 43 also shows which flow transfer will be predicted by both
techniques.

The time to run a code generation followed by an optimization
depends on the technique used, the size of the program and the num-
ber of branches. For example, considering small benchmarks such as
fibcall.c, bsort100.c and prime.c, it takes around 0.5 seconds on an or-
dinary desktop computer to execute both our technique and the classic
approach. Although, for bigger benchmarks we can note significant
differences. For example, our technique took around 41 seconds to pro-
cess the adpcm.c benchmark, whereas the classic approach processed
the same code in approximately 4 seconds.

7.5. Conclusion 201

Code 7.2 – Code snippet of jfdctint.c, where DCTSIZE is 8

void j p e g _ f d c t _ i s l o w () {
/∗ . . . ∗ /
i n t c t r ;
/∗ . . . ∗ /
f o r (c t r = DCTSIZE−1; c t r >= 0 ; c t r −−) {

/∗ . . . ∗ /
}
f o r (c t r = DCTSIZE−1; c t r >= 0 ; c t r −−) {

/∗ . . . ∗ /
}

}

7.5 CONCLUSION

Nowadays processors use performance improvement features that
are targeted to the average-case execution time, such as caches, out-
of-order execution, and branch predictors. However, some features are
incompatible with real-time applications due to WCET related issues.
Dynamic branch predictors are an example of such features. They are
difficult to model in WCET analysis, due to characteristics like alias-
ing, on which one branch can interfere with the prediction of another
branch. However, static branch prediction is a processor technology
that is employed to overcome the analyzability problem in the case of
real-time systems. As showed by (BURGUIERE et al., 2005), static
branch predictors outperform simple and analyzable dynamic ones in
terms of WCET bounds, so this chapter focused on the static type of
predictor.

With the use of the perfect branch predictor (COLIN; PUAUT,
2000) concept, applied to a subset of the WCET benchmarks adopted
by the literature, we showed that a very small or even no gain can be
obtained with new techniques targeted to WCET reduction considering

202 Chapter 7. Contribution 2: On the Use of Static Branch Prediction

static branch prediction. This means that the techniques considered in
this chapter are close to an optimal result.

To achieve this conclusion, we evaluated basically four tech-
niques: the classic approach (BODIN; PUAUT, 2005), a new approach
proposed in this chapter, a not taken approach and one compiler heuris-
tic. We proposed a new technique because the classic approach depends
on a change on how the WCET is calculated for a determined program:
a fictional branch instruction behavior can be implemented on the an-
alyzer, which generates penalties for both taken and fall-through desti-
nations, or the integer linear programming constraints which model the
program flow must be changed to make room for these simultaneous
penalties. If we can tune the WCET analyzer to consider mispredic-
tion penalties for both branch targets (taken and fall-through), one can
use the classic approach that is illustrated by Algorithm 1. But, if we
can not change the WCET tool, or it implements the strict hardware
behavior, one can use the technique proposed in this chapter, which is
generalized by Algorithm 9. The handling of loops was another reason
to propose a different technique.

As a secondary result, we showed experimentally that our tech-
nique improved the WCET of more programs, excluding cases of tie,
when more than one technique obtained the same WCET reduction.
We know that our algorithm is a brute-force strategy and has high com-
putational complexity of code generation when compared with alterna-
tive approaches, but it presented the best results. Though, by using
our approach, we can avoid undesirable effects, like that evidenced by
jfdctint.c, where a flow transfer inside of a loop was penalized. We also
obtained very good results using a heuristic that uses information al-
ready available in the compiler about the probability of branches. This
heuristic can be used if the cost of WCET-centered techniques is not
tolerable for application development.

7.5. Conclusion 203

Ta
bl

e
14

–
R

es
ul

ts
of

op
tim

iz
in

g
th

e
su

bs
et

of
be

nc
hm

ar
ks

us
in

g
fiv

e
di

ff
er

en
ta

pp
ro

ac
he

s.
T

he
im

pr
ov

em
en

ti
sc

al
cu

la
te

d
us

in
g

A
ll

m
is

pr
ed

ic
te

d
as

ba
se

lin
e

(T
ab

le
13

).

B
en

ch
m

ar
k

N
ot

ta
ke

n
Im

pr
ov

.
W

C
E

P-
aw

ar
e

Im
pr

ov
.

W
C

E
T-

aw
ar

e
Im

pr
ov

.
H

eu
r.

Im
pr

ov
.

ad
pc

m
.c

19
62

1
5.

43
%

18
99

0
8.

47
%

18
94

1
8.

70
%

19
02

9
8.

28
%

bs
.c

32
0

15
.3

4%
32

0
15

.3
4%

32
0

15
.3

4%
32

0
15

.3
4%

bs
or

t1
00

.c
27

01
56

39
.5

9%
26

95
67

39
.7

2%
26

95
67

39
.7

2%
26

95
67

39
.7

2%
cn

t.c
90

61
17

.4
8%

90
61

17
.4

8%
90

61
17

.4
8%

90
61

17
.4

8%
co

ve
r.c

46
72

18
.8

9%
41

46
28

.0
2%

41
46

28
.0

2%
46

72
18

.8
9%

cr
c.

c
11

76
84

28
.5

6%
11

61
72

29
.4

8%
11

61
56

29
.4

9%
11

61
62

29
.4

9%
du

ff
.c

19
18

2.
44

%
16

24
17

.4
0%

16
24

17
.4

0%
16

24
17

.4
0%

ed
n.

c
97

41
0

17
.6

8%
96

52
8

18
.4

3%
96

52
8

18
.4

3%
96

52
8

18
.4

3%
fa

c.
c

13
36

14
.3

6%
13

26
15

.0
0%

13
26

15
.0

0%
13

26
15

.0
0%

fd
ct

.c
19

70
0.

71
%

19
36

2.
42

%
19

36
2.

42
%

19
36

2.
42

%
fib

ca
ll.

c
65

7
12

.4
0%

57
9

22
.8

0%
57

9
22

.8
0%

57
9

22
.8

0%
in

se
rt

so
rt

.c
26

21
17

.0
8%

26
21

17
.0

8%
26

21
17

.0
8%

26
21

17
.0

8%
ja

nn
e_

co
m

pl
ex

.c
37

41
40

.9
3%

37
41

40
.9

3%
37

41
40

.9
3%

37
41

40
.9

3%
jf

dc
tin

t.c
39

71
1.

54
%

38
14

5.
43

%
37

69
6.

55
%

37
69

6.
55

%
lc

dn
um

.c
89

3
16

.7
8%

89
3

16
.7

8%
89

3
16

.7
8%

89
3

16
.7

8%
m

at
m

ul
t.c

26
83

78
17

.1
5%

26
83

78
17

.1
5%

26
83

78
17

.1
5%

26
83

78
17

.1
5%

nd
es

.c
14

66
16

3.
79

%
14

30
17

6.
15

%
14

30
17

6.
15

%
14

30
65

6.
12

%
ns

.c
24

76
6

15
.9

1%
22

90
0

22
.2

5%
22

90
0

22
.2

5%
22

90
0

22
.2

5%
ns

ic
hn

eu
.c

51
69

8
13

.2
9%

51
76

6
13

.1
7%

51
69

8
13

.2
9%

51
69

8
13

.2
9%

pr
im

e.
c

34
04

9
20

.1
2%

34
04

3
20

.1
3%

34
04

3
20

.1
3%

34
04

9
20

.1
2%

204 Chapter 7. Contribution 2: On the Use of Static Branch Prediction

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

P
erfect

N
ot taken

W
C

E
P

-aw
are

W
C

E
T-aw

are
H

euristic

B
enchm

ark

Improvement

Figure
41

–
B

ar
chartrepresenting

the
W

C
E

T
im

provem
entfor

each
technique

in
relation

to
the

all-m
ispredicted

case.
T

he
W

C
E

T
im

provem
entconsidering

the
perfectpredictoris

also
show

n
forcom

parison
purposes.

7.5. Conclusion 205

Table 15 – Optimality of the five approaches (100% is the optimum).

Benchmark Not taken WCEP-
aware

WCET-
aware

Heur.

adpcm.c 49.76% 77.64% 79.81% 75.92%
bs.c 82.86% 82.86% 82.86% 82.86%
bsort100.c 99.50% 99.83% 99.83% 99.83%
cnt.c 96.68% 96.68% 96.68% 96.68%
cover.c 66.54% 98.72% 98.72% 66.54%
crc.c 90.91% 93.83% 93.86% 93.85%
duff.c 13.68% 97.44% 97.44% 97.44%
edn.c 94.26% 98.23% 98.23% 98.23%
fac.c 92.56% 96.69% 96.69% 96.69%
fdct.c 22.58% 77.42% 77.42% 77.42%
fibcall.c 35.23% 64.77% 64.77% 64.77%
insertsort.c 94.74% 94.74% 94.74% 94.74%
janne_complex.c 97.85% 97.85% 97.85% 97.85%
jfdctint.c 22.06% 77.94% 93.95% 93.95%
lcdnum.c 84.51% 84.51% 84.51% 84.51%
matmult.c 97.56% 97.56% 97.56% 97.56%
ndes.c 52.76% 85.65% 85.65% 85.21%
ns.c 66.81% 93.41% 93.41% 93.41%
nsichneu.c 99.96% 99.10% 99.96% 99.96%
prime.c 99.86% 99.93% 99.93% 99.86%

Count of best re-
sults

7 16 20 15

Figure 42 – Graphic comparison of optimalities of Table 15.

206 Chapter 7. Contribution 2: On the Use of Static Branch Prediction

header 0
ctr >= 0;
 9 times

body 0
/*..*/
ctr--;
/*..*/

 8 times

selected by
 WCET-aware

header 1
ctr >= 0;
 9 times

selected by
 WCEP-aware

body 1
/*..*/
ctr--;
/*..*/

 8 times

Figure 43 – Control flow graph of Table 7.2 showing the selected predic-
tion of each approach. The text inside the boxes shows the
label, operations executed and the number of times that this
basic block execute. The compiler uses different registers for
ctr variable in each loop

207

8 CONTRIBUTION 3: STATIC GAIN POINT IDENTIFICATION
AND GAIN TIME ESTIMATION

8.1 INTRODUCTION

The WCET calculation represents an undecidable problem from
the computational point of view. What is done in practice is to esti-
mate upper bounds on its value, using some conservative assumptions.
One problem of the WCET is that it is relative to one execution path,
called worst-case execution path (WCEP). When a real-time applica-
tion executes over a path different from the WCEP, its execution time
will be certainly smaller than the WCET.

The difference between the WCET of a task and its actual ex-
ecution time is called gain time (AVILA et al., 2003). Traditionally,
gain time identification is performed online by comparing the current
execution time with the statically calculated WCET. Early gain time
identification is useful to:

• Increase the number of soft real-time tasks that can be accepted
at runtime on a system.

• Reduce the power consumption. When a task will not use entirely
its processing budget, a power reduction strategy can be employed
to lower the processor voltage while still guaranteeing that the
task will not overrun its WCET.

In this chapter, we will bring pragmatic answers to the following
questions:

• How to statically discover program points where gain time is avail-
able without code instrumentation/time measurement? For this
intention, we propose a technique that finds specific points of a
program (called gain points), where spare times are available be-
fore code execution. For these points, we calculate the associated
gain times.

208 Chapter 8. Contribution 3: Static Gain Point Identification and Gain Time Estimation

• If we want to use code instrumentation in those previously discov-
ered gain points to exploit gain time relative to hardware timing
imprecision, what is the WCET to be considered until this point?
We must know partial WCET values to use this strategy. Con-
sidering this problem, we also propose a technique to estimate
these partial WCET values.

As this work is targeted to static analysis, we use the term gain
point in a slightly different way from literature. For us, a gain point is
simply a point where gain time is available and not a point where code
instrumentation is injected. All gain points considered in this chapter
are automatically discovered and not selected by a programmer. A
gain point is always located at the end of a basic block. Among all
techniques proposed in this thesis, this is the only that depends solely
on WCET analysis, not in compilation.

The remaining of this chapter is organized as follows: Section
8.2 outlines the related work on gain time. We prefer not to include a
full chapter covering the related work considering gain time because it
represents a small portion of this thesis and is not related to the main
topic, which is compiler optimizations. Section 8.3 shows our approach.
In Section 8.4 we present a case study involving our technique. Finally,
Section 8.5 presents our conclusions and final remarks.

8.2 RELATED WORK

We can separate the works on gain time area in two fields: es-
timation and utilization. On the first field, (AUDSLEY et al., 1994)
introduced the notion of spare time identification using gain points and
further integration with the Slack Stealing algorithm. In this work, the
approach is not integrated with an a WCET analyzer.

Considering WCET analyzer, (AVILA et al., 2003) discusses
three classes of methods that use static analysis and execution mon-
itoring to explore the spare time of an application. Other works in
this field are (HU et al., 2002) (HU et al., 2003), where gain time is
reclaimed from real-time java programs. This work integrates WCET

8.3. Identification of gain time 209

analysis for object-oriented programs and gain time reclaiming using
annotations placed manually in the code.

Regarding the utilization of gain time, researches on mixed crit-
icality systems such as (BATE et al., 2016) depends on the use of gain
time to execute tasks with low criticality. At the moment, no work
aiming at gain time identification using only static analysis of code was
identified in the literature.

8.3 IDENTIFICATION OF GAIN TIME

Our approach operates on the control flow graph of an applica-
tion and modifies its WCET analysis artifacts, which were explained in
detail in Section 5.3. We will explain our technique using the example
of Figure 44.

The first step to identify gain time is to search for basic blocks
that are candidates to have a gain point. We consider as candidates
basic blocks that are out of the WCEP, have a predecessor in WCEP
and have a loop bound equal to 1, as we do not explore gain time in-
side loops. Algorithm 10 summarizes those steps. In this algorithm,
count(bbi) returns the worst-case execution count for a basic block i,
lbi represents the loop bound of i, n_pred(bbi) gives the number of pre-
decessor basic blocks of i and pred(bbi) return the unique predecessor
of i.

Algorithm 10 Algorithm used for gain point identification.
1: procedure FIND_GP(c f g). Search for a gainpoint on a CFG
2: bbgp← nil
3: for all bbi ∈ c f g do
4: if count(bbi) = 0∧ lbi = 1∧n_pred(bbi) = 1) then
5: bb j ← pred(bbi)
6: if count(bb j)≥ 1 then
7: bbgp← bbi
8: break
9: end if

10: end if
11: end for
12: return bbgp
13: end procedure

210 Chapter 8. Contribution 3: Static Gain Point Identification and Gain Time Estimation

start

BB 0
 t=3

end

BB 1
 t=4

BB 2
 t=3

BB 4
 t=6

BB 3
 t=2

BB 8
 t=5

BB 5
 t=7

BB 6
 t=8

BB 7
 t=7

Figure 44 – Control flow graph with a WCEP marked in black.

Figure 45 shows the application of the Algorithm 10 over the
example of Figure 44. As we can see, the basic block selected to contain
a gain point is the basic block 2 (with a thicker border).

With a basic block selected, we can force the WCET analyzer
to include this block on the WCEP, by inserting a constraint to induce
the execution count of this basic block to 1. Algorithm 11 shows this
approach. In this algorithm, construct_ipet_model(c f g) generates an
ILP model with the constraints presented in Section 5.3 of Chapter 5,
get_edge(bb j,bbi) returns the control flow edge between basic blocks
j and i, insert_constraint adds a new constraint to the IPET model,
solve_model solves the problem using an ILP solver, update_counts
updates the worst-case count of each basic block in the CFG and finally

8.3. Identification of gain time 211

start

BB 0
 t=3

end

BB 1
 t=4

BB 2
 t=3

BB 4
 t=6

BB 3
 t=2

BB 8
 t=5

BB 5
 t=7

BB 6
 t=8

BB 7
 t=7

Figure 45 – Control flow graph with a selected basic block (basic block 2,
with a thicker border).

ob jective gives the value of the objective, which is the WCET of the
path that includes the gain point.

Algorithm 11 Algorithm used to force a path over a basic block
1: procedure FORCE_PATH(c f g, bbi). Set predictions to each branch
2: ipet_model← construct_ipet_model(c f g)
3: bb j ← pred(bbi)
4: d j_i← get_edge(bb j,bbi)
5: insert_constraint(ipet_model,d j_i = 1)
6: solve_model(ipet_model)
7: update_counts(CFG, ipet_model)
8: return ob jective(ipet_model)
9: end procedure

212 Chapter 8. Contribution 3: Static Gain Point Identification and Gain Time Estimation

Figure 46 shows the application of the Algorithm 11 over the
example of Figure 45. As we can see, the execution path was changed
to include the selected basic block.

start

BB 0
 t=3

end

BB 1
 t=4

BB 2
 t=3

BB 4
 t=6

BB 3
 t=2

BB 8
 t=5

BB 5
 t=7

BB 6
 t=8

BB 7
 t=7

Figure 46 – Control flow graph with the execution path passing over the
selected block.

To discover the worst-case execution time until the selected basic
block, we must prune the control flow graph to remove all blocks that
are: (1) out of the current WCEP and (2) are executed after the selected
basic block. For the first category, we must remove those basic blocks
with worst-case count equal to 0, i.e., are out of the current WCEP. To
the second category, we can simply remove all basic blocks dominated
by the selected basic block. Algorithm 12 summarizes the explained
approach. In this algorithm, dom represents the concept of dominance

8.3. Identification of gain time 213

previously presented and remove_bb removes a basic block from a CFG
with all associated edges.

Algorithm 12 Algorithm to reduce the control flow graph.
1: procedure PATH_UNTIL_GP(c f g, bb). Reduce the cfg to include basic blocks from entry

to bb
2: for all bbi ∈ c f g do
3: if count(bbi) = 0∨bb dom bbi then
4: remove_bb(c f g,bbi)
5: end if
6: end for
7: ipet_model← construct_ipet_model(c f g)
8: solve_model(ipet_model)
9: return ob jective(ipet_model)

10: end procedure

Figure 47 shows the application of Algorithm 12 to the example
of Figure 46.

start

BB 0
 t=3

end

BB 1
 t=4

BB 2
 t=3

Figure 47 – Reduced control flow graph produced by Algorithm 12.

Finally, Algorithm 13 presents the complete approach to identify
a gain point and its estimated gain time. In this algorithm, the variables
initial_wcet, through_gp_wcet, until_gp_wcet and gaintime represent
the initial calculated WCET, the WCET recalculated passing through
a gain point, the WCET until the gain point and the estimated gain

214 Chapter 8. Contribution 3: Static Gain Point Identification and Gain Time Estimation

time for the discovered gain point (bbgp). do_processor_analysis is an
abstraction of the processor analysis part of a WCET analyzer, where
this approach is supposed to be used.

Algorithm 13 Algorithm for gain time estimation.
1: procedure ESTIMATE_GAINTIME(program)
2: initial_wcet← 0
3: through_gp_wcet← 0
4: until_gp_wcet← 0
5: gaintime← 0
6: bbgp← nill
7: c f g← reconstruct_c f g(program)
8: do_processor_analysis(c f g,Program)
9: ipet_model← construct_ipet_model(c f g)

10: solve_model(ipet_model)
11: update_counts(c f g, ipet_model)
12: initial_wcet← ob jective(ipet_model)
13: bbgp← FIND_GP(c f g)
14: if bbgp 6= nil then
15: through_gp_wcet← FORCE_PATH(c f g,bbgp)
16: until_gp_wcet← 0 PATH_UNTIL_GP(c f g,bbgp)
17: gaintime← initial_wcet− through_gp_wcet
18: end if
19: end procedure

Regarding Algorithm 13, one can note that it discovers only one
gain point in its execution. Although, real programs can have more
than one gain point with different gain times. To overcome this situ-
ation, we can use a data structure to store gain points and iteratively
find all available points, ignoring the already discovered ones. For sim-
plicity, we omitted this part of the strategy.

8.4 CASE STUDY: APPLYING ON AN EXAMPLE FROM THE
MÄLARDALEN BENCHMARKS

We implemented Algorithms 10 to 13 in our WCET analyzer.
As the analyzer constructs only one CFG for the entire program, each
function can appear in different parts of the graph, depending on the
calling context. As consequence, our technique can discover different
gain times for a same program part. As a case study, we present the

8.5. Conclusion 215

gain time obtained by applying our strategy to one benchmark from the
Mälardalen WCET benchmarks suite (GUSTAFSSON; BETTS, 2010).

8.4.1 Results

We selected the benchmark qurt.c because it has a great quantity
of available gain points to explore. Under our experimental infrastruc-
ture, this benchmark obtained a WCET of 41286 clock cycles in a CFG
with 488 basic blocks. The results obtained by our approach are shown
in Figure 48. In this figure, we can note that 96 gain points were iden-
tified (at the end of 96 basic blocks). For each gain point, this figure
shows the WCET until the gain point (until_gp_wcet in Algorithm 13)
and the associated gain time (gaintime in Algorithm 13). We can also
notice in this figure that most gain points have a small gain time avail-
able, but we still have six gain points with reasonable gain times that
can be used. For example, if the execution passes through the bb 35,
at the end of it we will have guaranteed a gain time of of 13000 clocks,
and in the worst case we will arrive at this point after 15000 clocks
counted from the beginning of the execution. Of course, the results
will be different if we apply the method to a different benchmark.

8.5 CONCLUSION

Gain time is the difference between the WCET of a task and its
actual execution time. A common approach is to identify gain time
online by comparing the current measured execution time with the
statically calculated WCET. Early gain time identification is useful to
increase system utilization at runtime and to save system energy, for
example.

We propose in this chapter a strategy to discover gain time using
only WCET analysis techniques. Our approach does not rely on code
instrumentation. At specific gain points of a program, spare times are
available before code execution. To discover spare time before execu-
tion, we use integer linear programming technique to force the WCET
to include paths passing through gain points.

216 Chapter 8. Contribution 3: Static Gain Point Identification and Gain Time Estimation

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

G
ain tim

e
W

C
E

T until the g
ain po

int

B
asic b

locks

Clock cycles

Figure
48

–
G

ain
tim

es
and

W
C

E
T

untilthe
gain

points

8.5. Conclusion 217

As a case study, we applied our technique on a benchmark of the
Mälardalen suite. For the selected example, our technique identified 96
gain points, and calculated the gain time for each of them. In this way,
we provided pragmatic answers for questions related to partial WCET
calculation until gain points. This information is a good thing if we
desire to place code instrumentation on these points. If we want to use
gain time without any code instrumentation, our technique gives the
amount of time that can be used at an automatically-discovered gain
point.

219

9 FINAL REMARKS

The objective of this thesis was to contribute to aspects related
to the compilation for real-time systems, whose primary goal is the
WCET reduction or improvement of aspects related to schedulability.
This thesis demonstrated that the close coupling of a compiler with
a WCET analyzer can benefit both the analysis and synthesis of an
executable program to a deterministic architecture. It is also part of our
objective to support complex real-time systems in both processor and
compiler sides. The complexity of software imposes serious restrictions
on the hardware that can be used. This hardware should have sufficient
capacity to support the system in question, in addition to be subjected
to non-functional project constraints such as cost and energy efficiency.

In order to reach our objective, we followed the academic ten-
dency to using deterministic processors for real-time systems (SCHOE-
BERL, 2009), (SCHOEBERL et al., 2011), (EDWARDS; LEE, 2007).
In this way, we used a deterministic and experimental processor archi-
tecture developed using VHDL in another doctoral work (STARKE,
2016) (STARKE et al., 2017). This architecture is based on the ST231
(STMICROELECTRONICS, 2004) processor, which is a member of
the ST200 series. Such experimental processor architecture has sev-
eral hardware mechanisms that give us performance enhancement and
determinism together, as parallel execution units, code predication,
scratchpad memory and branch prediction.

A new code generator was developed in LLVM as part of the
compiler infrastructure. This code generator was implemented because
the ISA of the supported processor is not covered by any open source
compiler. This code generator implements transformations like pack-
etization, which is used to define which instructions must form each
bundle, respecting all dependencies between instructions. We also im-
plemented a code alignment pass because the architecture requires that
the bundles are aligned in cache. Another pass was implemented to ex-
tract the control flow graph of the application. This graph is useful for
WCET analysis. As linker, we used a custom implementation.

220 Chapter 9. Final Remarks

Considering WCET analysis, we implemented (in a joint effort
with another doctoral work) a WCET analyzer choosing the most ap-
propriate and accurate techniques keeping the basic premise of simplic-
ity of analysis. The chosen techniques basically regards cache analysis,
pipeline analysis and finally worst-case path search. The input for the
WCET analyzer is a compiled and link-edited program, and a CFG.
The CFG is obtained from the compiler, as described above. We used
techniques like data flow analysis for cache access classification and
implicit path enumeration technique for worst-case path discovery.

Regarding our code generator, it is not possible to performWCET-
oriented optimization using LLVM because it isolates the treatment of
each function of a compilation unit. Due to this fact, we cannot op-
timize the program aiming at WCET reduction using the standard
LLVM pass manager because the generated code is only fully material-
ized at the end of the complete process. To overcome this situation, we
implemented two approaches to enable WCET-aware optimizations:

• We modified LLVM to not destroy the data structures for the
machine code generated at the end of the pass manager execu-
tion. This allows us to make any changes to any function and
regenerate the object code file at the end of all LLVM code gen-
eration passes. With this LLVM adaptation, any change at the
machine code level can be done in any function, followed by an
entire object code generation as many times as needed. Using
the previously explained LLVM modification with a WCET tool
integration, we can perform any WCET-oriented optimization in
an iterative way. This approach is inspired in the work of (FALK
et al., 2006).

• The second approach was based on the work of (PUSCHNER
et al., 2013). In this approach we used a tool to select parts of
the program that must be optimized using WCET information as
guidance. This tool shares a database with the compiler that is
used as communication channel. This database stores facts about
the structure of the program and values that specify whether such

221

structure must be touched by an optimization. The tool invokes
the compiler to generate the object code and data used as input
for the WCET analyzer. After that, WCET information is ob-
tained through the WCET analyzer. Using this information, the
planning tool updates the database using optimization heuristics.
This process repeats until the stabilization of the WCET.

Considering our objective and the previously explained infras-
tructure, we made the following contributions:

• The proposition of a different way to perform loop unrolling on
data-dependent loops using code predication targeting WCET
reduction, because existing techniques only consider loops with
fixed execution counts. We also combine our technique with exist-
ing unrolling approaches. We introduced an algorithm that per-
forms this code transformation directly at the machine code level
(or assembly). We also proposed a strategy that selects which
unrolling technique to apply in a per loop basis. For loops with
fixed execution counts, we applied the standard technique that
unrolls loops using unrolling factors that perfectly divide execu-
tion counts to avoid compare and branch instructions. For data
dependent loops, we used our predicated or the branch-based ap-
proach, depending on the case. We observed in the experiments
that the combination of unrolling techniques was able to reduce
the WCET of 18 from 33 benchmarks. For six benchmarks we
obtained gains above 20%. In the experiments, we also showed
that the predicated approach, even with its limited applicability,
can exploit cases where the standard approach fails to get WCET
reduction.

• Considering static branch prediction schemes, we show that a
very small or even no gain can be obtained with new optimiza-
tion techniques targeted to worst-case execution time reduction.
To achieve this conclusion, we evaluated four techniques: the clas-
sic approach (BODIN; PUAUT, 2005), a new approach proposed

222 Chapter 9. Final Remarks

in this thesis, a not taken approach and one compiler heuristic.
We proposed a new technique because the classic depends on a
change on how the WCET is calculated for a determined program.
We compared those techniques against the perfect branch predic-
tor. We also showed experimentally that our technique presented
better results in terms of WCET reduction. As a third contribu-
tion we show that WCET-unaware techniques can also be used
in real-time environments because they present good results and
low complexity.

• We propose a technique that finds specific points of a program
(called gain points, they represent the difference between the
WCET of a task and its actual execution time), where there will
be an amount of statically estimated gain time in case that path
is taken by the execution. The rationale behind this technique
is that the WCET is relative to a single execution path, specifi-
cally the worst-case execution path (WCEP). When a real-time
application executes over a path different from the WCEP, its ex-
ecution time will be probably smaller than the WCET. As a case
study, we present the gain time obtained by applying our strat-
egy to one benchmark from the Mälardalen WCET benchmarks
suite. For the selected example, our technique identified 96 gain
points, and calculated the gain time for each of them.

9.1 PUBLICATIONS

This thesis generated the following publications in journals:

1. Carminati, A., Starke, R. A., & de Oliveira, R. S. Combining
loop unrolling strategies and code predication to reduce the worst-
case execution time of real-time software. Applied Computing and
Informatics. Accepted March 31st, 2017.

DOI: http://doi.org/10.1016/j.aci.2017.03.002

9.1. Publications 223

2. Starke, R. A., Carminati, A., & de Oliveira, R. S. Evaluation
of a low overhead predication system for a deterministic VLIW ar-
chitecture targeting real-time applications. Microprocessors and
Microsystems. Accepted on November 29th, 2016.

DOI: http://doi.org/10.1016/j.micpro.2016.11.017.

3. Starke, R. A., Carminati, A., & de Oliveira, R. S. Evaluating the
Design of a VLIW Processor for Real-Time Systems. ACM Trans
actions on Embedded Computing Systems. Accepted on Decem-
ber 7th, 2015. Publication on Vol. 15, No. 3, Article 46.

DOI: http://dx.doi.org/10.1145/2889490.

Publications in conference proceedings:

1. Starke, R. A., Carminati, A., & de Oliveira, R. S. (2015). In-
vestigating a four-issue deterministic VLIW architecture for real-
time systems. In 2015 IEEE 13th International Conference on
Industrial Informatics (INDIN) (pp. 215–220). Cambrigde - UK,
IEEE.

DOI: http://doi.org/10.1109/INDIN.2015.7281737

Publications in which the doctoral collaborated in the scope of
the research group:

1. De Oliveira, R. S., Carminati, & Starke, R. A. Using an Ad-
versary Simulator to Evaluate Global EDF Scheduling of Sporadic
Task Sets on Multiprocessors. Journal of Parallel and Distributed
Computing, Vol. 74, Issue 10, October 2014, pp. 3037–3044.

DOI: http://doi.org/10.1016/j.jpdc.2014.06.011.

2. De Oliveira, R. S., Carminati, & Starke, R. A. A Necessary Test for
Fixed-Priority Real-Time Multiprocessor Systems based on Lazy-
Adversary Simulation SIMULTECH 2014 – 4th International Con-
ference on Simulated and Modeling Methodologies, Technologies
and Applications. Vienna - Austria, 28-30 August, 2014.

224 Chapter 9. Final Remarks

3. Carminati, A., de Oliveira, R. S. & Friedrich, L. F. Exploring
the Design Space of Multiprocessor Synchronization Protocols for
Real-Time Systems. Journal of Systems Architecture, ISSN: 1383-
7621, 2014.

DOI: http://doi.org/10.1016/j.sysarc.2013.11.010

9.2 SUGGESTIONS OF FUTURE WORK

This work is not exhaustive in terms of the potential of the ex-
perimental infrastructure. We believe that this work can be further
explored in the following aspects:

• Scratchpad memory allocation: we do not perform scratchpad
memory allocation, we simply use this memory to store the stack
of the programs. The application of existent techniques and the
proposition of new ones could help to improve WCET reduction.

• Global instruction scheduling: we used the standard LLVM in-
struction scheduler. due to limited time, we did not explore global
instruction scheduling. However, we believe this is an important
topic to improve the results presented in this work.

• Refinement on the technique proposed in Chapter : we used a
simple heuristic to define unrolling factor. Te use of a more so-
phisticated heuristic will certainly improve the results.

• Estimation of gain time for more benchmarks: as we only done a
proof of concept of our technique, a broad experimental work is
a promising next step of the contribution.

During the development of this work, we observed that LLVM
(Version 3.3) is a highly optimized compiler, although it has some lim-
itations. The first limitation is the lack of global scheduling support
for VLIW architectures. In our original plan, we believed that a VLIW
architecture would not be necessary, but we switched to a VLIW one
due to requirements of the research group. Another limitation (this

9.2. Suggestions of future work 225

limitation is only for us, for LLVM is a positive engineering aspect)
is the highly optimized pass manager, which forced us to implement a
mechanism to keep data structures of all intermediate code of a pro-
gram in memory in order to perform WCET-oriented optimizations.
This mechanism was implemented directly on the code generator and
cannot be directly refactored to the target-independent part of LLVM
due to constructive aspects of the compiler. We consider the these
two commented topics the biggest challenges we observed on the use of
LLVM as a compiler for WCET reduction. Even with those challenges,
we were able to integrate our WCET analyzer with LLVM. With our
implementation, we observed that WCET reduction through compiler
techniques is a viable approach, corroborating similar results that were
obtained in the literature. One difference between our infrastructure
and other infrastructures used by related works is that we only use
custom tools developed in the context of our research group. In this
way, we have the smallest possible set of processor instructions, com-
piler support, boot loader code and WCET analysis support to get a
real-time system running with its worst-case execution time known.

227

BIBLIOGRAPHY

AHO, A. V. et al. Compilers: Principles, Techniques, and Tools. 2. ed. [S.l.]:
Addison Wesley, 2008. 45, 52, 53, 66, 79

ALLEN, J. R. et al. Conversion of control dependence to data dependence.
In: Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages - POPL ’83. New York, New York,
USA: ACM Press, 1983. p. 177–189. ISBN 0897910907. 158

ALT, M. et al. Cache behavior prediction by abstract interpretation. In: Static
Analysis. [S.l.: s.n.], 1996. p. 52–66. 131

AUDSLEY, N. C.; DAVIS, R. I.; BUMS, A. Mechanisms for enhancing the
flexibility and utility of hard real-time systems. Proceedings of the Real-Time
Systems Symposium, p. 12–21, 1994. ISSN 10528725. 14, 208

AVILA, M.; GLAIZOT, M.; PUAUT, I. Impact of automatic gain time
identification on tree-based static WCET analysis. In: Proceeding of the
Worst-Case Execution Time Analysis Workshop WCET. [S.l.: s.n.], 2003. 14,
207, 208

AXER, P. et al. Building timing predictable embedded systems. ACM
Transactions on Embedded Computing Systems, v. 13, n. 4, p. 1–37, feb
2014. ISSN 15399087. 33, 39, 70, 181

BATE, I.; BURNS, A.; DAVIS, R. An Enhanced Bailout Protocol for
Mixed Criticality Embedded Software. IEEE Transactions on Software
Engineering, 2016. ISSN 0098-5589. 209

BATE, I.; REUTEMANN, R. Worst-case execution time analysis for
dynamic branch predictors. Proceedings of the 16th Euromicro Conference
on Real-Time Systems (ECRTS ’04)., 2004. ISSN 1068-3070. 182

BODIN, F.; PUAUT, I. A WCET-Oriented Static Branch Prediction Scheme
for Real Time Systems. In: Proceedings of the 17th Euromicro Conference
on Real-Time Systems (ECRTS’05). [S.l.]: IEEE, 2005. p. 33–40. ISBN
0-7695-2400-1. 14, 95, 96, 97, 182, 202, 221

BURGUIERE, C.; ROCHANGE, C. On the Complexity of Modeling
Dynamic Branch Predictors when Computing Worst-Case Execution Times.
In: Proceedings of the ERCIM/DECOS Workshop On Dependable Embedded
Systems. [S.l.: s.n.], 2007. 182

228 Bibliography

BURGUIERE, C.; ROCHANGE, C.; SAINRAT, P. A Case for Static Branch
Prediction in Real-Time Systems. In: 11th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA’05).
[S.l.]: IEEE, 2005. p. 33–38. ISBN 0-7695-2346-3. 14, 96, 182, 183, 199,
201

CARMINATI, A.; STARKE, R. A.; OLIVEIRA, R. S. de. Combining loop
unrolling strategies and code predication to reduce the worst-case execution
time of real-time software. Journal of Applied Computing and Informatics,
2017. 155, 176

CHARLESWORTH, A. E. An approach to scientific array processing: the
architectural design of the AP-12OB/FPS-164 family. IEEE Computer, p.
18–27, 1981. 158

COLIN, A.; PUAUT, I. Worst Case Execution Time Analysis for a Processor
with Branch Prediction. Real-Time Systems, v. 18, p. 249–274, 2000. 75,
181, 183, 184, 201

COUSOT, P.; COUSOT, R. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints.
In: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages - POPL ’77. New York, New York, USA: ACM
Press, 1977. p. 238–252. 73

CYTRON, R. et al. Efficiently Computing Static Single Assignment Form
and the Control Dependence Graph. ACM Transactions on Programming
Languages and Systems (TOPLAS), v. 13, n. 4, p. 451–490, 1991. 46

DASGUPTA, S. The Organization of Microprogram Stores. ACM Computing
Surveys, v. 11, n. 1, p. 39–65, jan 1979. ISSN 03600300. 58

DEHNERT, J. C.; HSU, P. Y.-T.; BRATT, J. P. Overlapped loop support in
the Cydra 5. ACM SIGARCH Computer Architecture News, v. 17, n. 2, p.
26–38, 1989. ISSN 01635964. 158

DEVERGE, J.-F.; PUAUT, I. WCET-Directed Dynamic Scratchpad Memory
Allocation of Data. In: Proceedings of the 19th Euromicro Conference on
Real-Time Systems (ECRTS’07). [S.l.]: IEEE Computer Society, 2007. p.
179–190. ISBN 0-7695-2914-3. ISSN 1068-3070. 105, 106, 108

EDWARDS, S. A.; LEE, E. A. The case for the precision timed (PRET)
machine. In: Proceedings of the 44th annual conference on Design
automation - DAC ’07. New York, New York, USA: ACM Press, 2007.
p. 264. ISBN 9781595936271. ISSN 0738100X. 34, 39, 219

Bibliography 229

ENGBLOM, J. Processor Pipelines and Static Worst-Case Execution Time
Analysis. Tese (Doutorado) — Faculty of Science and Technology, 2002. 74,
76, 139

ENGBLOM, J.; ERMEDAHL, A. Pipeline timing analysis using a
trace-driven simulator. In: Proceedings Sixth International Conference
on Real-Time Computing Systems and Applications. RTCSA’99 (Cat.
No.PR00306). [S.l.]: IEEE Computer Society, 1999. p. 88–95. ISBN
0-7695-0306-3. 65, 74

ENGBLOM, J.; ERMEDAHL, A. Modeling complex flows for worst-case
execution time analysis. In: Proceedings of the 21st Real-Time Systems
Symposium. [S.l.]: IEEE Computer Society, 2000. p. 163–174. ISBN
0-7695-0900-2. 153

ERMEDAHL, A. A modular tool architecture for worst-case execution time
analysis. Tese (Doutorado) — Uppsala University, 2003. 19, 76, 77

FALK, H. WCET-aware register allocation based on graph coloring.
In: Proceedings of the Design Automation Conference, DAC’09. 46th
ACM/IEEE. [S.l.]: IEEE Computer Society, 2009. p. 732–737. ISBN
9781605584973. 98, 108

FALK, H.; KLEINSORGE, J. C. Optimal static WCET-aware scratchpad
allocation of program code. In: Proceedings of the 46th Annual Design
Automation Conference on ZZZ - DAC ’09. New York, New York, USA:
ACM Press, 2009. p. 732. ISBN 9781605584973. 106, 108

FALK, H.; KOTTHAUS, H. WCET-driven cache-aware code positioning. In:
Proceedings of the 14th international conference on Compilers, architectures
and synthesis for embedded systems - CASES ’11. New York, New York,
USA: ACM Press, 2011. p. 145. ISBN 9781450307130. 40, 101, 104

FALK, H.; LOKUCIEJEWSKI, P. A compiler framework for the reduction
of worst-case execution times. Real-Time Systems, v. 46, n. 2, p. 251–300,
jul 2010. ISSN 0922-6443. 35, 105, 106

FALK, H.; LOKUCIEJEWSKI, P.; THEILING, H. Design of a WCET-
Aware C Compiler. In: Proceedings of the Workshop on Embedded Systems
for Real Time Multimedia. [S.l.]: IEEE Computer Society, 2006. p. 121–126.
ISBN 0-7803-9783-5. 35, 40, 85, 151, 220

FALK, H.; PLAZAR, S.; THEILING, H. Compile-time decided instruction
cache locking using worst-case execution paths. In: Proceedings of the 5th
IEEE/ACM international conference on Hardware/software codesign and

230 Bibliography

system synthesis - CODES+ISSS ’07. New York, New York, USA: ACM
Press, 2007. p. 143. ISBN 9781595938244. 106, 108

FALK, H.; SCHMITZ, N.; SCHMOLL, F. WCET-aware Register Allocation
Based on Integer-Linear Programming. In: Proceedings of the 23rd
Euromicro Conference on Real-Time Systems. [S.l.]: IEEE Computer
Society, 2011. p. 13–22. ISBN 978-1-4577-0643-1. 98, 108

FARINES, J.-M.; FRAGA, J.; OLIVEIRA, R. Sistemas de Tempo Real. [S.l.:
s.n.], 2000. 33

FISHER, J. Trace Scheduling: A Technique for Global Microcode
Compaction. IEEE Transactions on Computers, C-30, n. 7, p. 478–490, jul
1981. ISSN 0018-9340. 55, 57

FISHER, J. A.; FREUDENBERGER, S. M. Predicting conditional branch
directions from previous runs of a program. In: Proceedings of the
fifth international conference on Architectural support for programming
languages and operating systems - ASPLOS-V. New York, New York, USA:
ACM Press, 1992. p. 85–95. ISBN 0897915348. 95, 182

FURBER, S. B. ARM System Architecture. [S.l.]: Addison-Wesley Longman
Publishing, 1996. ISBN 0201403528. 163

GEVA, R.; MORRIS, D. IA-64 Architecture Disclosures White Paper. [S.l.],
1999. 1–20 p. 163

GLOY, N.; SMITH, M. D. Procedure placement using temporal-ordering
information. ACM Transactions on Programming Languages and Systems,
v. 21, n. 5, p. 977–1027, sep 1999. ISSN 01640925. 102

GUILLON, C. et al. Procedure placement using temporal-ordering
information. In: Proceedings of the 2004 international conference on
Compilers, architecture, and synthesis for embedded systems - CASES ’04.
New York, New York, USA: ACM Press, 2004. p. 268. ISBN 1581138903.
102

GUSTAFSSON, J.; BETTS, A. The mälardalen WCET benchmarks: Past,
present and future. In: Proceedings of the 10th International Workshop
on Worst-Case Execution Time Analysis (WCET’10). [S.l.]: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2010. p. 136–146. 23, 173, 174,
196, 197, 198, 215

HANXLEDEN, R. v.; KENNEDY, K. Relaxing SIMD control flow
constraints using loop transformations. ACM SIGPLAN Notices, v. 27, n. 7,
p. 188–199, 1992. ISSN 03621340. 158

Bibliography 231

HEALY, C. et al. Bounding pipeline and instruction cache performance.
IEEE Transactions on Computers, v. 48, n. 1, p. 53–70, 1999. ISSN
00189340. 74

HEALY, C.; WHALEY, D. Tighter timing predictions by automatic detection
and exploitation of value-dependent constraints. In: Proceedings of the Fifth
IEEE Real-Time Technology and Applications Symposium. [S.l.]: IEEE
Computer Society, 1999. p. 79–88. ISBN 0-7695-0194-X. 76

HU, E. Y.-s.; WELLINGS, A.; BERNAT, G. A Novel Gain Time Reclaiming
Framework Integrating WCET Analysis for Object-Oriented Real-Time
Systems. In: In Proceedings of the Second workshop on WCET analysis.
[S.l.: s.n.], 2002. 14, 208

HU, E. Y. S.; WELLINGS, A.; BERNAT, G. Gain time reclaiming in
high performance real-time Java systems. In: Proceedings of the 6th
IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, ISORC 2003. [S.l.: s.n.], 2003. p. 249–256. ISBN 0769519288.
14, 208

HUANG, Y.; ZHAO, M.; XUE, C. J. WCET-aware re-scheduling
register allocation for real-time embedded systems with clustered VLIW
architecture. In: Proceedings of the 13th ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, Tools and Theory for
Embedded Systems - LCTES ’12. New York, New York, USA: ACM Press,
2012. p. 31. ISBN 9781450312127. 35, 99, 108

HWU, W. M. W. et al. The superblock: An effective technique for VLIW
and superscalar compilation. The Journal of Supercomputing, v. 7, n. 1-2, p.
229–248, may 1993. ISSN 0920-8542. 61, 62

JORDAN, A.; KIM, N.; KRALL, A. IR-level versus machine-level
if-conversion for predicated architectures. In: Proceedings of the 10th
Workshop on Optimizations for DSP and Embedded Systems - ODES ’13.
New York, New York, USA: ACM Press, 2013. p. 3. ISBN 9781450319058.
158

LATTNER, C.; ADVE, V. LLVM: A compilation framework for lifelong
program analysis & transformation. In: Proceedings of the International
Symposium on Code Generation and Optimization (CGO’04). [S.l.]: IEEE
Computer Society, 2004. p. 75–86. ISBN 0-7695-2102-9. 116, 197

LEE, S. et al. Limited preemptible scheduling to embrace cache memory in
real-time systems. Languages, Compilers, and Tools for Embedded Systems,
Lecture Notes in Computer Science Volume, Springer Berlin Heidelberg,
Berlin, Heidelberg, v. 1474, p. 51–64, 1998. 131

232 Bibliography

LENGAUER, T.; TARJAN, R. E. A fast algorithm for finding dominators in
a flowgraph. ACM Transactions on Programming Languages and Systems,
v. 1, n. 1, p. 121–141, jan 1979. ISSN 01640925. 129

LI, Y.-T. S.; MALIK, S. Performance analysis of embedded software using
implicit path enumeration. ACM SIGPLAN Notices, v. 30, n. 11, p. 88–98,
nov 1995. ISSN 03621340. 76, 129, 139, 140, 144, 153

LI, Y.-T. S.; MALIK, S.; WOLFE, A. Cache modeling for real-time
software: beyond direct mapped instruction caches. In: Proceedings of the
17th IEEE Real-Time Systems Symposium. [S.l.]: IEEE Computer Society,
1996. p. 254–263. ISBN 0-8186-7689-2. 76, 145

LIANG, Y.; MITRA, T. Improved procedure placement for set associative
caches. In: Proceedings of the 2010 international conference on Compilers,
architectures and synthesis for embedded systems - CASES ’10. New York,
New York, USA: ACM Press, 2010. p. 147. ISBN 9781605589039. 102

LIU, C. L.; LAYLAND, J. W. Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment. Journal of the ACM, v. 20, n. 1, p. 46–61,
jan 1973. ISSN 00045411. 35

LIU, I. et al. A PRET microarchitecture implementation with repeatable
timing and competitive performance. In: Proceedings of the 30th
International Conference on Computer Design (ICCD). [S.l.]: IEEE
Computer Society, 2012. p. 87–93. ISBN 978-1-4673-3052-7. 39

LOKUCIEJEWSKI, P.; FALK, H. WCET-driven, code-size critical
procedure cloning. In: Proceedings of the 11th international workshop on
Software & compilers for embedded systems. [S.l.]: ACM Press, 2008. 85,
108

LOKUCIEJEWSKI, P.; FALK, H.; MARWEDEL, P. WCET-driven
Cache-based Procedure Positioning Optimizations. In: Proceedings of
the Euromicro Conference on Real-Time Systems. [S.l.]: IEEE Computer
Society, 2008. p. 321–330. ISBN 978-0-7695-3298-1. 102, 103, 108

LOKUCIEJEWSKI, P.; GEDIKLI, F.; MARWEDEL, P. Accelerating
WCET-driven Optimizations by the Invariant Path Paradigm. In: Proceedings
of the 12th International Workshop on Software & Compilers for Embedded
Systems. [S.l.]: ACM Press, 2009. 81, 89

LOKUCIEJEWSKI, P.; KELTER, T.; MARWEDEL, P. Superblock-Based
Source Code Optimizations for WCET Reduction. In: Proceedings of
the 10th IEEE International Conference on Computer and Information

Bibliography 233

Technology. [S.l.]: IEEE Computer Society, 2010. p. 1918–1925. ISBN
978-1-4244-7547-6. 40, 87, 108

LOKUCIEJEWSKI, P.; MARWEDEL, P. Combining Worst-Case Timing
Models, Loop Unrolling, and Static Loop Analysis for WCET Minimization.
In: Proceedings of the21st Euromicro Conference on Real-Time Systems.
[S.l.]: IEEE Computer Society, 2009. p. 35–44. ISBN 978-0-7695-3724-5.
40, 108

LOKUCIEJEWSKI, P.; MARWEDEL, P. Worst-case execution time aware
compilation techniques for real-time systems. [S.l.]: Springer Science &
Business Media, 2010. 13, 88, 108, 156, 157, 169, 171, 175, 176, 177

LOKUCIEJEWSKI, P.; MARWEDEL, P. Worst-Case Execution Time Aware
Compilation Techniques for Real- Time Systems. [S.l.: s.n.], 2011. ISBN
9789048199280. 35, 39, 40, 54, 70, 79, 81, 90, 93, 108, 194

LOUISE, S. Improving branch prediction related WCET abstract
interpretation. Proceedings of the 1st International Workshop on Cyber-
Physical Systems, Networks, and Applications (CPSNA’11), Workshop Held
During RTCSA 2011, v. 2, p. 130–133, 2011. ISSN 1533-2306. 182

MAKHORIN, A. GLPK (GNU linear programming kit). 2008. 149

MARREF, A.; BETTS, A. Memory Positioning of Real-Time Code for
Smaller Worst-Case Execution Times. In: Proceedings of the 16th IEEE
International Conference on Engineering of Complex Computer Systems.
[S.l.]: IEEE Computer Society, 2011. p. 23–32. ISBN 978-1-61284-853-2.
104, 108

MEZZETTI, E.; VARDANEGA, T. A rapid cache-aware procedure
positioning optimization to favor incremental development. In: Proceedings
of the IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS). [S.l.]: IEEE Computer Society, 2013. p. 107–116. ISBN
978-1-4799-0187-6. 104, 108

MUCHNICK, S. Advanced compiler design and implementation. San
Francisco: Morgan Kaufmann, 1997. 49

MUELLER, F.; WHALLEY, D. Fast instruction cache analysis via static
cache simulation. In: Proceedings of Simulation Symposium. IEEE Comput.
Soc. Press, 1995. p. 105–114. ISBN 0-8186-7091-6. Disponível em:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=393589>.
131

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=393589

234 Bibliography

OTTOSSON, G.; SJODIN, M. Worst-case execution time analysis for
modern hardware architectures. In: Proceedings of the ACM SIGPLAN
Workshop on Languages, Compilers and Tools for Real-Time Systems. [S.l.]:
ACM Press, 1997. 139

PATTERSON, D. A.; LEW, K.; TUCK, R. Towards an efficient,
machine-independent language for microprogramming. In: Proceedings of
the 12th annual workshop on Microprogramming. [S.l.]: ACM Press, 1979.
p. 22–35. 58

PATTERSON, J. R. C. Accurate static branch prediction by value range
propagation. ACM SIGPLAN Notices, v. 30, n. 6, p. 67–78, jun 1995. ISSN
03621340. 95, 182

PLAZAR, S. et al. WCET-driven branch prediction aware code positioning.
In: Proceedings of the 14th international conference on Compilers,
architectures and synthesis for embedded systems (CASES’11). New York,
New York, USA: ACM Press, 2011. p. 165. ISBN 9781450307130. 182

POP, S.; YAZDANI, R.; NEILL, Q. Improving GCC’s auto-vectorization
with if-conversion and loop flattening for AMD’s Bulldozer processors. In:
Proceedings of the GCC Developers’ Summit 2010. [S.l.: s.n.], 2010. 158

PRANTL, A.; SCHORDAN, M.; KNOOP, J. TuBound-a conceptually
new tool for worst-case execution time analysis. In: Proceedings of the
8th International Workshop on Worst-Case Execution Time Analysis. [S.l.]:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2008. 85

PUAUT, I. WCET-Centric Software-controlled Instruction Caches for Hard
Real-Time Systems. In: Proceedings of the 18th Euromicro Conference on
Real-Time Systems (ECRTS’06). [S.l.]: IEEE Computer Society, 2006. p.
217–226. ISBN 0-7695-2619-5. 106, 108

PUSCHNER, P. et al. The T-CREST approach of compiler and
WCET-analysis integration. In: Proceedings of the 16th IEEE
International Symposium on Object/component/service-oriented Real-time
distributed Computing (ISORC 2013). [S.l.: s.n.], 2013. p. 1–8. ISBN
978-1-4799-2111-9. 151, 152, 220

SCHNEIDER, J.; FERDINAND, C. Pipeline behavior prediction for
superscalar processors by abstract interpretation. In: Proceedings of the
ACM SIGPLAN 1999 workshop on Languages, compilers, and tools for
embedded systems - LCTES ’99. New York, New York, USA: ACM Press,
1999. p. 35–44. ISBN 1581131364. 73

Bibliography 235

SCHOEBERL, M. Time-Predictable Computer Architecture. EURASIP
Journal on Embedded Systems, v. 2009, p. 1–17, 2009. ISSN 1687-3955. 34,
219

SCHOEBERL, M. et al. Towards a Time-predictable Dual-Issue
Microprocessor: The Patmos Approach. In: LUCAS, P. et al. (Ed.). Bringing
Theory to Practice: Predictability and Performance in Embedded Systems.
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2011. (OpenAccess Series in Informatics (OASIcs), v. 18), p. 11–21. ISBN
978-3-939897-28-6. ISSN 2190-6807. 34, 219

SCO. System V Application Binary Interface - DRAFT. [S.l.], 2013. 128

SMITH, J. E. A study of branch prediction strategies. In: Proceedings of
the 8th annual symposium on Computer Architecture. [S.l.: s.n.], 1981. p.
135–148. ISBN 1581130589. 182

SREEDHAR, V. C.; GAO, G. R. A linear time algorithm for placing
φ -nodes. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. New York, New York, USA: ACM
Press, 1995. p. 62–73. ISBN 0897916921. 123

STAPPERT, F.; ALTENBERND, P. Complete worst-case execution time
analysis of straight-line hard real-time programs. Journal of Systems
Architecture, v. 46, n. 4, p. 339–355, jan 2000. ISSN 13837621. 76

STAPPERT, F.; ERMEDAHL, A.; ENGBLOM, J. Efficient longest
executable path search for programs with complex flows and pipeline effects.
In: Proceedings of the international conference on Compilers, architecture,
and synthesis for embedded systems - CASES ’01. New York, New York,
USA: ACM Press, 2001. p. 132. ISBN 1581133995. 76

STARKE, R. A. Design and evaluation of a VLIW processor for real-time
systems. Tese (Doutorado) — Federal University of Santa Catarina, 2016.
23, 41, 109, 219, 241, 246

STARKE, R. A.; CARMINATI, A.; OLIVEIRA, R. S. D. Evaluating the
Design of a VLIW Processor for Real-Time Systems. ACM Transactions on
Embedded Computing Systems, v. 15, n. 3, p. 1–26, 2016. ISSN 15399087.
111

STARKE, R. A.; CARMINATI, A.; OLIVEIRA, R. S. D. Evaluation of a
low overhead predication system for a deterministic VLIW architecture
targeting real-time applications. Microprocessors and Microsystems, v. 49,
p. 1–8, 2017. 109, 219

236 Bibliography

STMICROELECTRONICS. ST231 Core and Instruction Set Architecture
Manual. [S.l.]: MCDT Documentation Group, 2004. 109, 219

SUHENDRA, V.; MITRA, T.; ROYCHOUDHURY, A. WCET Centric
Data Allocation to Scratchpad Memory. In: Proceedings of the 26th IEEE
International Real-Time Systems Symposium (RTSS’05). [S.l.]: IEEE
Computer Society, 2005. p. 223–232. ISBN 0-7695-2490-7. 105, 106, 108

THEILING, H. ILP-based interprocedural path analysis. Lecture Notes in
Computer Science, v. 2491, p. 349–363, 2002. 76

THESING, S. Safe and Precise WCET Determination by Abstract
Interpretation of Pipeline Models Dissertation. Tese (Doutorado) —
Universität des Saarlandes, 2004. 73

THIELE, L.; WILHELM, R. Design for Timing Predictability. Real-Time
Systems, Kluwer Academic Publishers, Norwell, MA, USA, v. 28, n. 2-3, p.
157–177, nov 2004. ISSN 0922-6443. 37

UNGERER, T. et al. Merasa: Multicore Execution of Hard Real-Time
Applications Supporting Analyzability. IEEE Micro, v. 30, n. 5, p. 66–75,
sep 2010. ISSN 0272-1732. 39

WAN, Q.; WU, H.; XUE, J. WCET-aware data selection and allocation for
scratchpad memory. In: Proceedings of the 13th ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, Tools and Theory for
Embedded Systems - LCTES ’12. New York, New York, USA: ACM Press,
2012. p. 41. ISBN 9781450312127. 106, 108

WILHELM, R. et al. Memory Hierarchies, Pipelines, and Buses for Future
Architectures in Time-Critical Embedded Systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, v. 28, n. 7, p.
966–978, jul 2009. ISSN 0278-0070. 70

WILHELM, R. et al. The worst-case execution-time problem–overview of
methods and survey of tools. ACM Transactions on Embedded Computing
Systems, v. 7, n. 3, p. 1–53, apr 2008. ISSN 15399087. 19, 34, 35, 67, 68,
69, 75, 182, 186

WILLIAM, L.; BARBARA, G. Pointer-induced aliasing: a problem
taxonomy. In: Proceedings of the 18th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. [S.l.]: ACM Press, 1991. 66, 126

ZHAO, W. et al. Improving WCET by applying worst-case path
optimizations. Real-Time Systems, v. 34, n. 2, p. 129–152, jun 2006. ISSN
0922-6443. 13, 40, 79, 91, 92, 108, 156, 157, 176

Bibliography 237

ZHAO, W. et al. Improving WCET by applying a WC code-positioning
optimization. ACM Transactions on Architecture and Code Optimization,
v. 2, n. 4, p. 335–365, dec 2005. ISSN 15443566. 40, 100, 108

Annex

241

ANNEX A – INSTRUCTIONS OF THE TARGET
ARCHITECTURE

Operand Encoding Bits Type

bcond 25..23 Predicate ($br)
bdest 20..18 Predicate ($br)
btarg 22..0 Immediate
dest 17..12 Register ($r)
idest 11..6 Register ($r)
isrc2 20..12 Immediate
scond 23..21 Predicate ($br)
src1 5..0 Register ($r)
src2 11..6 Register ($r)
pc Program counter

Table 16 – List of operation operands (STARKE, 2016)

Mnemonic Semantic

ADD dest = signext32 (src1) + signext32 (src2)
ADD_I idest = signext32 (src1) + signext32 (isrc2)
SUB dest = signext32 (src1) - signext32 (src2)
SUB_I idest = signext32 (src1) - signext32 (isrc2)
SHL dest = signext32 (src1) � src2 (4..0)
SHL_I idest = signext32 (src1) � signext32 (isrc2

(4..0))
SHR dest = signext32 (src1) � src2 (4..0)
SHR_I idest = signext32 (src1) � signext32 (isrc2

(4..0))
SHRU dest = signext32 (src1) � src2 (4..0)
SHRU_I idest = signext32 (src1) � signext32 (isrc2

(4..0))
AND dest = signext32 (src1) & signext32 (src2)

242 ANNEX A. Instructions of the target architecture

AND_I idest = signext32 (src1) & signext32 (isrc2)
ANDC dest = signext32 (src1) & signext32 (src2)
ANDC_I idest = signext32 (src1) & signext32 (isrc2)
OR dest = signext32 (src1) | signext32 (src2)
OR_I idest = signext32 (src1) | signext32 (isrc2)
ORC dest = signext32 (src1) | signext32 (src2)
ORC_I idest = signext32 (src1) | signext32 (isrc2)
XOR dest = signext32 (src1) ^signext32 (src2)
XOR_I idest = signext32 (src1) ^signext32 (isrc2)
MAX dest = signext32 (src1) > signext32 (src2) ?

src1 : src2
MAX_I idest = signext32 (src1) > signext32 (isrc2) ?

src1 : isrc2
MAXU dest = zeroext32 (src1) > zeroext32 (src2) ?

src1 : src2
MAXU_I idest = zeroext32 (src1) > zeroext32 (isrc2) ?

src1 : isrc2
MIN dest = signext32 (src1) <signext32 (src2) ?

src1 : src2
MIN_I idest = signext32 (src1) <signext32 (isrc2) ?

src1 : isrc2
MINU dest = zeroext32 (src1) <zeroext32 (src2) ?

src1 : src2
MINU_I idest = zeroext32 (src1) <zeroext32 (isrc2) ?

src1 : isrc2
SXTB idest = signext32 (src1(7..0))
SXTH idest = signext32 (src1(15..0))
ZXTB idest = zeroext32 (src1(7..0))
ZXTH idest = zeroext32 (src1(15..0))
ADDCG dest = signext32 (src1) + signext32 (src2) +

zeroext1(scond) ; bdest = carry bit
SUBCG dest = signext32 (src1) - signext32 (src2) +

zeroext1(scond) – 1 ; bdest = carry bit

243

CMPEQ_R dest(1) = signext32 (src1) == signext32
(src2)

CMPEQ_B bdest = signext32 (src1) == signext32 (isrc2)
CMPEQ_IR dest(1) = signext32 (src1) == signext32

(isrc2)
CMPEQ_IB bdest = signext32 (src1) == signext32 (isrc2)
CMPNE_R dest(1) = signext32 (src1) == signext32

(src2)
CMPNE_B bdest = signext32 (src1) != signext32 (isrc2)
CMPNE_IR dest(1) = signext32 (src1) != signext32

(isrc2)
CMPNE_IB bdest = signext32 (src1) != signext32 (isrc2)
CMPGE_R dest(1) = signext32 (src1) >= signext32

(src2)
CMPGE_B bdest = signext32 (src1) >= signext32 (isrc2)
CMPGE_IR dest(1) = signext32 (src1) >= signext32

(isrc2)
CMPGE_IB bdest = signext32 (src1) >= signext32 (isrc2)
CMPGEU_R dest(1) = zeroext32 (src1) >= zeroext32

(src2)
CMPGEU_B bdest = zeroext32 (src1) >= zeroext32 (isrc2)
CMPGEU_IR dest(1) = zeroext32 (src1) >= zeroext32

(isrc2)
CMPGEU_IB bdest = zeroext32 (src1) >= zeroext32 (isrc2)
CMPGT_R dest(1) = signext32 (src1) > signext32 (src2)
CMPGT_B bdest = signext32 (src1) > signext32 (isrc2)
CMPGT_IR dest(1) = signext32 (src1) > signext32 (isrc2)
CMPGT_IB bdest = signext32 (src1) > signext32 (isrc2)
CMPGTU_R dest(1) = zeroext32 (src1) > zeroext32 (src2)
CMPGTU_B bdest = zeroext32 (src1) > zeroext32 (isrc2)
CMPGTU_IR dest(1) = zeroext32 (src1) > zeroext32 (isrc2)
CMPGTU_IB bdest = zeroext32 (src1) > zeroext32 (isrc2)
CMPLE_R dest(1) = signext32 (src1) <= signext32

(src2)

244 ANNEX A. Instructions of the target architecture

CMPLE_B bdest = signext32 (src1) <= signext32 (isrc2)
CMPLE_IR dest(1) = signext32 (src1) <= signext32

(isrc2)
CMPLE_IB bdest = signext32 (src1) <= signext32 (isrc2)
CMPLEU_R dest(1) = zeroext32 (src1) <= zeroext32

(src2)
CMPLEU_B bdest = zeroext32 (src1) <= zeroext32 (isrc2)
CMPLEU_IR dest(1) = zeroext32 (src1) <= zeroext32

(isrc2)
CMPLEU_IB bdest = zeroext32 (src1) <= zeroext32 (isrc2)
CMPLT_R dest(1) = signext32 (src1) <signext32 (src2)
CMPLT_B bdest = signext32 (src1) <signext32 (isrc2)
CMPLT_IR dest(1) = signext32 (src1) <signext32 (isrc2)
CMPLT_IB bdest = signext32 (src1) <signext32 (isrc2)
CMPLTU_R dest(1) = zeroext32 (src1) <zeroext32 (src2)
CMPLTU_B bdest = zeroext32 (src1) <zeroext32 (isrc2)
CMPLTU_IR dest(1) = zeroext32 (src1) <zeroext32 (isrc2)
CMPLTU_IB bdest = zeroext32 (src1) <zeroext32 (isrc2)
ANDL_R dest(1) = zeroext32 (src1) && zeroext32

(src2)
ANDL_B bdest = zeroext32 (src1) && zeroext32 (isrc2)
ANDL_IR dest(1) = zeroext32 (src1) && zeroext32

(isrc2)
ANDL_IB bdest = zeroext32 (src1) && zeroext32 (isrc2)
NANDL_R dest(1) = (zeroext32 (src1) && zeroext32

(src2))
NANDL_B bdest = (zeroext32 (src1) && zeroext32

(isrc2))
NANDL_IR dest(1) = (zeroext32 (src1) && zeroext32

(isrc2))
NANDL_IB bdest = (zeroext32 (src1) && zeroext32

(isrc2))
NORL_R dest(1) = (zeroext32 (src1) || zeroext32

(src2))

245

NORL_B bdest = (zeroext32 (src1) || zeroext32
(isrc2))

NORL_IR dest(1) = (zeroext32 (src1) || zeroext32
(isrc2))

NORL_IB bdest = (zeroext32 (src1) || zeroext32
(isrc2))

ORL_R dest(1) = zeroext32 (src1) || zeroext32 (src2)
ORL_B bdest = zeroext32 (src1) || zeroext32 (isrc2)
ORL_IR dest(1) = zeroext32 (src1) || zeroext32 (isrc2)
ORL_IB bdest = zeroext32 (src1) || zeroext32 (isrc2)
SLCT_R dest = (scond == 1 ? src1 : src2)
SLCT_I dest = (scond == 1 ? src1 : isrc2)
SLCTF_R dest = (scond == 0 ? src1 : src2)
SLCTF_I dest = (scond == 0 ? src1 : isrc2)
BR pc = (scond == 1 ? signext32 (pc) +

signext32 (btarg))
BRF pc = (scond == 0 ? signext32 (pc) +

signext32 (btarg))
MULL Dest = (32 lower bits) signext32 (src1) *

signext32 (src2)
MULL64H Dest = (32 higher bits) signext32 (src1) *

signext32 (src2)
MULL64HU Dest = (32 higher bits) signext32 (src1) *

signext32 (src2)
DIV_R dest = signext32 (src1) % signext32 (src2)
DIV_Q dest = signext32 (src1) / signext32 (src2)
DIV_RU dest = zeroext32 (src1) % zeroext32 (src2)
DIV_QU dest = zeroext32 (src1) / zeroext32 (src2)
CALL pc = src1 R63 = pc
ICALL pc = btarg R63 = pc
GOTO pc == signext32 (pc) + signext32 (btarg)
IGOTO pc = signext32 (pc) + signext32 (btarg)
IMML imm for previous operation is:

signext32(btarg � 9 + isrc2)

246 ANNEX A. Instructions of the target architecture

IMMR imm for next operation is: signext32(btarg
� 9 + isrc2)

LDW idest = signext32 (mem [signext32 (src1) +
signext32 (isrc2))

LDH idest = signext32(mem [signext32 (src1) +
signext32 (isrc2) (15..0))

LDHU idest = mem [signext32 (src1) + signext32
(isrc2) (15..0)

LDB idest = signext32(mem [signext32 (src1) +
signext32 (isrc2) (7..0))

LDBU idest = mem [signext32 (src1) + signext32
(isrc2) (7..0)

STW mem [signext32 (src1) + signext32 (isrc2)) =
src2

STH mem [signext32 (src1) + signext32 (isrc2)) =
src2 (15..0)

STB mem [signext32 (src1) + signext32 (isrc2)) =
src2 (7..d0)

HALT halt the cpu
PAR_ON enable predication complete mode
PAR_OFF disable predication complete mode
PRELD direct next branch to (signext32 (pc) +

signext32 (btarg))

Table 17 – List of supported operations (STARKE, 2016)

	Title page
	Approval
	Epigraph
	Acknowledgements
	Abstract
	Resumo expandido
	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations and Acronyms
	Introduction
	Basic concepts and motivation
	Current scenario
	Objective of this Thesis
	Original contributions
	Organization of the text

	Compilation
	General aspects
	Dataflow analysis
	Code generation
	Instruction selection
	Register allocation
	Instruction scheduling

	Chapter summary

	WCET analysis
	Basic Concepts
	Main existing approaches
	Static approach for WCET estimation
	Value analysis
	Processor behavior analysis
	Worst-case calculation or path search

	Chapter summary

	Optimizations for WCET reduction
	Dealing with WCEP switches
	Characteristics exploited by otimizations
	Otimizations to reduce WCET
	At source code level
	At assembly level
	Through code layout
	Through scratchpad allocation

	Chapter summary

	Experimentation infrastructure
	Architecture and reference processor
	Registers
	Instructions
	Branch prediction instructions
	Predicated execution of instructions

	Processor organization
	Instruction coding
	Procedure calling conventions

	Code generation for the reference architecture
	Back-end support
	Code Linking

	WCET Analysis
	Instruction cache analysis
	Reachable and effective abstract state
	Cache accesses classification

	Pipeline Analysis
	Worst-case path search
	ILP Constraints

	Enabling WCET Reduction Schemes
	Approach 1: Back-end adaptation To Use WCET Information
	Approach 2: Code Optimizations Guided by an External Planning Tool

	Chapter Summary

	Contribution 1: Combining Loop Unrolling Strategies and Code Predication
	Introduction
	Summary of Related Work
	Motivation
	Our loop unrolling approach
	Example
	Combining Loop Unrolling techniques
	Ensuring WCET reduction by unrolling factor selection

	Evaluation
	Implementation aspects

	Results
	Conclusion

	Contribution 2: On the Use of Static Branch Prediction
	Introduction
	The perfect branch predictor approach
	A new technique to reduce WCET using branch prediction
	Considerations on the classic approach
	The proposed technique

	Evaluation of techniques against the perfect predictor
	Results

	Conclusion

	Contribution 3: Static Gain Point Identification and Gain Time Estimation
	Introduction
	Related work
	Identification of gain time
	Case study: applying on an example from the, Mälardalen benchmarks
	Results

	Conclusion

	Final Remarks
	Publications
	Suggestions of future work

	Bibliography
	Annex
	Instructions of the target architecture

