
Vı́tor Rodrigues

Semantics-based Program Verification: an
Abstract Interpretation Approach

Doctoral Program in Computer Science

of the Universities of Minho, Aveiro and Porto

Dezembro de 2012

Vı́tor Rodrigues

Semantics-based Program Verification: an
Abstract Interpretation Approach

Thesis submitted to Faculty of Sciences of the University of Porto
for the Doctor Degree in Computer Science within the Joint Doctoral Program in

Computer Science of the Universities of Minho, Aveiro and Porto

Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Dezembro de 2012

To my Family

3

Acknowledgments

First of all, I would like to give thanks to my supervisors Simão Melo de Sousa and Mário
Florido for all the help. Our objective to extend the use of worst-case execution time
(WCET) analysis based on abstract interpretation to the verification of mobile embedded
real-time software has revealed itself a great and unexplored challenge, from both formal and
technical points of view, and the fact that we have published one paper for each particular
branch of research was of great satisfaction for the three of us.

I am truly grateful for the technical contributions given by João Pedro Pedroso in the
verification of linear programming and for the dedication of Benny Akesson in helping us
finding an efficient use timing abstractions in the analysis of multicore architectures with
shared resources. I am also grateful to David Pereira and Michael Jabobs for their patience
and frutiful discussions.

The thesis would not have been the same without the intellectual environment provided by
Compiler Design Lab, at the University of Saarbrücken, Germany. There, I had the honor
to meet Prof. Reinhard Wilhelm and his team of PhD students and colleagues, in particular
Jan Reineke. My stay in Saarbrücken for the period of three months was the starting point
for the design and implementation of our WCET analysis in multicore architectures.

This dissertation is the result of my own work and includes nothing which is the direct
outcome of work done by others.

I hereby declare that this dissertation is not substantially the same as any I have submitted
for a degree or diploma or any other qualification at any other university. I further state
that no part of my dissertation has already been, or is being currently submitted for any
such degree, diploma or other qualification.

4

Abstract

Modern real-time systems demand safe determination of bounds on the execution times
of programs. To this purpose, program execution for all possible combinations of input
values is impracticable. Alternatively, static analysis methods provide sound and efficient
mechanisms for determining execution time bounds, regardless of knowledge on input data.
We present a calculational and compositional development of a functional static analyzer
using the theory of abstract interpretation. A particular instantiation of our data flow
framework was created for the static analysis of the worst-case execution time (WCET) of a
program. The entire system is implemented in Haskell, with the objective to take advantages
of the declarative features of the language for a simpler and more robust specification of the
underlying concepts.

The target platform for program analysis is the ARM9 microprocessor platform, commonly
used in many embedded systems. The verification of embedded programs is performed
directly in the compiled assembly code and uses the WCET as the safety parameter. We reuse
the notion of certificate in the context of Abstract-Carrying Code (ACC) and extend this
framework with a verification mechanism for linear programming (LP) using the certifying
properties of duality theory. On the other hand, our objective is also to provide some degree
of WCET verification at source-code level. Since the information about the WCET can only
be computed at machine-code level, we have defined a back-annotation mechanism that is
based in compiler debug information and was designed to be compiler-independent and used
in a transparent and modular way.

The WCET analysis is extended to multicore architectures with shared resources by applying
the latency-rate (LR) server model to obtain sound upper-bounds of execution times of
programs sharing resources. The soundness of the approach is proven with respect to a
calculational fixpoint semantics for multicores, which is able to express all possible sequential
ways of accessing shared resources. Experimental results show that the loss in precision
introduced by the LR model is about 10% on average and is fairly compensated by the gain
in analysis time, which is above 99%.

5

Resumo

Os sistemas de tempo-real atuais baseiam-se em estimativas sobre o tempo de execução
dos programas. Para este fim, a execução de todas as posśıveis combinações de dados
de entrada do programa é impraticável. Em alternativa, os métodos de análise estática
proporcionam mecanismos corretos e eficientes para determinar estimativas sobre o tempo
de execução, independentemente dos dados de entrada. Nesta dissertação, é apresentado
um analisador estático, concebido através de um método de cálculo composicional baseado
em interpretação abstrata. A análise estática do worst-case execution time (WCET) de um
program é definida como uma instanciação particular da nossa plataforma de análise de
“dataflow”. O protótipo foi desenvolvido usando a linguagem Haskell com o objetivo de
tirar partido das suas carateŕısticas declarativas, para assim obter uma especificação mais
simples e robusta dos conceitos envolvidos.

A plataforma de hardware escolhida para a análise de programas é a plataforma ARM9,
a qual é muito comum em sistemas embebidos. A verificação de programas embebidos é
efetuada diretamente no código compilado “assembly” e usa o WCET como parâmetro de se-
gurança. É reutilizada a noção de certificado no contexto da plataforma “Abstract-Carrying
Code” (ACC), a qual é estendida com um mecanismo de verificação para programação linear
(PL) baseado na teoria dual associada a PL. É também promovido o uso do WCET para
verificação dos tempos de execução diretamente no código fonte. Para este efeito, é definido
um mecanismo de “back-annotation” que se baseia na informação de “debug” produzida
pelo compilador.

A análise do WCET suporta também arquiteturas “multicore” ao aplicar o modelo de
“latency-rate (LR) servers”, o qual permite obter estimativas corretas sobre o tempo de
execução de programas que partilham recursos. A prova de correção desta abordagem é feita
em relação à semântica de pontos-fixos para “multicores”, a qual é capaz de expressar todos
os modos nos quais os recursos partilhados podem eventualmente ser acedidos. Resultados
experimentais demonstram que a perda de precisão introduzida pelo modelo LR é cerca de
10% em média, mas é em grande medida compensada pelo ganho no tempo de análise, o
qual é superior a 99%.

6

Contents

Abstract 5

Resumo 6

1 Introduction 11

1.1 Abstract-Carrying Code . 13

1.2 Fixpoint Semantics . 14

1.3 Back-annotations . 15

1.4 Contributions . 16

2 Denotational Semantics 19

2.1 Domain Theory . 20

2.2 Fixpoints . 22

2.3 Two-Level Denotational Meta-Language . 25

3 Abstract Interpretation 27

3.1 Abstract Values . 28

3.2 Abstract Semantics . 29

3.3 Abstract Interpretation of Basic Program Units 30

3.4 Galois Connections . 33

3.5 Lifting Galois connections at Higher-Order 37

3.6 Fixpoint Induction Using Galois Connections 37

3.7 Fixpoint Abstraction Using Galois Connections 38

7

4 Worst-Case Execution Time 39

5 Generic Data Flow Framework 43

5.1 Fixpoint Semantics . 44

5.1.1 Declarative Approach . 45

5.2 Meta-Language . 56

5.2.1 Declarative Approach . 57

5.3 Intermediate Graph Language . 66

5.3.1 Declarative Approach . 67

5.4 Summary . 71

6 WCET Analyzer 72

6.1 Target Platform . 74

6.2 Related Work . 75

6.3 Semantic Domains . 76

6.3.1 Register Abstract Domain . 78

6.3.2 Data Memory Abstract Domain . 78

6.3.3 Instruction Memory Abstract Domain 78

6.3.4 Pipeline Abstract Domain . 79

6.3.5 Abstract Semantic Transformers . 80

6.4 Program Flow Analysis . 81

6.4.1 Declarative Approach . 82

6.5 Interprocedural Analysis . 88

6.5.1 Declarative Approach . 90

6.6 Value Analysis . 95

6.6.1 Related Work on Interval Abstraction 96

6.6.2 Concrete Semantics . 97

6.6.3 Abstract Domain . 97

6.6.4 Calculational Design . 101

6.6.4.1 Forward Abstract Interpretation of the Add instruction . . . 101

8

6.6.4.2 Backward Abstract Interpretation of Operands 105

6.6.4.3 Forward Abstract Interpretation of the ‘Cmp’ instruction . . 107

6.6.5 Fixpoint Stabilization . 113

6.7 Cache Analysis . 119

6.7.1 Related Work . 121

6.7.2 LRU Concrete Semantics . 122

6.7.3 LRU Abstract Domain . 123

6.7.4 Calculational Design of Abstract Transformer 124

6.8 Pipeline Analysis . 126

6.8.1 Semantic Domains . 128

6.8.2 Semantic Transformers . 130

6.9 Summary . 139

7 Semantics-based Program Verification 140

7.1 Transformation Algebra . 142

7.1.1 Declarative Approach . 142

7.2 WCET Verification at Machine Code Level 146

7.2.1 Related Work . 146

7.2.2 Declarative Approach . 147

7.2.3 The ILP Verification Problem . 148

7.2.4 Verification Mechanism . 151

7.2.5 Verification Time . 154

7.3 WCET Verification at Source Code Level . 155

7.3.1 Related Work . 155

7.3.2 Back-Annotation Mechanism . 156

7.4 Summary . 163

8 Multi-core architectures 164

8.1 Latency-Rate Servers . 167

8.2 Related Work . 168

9

8.3 Calculational Approach to Architectural Flows 169

8.4 The LR-server model as a Galois Connection 175

8.5 Haskell definitions for resource sharing . 176

8.6 Experimental Results . 177

8.7 Summary . 179

9 Conclusion and Future Work 181

9.1 Future Work . 182

9.2 Final Considerations . 183

10

Chapter 1

Introduction

The design of embedded real-time systems is directed by the timeliness criteria. By timeliness
we mean that real-time programs, possibly running on multi-core embedded systems, have
operational deadlines from system event to system response and must guarantee the response
within strict time constraints. Timeliness evaluation is performed at system level and is
defined as the capability of the system to assure that execution deadlines are meet at all
times. Therefore, when the risk of failure, in terms of system response, may endanger human
life or substantial economic values [75], the determination of upper bounds for the execution
times of programs is a safety requirement in the design of embedded hard real-time systems.

The timeliness safety criteria [75] is most commonly specified by the worst-case execution
time (WCET) of individual programs, i.e. the path inside a program that takes the longest
time to execute. In the general case, the particular input data that causes the actual WCET
is unknown. Therefore, the determination of the WCET throughout testing is an expensive
process that cannot be proven correct for any possible run of the program. An alternative to
this incomputable problem are the methods of static analysis, which are able to determine
sound properties about programs at compile time. The purpose of WCET analysis is to
provide a priori estimations of the worst execution time of a program without actually
running it. Nevertheless, the methods of static analysis are still far from being widely
adopted in industry environments, which work more with tailored methods for specific
processors using, for example, detailed analysis.

Notwithstanding, embedded real-time systems often require adaptive configuration mecha-
nisms, where the update of available application services, or even operating system services,
may be required after deployment. Traditionally this is done using manual and heavyweight
processes, specifically dedicated to a particular modification. However, automatic adaptation
of real-time systems can only be achieved if the system design abandons its traditional
monolithic and closed conception and allows itself to reconfigure. In such hypothetical
environment, the WCET analysis must be complemented with a verification mechanism,
whose task is to verify whether an WCET estimate is compliant with safety requirements.

11

CHAPTER 1. INTRODUCTION 12

At the foundation of highly precise WCET analysis is the theory of Abstract Interpretation
(AI) combined with Integer Linear Programming (ILP) techniques [142]. The need for
static analysis by abstract interpretation of machine code follows from the fact that modern
embedded microprocessors have many specialized hardware features that strongly influence
the execution time. For this reason, timing analysis cannot be performed at source code level,
considering the substantial imprecision that constant upper bounds on execution times would
introduce in the WCET estimate.

Therefore, precise WCET analysis must be made at hardware level and must consider each
hardware component that can affect the execution times. For example, cache memories and
processor pipelines strongly influence the execution time. When performing WCET analysis,
we are mainly interested in a flow-sensitive, path-sensitive and context-sensitive analysis of
the local execution times of every instruction inside the program. Fig. 1.1 identifies the three
required static analyses: a value analysis that computes abstract instruction semantics; a
cache analysis that computes abstract cache states; and a pipeline analysis that computes
concrete execution times, based on the concrete timing model of the processor. On the
other hand, the global worst-case execution time is calculated a posteriori, using the static
information locally obtained for each program point by abstract interpretation. This second
step is termed by path analysis and is performed using linear programming.

More precisely, abstract interpretation is used to derive an approximate and computable
abstract semantics of the behavior of the hardware components that affect the timing
behavior of a program running on a particular microprocessor. As Fig. 1.1 shows, these
components are the concrete (standard) instruction semantics of the processor’s instruction
set, the particular cache replacement policy of a cache memory and the timing model of the
microprocessor pipeline architecture. Secondly, integer linear programming calculates the
worst-case execution time of a program, in the scope of all its possible program paths, based
on the “local” invariants statically computed by abstract interpretation for each program
point along these paths. Our objective in developing an approach based on AI+ILP is to
compute verifiable WCET estimates.

Figure 1.1: Overview of hardware components used in the abstract interpretation

CHAPTER 1. INTRODUCTION 13

In this context, verifiable WCET estimations as safety properties impose new challenges
to the verification process, because of the nature of the techniques used to compute the
WCET. The increasing dependency of the WCET on modern hardware mechanisms used to
increase instruction throughput naturally increases the computational cost and complexity
of WCET estimation. Considering the particular case of embedded systems, which typically
have limited computing resources, the computational burden resulting from the integration
of the complete WCET framework into the trusted computing base (TCB) of the embedded
system would be unacceptable.

Therefore, to be effective, the verification mechanism should use lightweight and standalone
methods to check if a given program satisfies a given safety specification in terms of execution
time. In this thesis, the verification mechanism was designed to re-use the state-of-the-art
methods of AI+ILP, although employing additional techniques to make such mechanism very
time-efficient and low-resource consuming. In particular, the verification that the fixpoint
of given a program is indeed its least fixpoint is made within the framework of Abstraction
Carrying Code (ACC) for the abstract interpretation part, and the verification of the optimal
solutions of the path analysis part is made using dual theory [88] applied to standard Linear
Programming (LP), using the exact rational arithmetic of the simplex algorithm [66].

1.1 Abstract-Carrying Code

The central idea in Abstract-Carrying Code [9, 10, 11, 64] is the conceptual use of least
fixpoints of programs in the abstract domain as certificates. These certificates carry proper-
ties about the dynamic behavior of a program that can be statically verifiable by abstract
interpretation. Using fixpoint theory, the utility of these certificates is to avoid the re-
computation of these properties for verification purposes. The prime benefit of the use of
certificates in the context of embedded systems is the separation of the roles played by a code
“supplier” and a code “consumer”. The computational cost associated to the determination
of the safety properties is shifted to the supplier side, where the certificate is generated. On
the consumer side, the safety of the program actualization is based on a verification process
that checks whether the received certificate, packed along with “untrusted” program, is
compliant with the safety policy of the device.

To be effective, the certificate checker should be an automatic and stand-alone process
and much more efficient than the certificate generator. However, several considerations
concerning efficiency and precision of the process must be made. The method of AI+ILP is
well-established to compute tight and precise WCET estimates. However, prominent WCET
tools, such as AbsInt’s aiT [2], rely on manual annotations of program flow information on the
source code and perform separate static analysis for each hardware component that affect
timing behavior. Although the separate analysis of each hardware component improves

CHAPTER 1. INTRODUCTION 14

efficiency, a verification mechanism based on such type of tools would be a heavy process
that cannot be fully automatic.

Additionally, and besides the certificate checking time, also the size of the certificates will
determine if the code actualization/verification in embedded systems can be performed
stand-alone and in reasonable time [11].

1.2 Fixpoint Semantics

Program flow information about the source code typically includes the identification of
infeasible program paths and maximal number of program iterations inside loops. The
accuracy of this particular type of information is essential to avoid WCET overestimation
[44]. Our proposal includes a method to automatically collect program flow information
during fixpoint computations. This method is based on fixpoint algorithms based on chaotic
iteration strategies [20, 33], which recursively traverse the program syntactical structure
until stabilization is reached. Hence, chaotic iterations exactly follow the syntactic structure
of the program, computing fixpoints as a syntax-direct denotational semantics would do.
Hence, we propose the design of a program flow analysis that is automatically obtained by
instrumenting the abstract domain used for value analysis.

Moreover, the design of a chaotic fixpoint algorithm provides a flow-sensitive analysis where
the history of computation, particularly relevant for pipeline analysis, is taken into consid-
eration. Additionally, path-sensitive analysis is performed by computing backward abstract
interpretations of conditional branches. Support for interprocedural analysis is provided
using the functional approach proposed in [128]. For these reasons, the static analyzer is
able to compute the value analysis of registers and memory location simultaneously with
the analysis of cache behavior and the analysis of the pipeline, using a generic and efficient
fixpoint algorithm [115]. When using ACC, this feature is of great utility since it provides a
one-pass traversal algorithm to check if the certificates actually behave as fixpoints.

Formally, the fixpoint algorithm is constructively defined as the reflexive transitive closure
over input-output relations [28]. Each relation is associated with an instruction in the
machine program, defined between two labelled program states. In order to correlate the
shape of this fixpoint definition based on relational semantics, we apply the semantics
projection mechanism proposed by Cousot [27], so that the data flow equations defined using
denotational semantics can be complemented with the intensional information contained in
the iteration strategy of a particular program. The corollary is a meta-semantic formalism
that, besides providing an unified fixpoint form by means of algebraic relations, also supports
program transformations to reduce the size of certificates and the verification time.

In our WCET toolchain, the static analysis plays the dominate role because the time

CHAPTER 1. INTRODUCTION 15

Figure 1.2: Interplay of the meta-semantic formalism with transformation and verification
of programs supported by a semantics projection mechanism

necessary to generate the certificates with the local upper bounds for execution times is sig-
nificantly greater than the time necessary to calculate the WCET using linear programming.
However, the verification of the WCET cannot neglect the linear programming component
because of the tools it uses. For example, the calculation of the WCET when using the
simplex method [66] with constraints on the variables to be integers (ILP) is a NP-hard
problem. Therefore, the inclusion of such tools in the embedded system for the purpose of
verification is impracticable by design, due to the definition of the problem itself.

With the global objective in mind to restrict the trusted computing base (TCB) of an
embedded system to one single pair of a code “supplier” and a code “consumer”, we propose
the inclusion of the WCET checking phase inside the ACC framework by relaxing the
optimization problem of ILP to that of LP, by using the properties of duality theory and
assuming that the coefficient matrix of the linear problem is totally unimodular [67] in order
to preserve the integer semantics. The dual theory is based on the relation between the
primal and dual solutions of the simplex methods. Using the mathematical properties of
these two methods, the complexity of the linear optimization problem on the consumer side
can be reduced from NP-hard (ILP) to polynomial time (LP), by the fact that checking
mechanism only uses simple linear algebra computations to verify the duality property.

1.3 Back-annotations

Besides the distinction between code “suppliers” and code “consumers” in the context of
ACC, our framework for WCET analysis also makes the obvious distinction between “source”
code and “machine” code. The reason is that WCET analysis must be performed on machine
code, at hardware level. However, from the perspective of the developer, the WCET
estimations can be of great help when provided at source-code level and complemented
with a specification mechanism. In this way, the complete development environment of an
embedded real-time system would support WCET verification both at source level, on the
supplier side, and at machine level, on the consumer side. Fig. 1.3 given an overview of our
complete certifying platform for WCET-driven program verification.

CHAPTER 1. INTRODUCTION 16

The requirement for reasoning on the WCET at source level is the fact that the loss of
“abstraction” introduced by the compilation is not definite. The enabling technology that
makes this possible in the DWARF standard [134]. This standard provides compiler debug
information that consists in a bidirectional correspondence between the source-code line
numbers and the instruction memory positions which hold the respective machine code.
Our support for WCET verification at source level consists in a back-annotation mechanism
that uses DWARF together with the meta-semantic formalism in order to specify WCET
safety requirements in the form of design contracts [90].

Figure 1.3: Overview of the Certifying Platform

1.4 Contributions

Novel contributions introduced in this thesis are:

i/ The definition of a polymorphic, denotational two-level meta-language [100] capable
to express the semantics of different defined languages (e.g. imperative, data-flow,
synchronous programming languages) in a unified fixpoint form by means of algebraic
relations. The same meta-program can be parametrized by different abstract state
transformers, defined at the denotational level for a specific abstract domain.

ii/ The definition of a compositional and generic data-flow analyzer that uses a topological
order on the program syntax to instantiate expressions of the meta-language. This is
achieved automatically by providing interpretations of an intermediate graph-based
language into the λ-calculus. The result is a type-safe fixpoint semantics of expres-
sions using the higher-order combinators of the meta-language for free. Moreover,

CHAPTER 1. INTRODUCTION 17

the algebraic properties of the meta-language provide transformation rules for the
intermediate language.

iii/ An application of the hierarchy of semantics by abstract interpretation proposed in [27]
and the notion of weak topological order [20] to abstract the trace program semantics
into the formalism of the meta-language. This enables efficient fixpoint computations
by means of chaotic iteration strategies and provides a systematic way to apply the
functional approach [128] to interprocedural analysis.

iv/ For the purpose of WCET analysis, the data-flow analyzer computes simultaneously
the value analysis, the cache analysis and the pipeline analysis of machine programs
running on an ARM9 processor. Program flow analysis is automatically obtained at
machine code level as an instrumented value analysis.

v/ The abstract interpreters defined at the lower-level of the meta-language are “correct
by construction” in the sense that they are obtained by the calculational approach
based on Galois connections proposed by Cousot [28]. Correctness proofs are given
for the value analysis of the abstract instruction semantics and for the cache analysis
using the least recently used (LRU) replacement policy.

vi/ Inclusion of the WCET checking phase inside the ACC framework using the certifying
properties of duality theory. The complexity of the optimization problem on the
consumer side is reduced from NP-hard (ILP) to polynomial time (LP), by the fact
that the verification of optimal solutions can be performed using simple linear algebra
computations, without the need to recompute the simplex algorithm.

vii/ The flow conservation constraints of the linear programming (LP) problem are ob-
tained as abstract interpretations of the relational semantics of the machine program.
Therefore, the preservation of the integer semantics is deducible. Additionally, for the
purpose of path analysis, the capacity constraints of the linear program are automati-
cally given by the program flow analysis.

viii/ Integration of a back-annotation mechanism into the ACC framework to perform
WCET checking on source code level. Design contracts are specified in the source
code using the expressions of the meta-language, which compute state transformations
on the information produced at machine code level.

ix/ A computationally feasible extension of the WCET analyzer to multicore systems by
means of the LR-server model presented in [131]. This model defines an abstraction of
the temporal behavior of application running on different processor cores and provides
a compositional WCET analysis. The formalization and implementation of the LR-
server model is performed in the context of our data-flow analysis using the higher-order
combinators and the abstract interpretation framework based on Galois connections.

CHAPTER 1. INTRODUCTION 18

x/ To some extent, we demonstrate that Haskell can be used as a language where the
mathematical complex notions underlying the theory of abstract interpretation can
be easily and elegantly implemented and applied to the analysis of complex hardware
architectures.

The previous contributions are fully represented in our four papers [112, 113, 114, 115], which
were published during a total period of thesis time of three years. The complete Haskell
prototype can be downloaded from http://www.dcc.fc.up.pt/~vitor.rodrigues/, under
the section Software.

The rest of thesis is organized according to the following structure. We start with three
chapter introducing the necessary background material that supports the rest of the thesis.
In Chapter 2, we present a summary of the principal topic of domain theory and denotational
semantics and in Chapter 3, we give a comprehensive introduction to the theory of abstract
interpretation. Finally, we introduce in Chapter 4 the most consensual classification of the
several components that can be part of the toolchain of a generic WCET static analyzer.

Our first main contribution is presented in Chapter 5, where we describe a generic data flow
framework that can be parametrized to perform static analysis by abstract interpretation. A
particular instantiation of this framework for the purpose of WCET analysis is described in
detail in Chapter 6. An extension of the ACC framework for performing a semantics-based
program verification using the WCET as the safety parameter is presented in Chapter 7.
The last contribution on WCET analysis in multicore architectures is described in detail in
detail in Chapter 8, where we also give the results of the WCET analysis for a comprehensive
subset of the Mälardalen benchmark programs. Finally, we conclude and discuss future work.

http://www.dcc.fc.up.pt/~vitor.rodrigues/

Chapter 2

Denotational Semantics

The present chapter introduces the necessary background on domain theory and denota-
tional semantics. Basic notions of domain theory, such as monotonicity, least upper bound,
continuity and least fixpoints, are used to define the denotational semantics of a program
with looping and recursive constructs. In particular, we describe the Kleene’s constructive
approach to fixpoint semantics that constitutes the foundations of our generic data flow
analysis framework presented in Chapter 5. The notions of complete partial orders and
lattices are also a prerequisite for understanding the theory of abstract interpretation, in
particular the notion of Galois connection introduced in Chapter 3.

The design of programming languages is generally organized by a syntax and a semantics.
The semantics gives the meaning of syntactically correct programs. Here, when we refer to
syntactic entities, we refer to their abstract syntax as the means to specify parse trees in the
language. The construction of the unique parse trees is guided by the concrete syntax of the
programming language. On the other hand, the semantics of the programming language is
specified by defining semantic functions for each of syntactic entities, so that the meaning,
or denotation, of a syntactic entity is obtained by passing it as argument to the semantic
function which then returns its meaning, that is, the effect of the function’s evaluation.
Denotations are well-defined mathematical objects and can often be higher-order functions.

In fact, the meaning of programs in the denotational setting is modeled by mathematical
functions that represent the effect of interpreting the syntactical constructs [101]. Such
effect is commonly expressed in typed λ-calculus. According to Stoy [132], the denotational
assumption is that the meaning of a possible composite syntactic elements is a mathematical
combination of the sub-elements in the abstract syntax-tree. Hence, a denotational definition
consists in the following parts: (1) a collection of domain definitions denoted by the types
in the λ-expressions; (2) a collection of semantic functions, usually one for each syntactic
category; and (3) a collection of semantic rules that express the meanings of syntactic
composite elements in terms of the meanings of their substructures, usually by λ-expressions.

19

CHAPTER 2. DENOTATIONAL SEMANTICS 20

The principle of compositionality in denotational semantics is a powerful mechanism that
enables the generalization of the denotational framework to allow the definition of effects
using non-standard interpretations in addition to the standard semantics. In this way,
a denotational language definition can be factorized in two parts: (1) a core semantics
containing semantic rules and their types, where some function symbols and domain names
remain uninterpreted; and (2) an interpretation giving meaning to the missing definitions of
domain names and function symbols.

In the same line of thought, the general applicability of the framework of denotational
semantics can enhanced by a denotational meta-language [70]. In this way, instead of regard-
ing denotational semantics as the direct mapping of syntactic categories to mathematical
domains, the denotational semantics is factored through the meta-language. In the first
phase, the syntactic categories are denoted by the terms of the meta-language. Secondly,
these terms are interpreted as elements in the mathematical domains used in denotational
semantics.

The next sections describe the essential background on denotational semantics. First we give
the foundations for domain theory and next we describe the compositional computational
model of fixpoints used in denotational semantics [42, 85]. Finally, we briefly describe the
two-level meta-language proposed by Nielson in [99, 100].

2.1 Domain Theory

A partiallly order set, commonly designated by poset, is denoted by S(v), where S is a set
and v is a binary relation on S that is reflexive (∀x ∈ S : x v x), transitive (∀x, y, z ∈ S :
x v y ∧ y v z ⇒ x v z) and antisymmetric (∀x, y ∈ S : x v y ∧ y v x⇒ x = y). Informally,
x v y means that x shares its information with y. For example, if the binary relation is the
subset relation ⊆, we say that the subset {1, 2} shares information with the subset {1, 2, 3}.

Let S(v) be a poset with partial order v on a set S. u is an upper bound of a subset X of
S if and only if u is greater than or equal to all members of X (∀x ∈ X : x v u). We say
that the element u summarizes all the information of X. For example, let 1,2 and 3 be the
elements of the set S. When considering upper bounds of subsets X with two elements of
S, there are three possible upper bounds: {1, 2}, {1, 3} and {2, 3}.

The least upper bound u of a subset X of S is an upper bound of X that is smaller than
any other upper bound of X (∀x ∈ X : x v u ∧ u′ ∈ S : (∀x ∈ X : x v u′) ⇒ (u v u′)).
Therefore, the least upper bound of X adds as little extra information as possible to that
already present in the elements of X. For any x, y ∈ S, we write x t y to define the least
upper bound on the set {x, y} such that x v y ⇔ xt y = y. A least upper bound is unique.
If it exists, the least upper bound of X ⊆ S is written

⊔
X. For the same example above,

CHAPTER 2. DENOTATIONAL SEMANTICS 21

the least upper bound of S(⊆), i.e. the subset that summarizes all the information of S,
understood as set inclusion, is unique and equal to

⋃
S = {1, 2, 3}.

The lower bounds and the greatest lower bound
d
X of a subset X ⊆ S are dual (i.e. their

definition is obtained from that of upper bounds and least upper bound by replacing v by
its dual w). For any x, y ∈ S, we write x u y to define the greatest lower bound on the set
{x, y} such that if x v y, then x u y = x. The smallest element of a set S is called the
infimum and is defined by ⊥ =

d
S. Intuitively, the infimum contains no information. On

the other hand, the greatest element of S is called the supremum and is defined by > =
⊔
S.

Let P (v) be a poset with partial order v on a set P . A complete lattice L(v,⊥,>,t,u)
is a poset L(v) such that any subset X of L has a least upper bound

⊔
X and a greatest

lower bound
d
X. In particular, the smallest element is ⊥ whilst the greatest is >.

A subset X ⊆ P is called a chain if, for any two elements of X, one shares information with
the other, i.e. any two elements of P are comparable: ∀x, y ∈ P : x v y ∨ y v x. A poset
P (v) satisfies the ascending chain condition if given any sequence x1 v x2 v . . . xn v . . .

of elements of P , there exists k ∈ N such that xk = xk+1 = An poset P is a cpo
(abbreviation for complete partial order) if every increasing chain has a least upper bound⊔
X. More specifically, a strict cpo has an infimum, typically ⊥, denoting absence of

information.

Let S and T be given sets. The powerset ℘(S) is the set {X | X ∈ S} of all subsets of S.
The cartesian product S × T is the set {〈s, t〉 | s ∈ S ∧ t ∈ T}. A binary relation on S × T
is a subset ρ ∈ ℘(S × T) of S × T , that is, ρ ⊆ (S × T).

We write ϕ ∈ S ↪−→ T to mean that ϕ is a partial function from S to T , i.e. a relation
ϕ ∈ ℘(S × T) such that the binary relation 〈s, t〉 ∈ ϕ only if s ∈ S and t ∈ T and, for
every s ∈ S, there exists at most one t ∈ T , written ϕJsK, ϕ[s], or ϕ(s), satisfying 〈s, t〉 ∈ ϕ.
We write ϕ ∈ S 7→ T to mean that ϕ is a total function of S into T i.e. ϕ(s) exists for
all s ∈ S (∀s ∈ S : ∃t ∈ T : 〈s, t〉 ∈ ϕ). As usual, functional composition ◦ is defined by
ϕ ◦ ψ(s) = ϕ(ψ(s)). The image of X ⊆ S by ϕ ∈ S 7→ T is ϕ∗(X) = {ϕ(x) | x ∈ X}.

Let P (v,
⊔

) be a poset with least upper bound
⊔

and Q(�,
∨

) be a poset with least upper
bound

∨
. P (v) m7−→ Q(�) denotes the set of total functions ϕ ∈ P 7→ Q that are monotone,

i.e. order morphisms: ∀x ∈ P : ∀y ∈ Q : x v y ⇒ ϕ(x) � ϕ(y). The intuition is that if x
shares its information with y, then when ϕ is applied to x and y, a similar relationship holds
between the images of the functions.

Let P (v,
⊔

) be a poset with least upper bound
⊔

and Q(�,
∨

) be a poset with least upper
bound

∨
and let ϕ ∈ P m7−→ Q be a monotone function. If X ⊆ P is a chain, then ϕ∗(X) is

a chain in Q. Furthermore, given the ascending chain x1 v x2 v . . . xn v . . . , we have that
ϕ is monotone (or alternatively, order-preserving) iff

∨
n>0 ϕ(xn) � ϕ(

⊔
n>0). However, in

general, a monotone function does not preserve least upper bounds on chains.

CHAPTER 2. DENOTATIONAL SEMANTICS 22

Let P (v,
⊔

) be a poset with least upper bound
⊔

and Q(�,
∨

) be a poset with least upper
bound

∨
. P (v,

⊔
) c7−→ Q(

∨
) denote the set of total functions ϕ ∈ P 7→ Q that are upper-

continuous i.e., which preserve existing least upper bounds of increasing chains. Since the
least upper bound is necessarily unique, we have that if X ⊆ Q is an increasing chain for v
and

⊔
X exists then ϕ(

⊔
X) =

∨
ϕ∗(X).

Let P (v,
⊔

) be a poset with least upper bound
⊔

and Q(�,
∨

) be a poset with least upper
bound

∨
. P (

⊔
) a7−→ Q(

∨
) denote the set of total functions ϕ ∈ P 7→ Q that are additive

i.e., complete join morphisms preserving least upper bounds of arbitrary subsets, when they
exist: if X ⊆ P and

⊔
X exists then ϕ(

⊔
X) =

∨
ϕ∗(X). When the above notions are

restricted to sets equipotent with the set N of natural numbers, they are qualified by the
attribute w as in w-chain, w-cpo, w-continuity, etc.

A functional F ∈ [P (v) m7→ P (v)] maps the set of functions [P (v) m7→ P (v)] into itself, i.e
F takes as argument any monotonic function ϕ ∈ P 7→ P and yields a monotonic function
F (f) as its value. A functional F is said to be monotonic if ϕ v φ implies F (ϕ) v F (φ) for
all ϕ, φ ∈ [P (v) m7→ P (v)]. Let P (v,t) be a poset with a least upper bound t and ϕn be a
chain of functions ϕ0 v̇ ϕ1 v̇ ϕ2 v̇ ϕ3 . . . , where v̇ is the point-wise ordering on ϕ. Then, a
monotonic functional F is said to be continuous if we have that F (tϕn) = tF (ϕ)n.

2.2 Fixpoints

A fixpoint x ∈ P of ϕ ∈ P 7→ P is such ϕ(x) = x. We write fixϕ for the set {x ∈ P |
ϕ(x) = x} of fixpoints of ϕ. The least fixpoint lfpϕ of ϕ is the unique x ∈ fixϕ such
that ∀y ∈ fixϕ : x v y. The dual notion is that of greatest fixpoint gfpϕ. The n-fold
composite, ϕn, of a map ϕ : P → P is defined as follows: ϕn is the identity map if n = 0
and ϕn = ϕ ◦ ϕn−1 for n > 1. If ϕ is monotone so is ϕn.

Let P (v) be a cpo and let ϕ ∈ P 7→ P be a continuous map. Applying the monotone map
ϕn, we have that ϕn(⊥) v ϕn+1(⊥), for all n and the following increasing chain:

⊥ v ϕ(⊥) v · · · v ϕn(⊥) v ϕn+1(⊥) v . . .

Then, according to the Kleene first-recursion theorem [74], the least fixpoint lfpϕ exists and
equals to

⊔
n>0 ϕ

n(⊥).

By Tarski’s fixpoint theorem [133], the fixpoints of a monotone mapping ϕ ∈ L(v) m7−→ L(v)
on a complete lattice L(v,⊥,>,t,u) form a complete lattice fixϕ for v with infimum
lfpϕ =

d
ϕv and supremum gfpϕ =

⊔
ϕw where ϕv = {x ∈ L | ϕ(x) v x} is the set of

post-fixpoints and ϕw = {x ∈ L | ϕ(x) w x} is the set of pre-fixpoints of ϕ. Fig. 2.1(a)
illustrates the complete lattice fixϕ for v.

Let F be a functional over [P (v) m7→ P (v)] [85]. We say that a function ϕ ∈ [P (v) m7→ P (v)]

CHAPTER 2. DENOTATIONAL SEMANTICS 23

is a fixpoint of F if F (ϕ) = ϕ, i.e. if F maps the function ϕ into itself. If ϕ is a fixpoint of
F and ϕ v φ for any other fixpoint φ of τ , then ϕ is called the least fixpoint of τ .

Let F be any monotonic functional over [P (v) m7→ P (v)] and Ω v F (Ω) v F 2(Ω) v . . .

be an increasing chain, where F 0(Ω) stands for Ω (the totally undefined function) and
F i+1(Ω) is F (F i(Ω)) for i > 0. Then, the F i(Ω) has a least upper bound. By Kleene’s first
recursion theorem, every continuous functional F has a least fixpoint denoted by ϕF defined
as ϕF =

⊔
i>0 F

i(Ω). In fact, since F is continuous:

F (ϕF) = F (
⊔
i>0

F i(Ω)) =
⊔
i>0

F i+1(Ω) =
⊔
i>0

F i(Ω) = ϕF (2.1)

The Tarski’s theorem states that in any complete lattice L and for any monotone function f :
L→ L there exists a least fixpoint that coincides with the smallest post-fixpoint. However,
this theorem does not particularize any method to compute such fixpoint. Alternatively, if f
is continuous, the Kleene theorem provides a constructive approach to fixpoint computation,
where the least fixpoint is the least upper bound of the ascending Kleene chain of Def. (2.1),
as Fig. 2.1(b) shows. In this case, infinite strictly increasing chains are forbidden. Although
constructive versions of Tarski’s theorem exist [133], we prefer the Kleene approach as it
provides the foundations for the definition of a fixpoint operator, commonly termed FIX.

{x | ϕ(x) ⊑ x}

{x | ϕ(x) = x}

{x | ϕ(x) ⊒ x}

⊥

⊤

gfpϕ

lfpϕ

(a) Fixpoint positions

⊥

⊤

lfp ϕ

(b) Kleene iterations

Figure 2.1: Fixpoint positions in a complete lattice

Let ϕ ∈ P (v) c7−→ P (v) be a continuous function on the strict cpo P with least element
⊥. The Kleene’s least fixpoint lfpϕ follows from the fact that by finitely applying n times
ϕn we obtain ϕn(⊥) v ϕn(lfpϕ) = lfpϕ. This can be computationally achieved by applying
the fixpoint operator FIX to ϕ:

FIX(ϕ) =
⊔
{ϕn⊥ | n > 0} (2.2)

CHAPTER 2. DENOTATIONAL SEMANTICS 24

When n = 0 we have ϕ0(⊥) = ⊥. Additionally, by induction on n, we have that ϕn+1 =
ϕ ◦ ϕn. By definition of strict cpo, we have ⊥ v p for all p ∈ P , whence by monotonicity
of ϕ, ϕn(⊥) v ϕn(p). It follows that ϕn(⊥) v ϕm(⊥), whenever n 6 m. From this,
{ϕn(⊥) | n > 0} is a non-empty chain in P and FIX(ϕ) exists because P is a cpo.

To prove that the function FIX(ϕ) computes the least fixpoint lfpϕ, we first need to show
that FIX(ϕ) is a fixpoint. i.e. that ϕ(FIX(ϕ)) = FIX(ϕ). We calculate:

ϕ(FIX(ϕ)) = ϕ(
⊔
n>0

ϕn(⊥)) (definition of FIX(ϕ))

=
⊔
n>0

ϕ(ϕ(⊥)) (continuity of ϕ)

=
⊔
n>1

ϕ(⊥)

=
⊔

({ϕ(⊥) | n > 1} ∪ {⊥}) (
⊔

(Y ∪ {⊥}) =
⊔
Y

for all chains Y)

=
⊔
n>0

ϕn(⊥) (ϕ0(⊥) = ⊥)

= FIX(f)

Additionally, FIX(ϕ) is the least fixed point. Assume that p ∈ P belongs to the set of
post-fixpoints. Since P is a strict cpo, we have ⊥ v p, whence the monotonicity of ϕ gives
ϕn(⊥) v ϕn(p). If p is a fixpoint, we obtain ϕn(⊥) v p for all n > 0. Hence p is an upper
bound of the chain {ϕn(⊥) | n > 0}, and if by hypothesis FIX(ϕ) is the least upper bound,
then FIX(ϕ) v p.

Note that in the definition of FIX (2.2), the argument ϕ can be a functional. Assume that
ϕ is a recursive function with an exit condition. In order to compute the fixpoint of ϕ one
needs to define an anonymous function f that constitutes an argument of ϕ at the same time
it appears in the body of ϕ. The use of FIX allows us to unravel the definition of ϕ(f): every
time f recurs, another iteration of ϕ is obtained via FIX(ϕ) = ϕ(FIX(ϕ)), which behaves
as the next call in the recursion chain. After unravelling the definition of ϕ(f), the exit
condition will eventually occur, i.e. a program clause where f does not take place, which
then initiates the evaluation of the recursive chain until the least fixpoint is found.

The Haskell definition of FIX is given by the function fix . The type variable a is polymorphic
and can represent a higher-order type, as required when the argument g is a functional
[101]. Note that the FIX operator is based on the notion of general recursion, in which
non-termination is semantically valid. Nonetheless, if the least fixpoint of g does exist, the
return type a clearly specifies that the Kleene’s recursive chain has a least upper bound.

fix :: (a → a)→ a

fix g = g (fix g)

CHAPTER 2. DENOTATIONAL SEMANTICS 25

2.3 Two-Level Denotational Meta-Language

As already mentioned, the goal of denotational semantics [54, 132] is not to specify how a
program is executed, but merely to specify the effect of executing a program. In this context,
the distinction between compile-time and run-time made on the two-level denotational meta-
language (TML) presented in [100] introduces an important level of modularity to denota-
tional definitions. In particular, this distinction is important for the efficient implementation
of programming languages with the objective to automatically generate compilers.

The use of two-level denotational semantics in data flow analysis by abstract interpretation
is originally found in the work of Nielson [70, 95, 96]. The two-level meta-language paved the
way for systematic treatment of data flow analysis, where the correctness relation between
different abstract interpretations is obtained through the comparison of different run-time
denotational definitions, all sharing the same compile-time denotational definition. Similarly,
code generation for various abstract machines can be specified by providing different run-time
interpretations of the meta-language [99].

The traditional denotational approaches of Gordon and Stoy [54, 132], use a typed λ-calculus
as meta-language with the following abstract syntax for types:

t ::= A | t1 × · · · × tk | t1 + · · ·+ tk | rec X.t | X | t1 → t2

The two-level meta-language is obtained by distinguishing between compile-time types (ct)
and run-time types (rt). Hence, the meta-language TML has the following types:

ct ::= A | ct1 × · · · × ctk | ct1 + · · ·+ ctk | rec X.ct | X | ct1 → ct2 | rt1→ rt2

rt ::= A | ct1 × . . .× ctk | ct1 + . . .+ ctk | rec X.rt | X

The underlining is used to disambiguate the syntax of the two levels. The purpose of
the meta-language is strongly focused on the run-time functional types, rt1→ rt2, because
they synthesize aspects such as “semantic transformations” and “piece of code” which are
applicable in abstract interpretation as well as code generation. Intuitively, the “static”
expressions in compile-time types can be parametrized with different run-time entities.
However, interaction between the two type levels is restricted by the absence of rt ::= ct
meaning that, as expected, compile time entities cannot be discussed at run-time. On the
other hand, the run-time type rt1→ rt2 can be discussed at compile-time (ct).

Expressions of the two-level meta-language are defined by:

e ::= f | (e1, . . . , ek) | e ↓ j | inj e | isj e | outj e

| λ(x:ct).e | e1(e2) | x | mkrec e | unrec e

| e→ e1, e2 | fixct e

| tuple (e1, . . . , ek) | takej | inj | case (e1, . . . , ek)

| mkrec | unrec | cond (e, e1, e2) | e1 ◦ e2

CHAPTER 2. DENOTATIONAL SEMANTICS 26

A constant of type ct is denoted by f, but not all compile-time types are allowed. There
must not be run-time function spaces in the domain of a compile-time function space in ct
and, in addition, ct must not contain free type variables. Therefore, (λ(x:ct).e) is a compile-
time expression denoting a lambda abstraction, where x is a compile-time type variable (ct)
occurring bound in the expression e.

The semantics of the meta-language is given by an interpretation I consisting of two parts,
a type part and an expression part. The interpretation IJctK is a cpo that defines the type
part for each closed type ct [95]. When the interpretation is the standard interpretation,
the cpo’s are obtained by interpreting × as cartesian products, × as smash product, +
as separate sum, + as coaleased product, → as function space and → as strict function
space. The recursive domain equations rec X.ct and rec X.rt are solved using the categorical
approach given in [129]. Interpretations of expressions of the meta-language are defined by
the function IJeK : IJct1K× · · · × IJct1K→ IJct1K for each well-typed expression e.

Example 1. Examples of standard interpretations of TML terms.
Next, we exemplify the standard interpretation of the conditional expression cond and the
higher-order functional composition (◦). These interpretations are particularly relevant to
our approach since they express generic control-flow combinators. Assuming that the base
types A include the truth values T, the combinator style expressions cond and (◦), are
interpreted in the standard interpretation S as follows:

S(cond) : (SJrt1→ TK× SJrt1→rt2K× SJrt1→rt2K)→ SJrt1→rt2K

S(cond) = λ(E,E1,E2).λv.(E v → E1 v,E2 v)

S(◦) : SJrt1→rt2K× SJrt1→rt2K→ SJrt1→rt2K

S(◦) = λ(E1,E2).λv.(E1(E2 v))

N

As already mentioned, at the compile-time level of the meta-language we cannot reason
about run-time values, but only about transformations on run-time values, each of which of
type rt1→rt2. The intuition of the two-level meta-language is that such transformations can
also be obtained by executing a piece of code on an appropriate abstract machine. Therefore,
code generation can be achieved by specifying new interpretations for the basic expressions
of type rt1→rt2.

Chapter 3

Abstract Interpretation

The present chapter introduces the necessary background on the theory of abstract interpre-
tation. Key concepts such as abstract fixpoint semantics, Galois connections, higher-order
Galois connections and fixpoint induction using Galois connections are described in detail.
A brief introduction is made to the merge over all paths (MOP) and minimum fixed point
(MFP) fixpoint solutions and to the algorithms that are able to efficiently compute them,
namely chaotic fixpoint algorithms using particular iteration strategies. These concepts are
applied in the definition of our generic data flow framework presented in Chapter 5.

A Galois connections is used to establish a correspondence between two posets typically
referred to as the concrete and the abstract domains. Let P (v) and Q(�) be two posets.
A Galois connection between P and Q consists of two monotone functions, α : P 7→ Q and
γ : Q 7→ P such that for all p ∈ P and q ∈ Q, we have α(p) � q if and only if p v γ(q).
Higher-order Galois connections are used to induce abstract semantic transformers, taking
as starting point a formal specification of the concrete semantics of a program. Several
abstract domains and the corresponding calculational approaches to the induction of abstract
interpreters are described in Chapter 6.

The denotational semantics in the style of Scott and Strachey [132] provides a “mathematical
semantics” for the design of programming languages where programs denote computations in
some universe of objects. Abstract interpretation [27, 31, 35, 37, 32] is a general framework
allowing the certification of dynamic properties of programs and can be proved to be
consistent with the formal semantics (not necessarily denotational) of the language. The
hallmark of abstract interpretation is the possibility to use such denotations [1, 96, 120], to
describe computations in another universe of abstract objects, with the objective to obtain
some information on the actual computations, albeit statically and at compile time.

The essential idea is the formulation of a correspondence between abstract values and
concrete values. The concern of abstract interpretation is with a particular structure of an
abstract universe of computations where program properties are defined. These properties

27

CHAPTER 3. ABSTRACT INTERPRETATION 28

give a summary of some facets of the actual executions of a program, but it is, in general, an
inaccurate process. Nonetheless, the consequent incompleteness of an abstract interpretation
is tolerable when the answer the programmer expects does not need to be fully exact or when
the formal specification of program properties contemplate false alarms [29, 39], i.e. when
the verification of the specification gives a negative answer in presence of false positives.

One possible way to perform abstract interpretations consists in the use of a transitive
closure mechanism, defined for the basic operations of the language [31]. The premise that
the abstract interpretation can be fully worked out at compile time implies the existence
of fixpoint iterative methods able to compute program properties after finitely many steps.
However, it is not a requirement to have the abstract values belonging to finite Kleene
sequences [32]. In such cases, the widening and narrowing operators [38] can be used to
accelerate the convergence of the fixpoint computation performed by the transitive closure
mechanism.

Data flow analysis can be formalized as abstract interpretation of programs by letting the
basic operations of the programming language be locally interpreted by order preserving, i.e
monotone, functions. In general, program properties are modelled in complete semilattices
[42]. In this way, and given a formal model of the program syntax, a program is associated to
a system of recursive semantic equations. Given that the theory of abstract interpretation
provides local consistency, the global program properties are defined as one of the post-
fixpoints of that system [133].

3.1 Abstract Values

Abstract interpretation performs a “symbolic” interpretation of a program using abstract
values instead of concrete or execution values. The definition of abstract value is an ex-
tensional definition in the sense that it denotes a set of concrete values or properties of
such a set in a consistent way. In its turn, the definition of concrete value is an intensional
definition since it corresponds to the collecting semantics of the program at a particular
program point. The role of the collection semantics is to provide a sound and relatively
complete proof method for the considered class of properties. Whence, it is typically defined
as the powerset lattice 2D of the concrete domain D. The consistency between concrete and
abstract values may be rigorously defined by an abstraction function α and, inversely, by a
concretization function γ.

Let D(⊆,
⋃

) be the powerset of concrete values and D](v,
⊔

) a complete join-semilattice of
abstract values under the partial ordering v. The functions α and γ are order-preserving,
i.e. monotone, functions defined as:

CHAPTER 3. ABSTRACT INTERPRETATION 29

α ∈ 2D 7→ D] (3.1)

γ ∈ D] 7→ 2D (3.2)

In the particular case where the abstraction function α preserves existing least upper bounds,
i.e. α is a complete join morphism, the concretization function γ is uniquely defined [37].
Hence, the pair 〈α, γ〉 is a Galois connection meaning that:

∀p] ∈ D] : ∀P ∈ 2D : α(P) v p] ⇔ P ⊆ γ(p]) (3.3)

where the following properties are satisfied:

∀p] ∈ D] : α(γ(p])) v p] (3.4)

∀P ∈ D : P ⊆ γ(α(P)) (3.5)

Def. (3.3) derives from the extension of the function α and the intension of the set P by
stating that an abstract value p] is the most precise over-approximation of the concrete value
P , but not only of P . Def. (3.4) states that the concretization function γ introduces no loss
of information. Def. (3.5) introduces the concept of approximation in the sense that the
abstraction function α(P) may introduce some loss of information so that when concretizing
again γ(α(P)), a larger set can be obtained.

The abstraction function α is a complete join morphism from (2D,
⋃

) into (D],
⊔

) such that
∀(x, y) ⊆ D2, we have α(x ∪ y) = α(x) t] α(y). This implies that t] has associativity,
commutativity and idempotency properties, and that the zero element ⊥] of

⊔
is also α(∅),

where ∅ is the empty set in 2D.

3.2 Abstract Semantics

Abstract environments are used to hold the bindings of program variables to their abstract
values at every program point. Let V denote the set of program variables. In general, an
abstract environment ρ ∈ E is a partial function from variables v ∈ V to program properties
p] ∈ D]. A partial map ρ have the type V ↪−→ D]. Instances of abstract environments consist
of a set of tuples (v, p]), where ρ(v) = p]. The local consistency of the abstract interpretation
results from the fact that in every actual execution of the program, the concrete values
accessed by v will be in the set γ(p]) at every program point. The set E of all possible
abstract environments is defined as:

E ∈ 2V↪−→D]
(3.6)

The point-wise join ρ1 ṫ] ρ2 of two abstract environments is defined by:

ρ1 ṫ] ρ2 = {(v, p]) | v ∈ V ∧ p] ∈ D] ∧ p] = ρ1(v) t] ρ2(v)} (3.7)

CHAPTER 3. ABSTRACT INTERPRETATION 30

The state set Σ consists on the set of all information configurations that can occur during an
abstract interpretation. The type of program states is a partial function from a node label
n ∈ N , uniquely identifying a program point, to an abstract environment ρ ∈ E . For sake of
convenience, a configuration σ ∈ Σ is instantiated as a set of tuples (n, ρ), where ρ = σ(n):

Σ ∈ 2N ↪−→E (3.8)

where the state pairs differ from one another in their labels:

∀σ ∈ Σ, ∀(i, j) ∈ N 2, ∀(v, u) ∈ E2,

{(i, v) ∈ σ ∧ (j, u) ∈ σ ∧ (i, v) 6= (j, u)} =⇒ i 6= j (3.9)

The state transition function is a total function defining for each state vector the next state
vector:

next ∈ Σ 7→ Σ (3.10)

For all program labels N contained in some state vector σ ∈ Σ, the initial value of the
associated abstract environment ρ ∈ E is ⊥]. Let ⊥σ denote the initial state vector. A
“computation sequence” with initial state ⊥σ is the sequence:

σn = nextn(⊥σ) (3.11)

for n = 0, 1, . . . , where f0 is the identity function and fn+1 = f ◦ fn.

In the general case we cannot assume the semilattice D](v) to be a distributive semilattice
of finite length, whence the state transition function may not be a complete join morphism.
Under the weaker assumption that next is upper-continuous, the limit next∞ of the Kleene’s
sequence is defined as the least fixpoint point of next. This limit is computed by passing the
functional λF.(next ◦ F) as argument to the λ-calculus fixpoint combinator FIX

(Σ
c7→Σ)

:

next∞ = FIX
(Σ

c7→Σ)
(λF.(next ◦ F)) (3.12)

where FIXD(f) denotes the least fixpoint of f : D m7−→ D, Tarski [133].

3.3 Abstract Interpretation of Basic Program Units

An instance of the data-flow model to a particular program is built from a set of nodes N
and a set of edges which correspond to the set of program labels L ∈ (N 7→ ℘(N)). We
assume that the resulting model instance is a connected directed graph 〈N ,L〉. In [32],
the following elementary program units were defined by Cousot: a single entry node, exit
nodes, assignment nodes, test nodes, simple junction nodes and loop junction nodes. As
required by Kleene’s first recursion theorem, the evaluation of expressions that can change
the environment and test nodes have no side effects.

CHAPTER 3. ABSTRACT INTERPRETATION 31

The abstract interpretation of basic program units is given by an interpretation I]. Given
any assignment or test node n ∈ N and an input state vector σ ∈ Σ, I] returns an output
context I](n, σ′) or two different output contexts when n is a test node. Since any state
vector contains all the labelled abstract environments, each one identified by some node
n, the consistency of I] with respect to the collecting interpretation I, which is given by
I ⊆ 〈α, γ〉I], imposes local consistency of the interpretations I and I] at the level of basic
language constructs. Let Na be the set of assignment nodes. Then, for all n ∈ Na, an
assignment is of the form:

v = f (v1, . . . , vm)

n

where (v, v1, . . . , v2) ∈ Vm+1 and f(v1, . . . , vm) is an expression of the language depending
on the variables v, v1, . . . , v2. Let ρ be the abstract environment found in the state vector
σ ∈ Σ at the program node n. Let ~n be the outgoing node of the assignment node n. We
use the square bracket notation map[k 7→ e] to denote the update of the contents of a map
at the key k with the new element e. For a program states map (σ) and for the an abstract
environment map (ρ), it follows that:

∀σ ∈ Σ, ∀i ∈ V, i 6= v =⇒ I](n, σ)(i) = σ and (3.13)

∀σ ∈ Σ, I](n, σ)(v) = σ [~n 7→ ρ [(v 7→ α ({f(v1, . . . , vm) | (v1, . . . , vm) ∈

γ (ρ(v1))× · · · × γ(ρ(vm))})]] (3.14)

The absence of side effects in the abstract interpretation of the expression f(v1, . . . , v2) is
expressed by Def. (3.13). The local consistency of I] is expressed by Def. (3.14): the abstract
value p] of v in the output environment is the abstraction of the set of values of the expression
f(v1, . . . , v2) when the values (v1, . . . , v2) are chosen from the input abstract context ρ such
that ρ′ = ρ[v 7→ p]]; finally, the output state vector σ′ is updated with the output abstract
environment at the program label ~n, such that σ′ = σ[~n 7→ ρ′].

Let Nt be the set of test nodes. Then, for all n ∈ Nt and given an input state vector σ ∈ Σ,
the abstract interpretation I](n, σ) results of two output state vectors σT and σF associated
with the “true” and “false” edge respectively:

Q(v1, . . . , vm)

n

σ

σFσT

CHAPTER 3. ABSTRACT INTERPRETATION 32

where Q(v1, . . . , vm) is a boolean expression without side-effects depending on the variables
v1, . . . , vm. Let nT and nF be the program labels of the outgoing nodes of the test node
n ∈ Nt. Also let ρ be the abstract environment found in the input state vector σ at the label
n. Then, we define I](n, σ) = (σT , σF) such that for all v ∈ V we have:

σT (v) = σ [nT 7→ ρ [v 7→ α({t | t ∈ γ(ρ(v)) ∧ (∃(v1, . . . , vm) ∈

γ(ρ(v1))× · · · × γ(ρ(vm)) | Q(v1, . . . , v2))})]] (3.15)

σF (v) = σ [nF 7→ ρ [v 7→ α({t | t ∈ γ(ρ(v)) ∧ (∃(v1, . . . , vm) ∈

γ(ρ(v1))× · · · × γ(ρ(vm)) | ¬Q(v1, . . . , v2))})]] (3.16)

In this way we achieve a path-sensitive data-flow analysis where on the “true” edge the
abstract value of a variable v is the abstraction of the set of values t chosen in the input
context ρ, for which the evaluation of the predicate Q may yield the boolean value True. In
the converse path, the state vector contains the abstract value of the variable v when the
predicate Q yields to False.

As already mentioned, an abstract interpretation I] is the least fixpoint solution of a system
of recursive data-flow equations. In practice, these equations are iteratively evaluated
according to an order of information propagation, in terms of program labels N , across
the basic program units. To this end, the transitive closure of the state transition function
is used. Therefore, an abstract interpretation amounts to the computation of the limits of
Kleene’s sequences along all paths allowed on the program.

There are two possible solutions to the system of recursive equations [98]. The merge over all
path (MOP) computes all possible functional compositions of the state transition function
along all program paths. For each node n ∈ N inside a path, the transition function is
evaluated for every input state and the resulting outputs are combined with the least upper
bound operator

⊔
. In general there is an infinite number of program paths, which makes the

MOP solution not computable. The solution to this problem is to compute an approximation
of the MOP optimal solution called minimum fixed point (MFP). In this case, the least upper
bound of the incoming states is computed before applying the next state transition function.

To demonstrate the computation of the MFP solution, we next describe the abstract inter-
pretation of an execution path that eventually follows from a test node. From the test node,
two execution paths are created, each one to be evaluated in pseudo-parallel until reaching
an exit node, in which case the execution of the path ends, or a junction node, in which case
pseudo-parallel execution paths are synchronized. As describe before, in order to compute
the output state vector of a junction node, we must first compute the least upper bound of
the input state vectors of the incoming edges that may be reached by an execution path.
For a simple junction node n, we combine all input state vectors in point-wise form for the
program labels {1, 2, . . . ,m}:

CHAPTER 3. ABSTRACT INTERPRETATION 33

. . .

σ =
⊔̇

i∈[1,m]σi

n

σ2
σm

σ1

The limit of a Kleene’s execution sequence in the abstract domain is computed by a transitive
closure that traverses the direct graph (N ,L) and applies the state transformation function
next to each of the different types of nodes. Such transformation function specifies the
state(s) for the outgoing edges of the node, in terms of the state(s) associated with the
incoming edges to the node. The algorithm recursively apply functional applications of
the state transformation function until all abstract environments ρ inside a state vector σ
stabilizes with respect

⊔̇
(the point-wise version of the least upper bound

⊔
). The proof of

the termination of this algorithm comes from the fact that, in one hand, sequences of state
vectors form a strictly ascending chain, possibly after using widening/narrowing operators.
Moreover, we assume that every loop contains a junction node.

The specification of an order of information propagation may lead to the instantiation of an
optimal transitive closure algorithm. In [20], the notion of weak topological order (w.t.o.) is
defined in terms of a total dominance order � that exists between the basic program units of
a particular program, according to the information contained in the set of program labels N .
Let i → j denote an edge where is possible to jump from point i to point j by executing a
single program step. An edge u→ v such that v � u is called a feedback edge. For example,
a program loop is a well-parenthesized component in the w.t.o. by having the program point
v as its head and containing the program point u.

The main advantage of dominance order is that any sequential algorithm à la Gauss-Seidel
[36] can be used to compute the limits of Kleene sequences. Such algorithms are called chaotic
iteration algorithms and differ in the particular choice of the order in which the data-flow
equations are applied. In [20] are enumerated two iteration strategies: (1) the iterative
strategy simply applies the equations in sequence and stabilizes outermost components; (2)
the recursive strategy recursively stabilizes the subcomponents of every component every
time the component is stabilized. Of major relevance in our work is the fact that with the
recursive strategy, the stabilization of a component of a w.t.o. can be detected by stabilization
of its head.

3.4 Galois Connections

We assume that the concrete program properties are described by elements of a given set P \.
Let v\ be a partial order relation on P \ defining the relative precision of concrete properties:

CHAPTER 3. ABSTRACT INTERPRETATION 34

p1 v\ p2 are comparable properties of the program, p1 being more precise than p2, the
relative precision being left unquantified. The abstract program properties are assumed to
be represented by elements of a poset P](v]), where (v]) defines the relative precision of
abstract properties.

Summarizing Section 3.1, the semantics of the abstract properties is given by the concretiza-
tion function γ ∈ P] 7→ P \ such that γ(p]) is the concrete property corresponding to the
abstract description p] ∈ P]. The notion of approximation is formalized by the abstraction
function α ∈ P \ 7→ P] giving the best approximation α(p\) of concrete properties p\ ∈ P \.

If p]1 = α(p\) and p]1 v] p
]
2 then p]2 is a less precise abstract approximation of the concrete

property p\. Hence, the soundness of approximations, i.e. the fact that p] is a valid
approximation of the information given by p\ can be expressed by α(p\) v] p]. If p\1 = γ(p])
and p\2 v\ p

\
1 then p] is also a correct approximation of the concrete property p\2 although this

concrete property p\2 provides more accurate information about program executions than p\1.
So the soundness of approximations, i.e. the fact that p] is a valid approximation of the
information given by p\, can also be expressed by p\ v γ(p]).

Given the two posets P \(v\) and P](v]), a Galois connection is written as:

P \(v\) −−−→←−−−α
γ

P](v])

such that:

∀p\ ∈ P \ : ∀p] ∈ P] : α(p\) v] p] ⇔ p\ v\ γ(p]) (3.17)

p]1 = α(p\2)
v]

- p]2

p\2

α
↑

v\
- p\1 = γ(p]2)

γ↓

Figure 3.1: Galois connection commutative diagram

The loss of information in the abstraction process is sound, i.e. ∀p\ ∈ P \, α(p\) is an over-
approximation of p\. Let p]1 = p] = α(p\) = α(p\2). By reflexivity, α(p\) v] α(p\). Hence, the
commutative diagram in Figure 3.1 induced by (3.5) and (3.17) shows that γ ◦α is extensive
(from an abstract point of view, α(p\) is as precise as possible):

∀p\ ∈ P \ : p\ v\ γ ◦ α(p\) (3.18)

In the same way, the concretization function γ introduces no loss of information (3.4). Let
p\1 = p\ = γ(p]) = γ(p]2). Since by reflexivity γ(p]) v\ γ(p]), hence α ◦ γ is reductive:

CHAPTER 3. ABSTRACT INTERPRETATION 35

∀p] ∈ P] : α ◦ γ(p]) v] p] (3.19)

It follows that the concretization function γ is also monotone. The diagram in Figure 3.1
shows that when p]1 v] p

]
2, the reduction (3.19) and transitivity imply that α ◦ γ(p]1) v] p]2,

whence γ(p]1) v\ γ(p]2). In the same way, α is also monotone since p\2 v\ p
\
1 implies p\2 v\

γ ◦ α(p\1) by (3.18) and transitivity, whence α(p\2) v] α(p\1).

The definitions of extensive (3.18) and reductive (3.19) morphisms can be combined to obtain
the proof of idempotence of γ ◦ α and α ◦ γ. In the first case, for all p\ ∈ P \ and p] ∈ P],
we have α ◦ γ(p]) v] p] by the definition of reductive morphism (3.19) whence by monotony
γ ◦ α ◦ γ(p]) v] γ(]). Moreover, letting p\ = γ(p]) in the definition of extensive morphism
(3.18), we have γ(p]) v\ γ ◦ α ◦ γ(p]). By antisymmetry, we conclude that:

∀p] ∈ P] : γ ◦ α ◦ γ(p]) = γ(p]) (3.20)

Conversely, by letting p] = α(p\) for all p\ ∈ P \ in the definition of reductive morphism
(3.19) we have α ◦ γ(α(p\)) v] α(p\). Moreover, the definition of extensive morphism (3.18)
implies that p\ v\ γ ◦α(p\) holds for all p\ ∈ P \ whence by monotony of α we have α(p\) v\

α ◦ γ ◦ α(p\). By antisymmetry, we conclude that:

∀p\ ∈ P \ : α ◦ γ ◦ α(p\) = α(p\) (3.21)

Consequently, a Galois connection defines two closure operators: a lower closure operator
α ◦ γ that is monotone, reductive and idempotent; and a upper closure operator γ ◦ α that
is monotone, extensive and idempotent.

Idempotence is a property of a closure operator ϕ on a set S (ϕ ∈ S 7→ S) such that given
a subset X ⊆ S : x ∈ X : ϕ(x) = ϕ(ϕ(x)). For example, an upper closure operator maps
elements of subsets X ⊆ S to the most precise element x′ of X (∀x ∈ X : x′ v ϕ(x)). This
means that the information loss by the abstract interpretation process is always the same
during successive abstractions, provided that the same abstraction function is used.

An important consequence of the existence of closure operators is that one can reason
about abstract interpretation using only P \ and its image by the upper closure operator
γ ◦ α, therefore avoiding the direct use of P]. Moreover, abstract interpretations on P] can
be inductively defined from concrete interpretations on P \ using the properties of closure
operators.

A Galois connection is fully determined by either one of the abstraction or concretization
functions: ∀p\ ∈ P \ : α(p\) = u]{p] | p\ v\ γ(p])}. Conversely, ∀p] ∈ P] : γ(p]) =
t\{p\ | α(p\) v] p]}. First assume that p\ v\ γ(p]). By monotony of α, we have α(p\) v]

α(γ(p])). Moreover, α ◦ γ v] λp]•p] by definition of a lower closure operator. Hence,

CHAPTER 3. ABSTRACT INTERPRETATION 36

α(p\) v] α(γ(p])) v] p] implies α(p\) v] p] as expected. The proof showing that α(p\) v] p]

implies p\ v\ γ(p]) is analogous.

The unique and reciprocal definitions of the functions α and γ can also be expressed in
an alternative formulation of a Galois connection called the pair algebra framework [15].
Given the Galois connection P \(v\) −−−→←−−−α

γ
P](v]) we re-define (3.17) in point-free style as

(α∪, γ) ∈ (v\ ← v]), by stating that (α∪ ∗ v]) = (v\ ∗ γ), where ∪ (pronounced “wok”)
denotes the converse operation on relations and ∗ denotes the composition of relations. The
total functions α and γ are termed upper and lower adjoints, respectively.

Galois connections can be uniquely determined by a definition of an abstract function that
is a complete join morphism ∀X ⊆ P \ : α(

∨\X) =
∨]{α(x) | x ∈ X}, when

∨] exits,
or a definition of a concretization function that is a complete meet morphism ∀X ∈ P] :
γ(

∧]X) =
∧\{γ(x) | x ∈ X}, when

∧\ exists.

Let P and P] be complete lattices. Galois connections can also be defined in terms of a
representation function β : P 7→ P] that maps a concrete value p ∈ P to the best property
describing it in P] [98]. The representation function is based on the notion of soundness
relation:

Rβ ∈ ℘(P × P]) (3.22)

〈p, p]〉 ∈ Rβ means that the concrete semantics p of the program has the abstract property
p]. Hence, the soundness relation (Rβ) is defined from a given representation function (β)
such that pRβ p] =⇒ β(p) v] p]. Conversely, a representation function is defined from a
soundness relation such that β(p) =

d
{p] | pRβ p]}.

The representation function gives rise to a Galois connection P \(⊆) −−−→←−−−α
γ

P](v]) where
P \ = ℘(P) is the collecting semantics of concrete properties. Given a subset X ⊆ P and an
abstract property p] ∈ P], the abstraction and concretization maps are defined by:

α(X) =
⊔
{β(x) | x ∈ X} (3.23)

γ(p]) = {p ∈ P | β(p) v] p]} (3.24)

It follows that α({p}) = β(p) as is illustrated by the diagram:

℘(P) �
γ

α
- P]

P

β

-�

{·}

CHAPTER 3. ABSTRACT INTERPRETATION 37

3.5 Lifting Galois connections at Higher-Order

The Galois connection P \(v\) −−−→←−−−α
γ

P](v]) defining sets of properties can be lifted at higher
order to define sets of approximate monotone property transformers [28]:

P \
m7−→ P \(v̇\) −−−−−−−−−→←−−−−−−−−−

λϕ •α ◦ϕ ◦ γ

λφ • γ ◦φ ◦α
P]

m7−→ P](v̇]) (3.25)

where the ordering on functions is pointwise, that is ϕ v̇φ if and only if ϕ(x) v φ(x). Starting
with an abstract property x ∈ P], or its equivalent γ(x) ∈ P \, the abstract properties
transformer φ provide an over-approximation φ(x) of the property ϕ(γ(x)), obtained when
the concrete properties transformer is applied to γ(x). It follows that the choice of an
approximation of program properties uniquely determines the way of approximating fixpoints
of properties transformers. Figure 3.2 illustrates the higher-order Galois connection:

x ∈ P](v])
φ
- P](v])

y ∈ P \(v\)

γ
?
α
6

ϕ
- P \(v\)

γ
?
α
6

Figure 3.2: Commutative diagram of an higher-order Galois connection

The soundness requirement of the commutative diagram is ϕ ◦ γ(x) v\ γ ◦ φ(x). Using the
pointwise ordering, the soundness requirement implies that α ◦ ϕ ◦ γ v̇] φ. Reciprocally for
y ∈ P \, the soundness requirement specifies that φ ◦ α(y) w] α ◦ϕ(y). Since the abstraction
function uniquely determines the concretization by (3.2), we have by pointwise ordering that
γ ◦ φ ◦ α ẇ\ ϕ.

3.6 Fixpoint Induction Using Galois Connections

Assume that P \(v\,
⊔\) and P](v],

⊔]) are posets and that F \ ∈ P \ 7→ P \ provides the
concrete semantics lfpP \ of a program. The purpose of fixpoint induction using the Galois
connection P \(v\) −−−→←−−−α

γ
P](v]) is to obtained a definition for α(lfpP \) [36].

The least fixpoint lfpP \ is obtained as the limit of the iteration sequence F \
0
(⊥\) =

⊥\, · · · , F \n+1
(⊥\) = F (F \

n
), · · · , F \ω =

⊔\
n>0 F

\n(⊥\) = lfpF \. Let ⊥] be an abstract
infimum, F] an abstract operator and t] an abstract least upper bound. As an induction
hypotheses, let F]

n
(⊥]) = α(F \

n
(⊥\)) for all n = 0, 1, . . . ω. The following values for n are

considered:

CHAPTER 3. ABSTRACT INTERPRETATION 38

1. For n = 0, α(⊥\) = ⊥];

2. For n > 0, the induction hypothesis α(F \
n
(⊥\)) = F]

n
(⊥]) implies that α(F \

n+1
(⊥\)) =

F]
n+1

(⊥]), which by definition of iteration sequences, means that α(F (F \
n
(⊥\))) =

F (F]
n
(⊥])). Again by induction hypothesis, α(F (F \

n
(⊥\))) = F](α(F \

n
(⊥\))), which

holds by the soundness requirement F \ = α ◦ F \ ◦ γ and when γ ◦ α is extensive,
implying that α ◦ F \ = F] ◦ α.

3. Finally for n = ω, the induction hypothesis implies that α(
⊔\
n>0 F

\n(⊥\)) =
⊔]
n>0 F

]n(⊥]).
On the other hand, since α is a complete join morphism

⊔]
n>0 α(F \

n
(⊥\)) = α(

⊔\
n>0 F

\n(⊥\)),
whence by transitivity we conclude that ∀n > 0 : α(F \

n
(⊥\)) = F]

n
(⊥]).

It follows that the least fixpoint lfpF] of F] ∈ P](v]) m7−→ P](v]) is equal to
⊔]
n>0 F

]n(⊥]).
In fact, if p] is a fixpoint of P] such that ⊥] v] p] then F]

0
(⊥]) = ⊥] v] p]. Otherwise for

n > 0, F]
n
(⊥]) v] p] implies that F \

n+1
(⊥]) = F](F]

n
(⊥])) v] F]n(p]) = p] by definition

of least upper bounds.

3.7 Fixpoint Abstraction Using Galois Connections

In general, the fixpoint inducing ∀n > 0 : α(F \
n
(⊥\)) = F]

n
(⊥]) is not computable. Hence,

one must be satisfied with an abstract approximation p] such that α(lfpF \) v] p]. This
concrete fixpoint approximation can be achieved using the higher-order Galois connection
defined in (3.25), provided the Galois connection P \(v\) −−−→←−−−α

γ
P](v]).

Let p] = lfp α◦F \◦γ be the least fixpoint given by the Tarski’s fixpoint theorem [133]. Since
p] is the least fixpoint, we have α ◦ F \ ◦ γ(p]) = p] whence F \ ◦ γ(p]) v\ γ(p]). It follows
that γ(p]) is a post-fixpoint of F \ whence lfp F \ v\ γ(p]) by Tarski’s fixpoint theorem, or
equivalently, α(lfpF \) v] p] = lfp α ◦ F \ ◦ γ.

A consequence of this fixpoint abstraction is that the choice of concrete semantics F \ and
the Galois connection P \(v\) −−−→←−−−α

γ
P](v]) entirely determines the abstract semantics lfp α◦

F \ ◦γ. Therefore, the abstract semantics F] can be constructively derived from the concrete
semantics by a formal computation consisting in calculating α◦F \◦γ so that it uses operators
on abstract properties only. This calculation is based on the fact that α ◦ F \ ◦ γ can be
approximated by above by F] such that ∀p] ∈ P] : α ◦ F \ ◦ γ(p]) v] F](p]).

Chapter 4

Worst-Case Execution Time

The present chapter identifies the several components that are typically used to build
a modular and generic worst-case execution time (WCET) analyzer. These components
are generically categorized into program flow analysis, microarchitectural analysis and path
analysis. In one way or another, all the existent tools for WCET analysis require the
information produced by each one of these components, but the techniques used to compute
the information they provide can be quite different and the toolchain design that combines
the several components may have many different configurations.

Starting by giving an introduction to the problem of estimating the WCET, we describe
formal methods that can be used to compute sound WCET estimates, in particular those
based on static analysis by abstract interpretation. This chapter gives an overview of the
concepts applied in the design and formal definition of our WCET analyzer described in
Chapter 6.

WCET estimates are of great importance in the development of embedded real-time systems
since they are the main criteria used to perform schedulability analysis. Its purpose is to
provide a priori information about the worst possible execution time of a given program
before executing it in a system. The demand for such safety information is extremely
relevant in hard real-time systems where the risk of failure caused by timing violations may
endanger human life or put at risk substantial economic values.

Consider the possibility to use measurement-based methods in order to determine, of all
possible running times, the “actual WCET”, or the dual “actual BCET” (best case execution
time). The inconvenient of measurement-based methods is that the complexity of the
process, associated to variation of execution times according to all possible combinations
of input data, can hardly be reduced without introducing safety problems. The reason is
the input data that actually causes the worst-case execution time may be difficult, or even
impossible, to predict.

39

CHAPTER 4. WORST-CASE EXECUTION TIME 40

For example, a function with three 16-bit integer arguments will have 216 ∗ 216 ∗ 216 = 248 ≈
3 × 1014 potential executions. Additionally, pipelined processors would also introduce a
variable number of execution times depending on the number of possible hardware states.
Therefore, a safe (total) WCET measurement would not be feasibly computable. For this
reason, lower and upper bounds are required for the BCET and WCET respectively, as
illustrated in Fig. 4.1. The objective of WCET analysis is to find out an approximation of
these bounds without introducing undue pessimism.

pessimism pessimism

actual execution
times

safe
WCET

estimates

safe
BCET

estimates

actual
WCET

actual
BCET tighter

time

tighter

Figure 4.1: Relation between WCET, BCET, and possible program execution times

The focus on embedded systems determines which types of hardware we consider and the
acceptable limitations regarding program flow and structure. In fact, the WCET depends
both on the program flow of the source code, such as loop iterations and function calls, and
on hardware factors, such as caches and pipelines. The analysis of the hardware is essential
to improve the precision of WCET estimates. Nonetheless, these estimates should also be
tight. In summary, soundness is provided by employing static analysis methods by abstract
interpretation to exclude underestimation at hardware level. Additionally, tight program
flow information at source level is essential to include as little overestimation as possible.

For these reasons, WCET estimation is a complex process and any WCET tool must
provide solutions to several key problems in WCET analysis, including the representation
and analysis of the control flow of programs, the modeling of the behavior and timing of
hardware components such as pipelines and caches and, finally, the integration of control
flow information and low-level timing information in order to obtain a safe and tight WCET
estimate. Moreover, the WCET tool should ideally be integrated in the programmer’s
development environment, using namely the compiler infrastructure, to enable the use of
the WCET as an explicit parameter from the programming and verification point of view.

In industrial contexts, where correctness is required by safety and criticality, the estimation
of the WCET requires rigorous formal methods that should be directly applicable and
economically affordable. The most common approaches to WCET analysis are software
model checking and program static verification. The main characteristic of model checkers
like UppAal [76], Kronos [21] and SPIN [68], is the existence of a model of a particular
program and a specification, both used to perform multi-purpose formal verifications. The

CHAPTER 4. WORST-CASE EXECUTION TIME 41

main drawbacks are the difficulty to provide sensible temporal specifications and the state
explosion in model instances.

On the other hand, the mechanisms of static analyzers like aiT [49], are defined for all
programs written in a particular language and employ abstractions that are not specific to
a particular program to analyze. They prove program properties by effectively computing
an abstract semantics of programs expressed in fixpoint or constraint form. The abstract
information can be used to support transformation and verification of programs. Our
approach to static analysis in based on the theoretical foundations of Abstract Interpretation
[30], which is a programming-language independent framework that allows the design of a
wide class of abstract properties.

As previously mentioned, WCET estimation incorporates three sub-problems: program flow
analysis, microarchitectural analysis and path analysis. The task of program flow analysis
is to determine an approximation of the possible flows through the program. The resulting
information is about which functions get called, how many times loops iterate, the nesting of
if-then-else statements, etc. The flow information can be calculated manually by entering
manual annotations into the program [104], or representing the flow information separately
[80, 142]. Automatic flow analysis can be used to obtain flow information using abstract
interpretation [44], instruction-level simulation [83] or data flow analysis [61].

Microarchitectural analysis computes approximations of the times that the system takes to
execute all possible sequences of instructions allowed in a machine program. This requires
the modeling of the host processor system, including the analysis of all hardware features
that can affect timing behavior. In general, this process is divided into two separate analyses,
termed by global low-level analysis and local low-level analysis. These tasks are preceded by
a value analysis, specific to the instruction set of the host system, which computes the range
of abstract values for registers and memory addresses.

Global low-level analysis considers the timing effects of the hardware features that reach
across the entire program, i.e. determines how global effects can affect the execution time,
but are not sufficient to generate actual execution times (expressed in CPU cycles). Typically,
global low-level analysis includes the analysis of instruction caches [47, 92, 106, 137, 79],
supporting a variety of cache replacement policies [108] with distinct cache levels [59], and
data caches [48, 50]. Since exact analysis is impossible in the general case, most approaches
use abstract interpretation to produce approximate yet safe analysis.

Local low-level analysis handles timing effects that depend on the history of computation,
that is, the effects that depend not only on the execution of a single instruction, but also
on the instruction’s immediate neighbors. In this context, the analysis of pipeline overlaps
is, naturally, the fundamental analysis. Nonetheless, some embedded systems may require
the analysis of memory access speed in the presence of on-chip ROM and RAM memories,
which are faster than off-chip memories.

CHAPTER 4. WORST-CASE EXECUTION TIME 42

Traditional approaches to pipeline analysis determine pipeline states for two instructions in
isolation and then analyze the overlap resulting from concatenating them [81, 102]. Abstract
interpretation approaches define an “abstract pipeline semantics” that describes all possible
executions of the instructions in a safe way [122]. Other approaches use a generic processor
simulator to run fragments of code and find local speed-up effects by generating concrete
execution times. A common aspect in the mentioned approaches is the use of the information
provided by the global low-level analysis, commonly referred to as execution facts.

Path analysis can also be termed calculation and is responsible for combining the results
obtained with the program flow analysis and the global and local low-level analysis with the
final purpose to calculate the WCET estimate for the program. The most popular method
used to model and calculate the optimization of the worst-case execution time problem is
integer linear programming (ILP). This technique was introduced in the context of WCET
analysis by [105] and was latter developed in [80, 102, 130]. ILP expresses program flow
and atomic execution times using algebraic constraints. The WCET, or the dual BCET, are
defined in terms of an objective function, which is maximized or minimized, while satisfying
all constraints.

“State of the art” tools for WCET analysis, prominently AbsInt’s aiT [49], perform the mi-
croarchitectural analysis by computing approximations, using abstract interpretation (AI),
of the times that the system takes to execute all possible sequences of instructions allowed in
a machine program. This requires the abstract modeling of the host processor system, which
most commonly include the abstract semantics of the processor instruction set, the abstract
semantics of cache memories and the timing model of processor pipelines. The program flow
analysis is mainly accomplished by user manual annotations and the path analysis estimated
the WCET using ILP. A comparison between the combined approach of AI+ILP with model
checking approaches is provided by Reinhard Wilhelm in [142].

The AI+ILP approach is modular, in the sense that it separates processor behaviour predic-
tion and worst-case path determination. The AI component used to predict the processor
behaviour uses a complex, but precise, fixpoint computation. The remaining ILP modeling
the control flow of the program is usually of moderate size and solvable quickly. On the other
hand, model checkers are typically monolithic tools unable to offer acceptable performance.

There are also some methods that integrate the several steps into a single algorithm. For
example, [83] uses a modified CPU simulator to simultaneously perform program flow, cache
and pipeline analysis, altogether with calculation. In comparison to tools that keep the
corresponding algorithms separate, this approach is able to produce more precise results,
because it excludes infeasible paths, but it is less efficient and relies in a very sophisticated
and detailed CPU modeling.

Chapter 5

Generic Data Flow Framework

This chapter introduces a programming language-independent and generic data flow frame-
work used for computing parametrizable abstract interpretations and introduces the cor-
responding declarative definitions using Haskell as the host programming language. The
data-flow equations of a program are instantiated according to the data dependencies found
on the program at compile-time, modelled according to the weak topological order of the
program [20]. In this way, and in order to give a compositional characterization to the
fixpoint semantics, the order of the data-flow equations inside a Kleene increasing chain [74]
is obtained by induction on the program syntactic structure. Therefore, the instantiation
of an abstract interpreter corresponds to a particular fixpoint algorithm, which involves the
choice of a chaotic iteration strategy [36] to efficiently compute the Kleene sequences.

We formulate a constructive fixpoint semantics based on expressions of a two-level denota-
tional meta-language aiming at compositionality in the value domain. The main advantage
is the possibility to compile type-safe fixpoint interpreters automatically, and in a flexible
way, for a variety of control flow patterns in machine programs. Denotational definitions
are factored in two stages, which is equivalent to the definition of a core semantics at
compile-time and an abstract interpretation at run-time. Supported by the compositionality
assumption of Stoy [132], the core semantics expresses control flows by means of higher-order
relational combinators of the run-time entities.

Rice’s theorem is an important result for analysis and verification of programs and can be
informally paraphrased by stating that all interesting questions about the behavior of pro-
grams are undecidable. Examples of such questions are: “what is the possible output?”; “will
the value of x be read in the future?”; “is the value of the integer variable x always positive?”;
“what is a lower and upper bound on the value of the integer variable x?” Therefore, the
focus of static analysis is not to decide such properties but rather to provide approximative
answers that are still precise enough to allow the verification of such approximate properties.
However, such approximations must be sound, in the sense that all allowed run-time values
must be included in the approximation statically computed at compile-time.

43

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 44

Data flow analysis [72, 98], also called monotone frameworks, is a process characterized by
the use of some compile-time representation of the program, most commonly its control flow
graph (CFG), and an algebraic structure, typically a lattice, describing the “approximate”
values of interest for the analysis. For each programming language construct, it is defined
a data flow constraint that relates the value of a program variable across all the nodes
defined in the CFG. For a complete CFG, a collection of constraints over the program
variables can be systematically extracted by defining all the constraints as equations or
inequations with monotone right-hand sides, which are then given as input to a fixpoint
algorithm that computes the unique least fixpoint solution. Typical examples of data flow
analysis are liveness, available expressions, reaching definitions, sign analysis and constant
propagation [124].

5.1 Fixpoint Semantics

This section describes an application of the hierarchy of fixpoint semantics of a transition
system by abstract interpretation proposed by Cousot in [27], in conjunction with the notion
of weak topological order [20], which establishes a dependency order among syntactic phrases,
aiming at defining a more compact program semantics that we have designated by meta-
trace semantics. The advantages of meta-trace semantics are the ability to define efficient
fixpoint algorithms, by means of chaotic program-specific iterations strategies, and the
ability to define proper syntactic representations in denotational interpretations in order
to automatically generate compositional and generic data-flow analyzers. The contents of
this section are the foundations for Contrib. (ii) and Contrib. (iii) referred in Section 1.

Proofs of convergence and termination of chaotic fixpoint iterations can be found in [36].
We start with a brief discussion on the subject and then describe some related work. Using
a decomposition by partitioning, the fixpoint equation X = F (X) can be decomposed into
a system of equations: Xi = Fi(X1, X2, . . . , Xn)

i = 1, . . . , n
(5.1)

where each Xi belongs to a cpo or complete lattice Pi(vi) and Fi = (X1, X2, . . . , Xn) is
equal to the i-th component F (X)[i] of F (X). If F is upper-continuous then the least
fixpoint lfpF =

⊔
k>0 F

k where F 0 = ⊥ and F k+1 = F (F k) can be computed by Jacobi’s
method of successive approximations or by Gauss-Seidel’s iterative method. In particular,
the Gauss-Seidel method consists in continually re-injecting previous results in the fixpoint
computations in order to accelerate the convergence.

Without sufficient hypothesis on F , Jacobi’s method may converge while the Gauss-Seidel
one diverges, and vice-versa. However, when F is upper-continuous, or monotone using
transfinite iteration sequences [34], the convergence of any chaotic iteration method to the

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 45

least fixpoint of F is assured by determining, at each step, which are the components of
the systems of equations which will evolve and in what order, as long as no component is
forgotten indefinitely, so as to ensure fairness. Let J be a subset of {1, . . . , n}. We denote
by FJ the map defined by FJ(X1, . . . , Xn) = 〈Y1, . . . , Yn〉 where, for all i = 1, . . . , n:Yi = Fi(X1, . . . , Xn) if i ∈ J

Yi = Xi if i /∈ J
(5.2)

An ascending sequence of chaotic iterations of F is a sequence Xk, k > 0 of vectors of∏n
i=1 Pi, starting from the infimum X0 =

∏n
i=1⊥i, and is recursively defined for k > 0 as

Xk = FJk−1
(Xk−1), where Jk, is a weakly fair sequence of subsets of {1, . . . , n}, so that no

component is forgotten indefinitely. The difference between the iteration methods of Jacobi
and Gauss-Seidel is the choice of the successive values of k [33]. As the Cousots advocate
in [28, 36], the compositional design of an abstract interpreter should involve the choice of a
chaotic iteration strategy so as to mimic the actual program execution. An example of the
definition of particular strategies of chaotic iterations, namely the iterative and the recursive
strategies, is given in [20].

Two well-known generalizations are asynchronous iterations [25] and minimal function graphs
[69]. The former approach computes fixpoints using a parallel implementation, where X is
a shared array and each process i reads the value xj of element X[j] in any order for
j = 1, . . . , n. The iteration is performed by letting x′i = Fi(x1, . . . , xn), whose result is
finally asynchronously written in shared memory X[i]. The later approach defines systems
of functional fixpoint equations fi(~Xi) = Fi[f1, . . . , fn](~Xi), i = 1, . . . , n. Since the iteration
strategy defines the order in which each value fi(~Xi) is computed, it is necessary and sufficient
to define their inputs as subsets φi of the domain Pi of ~Xi. The returned output belongs to
a subset of the domain of X called the φ-F -closure and such that φi ⊆ φ-F -closurei ⊆ Pi.

5.1.1 Declarative Approach

The semantics of a program provides a formal mathematical model of all possible behaviors
of a computer system executing this program in interaction with any possible environment
at some level of abstraction. For the purpose of static timing analysis, the automatic
determination of timing program properties is accomplished by inspecting the source code
of some assembly program, P ∈ Prog, that consists in a sequence of machine instructions,
I ∈ Instr. Program properties are defined in the abstract domain C, denoting all the possible
abstract hardware states occurring in the target platform.

The analysis is based on notion of labelled program states, 〈l, σ〉 ∈ Σ, that associate every
program label, l ∈ Lab, to some program invariant, σ ∈ Invs, that soundly approximates the
dynamic behavior of a program P ∈ Prog [31].

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 46

Instrs ∈ Prog 7→ ℘(Instr) (5.3)

InstrsJI1; . . . ; InK , {I1, . . . , In}

Invs ∈ Prog 7→ ℘(Lab ↪−→ C) (5.4)

InvsJP K , atP JP K 7→ C

Σ ∈ Prog 7→ ℘(Lab ↪−→ Invs) (5.5)

ΣJP K , atP JP K 7→ InvsJP K

The type of program invariants InvsJP K is the set of total maps from the program labels, l, to
an abstract environment, ρ ∈ C. The program invariants are defined in Haskell by the data
type (Invs a), where a is a polymorphic type variable denoting C, as specified by Def. (5.4).
In its turn, abstract environments, ρ ∈ C, are denoted by the datatype (Env a), which keeps
the value of some polymorphic abstract hardware state a denoting C. Finally, program states
are defined by the constructor (St a), which models the one-to-one relation between each
label and the corresponding program invariants map invs, as specified by Def. (5.5). For sake
of convenience, we use the record syntax of Haskell to define the constructor (St a) as a
bijection from Lab to (Invs a).

data Env a = Env {value :: a }
type Lab = Int

type Invs a = Map Lab (Env a)

data St a = St {label :: Lab, invs :: Invs a }

Let I ∈ InstrsJP K be a program instruction. Every label l inside a program is contained
inside the set inP , and identifies either the state “at” the beginning or the state just “after”
an instruction I.

atP , afterP ∈ InstrsJP K 7→ Lab

inP ∈ InstrsJP K 7→ ℘(Lab)

inP JIK , {atP JIK, afterP JIK} (5.6)

inP JI1; . . . ; InK ,
n⋃
i=1

inP JIiK (5.7)

As mentioned in Section 3.2, by using Def. (3.9), the program states of Def. (5.5) are proved
to be uniquely identified by their labels. Hence, program states can be ordered according to
the notion of weak topological ordering (w.t.o. for short) [20]. The objective is to represent
the structure of programs isomorphically to a hierarchical order of program states using,
for that purpose, a total order � on Lab. The elements inside matching parentheses are
called components and the first element of a component is called the “head”. For example,
a program with four components could have the following w.t.o.:

(l11 · · · l
n1
1 (li2 · · · l

ni
2 (lj3 · · · l

nj

3) (lu2 · · · l
nu
2))) (5.8)

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 47

The labels pertaining to the component 1 are the sequence l11 · · · l
n1
1 , where the identifiers

1, . . . , n1 (upper indices) define a set of labels sharing a sequential hierarchy belonging to
the same component 1 (lower index). The second component has a first sequential order of
labels, li2 · · · l

ni
2 , starting with the identifier i and ending with ni, then is interposed by a

third component with a sequential hierarchy of j . . . nj , and, finally, is completed with the
fourth sequential hierarchy of u . . . nu. The total order (�) is induced by the position that
each label identifier has in (5.8).

However, this by no way means that all instructions of the machine program are executed
in sequence. On the contrary, the w.t.o. defines the program points in the machine program
from where executions can “continue”, “jump”, “return”, etc. The notion of components
and heads of components defines precisely the control flow that can be extracted directly
from the machine program, at compile time, e.g. by analyzing the “program counter” offset
used by a branch instruction.

“Head” labels are defined as the labels in the first position of a component. For any given
label l, the set of heads of the nested components containing l is denoted by w(l). Assuming
that ARM9 [125] is the target instruction set architecture, heads of components, like the
ones upper-indexed by 1, i, j and u in (5.8), are necessarily either an entry point of a
procedure (e.g. after a branch-and-link instruction, ‘bl’), the head of an intraprocedural
loop (before a conditional-branch instruction, ‘bgt’, ‘beq’, etc.) or the hook point on the
caller procedure after a procedure return (next instruction after a branch-and-link). The
last labels inside a component, n1, ni, nj and nu in Def. (5.8), represent either the label
before an intraprocedural loop, the next-to-last label of an intraprocedural loop or the return
point of a procedure (after a load-registers-and-return instruction, ‘ldmfd’, ‘ldmfa’, etc.).

Using the hierarchical order (�), the w.t.o. induces a dependency graph, which the set of
vertices, denoted by the type Lab, are hierarchically ordered such that an edge i → j is
defined if it is possible to jump from label i to label j by executing a single program step.
An edge i→ j such that j � i is called a feedback edge.

(i ≺ j ∧ j /∈ w(i)) ∨ (j � i ∧ j ∈ w(i)) (5.9)

Example 2. The weak topological order of a simple program.
As an illustrating example of machine state labeling consider the source code in Fig. 5.1 and
corresponding labelled machine program in Fig. 5.2.

Fig. 5.2 shows two root labels, ‘root 0’ and ‘root 11’, one for each procedure, ‘main’ and
‘foo’. They label the states just before the instruction ‘mov ip, sp’ which stores the intra-
procedure pointer ‘ip’ into the stack pointer ‘sp’. The procedure call is made through the
branch-and-link instruction ‘bl’, which starts with the intra-procedural sequential label ‘n 5’
and produces the target label ‘call 11’.

The start label of the next instruction is a “hook” point (‘hook 6’), stating that the execution

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 48

int main (void) {
int y = foo (5) ;

return y ;

}

f oo (x) {
while (x>0) {

x−−;

}
return x ;

}

Figure 5.1: Source code example

continues at this point after the return of the procedure call. The intra-procedural loop inside
the procedure ‘foo’ produces the “head” (underlined) label ‘head 22’ that, in conjunction
with the label ‘n 17’ (feedback edge), states that the instructions between the labels 17 and
22 will be recursively executed by the static analyzer until the conditional instruction bgt

-20 evaluates to “false” in the abstract domain. Finally, each procedure returns with a
non-enumerable target label “exit” that can only be determined in function of the caller’s
“hook” point.

The corresponding weak topological order is:

(0 · · · 5 (11 12 · · · 16 20 . . . (22 17 · · · 21) 22 · · · 25 (6 · · · 10))) N (5.10)

Since the position of labels must be identified inside the components of a w.t.o., they
cannot be modelled using exclusively integer values. Instead, labels are now defined by the
constructor Label. A label at the beginning of a procedure call is constructed using Root.
Regular sequential labels are constructed using Label, “head” labels are constructed using
Head. A label after a procedure call is constructed using Call, a label after a procedure
return is constructed using Exit and, finally, the first label after a procedure return is
constructed using Hook.

data Label = Empty

| Root Identifier | Label Identifier | Head Identifier

| Call Identifier | Exit Identifier | Hook Identifier

The integer identifying each label is stored inside an Identifier, and accessed via the record
function labelId , along with information related to the procedure that contains that label.
Each procedure contains different “sections”, for example ‘.L5’ and ‘.L4’ in Fig. 5.2, which
correspond to the different basic blocks in the source code. Whence, the initial definition of
program states, (St a) must now be redefined to associate the type Label to the field label .

data Identifier = Identifier {labelId :: Lab, procedure :: Proc}
data Proc = Proc {procId :: Int, section :: String, procName :: String}

data St a = St {label :: Label, invs :: Invs a }

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 49

n1 : mov ip , sp : r oo t 0 {”main ”} ; 1

n2 : stmfd sp ! , { fp , ip , l r , pc} : n1

n3 : sub fp , ip , #4 : n2

n4 : sub sp , sp , #4 : n3

n5 : mov r0 , #5 : n4

c a l l 1 1 {(” foo ” ,” main ”)} : bl 24 : n5

n7 : mov r3 , r0 : hook (6 ,” main ”)

n8 : str r3 , [fp , #−16] : n7

n9 : ldr r3 , [fp , #−16] : n8

n10 : mov r0 , r3 : n9

e x i t {”main ”} : ldmfd sp , { r3 , fp , sp , pc} : n10

n12 : mov ip , sp : r oo t 11 {” foo ”} ; 2

n13 : stmfd sp ! , { fp , ip , l r , pc} : n12

n14 : sub fp , ip , #4 : n13

n15 : sub sp , sp , #4 : n14

n16 : str r0 , [fp , #−16] : n15

n20 : b 16 : n16

n18 : ldr r3 , [fp , #−16] : n17 { (” . L5” ,” foo ”)}
n19 : sub r3 , r3 , #1 : n18

n20 : str r3 , [fp , #−16] : n19

n21 : ldr r3 , [fp , #−16] : n20 { (” . L4” ,” foo ”)}
n22 : cmp r3 , #0 : n21

n17 : bgt −20 : head 22

n23 : bgt −20 : n22

n24 : ldr r3 , [fp , #−16] : n23

n25 : mov r0 , r3 : n24

e x i t { (” . L4” ,” foo ”)} : ldmfd sp , { r3 , fp , sp , pc} : n25

Figure 5.2: Labelled instruction set for source program 5.1

The weak topological order is at the foundations of the chaotic fixpoint algorithm [20, 36].
It reflects the syntactical dependencies that, together with an iteration chaotic strategy,
also specifies data dependencies in the data-flow analysis. The objective is to perform a
flow-sensitive, path-sensitive and context-sensitive analysis of machine programs where the
history of a computation can be taken into consideration, while supporting interprocedural
analysis [128].

This is particularly relevant for pipeline analysis, for which the fixpoint algorithm provides
an effective method for pipeline state transversal [142]. Put simply, the chaotic iteration
strategy consists in recursively traversing the dependency graph induced by the program’s
w.t.o. Hence, chaotic fixpoint iterations, parametrized by an appropriate iteration strategy,
are able to mimic the execution orders of the program [28].

Let G be any rooted dependency graph. G is denoted by a triple (N,E, r), where N is the
set of its nodes, E the set of edges and r its root. A path p in G is a sequence of nodes in
N (n1, . . . , ni, nj , . . . , nk) such that ∀(i, j),∃ni → nj ∈ E such that Def. (5.9) holds. A path
p is said to lead from n1 to nk and can also be represented as the corresponding ordered set
of edges 〈E,�〉, where E = {(i, j) | i ≺ j} ∪ {(j, i) | j � i}.

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 50

Fig. 5.2 illustrates how the machine program is labelled according to a weak topological order
where, according to Def. (5.6), each instruction is surrounded by two labels. The desired
behavior of the w.t.o. is to let the total order over labels to produce the same precedence
order of instructions as would be obtained by simulation of the machine program. Intuitively,
the representation in Fig. 5.2 uses a w.t.o. to convey the relational semantics of the machine
program, which is defined by a nondeterministic transition system 〈ΣJP K, τ〉, where ternary
relations τ ⊆ (ΣJP K× InstrsJP K×ΣJP K) are defined between program states ΣJP K that are
“connected” by the labelling process.

Given a syntactic object InstrsJP K, an input-output relation is established between a state
〈l, σ〉 ∈ ΣJP K, which we abbreviate to σl ∈ ΣJP K for sake of simplicity, and its possible
successors. Let a be a type variable for program states ΣJP K. Then, input-output relations
are defined in Haskell as:

data Rel a = Rel (a, Instr, a)

type RelSemantics a = [Rel a]

Therefore, for each procedure there exists an isomorphism between the dependency graph
G and the labelled relational semantics 〈ΣJP K, τ〉, where the set of all nodes, {r} ∪ N ,
correspond to the labels of program states ΣJP K and the edges E = (N × N) correspond
to the pairs of label identifiers present in the set of relations τ . Moreover, apart from the
invariants stored in the program states ΣJP K, the dependency graph G and the relational
semantics 〈ΣJP K, τ〉 are isomorphic structures, as Section 7.2.3 will explore more in detail.

The data-flow static analysis framework is defined to be a pair 〈ΣJP K, F 〉, where F is a
space of functions acting in ΣJP K. To each edge (i, j) of G is associated a propagation
function f(i,j) ∈ F , which represents the change only at the component of ΣJP K at label
j (for simplicity simply referred to as Σ[j]), that is, a change of relevant data inside the
invariants map, InvsJP K, as control passes from the start i, through i, to the start of j.
Once the set S = {f(i,j) : (i, j) ∈ E} is given, the graph-dependent space F of propagation
functions is defined as the smallest set of functions acting in C, which contains S and the
identity map, and which is closed under functional compositions and joins.

Hereby, it follows the general set of data-propagation equations, where for each nj ∈ N , xj
denotes the data instance available at the start of nj :

xr = ⊥C

xj =
⊔

(i,j)∈E

f(i,j)(xi), nj ∈ N − {r} (5.11)

These equations describe state transformations which are locally collected across adjacent
basic blocks of the graph, starting with the “null” (⊥C) information at the program entry.
The optimal solution of these equations is the merge-over-all-paths solution (MOP):

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 51

yi =
⊔
{fp(⊥) : p ∈ pathG(r, j)}, j ∈ N (5.12)

where we define fp = f(ik,jk) ◦ f(ik−1,jk−1) ◦ · · · ◦ f(i1,j1) for each path p = (ni1 , nj1 . . . ,
nik , njk). If p does not exist, then fp is defined to be the identity map on C. Since the
MOP solution is undecidable in general, an approximating iterative algorithm is required
to yield the minimal fixed point (MFP) by computing joins at those program points that
have multiple incoming edges before proceeding with functional application. Nonetheless,
the use of functional application to compute fixpoint solutions is suitable for interprocedural
analysis, where the semantics of procedure calls is modeled as the composition of structured
program blocks, aiming to establish algebraic compositions of input-output relations for each
of the procedure blocks.

Our functional approach to interprocedural analysis is supported on formalisms of weak
topological order and the least fixpoint (in alternative to the minimal fixed point) of the
relational semantics. Using the w.t.o., procedures are represented as components (5.8), where
one can jump back to the original call site after a procedure call, interpreting procedure calls
as “super-operations” whose effect on the abstract environment can be computed using the
composition of the relations involved. To this end, the syntactic objects of relations are
defined by means of inductive expression constructor Expr. Accordingly, the constructor
of relations (Rel a) is re-defined to possible denote state transitions between a non-empty
sequence of instructions instead of a single instruction only.

data Expr = Expr Instr

| Cons Instr Expr

data Rel a = Rel (a,Expr, a)

Procedures are in general multi-exit blocks of code, which makes it impossible to know at
compile time what the target “exit” label of the last transition relation inside the procedure
block will be. However, instead of transforming a program with procedures into a procedure-
less program, by including all the “root” labels in the same dependency graph, the design of
the fixpoint algorithm keeps the formalism based on functional application and least upper
bound operators, but dynamically determines the target label to be equal to the “hook”
point of the call site. Section 6.5 describes how this mechanism enables a context-sensitive
analysis by means of a procedure call stack.

Another mathematical model for expressing the semantics of a program is that of the trace
semantics and it can be obtained as a refinement of the relational semantics [27, 30, 37].
From the observation of program execution, this is the most precise semantics that can
be considered. Starting from an initial state, the trace semantics models the execution
of a program, for a given specific interaction with its environment, as a sequence of states,
observed at discrete intervals of time, moving from one state to the next state by executing an
atomic program step. For WCET analysis purposes, we consider only terminating programs.

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 52

Therefore, the trace semantics always ends with a final regular state.

Although the relational semantics of Fig. 5.2 does not specify all the possible intermediate
states that can be computed during program executions, it does specify the data depen-
dencies which are known at compile time. Since program states are labelled, these data
dependencies can be computed along fixpoint iterations by means of monotone propagation
functions and least upper bound operators. Using Def. (5.11), the number of program
states kept along fixpoint computation is equal to the number of program labels. On the
contrary, the trace semantics is a concatenation of variable length of program states, observed
at discrete intervals of time, computed during “actual” (run-time) program executions.
Nevertheless, the labelled relational semantics in Fig. 5.3(b) provide an abstraction of the
trace semantics and provides, at the same time, the basis for the definition of a meta-trace
semantics, e.g. in Fig. 5.3(a), which is a more compact representation of the Kleene ascending
chains that will be unfolded during fixpoint computation. In fact, the unfolded meta-trace
semantics is semantically equivalent to the trace semantics.

(a) Meta-Trace Semantics (b) Relational Semantics

Figure 5.3: Alternative semantic representations (Meta-Trace and Relational)

The meta-trace is a convenient representation because it accommodates in a single repre-
sentation several aspects related to fixpoint semantics: (1) it expresses the weak topological
order of the program (compare the w.t.o in (5.10) with the sequence of states in Fig. 5.3(a)); it
provides a graph-based interpretation of the w.t.o. which, by means of functional application
and joins, computes approximations to the MOP fixpoint solution (5.12); it conveys a way
to apply the Jacobi’s method [36] of successive approximations to compute the MFP using
chaotic iteration strategies [20]; and it provides a way to reduce the number of comparison
between elements of the domain of program states, which can be very useful when this test
is computational heavy.

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 53

Example 3. Example of a chaotic fixpoint strategy.
For the machine code example of Fig. 5.2 described in Example 2, and taking into consid-
eration the weak topological order (5.10), the respective recursive iteration strategy is the
following:

0 · · · 5 11 · · · 16 20 21 [22 17 · · · 21]∗ 22 · · · 25 6 · · · 10 (5.13)

The label 22 is repeated after the []∗ “iterate until stabilization” operator in order to
provide a path-sensitive analysis. In this way, information dependent on the predicates
at conditional branch instructions is taken into consideration. For instance, if a branch
instruction represents a condition x > 0 in the source code, then it would assume that
indeed x > 0 holds on the beginning of the target path of the branch (the head of the
conditional component), and that x <= 0 holds on the fall-through path. N

The chaotic iteration strategy is chosen as a mimic (simulation) of actual program executions.
At each step, the w.t.o. determine which are the components of the system of equations of
Def. (5.11) that are updated with the effect produced by each data-propagation function and
in what order those effects are computed. Since no label is indefinitely forgotten, the chaotic
iteration method converges to the least fixpoint of the space of functions F . If F is upper-
continuous [36], then the least fixpoint lfpv⊥F =

⊔
k>0 F

k where F 0 = ⊥ and F k+1 = F (F k)
can be computed by the Jacobi’s method of successive approximations.

In order to solve fixpoint equations like ΣJP K = F (ΣJP K), the data-flow equations defined
in (5.11) are redefined in terms of the iteration k, where the invariant σi = Σ[i] and the
invariant σj = Σ[j] are two invariant such that either i ≺ j or j � i:

σk+1
j = σkj t f(i,j)(σ

k
i) (5.14)

Fixpoint computations apply the recursive strategy to the iterations k over F . This strategy
recursively stabilizes subcomponents of every component in the w.t.o every time the compo-
nent is stabilized. For every node {ni, nj , . . . } ∈ N of depth 0, i.e. nodes that do not belong
to any nested component, we know that for every edge i → j, i is necessarily listed before
j, i.e. i ≺ j. Hence, the value of i used in the computation of j already has its final value,
which implies that the interpretation of sequential statements is made only once and in the
right order, yielding a flow-sensitive data-flow analysis.

In the case of a loop, the stabilization of the corresponding component is detected by the
stabilization of its “head”. If the value associated to the head of the component remains
unchanged after a subsequent iteration, then the argument used to prove the fact that no
iteration is necessary over the nodes of depth 0 shows that the values associated to the nodes
within the component will not change when the equations are applied once more. Therefore,
for having F δ defined as an ultimately stationary increasing chain (δ < λ) [34], it is sufficient
to have the chain F δ stationary for the head of the loop, for the whole loop to be stable [20].

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 54

Hence, we apply the Kleene first recursion theorem [85] to devise a constructive method of
fixpoint computation: given the function space F = 〈f(1,h), . . . , f(i,j), . . . , f(k,n)〉, where n is
the number of instructions in a machine program, and the invariants vector 〈σ1, σ2, . . . , σn〉,
then the least fixpoint of F , lfpF , is achieved after δ iterations when, ∀(i, j) ∈ E, the
following equality test holds:

F δ(〈σ1, . . . , σj−1, σj , . . . , σn〉) = 〈σ1, . . . , σj−1, f(i,j)(σi), . . . , σn〉 (5.15)

Then, starting with the bottom element in iteration 0 by defining ΣJP K0 = ⊥Σ, the lfpv⊥Σ
F =⊔

δ>0 F
δ is computed by the upward abstract iteration sequence:

ΣJP Kk+1 =

ΣJP Kk if ΣJP Kk = F (ΣJP Kk) (5.16)

σk+1
j = σkj t f(i,j)(σ

k
i) ∀(i, j) ∈ E : |w(i) |> 0 (5.17)

σk+1
j = f(i,j)(σ

k
i) otherwise (5.18)

This sequence chaotic iterations is declaratively defined in Haskell by the function chaotic.
Required are the definition of an upper semilattice (Lattice a), which contain the join

operation (t) used in Def. (5.14) and the bottom element, and the definition of an input-
output transition (Transition a), which define the source and sink programs labels for an
arbitrary syntactical sequence Expr.

class Lattice a where

bottom :: a

join :: a → a → a

class Transition a where

sink :: a → Label

source :: a → Label

expr :: a → Expr

The chaotic function takes three arguments. The first argument is the transition relation
defined by the edge (i, j) as defined in (5.15). The second argument is the actual invariants
map, of type Invs a, which will be updated after the chaotic iteration k. The third argument
has the polymorphic type a and denotes the abstract value obtained after applying f(i,j)(σki).
The definition of the data-flow function f(i, j) in the context of the two-level denotational
meta-language will be given in Section 5.2.

chaotic :: (Eq a, Lattice a, T ransition r)⇒ r → Invs a → a → Invs a

chaotic rel invariants s = let s ′ = read invariants (sink rel)

s ′′ = join s ′ s

in if s ′ ≡ bottom
then store rel s invariants

else if s ′′ 6≡ s ′

then store rel s ′′ invariants

else stabilize rel invariants

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 55

The abstract value computed in the previous k iteration is instantiated by the variable s ′

and is obtained by reading from the invariants map the value associated with the sink label
of the input transition relation, rel . If this value is equal to bottom, which correspond to the
case defined in (5.18), then the function store is used to insert the value s, which corresponds
to iteration k + 1 and is taken as an input argument, directly into the invariants map.

Otherwise, the fixpoint condition of Def. (5.16) is tested in order to determine if the fixpoint
has been reached at the program point j, or if it is necessary to proceed to the next iteration,
using the value σk+1

j as input to the next data-propagation function. When the case of
Def. (5.16) holds, the function stabilize flags the fixpoint condition as True for the value
associated with the sink label of the input-output relation.

data Env a = Env {value :: a, stable ::Bool}

stabilize :: Transition r ⇒ r → Invs a → Invs a

stabilize rel = if (head ◦ source) rel

then adjust (λn → n {stable = True}) $ (point ◦ sink) rel

else id

For this purpose, a new record function called stable is added to the datatype (Env a). As
already mentioned, loop stabilization can be detected at the head of the loop. Therefore,
the flag stable is updated only if the sink label matches a Head label. In order to find the
program point of a Label and to determine the type of label, is defined an instance of the
type class (Labeled a). The function point returns the labelId of a label Identifier and the
function head detects if a label has the constructor Head.

class Labeled a where

point :: a → Lab

head :: a → Bool

Finally, in those cases where Def. (5.17) holds, the join between the value computed during
the previous iteration and the value taken as argument is computed and stored inside the
returned invariants map.

The read and write interactions with the invariants map is defined by means of the type
class (Container a b), using the functions read and store. The type variables a and b stand
for the container type (Invs a) and the contained type (a), respectively. The function read

retrieves from the invariants map the value stored at the program point of the input label .
The function store updates the input value s at the program point of the sink label of the
input relation rel .

class (Lattice b)⇒ Container a b where

read :: (Labeled l)⇒ a → l → b

store :: (Transition r)⇒ r → b → a → a

instance (Lattice a)⇒ Container (Invs a) a where

read invariants label = value $ invariants ! (point label)

store rel s = adjust (λn → n {value = s }) $ (point ◦ sink) rel

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 56

5.2 Meta-Language

This section delineates Contrib. (i) as the definition of a polymorphic, two-level meta-
language [100], capable to express the semantics of different programming languages in
a unified fixpoint semantics. The same meta-program can be parameterized by different
state-propagation semantic functions, defined for a variety of abstract domains. Automatic
generation of type-safe fixpoint interpreters is obtained directly in Haskell by providing
interpretations to the meta-language combinators using λ-calculus. This is a step forward
to carry out Contrib. (ii).

The hierarchy of semantics of a transition system by abstract interpretation proposed in [27],
in particular the existing isomorphism between the relational and the denotational program
semantics, is used to design our meta-language based on algebraic relations. In this way,
we achieve Contrib. (iii) by letting the semantic functions defined in Section 5.1 to be used
as relations in the context of the two-level denotational meta-language in order to compute
fixpoints using a reflexive transitive closure.

An important method for defining a data-flow analysis framework is to give an interpreter
for the the language that is written in a second language with better characteristics from
the analysis point of view, e.g. the adequacy for computations with symbolic expressions.
In [110], these two languages are designated by defined and defining (“host”) languages,
respectively. For example, a defined language with imperative features, such as statement
sequencing, labels, jumps, assignment, and procedural side-effects, can be interpreted by a
defining language with applicative features, such as the evaluation of expressions and the
definition and application of functions.

Definitional interpreters must include expressions of the defined language. In order to avoid
questions related to grammars and parsing, the approach of abstract syntax was introduced
in [87]. In this approach, syntactical phrases of programs are represented by abstract,
hierarchically structured data objects. The concept of data object is used by Reynolds in
[110] to introduce the process of defunctionalization in the formalization of a definitional
interpreter where any of its functions cannot accept arguments or produce results that
are functions. Operationally, defunctionalization removes function types from the type
signatures of the defining interpreter and replaces them with a coproduct datatype. The
original effects are obtained by introducing an “apply” function that interprets the coproduct
and returns the expected functional type.

When accompanied with the techniques of closure conversion and transformation into conti-
nuation-passing style (CPS), defunctionalization define the structure of an abstract machine
for the lambda-calculus [4]. Concretely, a closure-converted interpreter has first-order data
flow and a CPS-transformed interpreter has sequentialized control flow. Moreover, this kind
of defining interpreters can be mechanically obtained as the counterpart of the corresponding

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 57

“compositional” interpreters. Suppose, however, that higher-order functions are convenient
for defining interpreters using, for example, a denotational semantics to perform data flow
analysis [94]. In these cases, a technique called refunctionalization [41] can be used to
refunctionalize an abstract machine into a higher-order counterpart.

Refunctionalization proceeds by reversing the steps of defunctionalization. Given a first-
order datatype δ and an “apply” function of type δ × τ → τ ′ dispatching the datatype in
the image of Reynold’s defunctionalization algorithm, the “apply” function can be refunc-
tionalized into the functional type τ → τ ′. Moreover, in [41] is stated that refunctionalized
abstract machines always give rise to continuation-passing programs.

In the presence of complex control flow, e.g. involving labels and jumps, the benefits of
having higher-order and compositional defining interpreters are of great importance when
the data flow analysis framework is based on a denotational semantics. On the other
hand, defunctionalized interpreters can by applied to generate code for various abstract
machines. These two features are indirectly related to the two-level denotational meta-
language proposed in [99, 100]. When using abstract interpretation to specify data flow
analysis and proving it correct, the distinction between a denotational “macro-semantics”,
which is defined at compile-time, and a denotational “micro-semantics”, which is defined for
run-time domains, paves the way for a systematic treatment of data flow analysis [70, 94],
to perform program transformation [22] and for automatically compiler generation [77, 126].
More recent approaches, for example [5], comprise data/control flow unification by taking
advantage of the algebraic properties of higher-order control-flow in order to compose first-
order data-flow computations.

The denotational framework for data flow analysis proposed in [94] establishes that a contin-
uation style formulation of denotational semantics naturally leads to the MOP (merge over
all paths) fixpoint solution, whereas a direct style formulation of denotational semantics leads
to the MFP (minimal fixed-point) fixpoint solution. In the earliest approaches to data flow
analysis [72], program semantics were considered from an operational point of view that is not
syntax-directed. On the contrary, the denotational approach is based on “homomorphisms”
from syntax to denotations. One advantage of this approach is the establishment of a clear
connection between the MFP and MOP fixpoint solutions. In particular, the MOP solution
can always be specified as the MFP solution to a different data flow analysis problem.

5.2.1 Declarative Approach

The previous section introduced the notion of meta-trace semantics of a program and
explained the process of computing fixpoints using this semantic characterization by means
of data-propagation functions that express the data dependencies on the program. There-
fore, in order to effectively compute the resulting Kleenian least fixpoints, one needs to

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 58

instantiate the propagation functions that, in some sense, abstract away from the history of
computations. In fact, data-propagation denotational functions are “local”, side-effect free,
input-output functions. In this way, the ideal semantic formalism to express the propagation
functions would be a nondeterministic denotational semantics [27].

The arising challenge is then to find a sound mechanism that correlates all the semantics
formalisms in question in a consistent way. In [27], Cousot presents a constructive design
of an hierarchy of semantics by abstract interpretation in which sound approximations
between the fixpoint semantics computed at trace, relational and denotational levels are
defined. In fact, each level of abstract has its practical advantages. At trace-level, we find a
concatenation of program states which order is specified by a weak topological order and an
iteration strategy. At relational-level, we find a convenient way to label the compiled machine
program and to change the size of the basic blocks by increasing/decreasing the length of
the syntactical objects inside each relation. At denotational-level, we have a natural way
to perform functional applications, to compute effects and to apply fixpoint mathematical
definitions [74, 133].

To put in practice this purpose of correlation of semantic formalisms, we employ a modified
version of the two-level denotational meta-language introduced by Nielson [100]. Put simply,
our objective aims to express the semantics of different programming languages in a unified
fixpoint form by means of algebraic relations. At the higher level of the meta-language are
defined meta-programs that encode the control flow graph of the program, which interpreta-
tion is always the same, regardless of the abstract domain. Meta-programs depend only on
compile-time information, more precisely on their weak topological orders. Moreover, the
semantics of meta-programs exhibits good properties for program transformation due to its
relational-algebraic shape [16, 121].

At the lower level of the meta-language are defined different abstract interpretations, in
the form of denotational semantic functions, that are used to compute transformations
on abstract program properties. In complement to the higher level, these semantic state
transformers express the particularities of some programming language and are used to
parameterize the relational algebra at the upper level [115]. Pragmatically, this separation
in two levels brings the possibility to: first derive a meta-program, composed by relational
operators, which reflects the structure of the program; and second, simulate the meta-
program in the abstract domain, by means of chaotic iteration strategy, so that the fixpoint
computations mimic program executions, passing the denotational state-propagation func-
tions as arguments to the combinators defined at the higher-level of the meta-language.

More specifically, the two levels of the meta-language distinguish between high-level compile-
time (ct) entities and low-level run-time (rt) entities. At the higher-level, meta-programs are
compositionally expressed in relational terms by means of binary relational combinators. The
advantage of this approach is that new programs can be obtained throughout the composition

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 59

of smaller programs, in analogy to graph-based languages. Implemented combinators are
the sequential composition (∗), the pseudo-parallel composition (||), the intra-procedural
recursive composition (⊕), and the inter-procedural recursive composition (�). At the lower
level, semantic transformers of type rt1→ rt2 provide the desired denotational effects.

ct , B | ct1 ∗ ct2 | ct1 || ct2 | ct1 ⊕ ct2 | ct1 � ct2 | split | merge | rt (5.19)

rt , Σ | (Σ× Σ) | rt1→ rt2 (5.20)

The two-level meta-language unifies data and control flow in a pure functional language.
Control flow is expressed at relational level by the upper level of the meta-language using the
point-free notation [52]. Using this notation, the input state to a composition of propagation
functions, either (∗), (||), (⊕) or (�), is associated with left parenthesis with the output state.
In this way, references to the input argument can be removed from the compositional layer
(point-free), allowing the compositional combinators to become binary relational operators
by taking two relations as arguments and producing a new relation. Note that there are no
bound variables at the higher-level of the meta-language. For each combinator, there is only
one bound variable that corresponds either to an input state with the type Σ or the product
(Σ×Σ). We let B denote the logical boolean values (True and False), such that B , {tt,ff}.

Data flow is defined at the lower level of the meta-language by means of state-propagation
functions, which are extensions to program states of the data-propagation functions of
Def. (5.11). Next, we will detail how instances of these state-propagation functions are
obtained as abstractions of the relational semantics. As mentioned in Section 5.1, transition
relations τ ⊆ (ΣJP K × InstrsJP K × ΣJP K) are ternary relations which, given a syntactic
object i ∈ InstrsJP K, establishes a input-output relation between a state and its possi-
ble successors in the context of some program P . Assuming the abstract state vector
ΣJP K = 〈σ1, σh, . . . , σi, σj , . . . , σn〉, where n is a label identifier, we then apply the relational
abstraction defined in [27], using the right-image isomorphism f applied to every transition
relation τ such that:

f(i,j)JτK , λσi • (σj |∃ΣJP Ki,ΣJP Kj : σi = Σi
P [i] ∧ σj = Σj

P [j],

∃ι ∈ InstrsJP K : 〈Σi
P , ι,Σ

j
P 〉 ∈ τ) (5.21)

Each function f(i,j) is partially applied to the syntactic object ι ∈ Instr, so that, at deno-
tational level, we reason on functions exclusively with the type (C→ C), only by using the
abstract values located at the labels i and j. When computing the MFP fixpoint solution,
the least upper bound of the multiple states arriving at the program label j is computed.
Afterwards, the type of the “local” data-propagation function f is lifted to the global
state functional type (Σ → Σ) in order to obtain the space of state-propagation functions
F = 〈f(1,h), . . . , f(i,j), . . . , f(k,n)〉, where each f(i,j) is defined by (5.21) and n is the number
of instructions in the machine program. Any functional types are straightforwardly defined

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 60

in Haskell by the parametric polymorphic type (RelAbs a) and the relational abstraction is
defined by the type class (Abstractable a).

type RelAbs a = a → a

The function apply receives as argument one instance of an invariants semantic transformer
with type (RelAbs (Invs a)), and returns a state transformer, which type (RelAbs (St a))
denotes the run-time type (Σ→ Σ). The instance of the invariants semantic transformer is
produced by the function lift , which provided with a transition relation of type (Rel a) and
a propagation function of type (RelAbs a).

class Abstractable a where

apply ::RelAbs (Invs a)→ RelAbs (St a)

lift :: Rel a → RelAbs a → RelAbs (Invs a)

The right-image isomorphism of Def. (5.21) is defined in Haskell by the function refunct ,
which takes as argument one relation parametrized by a state, Rel (St a), and returns a
relational abstraction (RelAbs (St a)). The first step is to instantiate the abstract semantic
transformer dataFlow as an interpretation of a syntactic phrase Expr. The resulting function
has type (RelAbs a) and is then lifted to the domain of program invariants (Invs a) using the
function lift . Finally, the semantic function between two program states has type (RelAbs
(St a)) and is obtained using the function apply.

dataF low :: Expr→ a → a

refunct :: (Abstractable a, T ransition (Rel (St a)))⇒ Rel (St a)→ RelAbs (St a)

refunct r = let step = dataF low (expr r)

in apply $ lift r step

A generic instance of the (Abstractable a) type class is given next. The function lift takes
as arguments the relation r , and the relational abstraction f , which is defined for the
polymorphic type a (abstract domain). The lifted version reads the existing abstract value
from the invariants map at the source label of r, applies f to it, and then passes the result
to the function chaotic previously defined in Section 5.1.

instance (Lattice a, T ransition (Rel (St a)), Eq a)⇒ Abstractable a where

apply f s@St {invs = i } = s {invs = f i }
lift r f i = let s = read i (source r)

in chaotic r i (f s)

In practice, using the semantic projection mechanism defined in [27], the fixpoint algorithm
evaluates meta-programs at trace level, by expanding the meta-trace according to iteration
strategy, but using the program’s structural constructs defined at relational level and the
program’s functional behavior defined at denotational level. Hence, the fixpoints semantics
lfpv⊥Σ

F is defined in terms of data-propagation functions f(i,j), where i and j are such that
〈Σi

P , ι,Σ
j
P 〉 ∈ τ and ι denotes a syntactic expression of P . Assuming that multiple incoming

nodes nk arriving to the node ni may exist, but that only one outgoing node nj leaves from
ni, the fixpoint denotational semantics is defined as abstraction of the relational semantics:

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 61

F (f(i,j)) , λf(i,j) •λΣi
P • (Σj

P [j] := f(i,j)(σi) | ∀k : σk = Σk
P [k],∃i : σi =

⊔
f(k,i)(σk) :

Σk
P τ Σi

P ∧ Σi
P τ Σj

P) (5.22)

If fact, the previous definition provides an approximation to the MOP fixed-point solution
by providing a constructive iteration method based in functional application and least upper
bounds operators. Compared to the natural nondeterministic fixpoint semantics given in [27],
two observations should be made: the first is that Def. (5.22) gives an abstract (approximate)
fixpoint semantics of a nondeterministic system of input-output relations, whereas in [27,
Theorem 33] gives the collecting semantics of such system; the second is that both definitions
must be different because the state transformer used in the collection semantics is additive,
i.e. a complete join morphism, where the abstract state transformer used in Def. (5.22) is not
additive, but only continuous. Consequently, according to [35, Section 9], the MFP solution
computed by Def. (5.22) is an over-approximation of the MOP solution, which definition
was provided by Def. (5.12) in Section 5.1.

Example 4. Derivation of a meta-program using higher-order combinators.
Fig. 5.4 illustrates how a meta-program is derived for the machine code example in Fig. 5.2 of
Example 2 and the corresponding iteration strategy (5.13) of Example 3. Starting with the
first input-output relation defined for a syntactical expression, the first state-propagation
function is instantiated for the edge given by the pair of labels identifiers (0,1), having
the instruction ‘mov ip, sp’ as the partially applied syntactic object. Then, the meta-
program is constructed as an interpretation of the weak topological order, during which
state-propagation functions are instantiated along the program paths and composed using
the control flow combinators defined in the upper level of the meta-language.

(mov ip, sp) * · · · * (mov r0, #5) * (bl 24) * · · · * (str r0, [fp, #-16]) * (b 16) *
· · · * (ldr r3, [fp, #-16]) * (cmp r3, #0) * ((bgt -20) ⊕ (ldr r3, [fp, #-16]) * · · · *
(sub r3, r3, #1) * · · · * (ldr r3, [fp, #-16]) * (cmp r3, #0)) * (bgt -20) * · · · *
(mov r0, r3) * (ldmfd sp, r3,fp,sp,pc) * (mov r3, r0) * (str r3, [fp, #-16]) * · · · *
(ldmfd sp, r3,fp,sp,pc)

Figure 5.4: Fragments of a meta-program derived from an iteration strategy and a
relational semantics

For the ‘while’ loop contained in the source program in Fig. 5.1, and by inspection of the
iteration strategy (3), a feedback edge is detected between the label indentifiers 22 and 17,
such that 22 � 17∧22 ∈ w(17), according to Def. (5.9). This explicitly states that a recursive
pattern was found in the control flow of the program. Accordingly, the corresponding meta-
(sub)program uses the binary relational operator (· ⊕ ·) to compose the state-propagation
function for the branch instruction ‘bgt -20’, which is at the head of the loop, with another

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 62

meta-subprogram containing the body of the loop, which is a sequential composition (*) of
state-propagation functions for a list of instructions, starting with ‘ldr r3, [fp, #-16]’ and
ending with ‘cmp r3, #0’. N

Next, we give the formal definitions of the binary relational combinators as denotational
interpretations according to the notion of subgraphs. Fig. 5.5 gives the graph-based represen-
tation of the meta-programs. As expected, the simpler control-flow patterns are ‘sequencial’,
‘pseudo-parallel’, ‘alternative’ and ‘recursive’ compositions. Interpretations for the interface
adapters ‘split’ and ‘merge’ are also given.

(∗)

(a) Sequential

(||)

(b) Pseudo-

-parallel

subgraphedge

merge

split

(c) Alternative

branch

body

(⊕)

(d) Recursive

Figure 5.5: Graph-based representation of the control-flow patterns

Every time two edges are connected by consecutive labels, we apply the sequential composi-
tion of the two corresponding subgraphs. The sequential composition (· ∗ ·) of two relations
T and R is defined by a(T ∗ R)c iff there exists b such that aTb and bRc. In point-free
notation, its type is T ∗ R :: a → c. Since functions are considered to be a special sort of
relations, we give the following Haskell definition for the combinator (· ∗ ·):

(∗) :: (a → b)→ (b → c)→ (a → c)

f ∗ g = λs → (g ◦ f) s

When two edges have two different source labels and two different target labels, we apply the
pseudo-parallel composition of the subsequent subgraphs. The pseudo-parallel composition
(· || ·) of two relations T and R is defined by (a, c)(T || R)(b, d) iff aTb ∧ cRd. Its point-free
type is (a, c)→ (b, d) and the Haskell definition is:

(/) :: (a → b)→ (c → d)→ ((a, c)→ (b, d))

f / g = λ(s, t)→ (f s, g t)

The interpretation of a intra-procedural loop corresponds to the reflexive transitive closure
of the subgraphs that constitute the loop. Hence, the loop structure is divided between body
of the loop T and the branch condition R. The recursive composition (· ⊕ ·) of two relations
T and R is defined by a (T ⊕R) a, where a is a type variable. The conjunction (b T a)∧ (a R b)

corresponds to loop unrolling, i.e. when the recursive operator (· ⊕ ·) invokes itself in a
tail-recursive manner until the fixpoint condition is satisfied; otherwise the output when the

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 63

fixpoint of the loop was achieved has the same type a of the free variable. Therefore, in
point-free notation, its type is T ⊕R : a→ a.

The corresponding Haskell definition is (+). The free variable s of type a is used to compute
the value at the output of the branch condition, which is produced by the argument function
r , in order to detect the fixpoint condition provided by the function isFixpoint .

(+) :: (Iterable b)⇒ (b → a)→ (a → b)→ (a → a)

t + r = fix $

λrec s → let s ′ = r s

in if ¬ $ isF ixpoint s ′

then (t ∗ rec) s ′

else compl s

The function fix uses the typed lambda calculus of Haskell to allow the definition of recursive
functions. Let a be a polymorphic type variable. The definition of fix is λf→f(fix f) and
its type (a→ a)→ a derives directly from the Kleene’s first recursion theorem. Intuitively,
the application fix f yields an infinite application stream of fs: f(f(f(...))). However, this
sequence is only a Kleene sequence if f is continuous and if the sucessive application of f
form an ascending chain [74]. Hence, it is necessary to provide a function that is able to
specify the boolean condition B of Def. (5.19), which determines the end of the recursive
(iterative) applications of f .

This mechanism is provided by the type class (Iterable a), in particular by the function
isFixpoint . The second function defined in the type class is emptyStack and is used to check
wether the state of the procedure call stack is empty or not and is necessary for a context-
sensitive interpretation of interprocedural loops, as will be described latter in Section 6.5.

class Iterable a where

isF ixpoint :: a → Bool

emptyStack :: a → Bool

Finally, a path-sensitive analysis of loops requires the definition of the function compl , which
is used to update a specific flag in the input state value s, stating that the loop test condition
turned to ‘ff’ after the fixpoint has been reached for the recursive subgraph. This will enforce
the analysis of the fall-through loop condition. The function compl is also used by the
interface adapter split before invoking the Haskell pseudo-parallel combinator (/), in which
two alternative, i.e complementary in terms of some given conditional expression, program
paths are represented.

compl :: a → a

The interpretation of a inter-procedural recursive subgraph corresponds to the reflexive
transitive closure of the subgraph that constitutes the procedure. Similarly to the intra-
procedural loop, let T denote the body of the loop and R denote the procedure “return”
relation. Then, the inter-procedural recursive composition (· � ·) of two relations T and R is

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 64

defined by a (T �R) b, where a and b are types variables. The two differences in the definition
of this operator when compared to the definition of the intra-procedural loop operator (·⊕ ·)
are the use of the function emptyStack instead of isFixpoint and the fact that the output
state value does not require any path instrumentation. In fact, the function emptyStack

simply returns ‘tt’ while the recursive procedure call stack is empty, e.g. after completing
the analysis of multiple recursive calls to a procedure.

(%) :: (Iterable c)⇒ (b → a)→ (a → b)→ a → b

t % r = fix $

λrec s → let s ′ = r s

in if ¬ $ emptyStack s ′

then (t ∗ rec) s ′

else s ′

As already mentioned, interface adaptation is required prior and after pseudo-parallel com-
position. In the former case, the split function has type (a→(a, a)) and returns a pair of
values consisting in the previous subgraph output, captured by the bound variable s of type
a, together with the corresponding “complemented ” value that is required by the path-
sensitive analysis.

split :: a → (a, a)

split = λs → (s, compl s)

Afterwards, the pseudo-parallel combinator (/) can be applied to alternative program paths.
In the latter case, when the output of two pseudo-parallel subgraphs need to be combined
into a single state, the function merge is applied. It may happen that, during path-sensitive
analysis, one of the alternative paths is infeasible while the other path is feasible. In these
cases, it is necessary to instrument the values at the end of the infeasible paths so that the
joined state becomes feasible again. To this end, the type class (Infeasible a) is defined. In
any case, the output value is computed using the join function of the (Lattice a) type class.

merge :: (Lattice a, Infeasible a)⇒ (a, a)→ a

merge = λ(a, b)→ case (isNotFeasible a, isNotFeasible b) of

(False,False)→ join a b

(False,True)→ join a (becomeFeasible b)

(True,False)→ join (becomeFeasible a) b

(True,True)→ join a b

class Infeasible a where

isNotFeasible :: a → Bool

becomeFeasible :: a → a

Let b ::= (· ∗ ·) | (· || ·) | (· ⊕ ·) | (· � ·) be the syntactical meta-variable for the binary
combinators in the upper level of the meta-language. Let also the interface adapters ‘split’
and ‘merge’ be represented by input-ouput relations. Then, the reflexive transitive closure
T ? of the program’s initial input-output relation T , where R is a bound input-output
relationis expressed in point-free style as a generalization on the Kleene/Knaster/Tarski
fixpoint theorem [28]:

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 65

T ? ,
⊔
n>0

Tn =
⊔
n>0
i6n

(λR • (T b R))i(⊥Σ) (5.23)

where ⊥Σ is the undefined abstract state. In this way, fixpoint semantics can be efficiently
computed by using program-specific chaotic iteration strategies [20, 36], specified at compile-
time level by the type expressions in the meta-language for free. In complement to type
checking, the soundness of the abstract state-state transformers, which have the unified type
rt1→rt2 and are defined at run-time level, are proven correct by using the calculational
approach proposed in [28], as will be described latter in Sections 6.6 and 6.7.

Comparatively with MOP solution of Def. (5.12) and with the denotational fixpoint se-
mantics defined in terms of the function of Def. (5.22), the MFP fixpoint semantics of
Def. (5.23) is a redefinition of the later, where explicit references to program states are
removed from the definition, using the point-free notation. Therefore, it relies only on the
types of upper level of the meta-language. In this point-free relational view, fixpoints have a
type safe definition for free which is suitable for algebraic transformations on the structure
of programs. Examples can be the unrolling of the first loop iteration outside the recursive
block or the transformation of programs with loops into purely sequential programs. The
last transformation is of particular interest when performing fixpoint verification, as will be
described latter in Section 7.1.

The interplay between the semantics projection mechanism and the algebraic properties of
the meta-language gives origin to a meta-semantic formalism, which will be used to express
fixpoints in different domains of interpretation in the analysis of several components of
the WCET analyzer, to express contract specifications at source code level to verify the
results of fixpoints computed at machine code level, and to transform programs into other
programs for which the verification of the existence of fixpoints can be more efficiently
done. Fig. 5.6 illustrates the way the meta-semantic formalism [27] combines the semantic
projection mechanism with a transformation algebra [22] to specify and verify abstract
properties of programs [29, 30] written in different programming languages [113].

Figure 5.6: Different Interactions of the Meta-Semantic Formalism

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 66

5.3 Intermediate Graph Language

This section describes our intermediate graph language, used to encode the abstract syntax
of the weak topological order of a particular program. The definition of the program’s
syntactic structure by means of the intermediate language improves the mechanism of the
automatic generation of abstract fixpoint interpreters using a denotational semantics. In
this way, Contrib. (ii) is completely specified.

The data flow analysis framework presented so far has its foundations on a theory of fixpoints,
which generically considers a system of data flow equations, commonly referred as semantic
functions in the context of denotational semantics. As already described in the previous
Sections 5.1 and 5.2, this method for data flow analysis in the denotational setting requires
that the intensional information contained in the weak topological order of the program
is not lost when abstracting input-output relations into the extensional framework of the
two-level denotational meta-language. By this reason, the data-flow equations of Def. (5.11)
are instantiated as state-transformation functions by refunctionalizing [41] the set of input-
output relations, as formally described by the right-image isomorphism of Def. (5.21) and
declaratively defined in Haskell using the function refunct .

However, the fixpoint algorithm defined of Def. (5.23) is compositional, in the sense the
higher-order semantic functions are combined to model control flow, but in a way such that
the order of application specified by the chaotic iteration strategy is preserved and correct
in the light of the type system of Haskell. Experience showed us that the abstraction effect
produced by the function refunct cannot be performed until all the intensional information
contained in the input-output relations is no longer necessary. Hence, we have defined an
abstract syntax to represent control flow as a “homomorphism” between syntactic phrases
using this abstract syntax and the expressions defined at the upper level of the two-level
denotational meta-language.

The objective is to use the defining programming language Haskell to compile (or interpret)
another definition written in Haskell to give an interpreter for the defined language. In
this way, the reflexive transitive closure of Def. (5.23), can be automatically compiled as an
interpretation of the abstract syntax into expressions of the upper level of the meta-language.
Since each of the binary relational operators are interpreted into the lambda-calculus, the
overall (compositional) effect is obtained by a Haskell program. Moreover, the semantic
functions provided at the lower level of the meta-language are polymorphic in the domain
of interpretation.

Our approach is based on the compilation of denotational interpreters proposed in [13]. The
objective is to automatically obtain the derivation of meta-programs that specify a particular
fixpoint algorithm in the form of (5.23). Let D be the language of denotational semantics
and δ is a particular definition of some programming language (δ ∈ D). Given an input

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 67

program π of type P and some input σ of type Σ, the interpretation of δ and π on σ is
defined by the interpreter C1 ∈ D× P× Σ→ Σ.

Further, a second interpreter C2JδK, of type C2 ∈ D → P × Σ → Σ, is defined by partially
applying the definition δ to finally run π on σ. Again by partial application, the program
π ∈ P is compiled to give an interpreter ((C3JδK)JπK) of type C3 ∈ D→ P→ Σ→ Σ, which
finally compiles π, as desired. The definition of C3 is given in two steps: (1) by means of the
compiler C4, δ can be treated as a method of translating a program P into lambda-calculus
Λ; (2) a compiler L for λ-calculus expressions.

C4 ∈ D→ P→ Λ (5.24)

L ∈ Λ→ Σ→ Σ (5.25)

C3JδK ≡ L ◦ (C4JδK) ∈ P→ Σ→ Σ (5.26)

5.3.1 Declarative Approach

The derivation of meta-programs directly as a result from an interpretation of the weak
topological order of a program P has the follow inconvenient: the program labels contained
in the delimiting states of input-output relations are no longer explicitly available after
performing the relational abstraction (5.21). In fact, the intensional information stored in
two adjacent labels in the weak topological order is abstracted into the extensional, side-
effect free, format of denotational semantics, where the datatype holding the syntactic object
of a relation is eliminated by refunctionalization.

However, when in presence of alternative paths in the machine program, e.g. resulting from
a block ‘if-then-else’ in the source code, this becomes a technical limitation because the
interpretation of the weak topological order needs “split” one path into two alternative paths
after one branch instruction and afterwards “merge” the program states at the end of these
paths, at some given “join” label. The technical problem arises because the comparison of
the two calculated meta-programs is necessary in order to determine this particular “join”
label. Nonetheless, by compositionality of the data-flow analyzer, the calculation process
can continue from that label onward.

The solution found was to devise an inductive intermediate graph language that mimics the
execution order of trace semantics and “connects” the relations τ denoted in Haskell by
(Rel a), in order to obtain a dependency graph (G a). Such dependency graph encodes the
control flow of the program using a abstract-syntax datatype, which contains the intensional
information necessary to inspect the precise location of a label inside the dependency graph.
The inductive abstract syntax of a dependency graph allows the representation of all the
program paths allowed in any program, which are identified at compile-time by the weak
topological order of the program.

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 68

data G a = Empty | Leaf (Rel a) | Seq (G a) (G a) | Unroll (G a) (G a)

| Unfold (G a) (G a) | Choice (Rel a) (G a) (G a)

A dependency graph is either an empty graph (Empty), a subgraph consisting in a single
relation (Leaf), two subgraphs connected in sequence (Seq), two intra-procedural sub-
graphs connected recursively (Unroll), two inter-procedural subgraphs connected recursively
(Unfold), or two subgraphs connected pseudo-parallely (Choice).

The advantages of the intermediate graph language are mainly three: (1) an interpretation
of the abstract-syntax tree enables the automatic compilation of dependency graphs into
meta-programs; (2) by induction on their abstract syntax trees, dependency graphs can be
transformed according to the algebraic rules of the meta-language; (3) for visualization and
bug-tracking purposes, the syntax tree can be translated into the XML format of graph
visual languages such as GraphML [135].

By taking advantage of the algebraic properties of the higher-order relational combinators,
meta-programs are “calculated” using the denotational approach. The syntactic phrases of
a program are their dependency graphs. The denotations of each component of (G a) are
expressed by the combinators defined in the upper level of the two-level denotational meta-
language. The main advantage of using Haskell for the calculation of fixpoint interpreters
is the fact that a definition written in Haskell can be compiled (or interpreted) to give a
type safe interpreter. This guarantees the type correctness of the expressions using the core
semantics (5.19) parametrized by the abstract state transformers defined at run-time (5.20).

The automatic compilation of dependency graphs into meta-programs can be regarded as a
system for interpreting definitions to give interpreters [13]. After introducing the intermedi-
ate graph language, we will now refer to the syntactical phrases of the abstract syntax (G a)
as “programs”. In the denotational setting, these syntactic phrases are interpreted into the
core semantics of the meta-language. Afterwards, meta-programs in the form of (5.23) are
automatically compiled into λ-calculus by providing a subsequent interpretation to the core
semantics for the binary operators b and the unary operators u. This last step has been
described in the previous Section 5.2 in the Haskell definitions of b and u.

Compared the Def. (5.26), the compiler C4 does not translate a program into lambda-
calculus terms, but rather translates a dependency graph written in the intermediate graph
language, into expressions of the core semantics of the two-level meta-language. Additionally,
the compiler L is an Haskell interpreter that performs the interpretations of the operators
b and u into lambda-calculus. The goal of the compiler C3 is to refunctionalize the defining
interpreter to the type (Σ→Σ) when provided with a dependency graph.

The compiler C3 is defined in Haskell by the function derive. By the fact the structure of
dependency graphs is inductive, the type signature of derive requires the definition of the
“continuation” meta-program f . The function refunct provides the right-image isomorphism
used to abstract the relational semantics to the denotation level. For sake of clarify, the

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 69

refunctionalization previously defined by the function refunct uses the data type (Rel (St a)).
Alternatively, the “higher-order” refunctionalization provided by the function derive uses the
inductive datatype (G a), where the previously mentioned data type is accessible through
the constructor Leaf .

derive :: (Infeasible (St a), Iterable (St a), Lattice a, Lattice (St a), T ransition (Rel (St a)), Eq a)

⇒ (St a → St a)→ G (St a)→ (St a → St a)

derive f Empty = id

derive f (Leaf (Rel st)) = f ∗ refunct (Rel st)

derive f (Seq a b) = derive (derive f a) b

derive f (Unroll (Leaf r) g) = f ∗ ((derive id g) + refunct r)

derive f (Unfold (Leaf r) g) = f ∗ ((derive id g) + refunct r)

derive f (Choice a b c) = let left = derive id b

right = derive id c

in f ∗ split ∗ (refunct a ∗ left / right) ∗ merge

Using the function derive, we have demonstrated how the basic state transformers of poly-
morphic type (St a→St a) can be used to compile compositional fixpoint interpreters using
a calculational approach. Indeed, this derivation process is polymorphic on the type a which
makes the fixpoint algorithm generic in the abstract domain.

Another important advantage of the intermediate graph language and the automatic compila-
tion of meta-programs is the possibility to generate visual representations of the dependency
graph. The representation format chosen to store these graphs is the XML-based language
GraphML. As a first example, consider the machine program in Fig. 5.2. For the procedure
‘foo’, the dependency graph induced from the weak topological order of the corresponding
set of instructions is given in Fig. 5.7(a).

Example 5. Visual representation of a dependency graphs.
Although the rooted dependency graphs G = (N,E, r) introduced in Section 5.1, are similar
to control flow graphs, there is a fundamental difference. In dependency graphs, program
execution steps are represented by the set of edges E. On the other hand, the graph notation
used by GraphML specifies the dependency graph as data flow graphs. In this way, the bright
blue nodes in Fig. 5.7(a) represent the first (‘mov ip, sp’) and last (‘ldmfd sp, r3,fp,sp,pc’)
instructions of the procedure ‘foo’, respectively. The green node represents the instruction at
the head of the loop (‘bgt -20’) and the nodes labelled with the pairs (20,21) and (21,22) are
outside the recursive block ‘rec 22’ because these instructions also belong to the fall-through
program path of the loop. Nevertheless, they are also included in the body of the loop, as
can be inspected in the meta-program of Fig. 5.4 of Example 4.

To illustrate conditional alternative paths, consider the fragment of the dependency graph in
Fig. 5.7(c) for the source code in Fig. 5.7(b). A new group ‘choice 19’ is created to represent
the ‘if-then-else’ statement, where the start label is 19 and the “join” label is 27.

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 70

(a) Dependency graph of the ‘foo’ procedure in GraphML

int main (void)

{
int y = foo2 (5) ;

return y ;

}

foo2 (x)

{
while (x>0)

{
i f (x == 3)

{
x++;

}
else

{
x−−;

}
}
return x ;

}
(b) Source code example

with an

‘if-then-else’ block

(c) Dependency graph of the ‘foo2’ procedure in GraphML

Figure 5.7: Examples of dependency graphs visualized in GraphML
N

CHAPTER 5. GENERIC DATA FLOW FRAMEWORK 71

5.4 Summary

This chapter describes a generic and compositional approach to data flow analysis which
is suitable for the automatically generation of type safe abstract interpreters and their
parameterization to compute different static analysis. The abstract properties of interest
for a particular data-flow analysis are are associated to program points by a partitioned
system of data-flow equations, which is solved by a chaotic iteration strategy. In practice,
the dependency graph of the system of equations must be ordered according to a weak
topological order to perform a flow-sensitive analysis. Using an abstract syntax to represent
the control flows between program labels, an interpreter recursively traverses the dependency
graph and automatically compiles a higher-order, continuation-passing and compositional
fixpoint algorithm.

Since program states are labelled according to a weak topological order, and there are only a
finite number of program labels, we introduce the concept of meta-trace as the cornerstone
of the calculational design of reflexive transitive closures. Finally, given the definition of an
abstract domain, suitable for a particular data flow analysis by abstract interpretation, the
evaluation of a meta-trace results in the MFP solution of the system of data-flow equations,
although this solution is computed using a MOP-style, i.e. compositional algorithm. In
fact, the MOP solution can always be specified as the MFP solution to a different data flow
analysis problem [94], whose MFP solution need not be computable [35].

Chapter 6

WCET Analyzer

This chapter presents a detailed description of all the components that constitute the WCET
analyzer. As stated in Contrib. (iv), we instantiate the generic data flow framework described
in Chapter 5, to perform a single data flow analysis, i.e. an analysis based on a single semantic
transformer defined at the lower level of the meta-language (5.20), that simultaneously
computes the value analysis, the cache analysis and the pipeline analysis of the machine
program running on an ARM9 microprocessor1. In practice, the pipeline analysis uses the
intermediate states of the other two static analysis with the objective to compute an abstract
pipeline semantics capable of providing a set of execution times, local to each program point.

According to Contrib. (v), the abstract state transformers defined for the value analysis and
cache analysis are proven to be “correct by construction”, in the sense that they are obtained
by the calculational approach based on Galois connections proposed by Cousot [28]. The
non-existence of a known abstract domain for pipeline analysis constraints the calculational
method of inducing a correct by construction abstract pipeline state-transformers. However,
we present a semi-formal calculational approach to pipeline analysis in the sense that we
provide a denotational semantics for pipeline behaviour, where state transitions are modelled
using functional application [115].

Additionally, we compute a program flow analysis automatically at the machine-code level
as the result of an instrumented value analysis, as stated in Contrib. (iv). According to
Contrib. (iii), we also extend the generic data flow framework to support an interprocedural
analysis based on the functional approach proposed in [128].

Finally, we make a case for Contrib. (x) to show that Haskell can be used where the
mathematical complex notions underlying the theory of abstract interpretation can be easily,
elegantly, and efficiently implemented and applied to the analysis of complex hardware
architectures.

1Our concrete instruction semantics of ARM9 is based on the HARM virtual machine, an emulator for

ARM programs that is written in Haskell: http://hackage.haskell.org/package/HARM

72

http://hackage.haskell.org/package/HARM

CHAPTER 6. WCET ANALYZER 73

Our static analyzer is designed to be deployed in the supplier/consumer scenarios, typical
in distributed embedded systems, where the theory of Abstract-Carrying Code (ACC) [9]
can be used to implement a stand-alone and efficient safety-ensuring system. Along with
the objective to provide a stand-alone verification mechanism of WCET estimates, special
design requirements related to WCET analysis arise. For example, we cannot rely on manual
annotations on the source code because the communication channel of the ACC framework
only accepts the transmission of a certificate plus the corresponding machine code (as Fig. 1.3
illustrates). Consequently, the program flow analysis must be performed automatically at
machine-code level and included in the certificate, so that program flow information can be
verified at consumer sites.

More precisely, the program flow analysis computes the capacity constraints of the linear
program, i.e. the upper bounds for the number of fixpoint iterations at every program
point in the machine program. Using a proper semantic domain to specify program-flow
information, bounds for loop iterations can be automatically computed using an instru-
mented version of the static analyzer described in Chapter 5. It follows that the labelled
program states of Def. (5.5) must accommodate abstract invariants about both program-
flow and machine-value information. However, this precludes the use of fixpoint convergence
acceleration methods, in particular the widening/narrowing operators [31, 38], since complete
loop unrolling is required by definition.

Nonetheless, the potential inefficiency of the static analyzer, in terms of analysis execution
time directly associated to loop unrolling, is balanced by the gain in precision obtained
when performing several static analyses simultaneously. For example, the ait WCET tool
[49] computes the value, cache and pipeline analysis separately and then reuses the results of
the previously computed analyses (in the specified order). Although each of the analysis is
more efficiently computed, each static analysis must deal with the nondeterminism resulting
from the approximative character of the abstract domains used by the other static analyses
it depends on.

Alternatively, we compute the program flow, value, cache and pipeline analysis simultane-
ously, as illustrated by Fig. 6.1. The value analysis is performed during pipeline analysis
using the “abstract instruction semantics” of the underlying hardware platform. According
to the classifications global low-level analysis and local low-level analysis given in Chapter 4,
our WCET static analyzer is designed so that it is able to compute increasing Kleene chains
at the local low-level, while integrating results from the value analysis and the global low-
level analysis. Every time that an instruction is fetched from the instruction memory, the
resulting “execution facts” produced by the global low-level analysis, i.e. the cache analysis,
are integrated into the local low-level analysis, i.e. the pipeline analysis. Additionally, the
pipeline analysis also depends on the timing model of the underlying hardware platform.

This integrated solution is able to produce precise results by the fact that during fixpoint

CHAPTER 6. WCET ANALYZER 74

iterations over instructions that are inside alternative paths or inside loops, the analyzer is
able to detect precise information about the contents of the instruction cache and is able to
detect if the instruction belongs to infeasible paths. Hence, the analysis of an instruction is
a deterministic process as a consequence of the full loop unrolling. In fact, timing anomalies
need to be considered only at those program labels where alternative paths join and they
do not follow from the nondeterminism introduced by a previous separate cache analysis. In
this work, we perform cache analysis in instruction caches only.

Figure 6.1: Overview of the Certifying Platform

6.1 Target Platform

Although the static analyzer presented in Chapter 5 is independent from the defined lan-
guage, for the purpose of WCET analysis we need to provide a definition for the state
transformers at the lower-level of the two-level denotational meta-language. Therefore, the
choice of a particular hardware platform is required. We choose the ARM9 [125] target
platform because it includes all the hardware components used by state-of-the art WCET
tools, such as instruction and data caches, pipeline execution models, and also well-defined
instruction semantics.

ARM9 is a 32-bit Advanced RISC Machine (ARM) architecture. RISC stands for Reduced

CHAPTER 6. WCET ANALYZER 75

Instruction Set Computing and is a Central Processing Unit CPU design strategy that is
based on the insight that simplified instructions can provide higher performance if that
simplicity enables a much faster execution of each instruction. Relatively to its predecessor
ARM7, the ARM9 architecture moved from a von Neumann architecture (Princeton archi-
tecture) to a Harvard architecture with separate instruction and data buses (and caches),
significantly increasing its potential throughput. Over the years, successive generations of
ARM processor cores are being massively used in mobile phones, handheld organizers (PDAs)
and other portable consumer devices.

More technically, ARM9 is a Load/Store architecture, i.e. an architecture that only allows
the memory to be accessed by load and store operations and requires that all values used
by an arithmetic logic unit (ALU) operation to be present in registers. Space saving in
instruction memories can be achieved by switching the “mode” of ARM to the Thumb
16-bit instruction set. Conditional execution is supported by allowing an instruction to
be executed only when a specific condition has been satisfied. ARM9 has an orthogonal
Instruction Set Architecture (ISA) in the sense that the instruction type and the addressing
mode vary independently, i.e. an orthogonal instruction set does not impose a limitation
that requires a certain instruction to use a specific register. The register file has the size 16 x
32 bits and instruction opcodes have a fixed width of 32 bits to ease decoding and pipelining.

6.2 Related Work

A reference work on the calculational design of semantics and static analyzers by ab-
stract interpretation is the course given by Patrick Cousot at NATO International Summer
School [28]. Considering a simple imperative language and its operational semantics, a prag-
matic approach is taken to formally design and implement a generic abstract interpreter. The
development is based on stepwise refinements and approximation of the fixpoint semantics
and is decomposed in the four fundamental design options enumerated next (please note
that second and fourth design options were already addressed in Chapter 5).

The first design option (1) is the approximation of the reachability semantics by the forward
abstract invariant semantics. The second design option (2) is the definition of a system
of fixpoint equations, by partitioning according to program points, through an isomorphic
decomposition of the forward invariant semantics into local invariants [26]. The third design
option (3) is the use of Galois connections to specify non-relational approximations of the
local invariants by an abstract domain approximating sets of concrete values to get an
attribute-independent abstract interpretation. Finally, the fourth design option (4) is the
use of chaotic fixpoint strategies [33] for solving fixpoint equations in abstract domains that
satisfy the ascending chain condition.

Particularly relevant for programming languages with conditionals is the fact that the weak-

CHAPTER 6. WCET ANALYZER 76

est precondition and strongest postcondition collection semantics are no longer equivalent
after approximation. Consequently, the generic abstract interpreter [28] is extended with
backward analyses that can be combined iteratively with forward analyses [36].

Alternatively, Nielson shows in [94] how data flow analysis by abstract interpretation can
be specified using a denotational approach, where a “store semantics” is systematically
transformed into an “induced semantics” parametrized by a pair of adjoined functions or a
Galois connection. One of the main conclusions is that the denotational approach is no less
systematic than existing operational methods, although it is necessary to consider program
transformations [97].

Recent work in the search for correct methods for automatically constructing a sensible
abstract interpreter from a concrete semantics has been proposed in [89]. A two-step
method is presented to convert a small-step concrete semantic semantics into a family of
sound, computable abstract interpretations. The first step re-factors the concrete state-
space by simultaneously eliminating recursive structure and applying a store-passing-style
transformation of the concrete semantics. The second step uses inference rules to generate
an abstract state-space and a Galois connection that allows the calculation of the “optimal”
abstract interpretation.

6.3 Semantic Domains

The static analyzer combines the value analysis and the “micro-architectural” analysis. The
latter is a term coined by the Compiler Design Group at the Saarbrücken University that
assembles the global low-level analysis and the local low-level analysis in a single class of
analyses. For the purposes of static analysis, the abstract domains and the corresponding
abstract semantic transformers are determined according to the architecture configuration
of the ARM9 microprocessor. The BNF specification of a subset of the ARM9 instruction
set is given in Fig. 6.2.

〈RegisterName〉 → R0 | R1 | R2 | . . . | R15 | CPSR

〈Op〉 → Reg 〈RegisterName〉 | Con Word32 | Rel Int | Bas 〈RegisterName〉 Word32

〈Arith〉 → Add | Sub | Mul

〈Cmp〉 → Cmp

〈Br〉 → B | Bne | Bgt | Blt | Beq

〈Mem〉 → Ldr | Str | Ldmfd | Stmfd

〈Instr〉 → 〈Arith〉〈Op〉〈Op〉〈Op〉 | 〈Cmp〉〈Op〉〈Op〉 | 〈Br〉〈Op〉 | 〈Mem〉〈Op〉〈Op〉
〈Prog〉 → 〈Instr ;+〉

Figure 6.2: BNF specification of a subset of the ARM9 machine language

A machine program 〈Prog〉 is a sequence of one or more instructions 〈Instr〉. Four types of
instructions are considered. The first three instruction types are processed by the arithmetic
and logic unit (ALU) funtional unit of the microprocessor and the fourth is the load/store

CHAPTER 6. WCET ANALYZER 77

instruction type: (1) the instructions 〈Arith〉 read the values of the first two operands
(constants (Con Word32) or registers (Reg 〈RegisterName〉)) and store the result on the third
operand (Reg 〈RegisterName〉); (2) the comparison instruction 〈Cmp〉 reads and compares the
values of two operands and updates the status flags in the register CPSR; (3) the branch
instructions 〈Br〉 alter program execution by setting the “program counter”, which is stored
in the register R15, to a value based on a relative address given by the operand (Rel Int);
and (4) the single data transfer instructions 〈Mem〉 exchanges data between memory and the
register file and vice-versa.

The abstract CPU domain C , (R]×D]×M]×C]×P]) is a composite domain composed by
an abstract register domain, R], an abstract data memory domainD], an abstract instruction
memory domain, M], an abstract instruction cache domain C], and an abstract pipeline
domain, P]. The abstract pipeline domain, P], is defined as a collection of elements of an
“hybrid” domain P , which is a composite domain defined as the cartesian product of the
first four mentioned domains, P , (R′] ×D′] ×M ′] × C ′]). The definition of P in this way
results from the fact that value analysis and “micro-architectural” analysis are performed
simultaneously. This results in a single data-flow analysis defined on P] and requires that
the abstract states of all the allocated resources are available to perform the pipeline analysis
of a single instruction. Consequently, the least upper bound between the elements of the top
level domains R], D], M] and C] and the elements of the store buffers R′], D′], M ′] and C ′]

is computed after the completion of the pipelining of every instruction.

An overview of the 5-stage Harvard pipeline architecture used by ARM9 is given in Fig. 6.3.
The first stage (Instruction Fetch) depends exclusively on the instruction memory (“IM”)
because this stage is when the memory address given by the program counter is “fetched”
from the instruction memory. In the second stage (Instruction Decode), the values of the
operands of the fetched instruction are loaded from the register file (“Regfile”). At this point,
store buffers must be created to carry out the processing of the “decoded” instruction. In
the third stage (Execution), the “ALU” functional unit computes the hardware state after
“executing” the instruction using the buffered operands. In the fourth stage (Memory), the
data memory (“DM”) is accessed, if that is required to execute the instruction. Finally, the
final stage (WriteBack) is where the store buffers are loaded back into the globally shared
register file (“Regfile”). The number of elapsed clock cycles in each stage are shown as “CC
1”, “CC 2”, etc., and indicate the clock cycles required to process a single instruction.

The Haskell definition of the abstract domain C is given by the datatype CPU. For the
sake of readability, and since both the domains M] and C] are related to a single (cached)
instruction memory, the datatype I] represents the entire structure of the instruction mem-
ory. We first give a brief introduction to the internal structure of each domain and then
introduce the corresponding semantic transformers.

data CPU = CPU {registers ::R], dataMem ::D], instrMem :: I], pipeline :: P]}

CHAPTER 6. WCET ANALYZER 78

IM Reg�le DM

ALU

Time (in lok yles)

CC 1 CC 2 CC 3 CC 4 CC 5

Reg�le

Figure 6.3: Graphical representation of an Harvard pipeline architecture

6.3.1 Register Abstract Domain

The register domain R] denotes the ARM9 register file, also referred as regfile, and is denoted
by the homonymous Haskell type R]. From the ARM9 BNF specification of Fig. 6.2, we
can infer that the “abstract” environment of the register file maps 16 registers, syntactically
phrased as (Reg 〈RegisterName〉), to their corresponding abstract values ν ∈ V. Accordingly,
the Haskell type R] is a fixed-size Array that maps an “index” to a abstract value. Each
index is provided by the constructor RegisterName and the abstract type V is denoted by
the datatype RegVal. Their corresponding definitions will be given later in Section 6.6.

type R] = Array RegisterName RegVal

6.3.2 Data Memory Abstract Domain

The data memory domain D] is a finite map from Word32 memory addresses to abstract
memory value ν ∈ V. Similarly to the register file R], the homonymous type of D] in Haskell
is defined as:

type Address = Word32

type D] = Array Address RegVal

6.3.3 Instruction Memory Abstract Domain

As already mentioned, the instruction memory domain consists of a main instruction memory
domain M] and an instruction cache domain C]. As opposed to the main data memory, the
main instruction memory maps memory addresses to “opcodes”. Additionally, the instruc-
tion cache maintains a set of cached values that consists in opcodes and their corresponding
address in the main memory, associated with a tag within the scope of the cache. Both
the abstract domains M] and C] are included in the instruction memory constructor I].
Similarly to the data main memory, the main instruction memory domain is a fixed-size
Array mapping Address indexes to Opcode values. The abstract instruction cache domain
C] is defined as a list (collection) of values of type CacheLine, as described in [48]. In its

CHAPTER 6. WCET ANALYZER 79

turn, each cache line is modeled as a list of tagged Opcode values, where each Tag is an
Address. All the memory addresses of the instruction main and cache memory are initialized
with Undefined.

type M] = Array Address Opcode

type C] = [CacheLine]

type CacheLine = [MemoryBlock]

type MemoryBlock = (Tag,Opcode)

type Tag = Address

data Opcode = Opcode Word32 | Undefined

data I] = I] {main ::M], cache :: C]}

6.3.4 Pipeline Abstract Domain

By design, the value analysis depends on the domains R] and D] and the cache analysis
depends on the domain C]. Therefore, each fixpoint iteration of the pipeline analysis is
defined in terms of a sequence of “hybrid” pipeline states P , each state consisting in the
cartesian product of the domains R′], D′], M ′] and C ′]. In [144] is stated that pipeline
analysis by abstract interpretation is not a typical static program analysis because it employs
both state traversal, as specified by a program-specific chaotic fixpoint strategy, and the least
upper bound operations typically used in static analysis. In this sense, the pipeline analysis
can be rather seen as an “history-sensitive” analysis, that requires the collection of all states
encountered during fixpoint computation.

The reason for designing the abstract pipeline domain as a set of “hybrid” pipeline states
is because there is no abstraction known to the WCET community for concrete timing
properties [122]. Therefore, and according to the timing model of the ARM9 processor
pipeline of Fig. 6.3, the domain P will be extended to include concrete timing properties,
measured in cycles per instruction (CPI), in the cartesian product of the actual definition of
P . In this way, the fixpoint algorithm is able to compute, for each instruction, an invariant
on the hardware states that can occur whenever execution reaches that instruction, including
all possible execution times in terms of number of cycles. After fixpoint stabilization,
these execution times are given as input the WCET calculation component as the capacity
constraints of the linear program.

For now, we define the abstract pipeline domain in Haskell using the constructor P] as
a list of “hybrid” pipeline states P. The Haskell definition of hybrid states is isomorphic
to the cartesian product of R], D] and I]. However, for sake of simplicity, the concrete
information about the timing properties, e.g. the values “CC 1”, “CC 2”, “CC 3”, shown in
Fig. 6.3, are not yet included in the definition of P. A detailed description about the use of
timing properties during pipeline analysis will be given latter in Section 6.8. Informally, we
put forward that a concrete timing information will be included in the product of abstract

CHAPTER 6. WCET ANALYZER 80

resource states in the definition of P .

data P = P {registers ::R], dataMem ::D], instrMem :: I]}

newtype P] = P] [P]

6.3.5 Abstract Semantic Transformers

Next, we introduce the semantic transformers required for WCET analysis. Generically,
fixpoint semantics is specified by a pair 〈L,F 〉, where L is the composite semantic domain
equipped with a partial order (v), an infimum element (⊥) and a partially defined least
upper bound (t), and F is some monotone semantic transformer. Note that, in this context,
F stands for a data semantic transformer on abstract values defined by the lattice L, rather
than standing for a space of state-transformer functions on labelled program states Σ, as
previously referred in Chapter 5.1.

The induction of “correct by construction” abstract semantic transformers is based on the
Galois connection framework [37, Example 4.6], which establishes the relation 〈℘(L), α, γ, L]〉,
between abstract values in L] and sets of concrete values in L, where α and γ are the
abstraction and concretization functions, respectively. Given that the collection semantics
transformer, F \ : ℘(L)→ ℘(L), is a complete join morphism and that the pair of functions
〈α, γ〉 is a Galois connection, a correct approximation F] = α◦F \ ◦γ is obtained by calculus.
In this way, the fixpoint of F] : L → L is a sound over-approximation of the fixpoint of F \

[37, Example 6.11].

The fixpoint semantics is divided in three distinct components: the first component 〈(R] ×
D]), F]V 〉 is used for value analysis; the second component 〈(C], F]C〉 is used for cache analysis;
and the third component 〈P], F]P 〉 is used for pipeline analysis. The results of cache analysis
are used by the pipeline analyzer that decides whenever a cache miss penalty must be added
to the cycle-level semantics. In this way, as Fig. 6.1 illustrates, the transformer F]P invokes
F]E and F]C in order to update its local copies of the resources R′], D′] and C ′]. However,
the life cycle of instruction inside the pipeline can also by affected by pipeline hazards [122].
This information is captured by the ARM9 pipeline timing model. In this thesis, we use
a very simple and handwritten hardware timing model. Existing approaches are able to
automatically generate this kind of models from the ARM9 VHDL specification [118].

The rest of this chapter is organized as follows. Using Fig. 6.1 as reference, we introduce
the program flow analysis component in Section 6.4 and describe how it is closely related
to the value analysis. Next, we describe the extensions necessary to the general data-flow
framework presented in Chapter 5 to support interprocedural analysis in Section 6.5. Then,
we describe in detail the calculational approach to the value and cache analysis, by giving
correct by construction definitions of F]V and F]C , in Sections 6.6 and 6.7 respectively, followed
by the formalization of the abstract pipeline semantics F]P in Section 6.8.

CHAPTER 6. WCET ANALYZER 81

6.4 Program Flow Analysis

This section describes our approach to automatic extraction of program flow information
from source programs at machine-code level using abstract interpretation. In essence,
program flow analysis is defined as a side effect of the value analysis, as enunciated in
Contrib. (iv). The captured information is the number of fixpoint iterations performed in
every edge of the dependency graph of the machine program. Intiutively, this mechanism
is able to automatically extract loop bounds until the fixpoint algorithm stabilizes in the
abstract value domain.

Tight WCET estimations require precise knowledge about program flow, namely the iden-
tification of infeasible paths, i.e. paths that can never be taken, and the minimal/maximal
number of iterations in loops. Methods for program flow analysis include manual path
annotations [104], loop unrolling [63], abstract interpretation [44, 57], and structural analysis
of loops [61, 62]. Additionally, some application of program analysis provide a compact and
efficient method for representing program flow information [43].

The manual annotation approach requires a considerable programming effort that is error-
prone. Nonetheless, state-of-the-art tools, such as aiT, require user annotations to specify
the targets of computed calls and branches and the maximum iteration counts of loops [2].
On the other hand, completely automatic approaches to program flow analysis can be found
in [61, 44, 57, 62]. In general, these approaches depend on the conversion of the program
flow representation into some form suitable for the WCET calculation, e.g. [80, 136].

An integrated approach is proposed in [84] to simultaneously perform program flow, cache,
and pipeline analysis and calculation. Since this approach relies on architectural simulation
techniques to simulate each program path on cycle-level timing models of the hardware
platform, the complexity of the simulation process easily becomes prohibitive, especially in
loop constructs. This problem is resolved using a path-merging technique aiming at the
reduction of simulated program paths.

Although the integrated approach of [84] can be precise enough in the detection of “actual”
feasible paths, which might be smaller than the statically allowed paths considered by
abstract interpretation approaches [44, 57], it can be very inefficient for programs with a
high number of loop iterations. Alternatively, the VIVU (Virtual Inlining of non-recursive
functions and Virtual Unrolling of loops and recursive functions) approach presented in [86]
is able to represent the program flow of loops as recursive functions. Instead of distinguishing
all program paths, path classes are considered for which similar (timing) behavior is expected.
This significantly reduces the number of program paths where to perform cache and pipeline
analysis. The inconvenient of this approach is the possible loss in precision due to the
analysis of unfeasible paths.

CHAPTER 6. WCET ANALYZER 82

6.4.1 Declarative Approach

Since the calculation of the number of iterations in loops is in general equivalent to the
halting problem, we must consider all possible executions by static analysis and reduce the
computational cost by using abstractions, in order to compute the bounds of loop iterations.
Our approach to program flow analysis is based on abstract interpretation and computes
sound loop bounds and identifies infeasible paths as an instrumented value analysis, i.e. as a
side effect of value abstract invariants computed at different program labels. Comparatively
with [83] program flow analysis is, in fact, integrated with cache and pipeline analysis, but
not with WCET calculation.

As illustrated by Fig. 6.1, the static analyzer uses the framework of abstract interpretation
for the specification of the value, cache and pipeline data-flow analysis and proving them
correct. The input of the static analyzer is a program’s meta-trace, or a meta-program. This
representation is a pre-compiled fixpoint algorithm, employing a program-specific chaotic
fixpoint strategy. After the computation of the MFP fixpoint solution, the techniques of
linear optimization are used to calculate the WCET. In the present Section, we define the
program flow analysis, in particular how the generic data-flow analysis presented in Section
5.2 can be extended to integrate the program flow analysis as an instrumented abstract
interpretation.

Instrumented abstract interpretation requires the definition of a cartesian product between
the abstract invariants used for value analysis, which are denoted by Invs in Def. (5.4),
and the invariants used for program flow analysis, here denoted by Flow in Def. (6.1). For
automatic extraction of loop bounds the L domain is defined and equipped with an total
order on positive integers. The element ⊥L denotes the number 0.

L = {⊥L} ∪ {c | c ∈ N+}

vL = c1 vL c2 iff c1 6 c2

The domain L is used in the definition of Flow as a map from an edge of the dependency graph
into an element of L. The program states Σ are then re-defined to include the Cartesian
product (Invs × Flow) in the codomain. According to Def. (5.6), the domain of Flow,
inP JP K is a binary relation between the program label identifiers that can be found “at”
the beginning of any transition in program P and the program label identifiers that can be
found “after” the beginning of any transition in program P .

Flow ∈ Prog 7→ ℘((Lab× Lab) ↪−→ L) (6.1)

FlowJP K , inP JP K 7→ L

Σ ∈ Prog 7→ ℘(Lab ↪−→ (Invs× Flow)) (6.2)

ΣJP K , atP JP K 7→ (InvsJP K× FlowJP K)

CHAPTER 6. WCET ANALYZER 83

The Haskell definition corresponding to L is given by the constructor Loop. The partial order
vL is defined using an instance of the type class Ord. Whence, the Haskell definition of Flow
is straightforward. Finally, the program states defined in Haskell by means of the constructor
(St a) are re-defined to include a record function flow , used to return the invariants map of
type Flow contained in a program state.

data Loop = CountL Int | BottomL

instance Ord Loop where

max (CountL a) (CountL b) = CountL (max a b)

max (BottomL) (CountL b) = CountL b

max (CountL a) (BottomL) = CountL a

max (BottomL) (BottomL) = BottomL

type Edges = (Lab, Lab)

type Flow = Map Edges Loop

data St a = St {label :: Lab, invs :: Invs a, f low :: Flow}

As specified by Def. (5.23), fixpoint iterations start with the Σ⊥ undefined state. Every time
the recursive operator (· ⊕ ·) begins a new iteration using some data-propagation function,
f(k,l), where k and l program label identifiers, which produces an output different from ⊥Σ,
the actual loop count c ∈ L is incremented by 1 at the edge k→ l ∈ E. The loop iterations
are incremented until the value analysis stabilizes. Since the static analyzer combines the
results from value, cache and pipeline analysis in a single data-flow analysis, it is necessary
to distinguish the fixpoint stabilization in each of the corresponding domains.

As already mentioned, the main advantage of the automatic extraction of program flow at
machine level, when compared to manual annotations of program flow at source code level, is
the simplicity of the processes. Nonetheless, this simplicity arises from our design option to
use chaotic iteration strategies to mimic actual program executions. Therefore, our approach
is a combination of loop unrolling with simulation in the abstract domain. Consider as an
example the iteration strategy (5.13) given in Example 3. Intuitively, the loop bounds for
nodes with depth 0 is always 1. For the nodes inside the recursive operator []∗, the loop
bounds correspond to the number of tail recursive calls inside the recursive operator (· ⊕ ·)
until fixpoint stabilization is achieved in the value abstract domain.

The next step is to define a semantic transformer over elements of L that can be lifted to the
domain of program states and used in the refunctionalization of a dependency graph into an
higher-order meta-program. Under the denotational assumption, the new state-transformer
should be composed with the state-transformer previously defined in Section 5.2. In the
same way, semantic state-transformers at denotational level are obtained by an abstraction
of the relational semantics, using the right-image isomorphism based on Galois connections
presented in [27].

Since there is a finite number of program labels for a given program P , we assume that the
number of input-output relations τ ⊆ (ΣJP K× InstrsJP K× ΣJP K) is finite and equal to the

CHAPTER 6. WCET ANALYZER 84

number of program instructions InstrsJP K. This allows us to define the state vector ΣJP K
as an ordered map from label identifiers to program invariants InvsJP K, such that ΣJP K =
{σ1, . . . , σi, σj , . . . , σn}, where n is the program label identifier of the last instruction of the
program and σn is the abstract invariants map found in ΣJP K at the identifier n, which we
abbreviate to Σn

P . As already mentioned in Section 5.1, when computing abstract fixpoints
solutions using chaotic iteration strategies, the objective is the definition of a semantic state-
transformer in the form of Def. (5.15), for which only one element of ΣJP K is updated in
every fixpoint iteration.

The target denotational state-transformer fC×L, with the type (Σ 7→ Instrs 7→ ℘(Σ)), is
obtained as an abstraction of the relational semantics, τ ⊆ (ΣJP K × InstrsJP K × ΣJP K), of
program states, ΣJP K, by the Galois connection 〈αf , γf 〉.

〈℘(Σ× Instr× Σ),⊆〉 −−−→−→←←−−−−
αf

γf

〈Σ 7→ Instr 7→ ℘(Σ), 6̇〉 (6.3)

Let σi and σj denote the abstract CPU states, of type C, found in the InvsJP K invariants
maps accessible from the components i and j of the state vector ΣJP K, respectively. Also let
δi,j denote the program flow information found in the FlowJP K invariants map at the edge
i→j. The abstraction function, αf , and the concretization function, γf , are defined by:

αf (τ) , λΣi · {Σj | ∀ι ∈ InstrsJP K : ∃i, j ∈ inP JιK : 〈Σi, ι,Σj〉 ∈ τ} (6.4)

γf (fC×L) , {〈(Σi, ι,Σj)〉 | ∀ι ∈ InstrsJP K : ∃i, j ∈ inP (ι) :
(σi, δi,j) = Σi[i] ∧ (σj , δ′i,j) = Σj [j] ∧
(σj , δ′i,j) = fL(i, j) ◦ fC(f(i,j)σi)}

(6.5)

Therefore, and although the resulting abstract fixpoint semantics is an overapproximation
of the optimal MOP fixpoint solution, it has the advantage that the fixpoint algorithm is
specified at compile time by using both a weak topological order and a chaotic iteration
strategy [20], and automatically compiled into expressions of our meta-semantic formalism.
In this way, we compute sound fixpoint approximations at denotational level, using the pure
declarative programming language Haskell.

The integration of the composition of the semantic state-transformers fL ◦ fC is performed
inside the function apply, which is defined in the type class (Abstractable a) for refunction-
alization. By the fact that program flow information requires the knowledge of the two
program labels defined “at” and “after” a program instruction (5.6), we have to redefine the
type signature of the function apply to include the “at” and “after” label identifiers, both of
type Lab.

class Abstractable a where

apply :: (Lab, Lab)→ RelAbs (Invs a)→ RelAbs (St a)

lift :: Rel (St a)→ RelAbs a → RelAbs (Invs a)

In the same way as in Section 5.2, the refunctionalization provided by the right-image
isomorphism (5.21) is defined in Haskell by the function refunct. However, and although

CHAPTER 6. WCET ANALYZER 85

the type of refunct is still Rel (St a)→RelAbs (St a), the function apply now requires the
interpretation of the input label identifiers, because they contain the intensional information
in Def. (6.1).

refunct :: (Abstractable a, T ransition (Rel (St a)))⇒ Rel (St a)→ RelAbs (St a)

refunct r = let step = (dataF low ◦ expr) r

labels = ((point ◦ source) r , (point ◦ sink) r)

in apply labels $ lift r step

Similarly to the previous definition, the new semantic state transformer, of type RelAbs (St a),
is used to parametrize the static analyzer as a run-time entity in the context of the two-
level denotational meta-language. However, besides updating the program invariants map
(Invs a), it is also necessary to increment the loop iterations of a particular transition in the
program flow map Flow, using as key a pair of labels, both of type Lab. In this way, the
static analyzer computes the loop bounds contained in the constructor Loop, as a side effect
of the analysis performed on abstract domain (Env a). For every program label, the last
loop iteration computed before the fixpoint stabilization of the value analysis is taken as the
upper loop bound.

The instrumentation of the value analysis requires the definition of an extra record function,
stable. Given an abstract value of type (Env a), the return of the function stable is a list,
which can be either empty or containing a combination of the elements provided by the
induction data type Stable. Since the program flow analysis is defined as a side effect of
the value analysis, the loop bounds invariants map Flow must be updated only during the
fixpoint iterations for which the constructor ValueStable is not yet included in the output
of stable.

data Env a = Env {value :: a, stable :: [Stable]}
data Stable = ValueStable | CacheStable | PipelineStable

The semantic state-transformer fC is defined by the homonymous Haskell function fC. Given
the state-transformer instance f , the update of the program abstract invariants in the input
state s, is trivially done by applying the function f the invariants i, stored in the input state.

fC ::RelAbs (Invs a)→ RelAbs (St a)

fC f s@St {invs = i } = s {invs = f i }

The semantic state-transformer fL is defined by the homonymous Haskell function fL. The
abstract invariants map previously computed by fC is required to inspect the state of the
fixpoint computation at the program label identifier “after” the instruction contained in the
input-output relation r. The variable fixed is used to detect if the least fixpoint solution was
already found in the abstract domain used for value analysis, by checking if the constructor
ValueStable was found in the record function stable of the constructor (Env a). If the least
fixpoint solution has already been reached, then the contents of the invariants map Flow are
updated at the label after by means of the function succ. To this end, an instance of the
type class Enum is defined for Loop. Otherwise, the invariants map remains unchanged.

CHAPTER 6. WCET ANALYZER 86

fL :: Edges→ RelAbs (St a)

fL rel s@St {invs = i , f low = f }
= let fixed = elem ValueStable $ stable (i ! after)

update = if fixed then id else succ

in s {flow = adjust update (at , after) f }

instance Enum Loop where

succ (CountL x) = (CountL (x + 1))

succ (BottomL) = (CountL 1)

Finally, the generic instance of the function apply, defined in type class (Abstractable a), is
simply the functional composition of the semantic state-transformers fC and fL, as given by
concretization function of Def. (6.5).

This is the reason why the isomorphic Galois connection 〈αf , γf 〉 is so important to correctly
define the process of defunctionalization, by means of γf , of the propagation functions (5.11)
used by the MOP fixpoint algorithm and the posterior refunctionalization, by means of αf ,
of the dependency graphs into the higher-order expressions of the two-level denotational
meta-language. The purpose of the intermediate graph language defined in Section 5.3 is
precisely the representation of functional compositions of propagation functions as connected
sequences of input-output relations of type Rel (St a), which are then interpreted, using the
function derive, in order to automatically generate a compositional fixpoint algorithm that
is again based on the functional composition of functions with the type RelAbs (St a).

instance (Lattice a, T ransition (Rel (St a)), Eq a)⇒ Abstractable a where

apply labels f = (fL labels) ◦ (fC f)

Example 6. Simple program with a loop
Consider the simple C program of Fig. 6.4(a), where it is defined a “while” statement
dependent on the value of “x”. The objective of the program flow analysis is to automatically
extract from the results of the value analysis the upper bound for the number of iterations
of the “while” statement. The value analysis is performed on the code generated for the
target platform ARM9. Fig. 6.4(b) shows the labelled relational semantics of the subset of
instructions used to implement the “while” statement.

int main (void) {
int x = 3 ;

while (x>0) {
x−−;

}
return x ;

}
(a) Source program

n10 : b 16 : n6

n8 : ldr r3 , [fp , #−16] : n7 { (” . L3” ,” main ”)}
n9 : sub r3 , r3 , #1 : n8

n10 : str r3 , [fp , #−16] : n9

n11 : ldr r3 , [fp , #−16] : n10 { (” . L2” ,” main ”)}
n12 : cmp r3 , #0 : n11

n7 : bgt −20 : head 12

(b) Labelled relational semantics

Figure 6.4: Source program and the corresponding labelled relational semantics

The weak topological order of the machine program is obtained as an interpretation of the
relational semantics yielding the following recursive iteration strategy:

CHAPTER 6. WCET ANALYZER 87

. . . 6 10 11 [12 7 8 9 10 11]∗ . . . (6.6)

For the purpose of program flow analysis, we are interested in the fixpoint stabilization of the
component inside the recursive operator []∗. After inducing the weak topological, the next
step is the automatic compilation of a meta-program that implements the previous chaotic
iteration strategy using a composition of denotational state-transformers. A meta-program
is an typed expression according to the combinators defined at the upper level of the two-
level denotational meta-language defined in Section 5.2. Fig. 6.5 describes the meta-program
that corresponds to the chaotic iteration strategy previously defined.

Each state-transformer is represented by its syntactic element, i.e. the instruction belonging
to the corresponding input-output relation. Whence, the set of instructions that will be
interpreted in the program states domain are the ones labelled from 7 to 12. However, the
loop defined by the recursive operator []∗ consists of a “head” label 12 and a sequence of
labels that represent the body of the loop. In this way, the combinator (·⊕·) takes as the first
argument the branch instruction ‘bgt− 20’ and takes as the second argument the sequential
composition (· ∗ ·) of the instructions inside the loop body.

· · · * (b 16) * (ldr r3, [fp, #-16]) * (cmp r3, #0) * ((bgt -20) ⊕ (ldr r3, [fp, #-16]) *
(sub r3, r3, #1) * (str r3, [fp, #-16]) * (ldr r3, [fp, #-16]) * (cmp r3, #0)) * · · ·

Figure 6.5: Meta-program derived from the iteration strategy (6.6)

Next, as an example, we present the details of the several fixpoint iterations performed
until stabilization is reached for the label identifiers 10, 12 and 7. For label identifier 7,
the computation of the abstract invariants for register ‘R3’ is trivial in the sense that the
first fixpoint iteration inside the loop starts with the invariant [3 , 3] and the lower bound of
this invariant is reduced to [0 , 3] when the fixpoint condition is finished. The edges where
the label identifier is used are 12→ 7 (feedback edge) and 7→ 8. Hence, the program flow
information map is updated at (12,7) and (7,8) according to the semantics of fC.

Table 6.1: Program flow analysis for label 7 (4 fixpoint iterations)

Label

Loop Iteration 1 Loop Iteration 2 Loop Iteration 3

Value Flow Value Flow Value Flow

Analysis Analysis Analysis Analysis Analysis Analysis

7 R3 = [3,3]
(12,7) = 1

R3 = [2,3]
(12,7) = 2

R3 = [1,3]
(12,7) = 3

(7,8) = 1 (7,8) = 2 (7, 8) = 3

The state transformer fC specifies that after each fixpoint iteration, the loop iteration count
is adjusted with the successor of the previous count while the least fixpoint is not yet achieve
for the value domain. Since [0 , 3] is the least fixpoint solution for ‘R3’ at label identifier 7,
the upper bound of loop iteration count is 4 at both edges (12,7) and (7,8). For program
label identifier 10, we need to consider three edges: 6→ 10, 9→ 10 and 10→ 11. As can
be inferred from Fig. 6.5, the instruction ‘ldr r3, [fp, #-16]’ between the pair of label

CHAPTER 6. WCET ANALYZER 88

identifiers (10,11) is also present outside the scope of the recursive combinator (·⊕·). Hence,
the program flow information at (9,10) and (10,11) differs by 1 because the first edge to
arrive at the identifier 10 was 6→10.

Table 6.2: Program flow analysis for label 10 (4 fixpoint iterations)

Label

Previous Iteration Loop Iteration 1 Loop Iteration 2 Loop Iteration 3

Value Flow Value Flow Value Flow Value Flow

Analysis Analysis Analysis Analysis Analysis Analysis Analysis Analysis

10 R3 = [3,3]
(6,10) = 1

R3 = [2,2]
(9,10) = 1

R3 = [1,2]
(9,10) = 2

R3 = [0,2]
(9,10) = 3

(10,11) = 1 (10,11) = 2 (10,11) = 3 (10,11) = 4

Finally, for program label identifier 12, and although the instruction ‘b 16’ between the pair
of label identifiers (12,7) belongs to the scope of the recursive combinator (· ⊕ ·), the upper
bound for loop iterations is also 4 because the fixpoint stabilization condition is evaluated
during the abstract interpretation of this instruction during the (extra) 4th fixpoint iteration.
However, the fact that the upper bound of loop iterations at (7,8) is still 3, proves that
the fixpoint stabilization condition was reached and that the Haskell fixpoint combinator
fix , used in the definition of the combinator (· ⊕ ·), terminates when the least fixpoint is
found in the value domain. This example demonstrates how the program flow analysis is an
instrumentation of the value analysis.

Table 6.3: Program flow analysis for label 12 (4 fixpoint iterations)

Label

Prev. Fixpoint Iteration Loop Iteration 1 Loop Iteration 2 Loop Iteration 3

Value Flow Value Flow Value Flow Value Flow

Analysis Analysis Analysis Analysis Analysis Analysis Analysis Analysis

12 R3 = [3,3]
(11,12) = 1

R3 = [2,3]
(11,12) = 2

R3 = [1,3]
(11,12) = 3

R3 = [0,3]
(11,12) = 4

(12,7) = 1 (12,7) = 2 (12, 7) = 3 (12, 7) = 4

N

6.5 Interprocedural Analysis

This section describes the application of the function approach to interprocedural analysis
described in [128] to the WCET analysis of ARM9 programs as part of the Contrib. (iii).
In general, a machine program includes one branch-and-link (‘bl’) instruction for each
procedure call in the source code and one load-registers-and-return (‘ldmfd’,‘ldmfa’, etc.)
instruction for each procedure return. Since the notion of weak topological order can be
extended to include procedures as new “components” contained in the hierarchical order
[20], we simply define a proper chaotic iterations strategy in order to instantiate the required
abstract state transformers. Afterwards, we use the higher-order combinator (· � ·) to
analyze interprocedural recursive compositions of abstract state transformers. In this way,
the analysis of a procedure is seen as a “super-operation”, defined as a composition of state
transformers, which unified type is Σ→Σ.

CHAPTER 6. WCET ANALYZER 89

The main challenge in performing interprocedural analysis is the fact that procedure calls
can be made from different call sites. Nonetheless, as stated in [128]: “it is always possible
to transform a program with procedures into a procedureless program, by converting pro-
cedure calls and returns into ordinary branch instructions, monitored by an explicit stack.”
However, this inevitably overapproximates program flow because analysis information has
to be propagated back to all possible call sites. Hence, this approach eventually leads to
precision loss. A solution to this problem is to use context information in order to perform
a context-sensitive interprocedural analysis.

A context-sensitive analysis considers the calling context when analyzing the target of a
function call and also the return context once the procedure jumps back to the original call
site. In [128] are introduced two techniques for performing interprocedural analysis. The
main difference between them is the use of different graph models for the program being
analyzed. The first approach is designated by functional approach and views procedures as
collections of structured program blocks, such that each block is specified by an input-output
relation. In the denotational sense, procedure calls are interpreted as “super operations”,
whose effect on context information can be computed using the constituent relations, and is
valid even in the presence of recursion. A closely related approach is the in-line expansion
of procedures [12].

The second approach is designated by call-strings approach and combines interprocedural
flow analysis with the analysis of intraprocedural flow by turning a whole program into a
single flow graph. However, context information is propagated along this path using “tags”
that encode the history of procedure calls encountered during propagation. This makes
interprocedural flow explicit and enables the determination of which part of the context
information can be validly propagated through a procedure return, and which part has a
conflicting call history that disallow such propagation.

An application of interprocedural analysis theory, in particular combined with the theory of
abstract interpretation, is proposed in [86] for the data-flow analysis of loops. The essential
idea is to treat loops as procedures by means of a transformation on the control flow graph
such that program semantics are preserved. For the purpose of WCET estimation, the
advantage of this approach follows from the fact that loops often iterates more than once
and it is useful to distinguish the first iteration of a loop from the other ones. For some cache
replacement policies, such as first-in first-out (FIFO), this distinction ascribes more precision
to the results of cache behavior prediction and, consequently, leads to better pipeline analysis
results.

More precisely, the approach proposed in [48, 86] is called VIVU and stands for a combination
of virtual inlining of all non-recursive procedures and virtual unrolling of the first iterations
of all recursive procedures, including loops. To this end, one execution context is instantiated
to correspond to a path in the call graph of a program. The main characteristic of VIVO

CHAPTER 6. WCET ANALYZER 90

is the distinction of path classes, in the sense that “paths through the call graph that only
differ in the number of repeated passes through a cycle are not distinguished.” However,
since the number of loop iterations are not automaticallty determined, the results of analysis
of loops with VIVU (e.g for the prediction of cache behavior) must be combined with the
program flow information manually fed into the WCET framework in order to calculate a
WCET estimate.

6.5.1 Declarative Approach

The integration of an interprocedural analysis into the meta-semantic formalism was already
presented in Section 5.2 upon the definition of the interprocedural Haskell combinator (%).
Our assumption is that any procedure might be recursive. Therefore, the analysis of a
procedure is computed as the fixpoint of a functional that takes as argument an anonymous
function that corresponds exactly to the expression (f % t), where f is the “body” of the
procedure and t is the “return” relation of that procedure. In fact, this corresponds to
a “super operation” that is composable, in the denotational sense, with the relation that
previously made the procedure call and, posteriorly, with the relation immediately after the
call site. For these reasons, our approach to interprocedural analysis is an application of the
functional approach proposed in [128].

In order to analyze procedures as increasing Kleene chains [74], it is necessary to provide
a fixpoint condition to stop the recursive application of the functional (f % t). For this
purpose, we use the function emptyStack defined in the type class (Iterable a) introduced in
Section 5.2. This effect of this function depends on context information, in particular, on the
program label that originates the procedural call and on the program label from where the
caller procedure continues execution. These two types of labels are distinguished in the weak
topological order by the constructors Call and Hook, respectively. For example, in Fig. 6.6,
the label ‘call 11 {(”foo”,”main”)}’ is instantiated using Call, and the label ‘hook (6,”main”)’
is instantiated using Hook.

n1 : mov ip , sp : r oo t 0 {”main ”} ; 1

. . .

c a l l 1 1 {(” foo ” ,” main ”)} : bl 24 : n5

n7 : mov r3 , r0 : hook (6 ,” main ”)

. . .

e x i t {”main ”} : ldmfd sp , { r3 , fp , sp , pc} : n10

n12 : mov ip , sp : r oo t 11 {” foo ”} ; 2

. . .

e x i t { (” . L4” ,” foo ”)} : ldmfd sp , { r3 , fp , sp , pc} : n25

Figure 6.6: Labeled relational semantics of program 5.1 with procedure instructions

In a very summarized way, Fig. 6.6 shows the labelled relational semantics of a program with
two procedures: ”main” and ”foo”. Since the procedure ”foo” can be invoked at different

CHAPTER 6. WCET ANALYZER 91

call sites, the Exit label of the state “after” the return instruction ‘ldmfd’ does not have
an unique identifier that can be determined at compile time. Therefore, we introduce the
notion of execution context in the definition of an abstract value to identify the procedure
call sites and respective “hook” (jump back) labels. This is accomplished by adding two
extra functions to the datatype (Env a), designated by contexts and redirects, respectively.
The first function returns the history of procedure calls associated to a program state and
the second function returns the corresponding stack of “hook” labels.

data Env a = Env {value :: a, stable :: [Stable], contexts :: [Label], redirects :: [Label]}

In those cases where context information is relevant for data-flow analysis, i.e. when the label
of the sink state of a relation is an Exit label, it is necessary to use the context information
stored in the program invariants map. For example, during the pipeline analysis using a
particular iteration strategy, program labels are necessary to determine the current “program
counter” of the machine program because they provide intensional information about the
structure of the program. Therefore, once the “jump back” label is determined during
pipeline analysis, it is necessary to store the updated context information in the program
invariants map. This whole new process starts by re-defining the type class Container,
which is used to read/write abstract values from/to the invariants map. At this phase, an
instantiation of the type variable a is required.

Let the datatype CPU be an instance of the abstract value given by the type variable a

denoting the hardware state of some microprocessor. Similarly to the datatype (Env a),
the record function calls defined in CPU returns the list of procedure “call” labels. After
instantiating the type variable a, it is necessary to define another instance of the type class
Container, where the context information can be exchanged between the domain CPU and
the domain of abstract values (Env a). The reason for this is that context information is
required (and can be changed) during interpretations over CPU values, but needs also to be
stored back into the program invariants map in every fixpoint iteration computing procedure
calls and procedure returns.

data CPU = CPU {registers ::R], dataMem ::D], instrMem :: I], pipeline :: P],

calls :: [Label]}

The definition of the function read in the new instance of Container simply copies the context
information stored inside an abstract value of type Env CPU, which is fetched from the
program invariants, of type (Invs CPU), at the program point of the input label , into the list
of procedure calls of the return hardware state, cpu.

Conversely, the definition of the function store has to specify the update of the contexts and
redirects stored inside the nodes of a program invariants map. This update depends both on
the calls of the input cpu hardware state and on type of labels that delimit the input relation
rel , and is performed by the functions newContext and deleteContext . Afterwards, the value

of a invariant’s node is updated with the input cpu hardware state and the new context

CHAPTER 6. WCET ANALYZER 92

information using the function adjust . In the same way, the list of redirects is updated upon
a procedure return, i.e. when the sink label matches the constructor Exit when using the
function exit .

instance (Lattice CPU)⇒ Container (Invs CPU) CPU where

read invariants label

= let node = invariants ! (point label)

cpu = value node

in cpu {calls = contexts node }

store rel cpu@CPU {calls = c} invariants

= let (at , after) = (source rel , sink rel)

context ′ = deleteContext after $ newContext (at , after) c

invs ′ = adjust (updateV alue cpu context ′) (point after) invariants

in if (exit ◦ sink) rel

then adjust (updateRedirects calls) (point at) invs ′

else invs ′

The function newContext updates context information upon a new procedure call. By
definition, context information changes when the sink label of an input-output relation,
holding as syntactical object a branch-and-link instruction (‘bl’), matches the constructor
Call. This is detected by means of the function call , which is added to the definition of
the type class (Labeled a). More precisely, the new context information corresponds to the
“hook” label of the call site, and is easily determined by incrementing the source label of the
relation holding the instruction ‘bl’.

newContext :: (Label,Label)→ [Label]→ [Label]

newContext (after , at) contexts

= case call after of

False→ contexts

True→ (succ (at)) : contexts

Example 7. Simple program with a procedure call
For example, in the relational semantics of Fig. 6.6, the instruction ‘bl 24 ’ is delimited by
the label descriptions ‘n5’ and ‘call 11 (“foo”, “main”)’. Since the label after the instruction
is a call label, the context information consists in the “hook” label described as ‘n6’, which
is precisely the successor of ‘n5’, i.e. the label at (or before) the instruction. However, the
label identifiers 5 and 6 belong to different components in the weak topological order and
are not sequentially organized. In fact, the weak topological order of Def. (5.10) shows that
the label point 11 starts the inlining of the procedure ”foo” and the label point 6 is the
“hook” site corresponding to the particular ‘call 11’. N

On the other hand, the function deleteContext updates the context information when a
procedure returns, i.e. when the sink label after is an exit label. In the affirmative case,
the first element in the stack of procedure call labels is popped out using, for that purpose,

CHAPTER 6. WCET ANALYZER 93

the function tail . Therefore, in analogy with a FIFO stack, procedure calls are modelled in
such a way that the return of each procedure must be made some instructions after the call
of that same procedure.

deleteContext :: Label→ [Label]→ [Label]

deleteContext after contexts

= case exit after of

False→ contexts

True→ tail contexts

As already mentioned, the functions call and exit , required by the interprocedural analysis,
are defined in the type class (Labeled a), which is instantiated by the datatype Label. The
additional function setId is defined in order to update the labelId of a label identifier.

class Labeled a where

point :: a → Lab

head :: a → Bool

call :: a → Bool

hook :: a → Bool

exit :: a → Bool

setId :: a → Lab→ a

In the same way, the type class (Abstractable a) requires changes when lifting the semantic
transformer on program invariants to program states. The reason follows from the fact that
Exit labels have unknown point identifiers, which have to updated using context information
so that the “super operation” of the procedure can be functionally composed with the state-
propagation functions of the “caller”. Indeed, this process is compliant with the requirements
of fixpoint computations using chaotic iteration strategies induced by the weak topological
order of programs. The next task is to modify the “after” state of a relation so that it
becomes a new state, with the same program invariants and program flow, but labelled with
an Hook label, which is dynamically determined during interprocedural analysis using the
function returnContext .

returnContext :: (Transition r)⇒ r → CPU→ r

returnContext rel cpu@CPU {calls = (c : cs)}
= let after = sink rel

in adapt rel $ case exit after of

False→ after

True→ setId after (point c)

In order the modify the labelId of a label identifier, i, with a new integer value, it is necessary
to provide an instance of the type class (Labeled a). The function of main interest is setId ,
which simply updates the labelId of the identifier i of an Exit label. The reader is referred
to the Haskell prototype for the definitions of the remaining functions defined in the type
class Labeled.

instance Labeled Label where

setId (Exit i) new = Label i {labelId = new }

CHAPTER 6. WCET ANALYZER 94

After modifying the labelId of the sink label of the input relation using the function setId,
it is necessary to adapt the “after” state of that relation. As usual, functions manipulating
relations are defined in the type class (Transition a). The new function adapt simply updates
the “after” state, b, with the provided label , l . The remaining definitions of the functions
sink , source and expr are also given.

class Transition a where

sink :: a → Label

source :: a → Label

expr :: a → Expr

adapt :: a → Label→ a

instance Transition (Rel (St a)) where

sink (Rel (a, ,)) = label a

source (Rel (, , b)) = label b

expr (Rel (, i ,)) = i

adapt (Rel (b, e, a)) l = Rel (b {label = l }, e, a)

Finally, we re-define the instance of the type class (Abstractable a). First, we re-define
the function lift so that the relation passed as argument to the chaotic fixpoint function
(see Section 5.2) has the proper surrounding labels when iterating over procedure return
instruction. This implies the “inlined” relation to be included in the return type of the
function lift . To this end, the new “extended” types (ExtInvs a) and (ExtSt a) are defined
as pairs that include the “inlined” relation label identifiers, aside with the respective types
(Invs a) and (St a). Additionally, the “extended” function types (ExtInvsAbs a) and
(ExtStInvs a) are defined to substitute the type (RelAbs a).

type ExtInvs a = (Edges, Invs a)

type ExtSt a = (Edges,St a)

type ExtInvsAbs a = Invs a → ExtInvs a

type ExtStAbs a = St a → ExtSt a

Since the function refunct , which is the Haskell definition of the relational abstraction of
input-output state relations into denotational state-transition functions, depends on both
functions lift and apply, it is also required to change the type signature of these functions.
Firstly, the return type of lift has the functional extended type (ExtInvsAbs a) because
the “after” state of the inlined relation may have been updated will a new interprocedural
context. Secondly, the input argument must be re-defined to receive information about the
inlined relation.

class Abstractable a where

apply :: ExtInvsAbs a → RelAbs (St a)

lift :: Rel (St a)→ RelAbs a → ExtInvsAbs a

According, it is required a new instance of type class (Abstractable a), where the type variable
a is instantiated by the hardware constructor CPU, so that the definition of the function

CHAPTER 6. WCET ANALYZER 95

refunct is preserved. The only difference in the re-definition of lift is the inclusion of the
interprocedural label information produced by returnContext in the returned pair. On the
other hand, the re-definition of apply consists on the fact the label identifiers required
for program flow analysis is directly provided to the state transformer fL. by the state
transformer fC.

instance (Lattice CPU, T ransition (Rel (St CPU)))⇒ Abstractable CPU where

apply f = fL ◦ (fC f)

lift r f invs = let s ′ = f $ read invs (source r)

r ′ = returnContext r s ′

labels = ((point ◦ source) r ′, (point ◦ sink) r ′)

in (labels, chaotic r ′ invs s ′)

The re-definition of the state transformers are only the consequence of the use of new
“extended” types. Whence, the definitions of fC and fL have a few minor changes:

fC :: ExtInvsAbs a → ExtStAbs a

fC f s@St {invs = i } = let ext = f i

in (fst ext , s {invs = snd ext })

fL :: ExtSt a → St a

fL (pair , s@St {invs = i , edges = e }) = let fixed = elem ValueStable $

stable (i ! (snd pair))

update = if fixed then id else succ

in s {edges = adjust update pair e }

6.6 Value Analysis

The value analysis is based on the interval abstraction introduced by the Cousots in [31, 32].
The interval abstraction is applied to the analysis of the hardware components that store
32-bit values, more specifically, the concrete register file, R, and the concrete data memory,
D. However, there are some exceptions in the register file: cases where a general-purpose
register is designed to store some sort of “control” information. These registers are the
“frame pointer” register R11, the “intra-procedural-call scratch” register R12, the “stack
pointer” register R13, the “branch-and-link” register R14, the ”program counter” register
R15, and, finally, the “status” register CPSR.

Therefore, comparatively to the definition given in Section 6.3.1, we now design the abstract
register file, R], in such a way that the values of the general purpose registers R0-R10

are abstracted into interval values ν ∈ V, and the rest of the register values are kept in
the concrete domain of 32-bit values W, is to improve the precision of the analysis. For
example, in the case of the register R15, this is indeed necessary because instruction cache
analysis is performed simultaneously with the value analysis. In practice, when the chaotic
fixpoint algorithm is computing an iteration over of the effect of a particular instruction in

CHAPTER 6. WCET ANALYZER 96

the machine code, it is first required to fetch this instruction from the instruction memory
in order to classify the memory access as a “cache miss” or a “cache hit”. Therefore, the
memory address stored inside R15 must be a concrete, 32-bit value, so that the fetching
process can be deterministic.

As a second example, consider the “stack pointer” register R13. Compared to the register
R15, the reason to keep its value in the concrete domain is different but also related to
precision. As will be described in Section 7, it is possible to perform WCET verification at
source-code level when compiler debug information [134] is able to establish a correspondence
between the value of a source program variable to the memory address that stores that value
at machine-code level. Therefore, the possibility to know exactly such memory address
improves the precision of verification process.

We state that although we do not perform abstract interpretation for “control” registers,
their values are updated accordingly to the chaotic fixpoint strategy induced for a particular
program. Since the chaotic fixpoint algorithm is flow sensitive, the referred registers are
always updated with values computed during the “last” fixpoint iteration. Consequently,
the least upper bound operator defined for the abstract domain of register values, has to
reflect which type of information is “lost” and how some of this information can still be
approximated across fixpoint computations.

6.6.1 Related Work on Interval Abstraction

The interval abstraction introduced in [31, 32] are defined for integer values. New challenges
arise when is necessary to perform interval arithmetic on other kind of domains, e.g. inside
the domain of unsigned 32-bit values. The approach described in [65] is a known example of
how optimal solutions can be found to deal with the difficulties found in performing interval
arithmetic using real numbers. An example of the general applicability of interval analysis
to program analysis is given in [51], where interval analysis is used to evaluate conditional
expressions in the general polynomial form in order to guide the process of optimizing
transformation of loops containing nested conditional blocks. Section 6.6.4.2 demonstrates
the utility of the interval abstraction to perform backward abstract interpretation of loops
in order to evaluate conditional instructions in the abstract domain.

Other applications of the interval abstraction in the context of abstract interpretation include
the analysis of C-variables presented in [45] and the formalization of the abstraction using the
Galois connection framework given [73]. Both approaches identify the fundamental drawback
of applying abstract interpretation to interval analysis, which is the fact that the fixpoint
algorithm is not guaranteed to terminate because there exist infinitely increasing chains of
intervals. The original solution to this problem was introduced in [31] by means of widening
and narrowing. As previously mentioned, our approach does not implement these fixpoint

CHAPTER 6. WCET ANALYZER 97

acceleration operators because we assume that, for the purpose of WCET estimation, only
programs that do terminate can be analyzed. Technically, this is a requirement because we
perform non-virtual loop unrolling. Nonetheless, it should be pointed out that, by definition,
the general data flow framework presented in Chapter 5 does not preclude the use of such
operators.

6.6.2 Concrete Semantics

The domain of concrete register values is denoted byR , N 7→W, where N , 〈RegisterName〉,
is the set of registers names and W is the domain of 32-bit machine values. A register set
ρ ∈ R records the value ρ(n) of the register names n ∈ N. Similarly, the domain of data
memory values D , A 7→ W is a map from 32-bit address values A to W. Updates to the
environment ρ are done in Haskell by means of the setReg and the contained values ρ(n)
accessible by means of the function getReg:

type R = Array RegisterName Word32

setReg ::R→ [(RegisterName,Word32)]→ R

setReg = (//)

getReg ::R→ RegisterName→Word32

getReg = (!)

In general, the interpretation of an instruction Instr takes as the environment the current
state, consisting in the product (R × D) of the 32-bit valued maps of type R and D, and
returns a new environment of the same type. In this sense, the instruction semantics is
defined by the semantic transformer FV :

FV ∈ Instr 7→ (R×D) 7→ (R×D) (6.7)

Consider as an example the instruction Add when the values of two register operands are
added. The concrete functional behavior can be easily defined in Haskell by means of the
function fV (note that, is this case, the input data memory map d does not produce change):

fV :: Instr → (R,D)→ (R,D)

fV (Add (Reg reg1) (Reg reg2) (Reg reg3)) (r , d)

= let v2 = getReg r reg2

v3 = getReg r reg3

in (setReg reg1 (v2 + v3) r , d)

6.6.3 Abstract Domain

The abstract interpreter used for value analysis is obtained by induction as an abstraction of
the instruction semantics using intervals of 32-bit values as the abstract domain. Intervals
are abstract values ν ∈ V(W), in such a way that V can be parametrized to contain the

CHAPTER 6. WCET ANALYZER 98

32-bit values defined in the domain W. Hence, the value analysis is defined in terms of
the lattice V(W), with the least upper bound operator (t]ν) and the greatest lower bound
operator (u]ν):

V(W) = {⊥]} ∪ {[l, u] | l ∈W ∪ {−∞} ∧ u ∈W ∪ {+∞} ∧ l 6 u}

[l1, u1] t]ν [l2, u2] = [min(l1, l2),max(u1, u2)] (6.8)

[l1, u1] u]ν [l2, u2] = [max(l1, l2),min(u1, u2)] (6.9)

The Haskell definition of abstract domain V(W) is given by the constructor AbstVal using
as argument an Interval stored inside an analysis general-purpose register (R0-R10). The
limit values −∞ and +∞ correspond to the minimum and maximum values of a signed
32-bit word. The registers used by the static analyzer to store control information (R11-
R15) use the constructor of concrete Word32 values ConcVal. For the reasons previously
mentioned, an explicit constructor of the abstract value of the register CPSR is not yet
present in the definition of RegVal, but it will be included in the future re-definition of
RegVal, given in Section 6.6.4.2, when the process of backward abstract interpretation of
conditional instructions is described. For now, we assume that the CPSR register stores a
concrete 32-bit value.

data RegVal = AbstVal Interval | ConcVal Word32 | Bottom

type Interval = (Word32,Word32)

Although the inductive Haskell type constructor RegVal is able to “algebraically” compose
the constructors AbstVal and ConcVal, two elements of these two different types are not
comparable by design. Therefore, the inductive constructor RegVal does not denote a
lattice, in the sense that is not a complete partial order. However, using the coalesced
domain definition given in [13], the same constructor can indeed denote the coalesced domain
Interval + Word32, lifted with a common undefined element Bottom. Nonetheless, the
instance of the type class (Lattice a) must be defined for the co-product datatype RegVal.

The next step is to define the lattice of interval values, ν ∈ V(W). Despite the fact that
the elements of W are unsigned 32-bit values, we are still interested in using the interval
arithmetics for integer values [45, 73]. To this end, we have defined the function toInt32 that
converts a 32-bit unsigned word into an Integer. This conversion is straightforward: the
maximum number of an 32-bit unsigned word is 4294967296; an unsigned word is converted
into a negative or positive integer by dividing the maximum number by 2 and subtracting
1, which gives 2147483647, and taking the difference to the maximum number. The Haskell
function fromIntegral is used to convert the type Word32 into the type Integer.

toInt32 (w :: Word32) = let w ′ = fromIntegral w :: Integer

in if w ′ > 2147483647

then w ′ − 4294967296

else w ′

CHAPTER 6. WCET ANALYZER 99

The instantiation of the type class Lattice for the type Interval uses the function toInt32 so
that the join and meet operators defined in (6.8) and (6.9) can be directly implemented. For
this purpose, the functions meet was added to the definition of (Lattice a). Afterwards, the
results are converted back to the Word32 type by means of the function fromIntegral . Note
that the following instance of Lattice does not implement the function bottom because the
undefined element is only defined for the coalesced domain AbstVal + ConcVal, and not for
each one of the composed domains.

instance Lattice Interval where

join (a, b) (c, d)

= let (a ′, b′) = (toInt32 a, toInt32 b)

(c′, d ′) = (toInt32 c, toInt32 d)

in (fromIntegral (min a ′ c′) :: Word32, fromIntegral (max b′ d ′) :: Word32)

meet (a, b) (c, d)

= let (a ′, b′) = (toInt32 a, toInt32 b)

(c′, d ′) = (toInt32 c, toInt32 d)

in (fromIntegral (max a ′ c′) :: Word32, fromIntegral (min b′ d ′) :: Word32)

On the one hand, assuming that the chaotic fixpoint strategy allows the static analysis to
mimic the program execution, the partial order vδW on elements of the concrete domain W is
induced by the coeficient δ used in definition (5.15), which indicates the number of fixpoint
iterations already performed, so that when we write that avδW b implies that a tδW b = b, it
means that a is a value computed during iteration δ and b is a value computed during iteration
δ + 1. The same applies to the greatest lower bound operator uδW. On the other hand, the
abstract domain V(W) has the least upper bounds of Def. (6.8) and the greatest lower bounds
of Def. (6.9). Finally, the instance of Lattice for the coalesced inductive constructor RegVal
is (for sake of simplicity the definitions of join and meet involving the Bottom constructor
are omitted here):

instance Lattice RegVal where

bottom = Bottom

join (ConcVal a) (ConcVal b) = ConcVal b

join (AbstVal a) (AbstVal b) = AbstVal (join a b)

meet (ConcVal a) (ConcVal b) = ConcVal b

meet (AbstVal a) (AbstVal b) = if disjoint a b

then Bottom

else AbstVal (meet a b)

The definition of the function meet requires an auxiliary function designated by disjoint that
returns True if two intervals given as inputs do not intersect. In such cases, the greatest
lower bound on the two intervals is, by definition, Bottom.

disjoint :: Interval→ Interval→ Bool

disjoint (a, b) (c, d)

= let (a ′, b′) = (toInt32 a, toInt32 b)

(c′, d ′) = (toInt32 c, toInt32 d)

in max a ′ c′ > min b′ d ′

CHAPTER 6. WCET ANALYZER 100

As expected, the Galois connection used for value analysis only considers the subset of
registers that store abstract values, ν ∈ V(W). Therefore, from the previously defined set of
register names N, we now define a subset NV of register names to each the interval abstraction
applies. Next, we formulate the correctness of the interval abstraction as a Galois connection
[73]. The approximation of sets of concrete values, defined as elements of the powerset lattice
℘(W), into intervals inside V(W), is defined by the Galois connection 〈α, γ〉:

〈℘(W),⊆〉 −−−→←−−−α
γ
〈V(W),v]ν〉 (6.10)

The definitions of α and γ for the interval abstraction are:

α(S) =

⊥
]
ν , if S = ∅

[a, b], if min(S) = a and max (S) = b
(6.11)

γ(i) =

∅, if i = ⊥]ν
{w ∈W | a 6 w 6 b}, if i = [a, b]

(6.12)

The previous formal definitions of α and γ are in direct correspondence to their Haskell
definitions, abst and conc, respectively.

abst :: [Word32]→ RegVal

abst [] = Bottom

abst s = AbstVal (minimum s,maximum s)

conc :: RegVal→ [Word32]

conc Bottom = []

conc (AbstVal (l , u)) = [l . . u]

The abstract definition R] of the concrete register set R is obtained by the composition of two
abstractions: the first abstraction is called non-relational because all possible relationships
between the register values are lost in the abstraction [30]; the second abstraction is called
codomain abstraction as it based on the Galois connection (6.10), defined for content of each
particular register.

The non-relational abstraction is defined by the Galois connection 〈αr, γr〉 and approximate
properties of register sets by ignoring relationships between the possible values associated
to register names:

〈℘(NV 7→W),⊆〉 −−−→←−−−
αr

γr 〈NV 7→ ℘(W), ⊆̇〉. (6.13)

This abstraction approximates sets of concrete maps R\ , ℘(NV 7→ W) to a non-relational
collecting concrete semantics R\r , NV 7→ ℘(W). Given the register set ρ ∈ R, the definitions
of the Galois connection is the following:

αr(R\) = λn ∈ NV •{ρ(n) | ρ ∈ R\}

γr(R\r) = {ρ | ∀n ∈ NV : ρ(n) ∈ R\r(n)}

CHAPTER 6. WCET ANALYZER 101

where the pointwise ordering ⊆̇ is defined by:

R\r ⊆̇R′\r , ∀n ∈ N : R\r(n) ⊆ R′\r (n).

The codomain abstraction is defined by the Galois connection 〈αc, γc〉 and approximate the
codomain of R\r, designated as R]ν , using the Galois connection 〈α, γ〉 of Def. (6.10):

〈NV 7→ ℘(W), ⊆̇〉 −−−→←−−−
αc

γc 〈NV 7→ V(W), v̇]ν〉 (6.14)

where

αc(R\r) , α ◦R\r,

γc(R]ν) , γ ◦R]ν ,

R]ν v̇
]
ν R
′]
ν , ∀n ∈ NV : R]ν(n) v]ν R′]ν (n).

Therefore, the abstract register set R]ν , NV 7→ V(W) is defined to be a complete lattice
for the pointwise ordering v̇]ν . Finally, the composition of the non-relational and codomain
abstractions is given by the Galois connection 〈α̇, γ̇〉:

〈℘(NV 7→W),⊆〉 −−−→←−−−
α̇

γ̇
〈NV 7→ V(W), v̇]ν〉 (6.15)

where

α̇(R\) , αc ◦ αr(R\)

= λn ∈ NV •α({ρ(n) | ρ ∈ R\}),

γ̇(R]ν) , γr ◦ γc(R]ν)

= {ρ | ∀n ∈ NV : ρ(n) ∈ γ(R]ν(n))}.

Finally, we have to define the abstract register domain for the entire set of register names N.
Let NW = N \NV be the set of registers storing “concrete” control information, obtained as
the set difference between N and NV. Now let Rw , NW 7→ W. The coalesced (coproduct)
type constructor AbstVal + ConcVal is then formally defined the disjoint union of the two
previously defined maps, R]ν and Rw: R] , R]ν

⊎
Rw. Hence, the Haskell definition of R]

given in the Section 6.3.1 must be re-defined to include in the domain all the possible sorts
of abstract/concrete values:

type R] = Array RegisterName RegVal

6.6.4 Calculational Design

6.6.4.1 Forward Abstract Interpretation of the Add instruction

The design of an abstract interpretation F]V is based on the approximation of the concrete
(collecting) transformer F \V , defined as a canonical extension of the transformer FV specified

CHAPTER 6. WCET ANALYZER 102

in Def. (6.7). This approximation on functional spaces is formally described by an higher-
order Galois connection [28].

Generically, given an expression of type E and some domain of interpretation L, the abstract
semantics F] : E × L]

m7−→ L] is induced from the concrete semantics by calculus. The
calculation process consists, for any given set approximation described by a Galois connection
〈L\,⊆〉 −−−→←−−−α

γ
〈L],v〉, in applying the functional abstraction to the semantic transformers:

〈L\ m7−→ L\, ⊆̇〉 −−−→←−−−
α
.

γ
.

〈L] m7−→ L], v̇〉 (6.16)

where

α
.(F \) , α ◦ F \ ◦ γ (6.17)

γ
.(F]) , γ ◦ F] ◦ α

The point-wise orderings ⊆̇ and v̇ are defined over the domains of F \ and F], respectively.
Then, from the soundness requirement [28, Section 8.1] and from the fixpoint abstraction
described in Section 3.7, it follows that F] is an overapproximation such that:

F]JEK ẇ α
.(F \JEK) (6.18)

The main advantage of the calculational approach is that the formal specification obtained
by calculus can be easily transformed into declarative code, in particular Haskell declarative
code. The objective of the calculational design is to illustrate the constructive aspect of the
approach of abstract interpretation, which avoid the verification a posteriori by means of a
soundness relation using the concretization function only [23]. In fact, we address not only
the soundness problem but also the precision problem by including the abstraction function
in the calculation process.

For the example of the instruction Add introduced before, we proceed with the induction
of the abstract semantic transformer using Def. (6.18). Inspecting the concrete Haskell
semantic transformer, fV , (Section 6.6.2), one can see that the values of specific registers,
reg1 and reg2, need to be accessed from the input register environment r. By definition,
given a register name n ∈ N, its concrete value in the environment ρ ∈ R is accessed by
ρ(n) ∈W. In Haskell, the environment function ρ is defined by the function getReg.

The environment value ρ(n) is obtained by interpreting the operators 〈Op〉, in particular
register operands Reg 〈RegisterName〉, as defined in the BNF specification of the ARM
instruction set in Fig. 6.2. Accordingly, the definition of the abstract register environment
ρ] ∈ R] can be obtained by calculus using (6.18) when a Galois connection exists between the
concrete and the abstract register domains. So far, we have defined such Galois connection
in (6.15), but only for register names between R0 and R10.

Notwithstanding, we prove that, by using the algebraic properties of Galois connections, in
particular the lower closure operator α ◦ γ v̇ id, it is possible to induce the abstract version

CHAPTER 6. WCET ANALYZER 103

of the map function ρ(n), when α and γ form a pair of adjoined functions defined for all NV.
The induction of the abstract map function ρ] is performed at denotation level by providing
an abstract interpretation of syntactic phrases like (Reg reg). By design, we assume that
register abstract arithmetics are always performed using intervals. Therefore, we instantiate
the generic pair of adjoined functions 〈α, γ〉 of Def. (6.17), as the pair of adjoined function
〈α̇, γ̇〉, defined in (6.15).

For any register n ∈ NV and for for an abstract environment ρ] ∈ R]ν : ρ] 6= ⊥]ν , the abstract
interpretation JReg regK] is obtained by calculus as:

α
.
(JReg regK) ρ]

= * The collecting semantics is the canonical extension of standard int. +

α̇({ρ | ∃ρ ∈ R\ : JReg regK ρ = ρ(reg)})

= * Haskell definition of ρ(reg) and definition of α̇+

α ({getReg r reg | r ∈ γ̇(ρ])})

v * precedence of α, getReg] is the abstract version of getReg +

getReg] (α̇ {r | r ∈ γ̇(ρ])}) reg

v * γ̇ introduces no loss of information: ∀p ∈ α̇(γ̇(p)) v]ν p +

getReg] r] reg

= ρ](reg)

Hence, the abstract register set R] is defined as a map from register names to the abstract
values defined in the Haskell co-product type RegVal. The same way as the concrete map,
the access functions to abstract environment are setReg] and getReg].

setReg] ::R] → [(RegisterName,RegVal)]→ R]

setReg] = (//)

getReg] ::R] → RegisterName→ RegVal

getReg] = (!)

Next, we proceed to the calculation of the abstract instruction semantics transformer F]
V

for the same example instruction Add introduced in Section 6.6.2. For future reference, the
operation (+]) denotes the sum operator (+) in the interval domain.

As explained in Section 6.3 in Fig. 6.3, in Load/Store architectures like the ARM9, the
arithmetic operations performed inside the “ALU” functional unit during the Execution
pipeline stage only allow registers as operands. Therefore, we conclude that the data memory
is not affected during the execution of Add. On the other hand, during the Memory pipeline
state, the instruction semantics of Load and Store instructions depend both on the register
file and the data memory. In this way, we can define two different instruction semantics
transformers,: the first is designated by FR, and is used during the Execution pipeline stage;
the second is designated by FD, and is used during the Memory pipeline stage.

CHAPTER 6. WCET ANALYZER 104

FR ∈ Instr 7→ R 7→ R

FD ∈ Instr 7→ D 7→ D

The abstract interpreter F]R is then obtained by calculus, considering an initial abstract
environment ρ] ∈ R]ν : ρ] 6= ⊥]ν :

α
.
(F \R JAdd (Reg reg1) (Reg reg2) (Reg reg3)K) ρ]

= * F \R is the canonical extension of FR +

α̇({v | ∃r ∈ R\ : FR JAdd (Reg reg1) (Reg reg2) (Reg reg3)K r = v})

= * Standard interpretation of Add as defined by the Haskell function fV on R +

α̇ ({setReg r reg1 (v3 + v2) | r ∈ γ̇(ρ]) ∧ v2 = JReg reg2K r ∧ v3 = JReg reg3K r}

v * γ̇ monotone and defining UR = setReg r reg1 (v3 + v2)

α̇ ({UR | ∃r2 ∈ γ̇(ρ]) : v2 = JReg reg2K r2 ∧ ∃r3 ∈ γ̇(ρ]) : v3 = JReg reg3K r3})

v * γ ◦ α is extensive (γ ◦ α w id), α is monotone +

α̇ (UR | v2 ∈ γ ◦ α({v | ∃r ∈ r\ : JReg reg2K r = v}) ∧

v3 ∈ γ ◦ α({v | ∃r ∈ r\ : JReg reg3K r = v})})

v * definition of JReg regK], γ and α are monotone+

α̇ ({UR | v2 ∈ γ (JReg reg2K] ρ]) ∧ v3 ∈ γ (JReg reg3K] ρ])})

v * Def. (6.12) of γ , i2 = JReg reg2K] ρ], and i3 = JReg reg3K] ρ]+

α̇ (setReg r reg1 ({z ∈W | l2 6 z 6 u2} +] {z ∈W | l3 6 z 6 u3})

| l2 = min(γ(i2)) ∧ u2 = max(γ(i2))∧

l3 = min(γ(i3)) ∧ u3 = max(γ(i3)))

v * precedence of α̇, Def. (6.11) of α, setReg] is the abstraction of setReg +

(setReg] r] reg1 (α({z ∈W | l2 6 z 6 u2}) +] α({z ∈W | l3 6 z 6 u3}))

v * Def. (6.12) of γ+

setReg] r] reg1 (i3 +] i2)

The induced abstract interpreter f]R is directly transformed into Haskell declarative code.
The abstract definition of +] in Haskell is obtained by an instantiation of the type class
(Num a) and the overloading of the operator (+). For convenience, the interval arithmetics
is performed on integer values. In this way, we convert values of type Word32 into values
of type Integer, and vice-versa, using the functions toInt32 and fromIntegral , respectively.

instance Num Interval where

(a, b) + (c, d) = let normalize (a, b) = if a 6 b then (a, b) else (b, a)

(a ′, b′) = (toInt32 a, toInt32 b)

(c′, d ′) = (toInt32 c, toInt32 d)

(x , y) = normalize (a ′ + c′, b′ + d ′)

in (fromIntegral x :: Word32, fromIntegral y :: Word32)

CHAPTER 6. WCET ANALYZER 105

Taking advantage of the parametric polymorphism of the type class (Num a), the interval
arithmetics can be easily extended to the inductive datatype RegVal.

instance Num RegVal where

AbstVal a + AbstVal b = AbstVal (a + b)

ConcVal a + ConcVal b = ConcVal (a + b)

Finally, the abstract instruction semantics for the instruction Add with two register operands
is defined in Haskell by the function f]R. Comparatively to the concrete instruction semantics
given in Section 6.3.1, the only syntactic difference resides in the use of the abstract versions
of getReg] and setReg], so that they can type check with the abstract register domain R].

f]
R :: Instr → R] → R]

f]
R (Add (Reg reg1) (Reg reg2) (Reg reg3)) r]

= let i2 = getReg] r reg2

i3 = getReg] r reg3

in setReg] r] reg1 (v2 + v3)

6.6.4.2 Backward Abstract Interpretation of Operands

Backward abstract interpretation is required for the analysis of conditional instructions, such
Bne, Beq, etc., with the objective to detect the existence of sound preconditions for the
conditional instruction to be executed. More precisely, these preconditions correspond to
the interval values of the specific registers used by the comparison instruction Cmp that
is executed before any of referred conditional instructions. If the result of the backward
analysis is the undefined element (⊥]ν), then the analysis of the conditional instruction is
not performed.

First we define the backward collection semantics in terms of an additive semantic trans-
former B\, defined as denotational interpretations for operands op ∈ Op. It defines the
subset of possible “ascendant” operand values such that the interpretation of an operand
produces a value belonging to a given set P [28].

B\ ∈ Op 7→ ℘(R) a7−→ ℘(W) a7−→ ℘(R)

B\JOK(R\)P , {r ∈ R\ | ∃v ∈ P : fRJOK r = v} (6.19)

Since operands of interest to the analysis are the register names for which the interval
abstraction is defined, we restrict the backward abstract interpretation to the use of the
abstract register domain R]ν , defined in Section 6.3. In the same way as for forward abstract
interpretations, the abstract semantics B]

ν is obtained from the collecting semantics B\ by
calculus. Given the pair of adjoined functions 〈α̇, γ̇〉, defined by the Galois connection (6.15)
between the lattices R\(⊆) and R]ν(v̇]ν), and the pair of adjoined functions 〈α, γ〉, defined by
the Galois connection (6.10) between the complete lattices (℘(W))(⊆) and (V(W))(v]ν). For
any possible approximation 〈α̇, γ̇〉 we define the following monotonic functional abstraction:

〈℘(R) m7−→ ℘(W) m7−→ ℘(R), ⊆̈〉 −−−→←−−−
α
/

γ
/

〈R]ν
m7−→ V(W) m7−→ R]ν , v̈

]
ν〉

CHAPTER 6. WCET ANALYZER 106

α
/
(Φ) , λr] ∈ R]ν • λp ∈ V(W) • α̇(Φ(γ̇(r])) γ(p)) (6.20)

γ
/
(ϕ) , λr ∈ ℘(R) • λP ∈ ℘(W) • γ̇(ϕ(α̇(r))α(P))

where the point-wise orderings ⊆̈ and v̈]ν are defined for B\ and B]
ν , respectively:

Φ ⊆̈Ψ , ∀r ∈ ℘(R) : ∀P ∈ ℘(W) : Φ(r)P ⊆Ψ(r)P,

ϕ v̈]ν ψ , ∀r] ∈ R]ν : ∀p ∈ V(W) : ϕ(r])pv]ν ψ(r])p

The definition of the higher-order Galois connection 〈α/
, γ

/〉 is obtained directly from the
commutative diagram of Fig. 6.7. From the soundness requirement, it follows that given an

p ∈ V(W), r] ∈ R]v(v]v)
ϕ
- R]v(v]v)

P ∈ ℘(W),

γ
6
α
?

R ∈ R\(⊆)

γ̇
6
α̇
? Φ

- R\(⊆)

γ̇
6
α̇
?

Figure 6.7: Commutative diagram used for backward abstract interpretation

abstract property p, an abstract environment r] and an abstract partial order v̈]ν , the value
obtained by applying the abstract transformer ϕ must approximate the value that would be
obtained by applying the concrete transformer Φ. The same applies for the concretization
function γ

/, which requires that, given a concrete property P and a concrete environment
R, Φ is over-approximated by ϕ using ⊆̈. Hence, the overapproximation B]

v is such that:

B]
vJOK ẅ]ν α

/(B\JOK)

We are interested in the constant operands and operands that access a register value from
the register map. For any abstract register environment ρ] ∈ R]ν : ρ](r1) 6= ⊥]ν and p ∈ R]ν ,
we have:

1. when O = (Con c) ∈ Op and c ∈W is a constant, then:

B]vJCon cK (ρ]) p

= α̇({ρ ∈ γ̇(ρ]) | ∃c ∈ γ(p) : JCon cKρ = c})

= * Standard interpretation of JCon cK+

α̇({ρ ∈ γ̇(ρ]) | c ∈ γ(p)})

= * conditional notation if then else+

if (c ∈ γ(p)) then α̇(γ̇(ρ])) else α̇(∅)

v̇]ν * α̇ ◦ γ̇ is reductive (α̇ ◦ γ̇ v]ν id)+

if (c ∈ γ(p)) then ρ] else ⊥]ν

The definition of B]
ν in Haskell is a function called back that uses the function conc to

determine if the property p is an element of the list of concrete values:

CHAPTER 6. WCET ANALYZER 107

back ::Op→ R] → RegVal→ R]

back (Con c) r] p = if elem c (conc p) then r] else bottom

2. when O = (Reg r1) ∈ Op and r1 is a register name,

B]vJReg r1 K (ρ]) p

= α̇({ρ ∈ γ̇(ρ]) | ∃ρ(r1) ∈ γ(p) : JReg r1 Kρ = ρ(r1)})

= * Standard interpretation of JReg r1 K +

α̇({ρ ∈ γ̇(ρ]) | getReg r r1 ∈ γ(p)})

= * def. of γ̇+

α̇({ρ | ∀r2 6= r1 : getReg r r2 ∈ γ (getReg] r] r2) ∧

getReg r r1 ∈ γ (getReg] r] r1) ∩ γ(p)})

= * γ is a complete morphism+

α̇({ρ | getReg r r2 ∈ γ (getReg] r] r2) ∧

getReg r r1 ∈ γ (getReg] r] r1 u p))})

= * let notation and definition of back+

let back = λreg → if reg = r1

then setReg] r] r1 ((getReg r r1) u p)

else r]

in α̇({ρ | getReg r r2 ∈ γ (back r2) ∧ getReg r r1 ∈ γ (back r1)})

= * definition of γ̇+

α̇({ρ | ρ ∈ γ̇ back})

v̇]ν * α̇ ◦ γ̇ is reductive and r2 cannot occur in Reg r1 +

setReg] r] r1 ((getReg] r] r1) u p)

In this way, the Haskell definition follows directly from the calculation process by
associating the function meet to the greatest lower bound operator (u]ν).

back ::Op→ R] → RegVal→ R]

back (Reg r1) r] p = setReg] r] r1 $ (getReg] r] r1) ‘meet‘ p

6.6.4.3 Forward Abstract Interpretation of the ‘Cmp’ instruction

The backward abstract interpretation of expressions with abstract syntax 〈Op〉 is required for
the forward abstract interpretation of the comparison instruction ‘Cmp’, because it deter-
mines which segments of an abstract register environment will cause future interpretations of
conditional instructions to branch the “program counter”. Moreover, since any conditional
instruction, such as ‘Bne’, ‘Beq’, etc., can be executed after the comparison instruction
‘Cmp’, the referred interval segments must be computed for any elementary condition, in
particular, (<), (==), or (>).

CHAPTER 6. WCET ANALYZER 108

We modify the treatment of conditional expressions presented by Cousot in [28] in conformity
with the interval semantics of Kindahl in [73]. The reason for this is that the abstract
interpretation for conditional expressions in [28] are generic, i.e. independent from the
abstract domain. When using the interval abstraction, the precision of the static analysis
can be improved by applying the intricate interval semantics in [73].

The intuition behind the backward abstract interpretation of boolean expressions on intervals
is that conditions behave as filters which interpretation is restricted to a given interval. Let
v1 c v2 be a boolean expression using the condition c. First, we evaluate the segments of
the interval values v1 and v2 which satisfy the boolean condition. Then, we restrict the
evaluation of right hand side, v1, using an extension of the previously computed segment for
v2, and vice-versa. More precisely, this extension is defined by the widening operators O1

and O2 defined in Table (6.4), which depend on the conditional operation c being evaluated.
The functions above and below take an interval as argument and return a second interval
according to the following definition:

above ([l, u]) , [l,+∞]

below ([l, u]) , [−∞, u]

Table 6.4: Widening intervals for boolean expressions
Operation O1 O2

v1 < v2 below (v2)	 1 above (v1)⊕ 1
v1 > v2 above (v2)⊕ 1 above (v1)	 1
v1 == v2 v1 v2

In the intricate interval semantics the comparison c is checked for each pairs of values 〈v1, v2〉.
Hence, we require the definition of pair of adjoined functions 〈α2, γ2〉 to obtain the non-
relational/componentwise abstraction of properties of pairs of values:

α2(P) , 〈α({v1 | ∃v2 : 〈v1, v2〉 ∈ P}), α({v2 | ∃v1 : 〈v1, v2〉 ∈ P})〉, (6.21)

γ2(〈p1, p2〉) , {〈v1, v2〉 | v1 ∈ γ(p1) ∧ v2 ∈ γ(p2)} (6.22)

with the componentwise ordering v2:

〈p1, p2〉 v2 〈q1, q2〉 , p1 v q1 ∧ p2 v q2 (6.23)

As mentioned in Section 6.6.4.1, the forward abstract interpretation of an instruction exe-
cuted by the “ALU” functional unit is obtained by calculus from the corresponding concrete
semantics FR. In the case of the comparison instruction ‘Cmp’, the concrete semantics
is given by the denotational interpretation fR written in Haskell. The functions cpsrSetN ,
cpsrSetZ and cpsrSetC update the program status register (CPSR) by setting the respective
1-bit condition flags, “Negative”, “Zero”, “Carry”.

CHAPTER 6. WCET ANALYZER 109

fR (Cmp (Reg reg1) (Reg reg2)) regs

= let val1 = getReg regs reg1

val2 = getReg regs reg2

regs ′ = setReg CPSR (fromIntegral 0 :: Word32) regs

in if val1 < val2

then cpsrSetN regs

else if val1 ≡ val2

then cpsrSetZ regs

else cpsrSetC regs

Before describing the calculation of f]R, we have to re-define the type of the CPSR register.
In Section 6.6.3, the abstract value of the status register was defined using the datatype
Word32. However, in order to perform abstract interpretations of conditional instructions,
the computation of interval segments is required for each of the elementary conditions, (<),
(==) and (>). Additionally, interval segments with elementary abstract information are
required to compute the “intricate” interval segments for conditions that are expressed as
combinations of the elementary conditions, e.g. (>).

For this purpose, a new Haskell datatype called Control was defined to include not only
the existent 32-bit “status” word, but also the results of the backward interpretation of
the operands of the instruction ‘Cmp’. Using the record syntax of Haskell, the segment
corresponding to the condition (<) is accessed using the function lessThan, the segment
corresponding to the condition (==) is accessed using the function equals, and the segment
corresponding to the condition (>) is accessed using the function greaterThan. As opposed to
the concrete “status” register, additional control bits are used to implement a path-sensitive
data flow analysis which are set when in the presence of alternative paths or infeasible paths.

Finally, the record function segments is only used during abstract interpretations of condi-
tional instructionss, for example, during the analysis of elementary branch instructions Blt,
Beq, Bgt, or the “intrincate” branch instructions, e.g. Bge. By the fact that, according
to a weak topological order, at the head of a loop is always a conditional instruction, the
value returned by the function segments is used to detect fixpoint stabilization of the value
analysis inside a loop.

Since the chaotic fixpoint strategy mimics execution order, if the function segments returns
Bottom, the preconditions to analysis the loop do not hold. Then, the analysis proceeds on
the fall-through path of that loop. On the hand, if two consecutive fixpoint iterations over
the meta-program of the loop produce the same value of segments at the head of the loop,
then we conclude that the fixpoint condition has been reached for that particular loop.

data Control = Control {control :: Word32, lessThan ::R], equals ::R], greaterThan ::R],

segments ::R]}

Accordingly, the coproduct defined by RegVal now includes an explicit constructor, CtrlVal,
for abstract values of type Control. In this way, the register name CPSR is now included

CHAPTER 6. WCET ANALYZER 110

in the set NV of register names storing a product of interval abstractions.

data RegVal = AbstVal Interval | ConcVal Word32 | CtrlVal Control | Bottom

The induction of the abstract semantic transformer F]R, defined as the abstract denotational
interpretation of the the instruction ‘Cmp’, is formally obtained by calculus using the
soundness relation of Def. (6.18). The calculation process is generic through the definition
of the condition c, a syntactical meta-variable for expressing the elementary conditions. The
objective of the calculation is to assign the correct values to each of the elementary interval
segments.

For any abstract environment ρ] ∈ R]ν : ρ](r1) 6= ⊥]ν ∧ ρ](r2) 6= ⊥]ν , we have:

α
.
(F \RJCmp(Reg r1)(Reg r2)K) ρ]

= α̇({ρ ∈ γ̇(ρ]) | FRJCmp(Reg r1)(Reg r2)K ρ = ρ′})

= * Standard interpretation of FR+

= α̇({ρ ∈ γ̇(ρ]) | ∃v1, v2 ∈W : v1 = JReg r1K ρ ∧ v2 = JReg r2K ρ ∧

(v1 < v2 ∨ v1 == v2 ∨ v1 > v2)})

= * γ̇ ◦ α̇ is extensive (γ̇ ◦ α̇ w id) and definging a c b , a < b | a == b | a > b +

α̇({ρ ∈ γ̇(ρ]) | ∃v1 ∈ γ(α̇({v1 | ∃ρ ∈ γ̇(ρ]) : JReg r1K ρ = v1})) :

∃v2 ∈ γ(α̇({v2 | ∃ρ ∈ γ̇(ρ]) : JReg r2 K ρ = v2})) :

v1 = JReg r1K ρ ∧ v2 = JReg r2 K ρ ∧ v1 c v2})

= * definition of the Galois connection 〈α̇, γ̇〉 +

α̇({ρ ∈ γ̇(ρ]) | ∃v1 ∈ γ(JReg r1K] ρ]) : ∃v2 ∈ γ(JReg r2 K] ρ]) :

v1 = JReg r1K ρ ∧ v2 = JReg r2 K r ∧ v1 c v2})

= * let notation+

let 〈p1, p2〉 = 〈JReg r1K] ρ], JReg r2 K] r]〉

in α̇({ρ ∈ γ̇(ρ]) | ∃v1 ∈ γ(p1) : ∃v2 ∈ γ(p2) :

v1 = JReg r1K ρ ∧ v2 = JReg r2 K ρ ∧ v1 c v2})

= * set theory define a relation between the sets γ(p1) and γ(p2)+

let 〈p1, p2〉 = 〈JReg r1K] ρ], JReg r2 K] ρ]〉

in α̇({ρ ∈ γ̇(ρ]) | ∃〈i1, i2〉 ∈ {〈i′1, i′2〉 | i′1 ∈ γ(p1) ∧ i′2 ∈ γ(p2) ∧ v1 c v2} :

v1 = JReg r1K ρ ∧ v2 = JReg r2 K ρ})

v̇]ν * γ2 ◦ α2 is extensive and α̇ is monotone+

let 〈p1, p2〉 = 〈JReg r1K] ρ], JReg r2 K] ρ]〉

in α̇({ρ ∈ γ̇(ρ]) | ∃〈i1, i2〉 ∈ γ2(α2({〈i′1, i′2〉 | i′1 ∈ γ(p1) ∧ i′2 ∈ γ(p2) ∧ v1 c v2})) :

v1 = JReg r1K ρ ∧ v2 = JReg r2 K ρ})

v̇]ν * defining č(p1, p2, c) w2 α2({〈i′1, i′2〉 | i′1 ∈ γ(p1) ∧ i′2 ∈ γ(p2) ∧ v1 c v2})+

let 〈p1, p2〉 = 〈JReg r1K] ρ], JReg r2 K] ρ]〉

in α̇({ρ ∈ γ̇(ρ]) | ∃〈i1, i2〉 ∈ γ2(č (p1, p2, c)) : v1 = JReg r1K ρ ∧ v2 = JReg r2 K ρ})

CHAPTER 6. WCET ANALYZER 111

= * re-definition of 〈p1, p2〉 and definition of below and above widening operators+

let 〈p1, p2〉 = č (JReg r1K] ρ], JReg r2 K] ρ], c)

in α̇({ρ ∈ γ̇(ρ]) | ∃i1 ∈ γ(O1p2) : JReg r1K] ρ] = i1} ∩

{ρ ∈ γ̇(ρ]) | ∃i2 ∈ γ(O2p1) : JReg r2 K] ρ] = i2})

= * α̇ is a complete join morphism by definition+

let 〈p1, p2〉 = č (JReg r1K] ρ], JReg r2 K] ρ], c)

in α̇({ρ ∈ γ̇(ρ]) | ∃i1 ∈ γ(O1p2) : JReg r1K] ρ] = i1}) u̇

α̇({ρ ∈ γ̇(ρ]) | ∃i2 ∈ γ(O2p1) : JReg r2 K] ρ] = i2})

v̇]ν * def. of backward abstract interpretation B]v+

let 〈p1, p2〉 = č (JReg r1K] ρ], JReg r2 K] ρ], c)

in (B]νJReg r1K ρ](γ(O1p2))) u̇ (B]νJReg r2 K ρ])(γ(O2p1)))

In this way, the forward abstract denotation interpretation of an instruction ‘Cmp’ is given
by the semantic transformer F]R, parametrized by a set of conditionals c that need fully
evaluated under an input abstract environment, ρ]. Next, we give the Haskell definition of
č by means of the function pairs. It is formally defined as č(p1, p2) w2 α2({〈i′1, i′2〉 | i′1 ∈
γ(p1) ∧ i′2 ∈ γ(p2) ∧ v1 c v2}).

Example 8. Example of segment extraction between two intervals.
Consider, as an example, that the condition c is the LessThan (<) condition. For sake of
efficiency, we do not check the condition for all the possible pairs 〈i′1, i′2〉, but only for the
lower and upper bounds of this set of pairs. Fig. 6.8 shows all the possible combinations
of lower and upper bounds between two intervals [l1, u1] and [l2, u2], from which we can
extract the abstract semantics of both intervals operands that are involved in the LessThan

comparison.

data Condition = LessThan | Equal | GreaterThan

pairs ::R] → Op→ Op→ Condition→ (RegVal,RegVal)

pairs r] (Reg reg1) (Reg reg2) LessThan

= let AbstVal (l1 , h1) = getReg] r] reg1

AbstVal (l2 , h2) = getReg] r] reg2

c = if h1 < h2 then h1

else h2 − 1

b = if l1 < l2 then l2

else l1 + 1

in if l1 > h2

then (Bottom,Bottom)

else (abst [l1 , c], abst [b, h2])

The intervals [l′1, u
′
1] and [l′2, u

′
2] are the segments of the original intervals such that all values

inside [l′1, u
′
1] are less than all the values inside [l′2, u

′
2]. The function pairs computes these

CHAPTER 6. WCET ANALYZER 112

bounds and abstracts them using abst to obtain the effect of α2. As mentioned, the function
pairs has as argument of type Condition to specify which comparison filter is being applied.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 6.8: All possible cases when comparing the intervals [l1, u1] and [l2, u2]
N

Next, we give the definition of the function widening, used to obtain the pair of values
(O1p2,O2p1) that specify the intricate interval semantics. For the case where the condition
is the (<) condition, the definition of widening shows that the restriction of the first interval
is the interval below the second interval minus one. Conversely, the restriction to the second
interval is the interval above the first interval plus one.

widening :: Condition→ (RegVal,RegVal)→ (RegVal,RegVal)

widening LessThan (i1 , i2) = (below i2 − AbstVal (1, 1), above i1 + AbstVal (1, 1))

widening Equal = id

widening GreaterThan (i1 , i2) = (above i2 + AbstVal (1, 1), below i1 − AbstVal (1, 1))

The interval segments originated by a particular comparison condition are computed by
the function compareOps, which arguments are the input abstract environment, the two
operands of the comparison instruction and the specified condition. Its effect is an abstract
environment where the two register operands are “filtered” so that the interval abstraction
includes only the values for which condition holds. However, the definition of compareOps is
an incomplete definition of the formal definition F]RJCmp (Reg r1)(Regr2)K ρ], because it
considers only one particular comparison condition.

Therefore, for one particular Condition, its definition uses the corresponding definition of the

CHAPTER 6. WCET ANALYZER 113

function pairs, which instantiates the pairs 〈p1, p2〉, the function widening, which instantiates
the intervals (O1p2),O2p1), the function back , which instantiates the backward interpretation
B]
ν and, finally, the function meet , which instantiates the greatest lower bound operator u̇]ν .

compareOps ::R] → Op→ Op→ Condition→ R]

compareOps r] reg1 reg2 c = let (w1 ,w2) = widening c $ pairs r] reg1 reg2 c

reg1 ′ = back reg1 r] w1

reg2 ′ = back reg2 r] w2

in reg1 ′ ‘meet‘ reg2 ′

Finally, the complete declarative definition for F]
RJCmp (Reg r1) (Reg r2)K ρ] is given by

the function f]r . After comparing the input operands for all comparison conditions, the
returned abstract environment contains a modified value for the register CPSR, which value
is constructed using the results of the previous backward abstract interpretations. Using
the record functions lessThan, equals, greaterThan, these results are assigned with the interval
segments, lt, eq and gt, respectively. The values of the control word and the “intricate”
segments are set to their undefined values (bottom) because they will be modified only by the
branch conditional instruction that immediately follows the comparison instruction.

f]
R (Cmp (Reg reg1) (Reg reg2)) r]

= let lt = compareOps r] (Reg reg1) (Reg reg2) LessThan

eq = compareOps r] (Reg reg1) (Reg reg2) Equal

gt = compareOps r] (Reg reg1) (Reg reg2) GreaterThan

ctrl = Control {lessThan = lt , equals = eq , greaterThan = gt ,

control = fromIntegral 0 :: Word32, segments = bottom}

in setReg] r] CPSR (CtrlVal ctrl)

6.6.5 Fixpoint Stabilization

As described in Chapter 5, the fixpoint algorithm makes use of chaotic program-specific
iteration strategies determined according to the weak topological order of some program
P . In the previous section, we have defined a calculational-based abstract instruction
semantics for ARM9 programs using the interval abstraction. Given an ARM9 program
with n instructions, the fixpoint of the program in the abstract domain is computed over the
function space F = 〈f(1,h), . . . , f(i,j), . . . , f(k,n)〉, where each data-propagation function f(i,j)

computes a state transformation between the program labels i and j. By definition of weak
topological order, the invariants map σi = Σi

P is already available when the computation of
the state Σj

P starts, implying the interpretation of sequential statements is made only once
and in the right order.

The purpose of the two-level denotational meta-language is two-fold. The lower level is used
to defined the type of propagation functions and the upper level is used to define combina-
tions of propagation function according to control-flow patterns. The basic combinator is
the sequential composition (f ∗ g), which uses the denotational concept of “continuation” to

CHAPTER 6. WCET ANALYZER 114

specify that the function g is the continuation of f . The type signature of (∗) specify the
type-safety of this continuation effect in the sense that f has the parametric polymorphic
type (a→ b) and the continuation g has the parametric polymorphic type (b→ c). The
advantage of the algebraic shape of the meta-language combinators is that the result type
of (∗) is, as expected, parametric polymorphic (a→ c). Given a third continuation h, the
combinator (∗) can again be used to express the functional composition h ◦ g ◦ f . Fixpoint
semantics expressed in this continuation style yield the compositional fixpoint algorithm
given in Def. (5.23).

However, there are other control-flow patterns besides sequential composition, such as the re-
cursive and pseudo-parallel combinators, and the interface adapters split and merge. Nonethe-
less, each of these combinators/adapters are combined between each others always by means
of the sequential composition. Furthermore, the recursive combinator internally uses sequen-
tial composition to define loop unrolling as the sequence of tail calls that take the function
defining the effect of the loop as the current continuation. This sequence of functional
applications corresponds to Kleene sequences in the sense that only monotonic functions
ϕ are considered, and that their least upper bounds, lfp ϕ, are obtained by applying the
fixpoint operator FIX to ϕ, such that FIX(ϕ) = lfp ϕ. The theoretical foundations for
computing fixpoints using denotational semantics are given in Chapter 2 and the Haskell
definitions for the recursive operators (⊕) and (�) are given in Section 5.2.

Example 9. Example of the stabilization of a loop
To better understand the fixpoint algorithm, we reintroduce the our simple source code
example with a ‘while’ loop in Fig. 6.9(a). The ARM9 machine program is given in
Fig. 6.9(b), including the labelled program points “at” the beginning and “after” each
instruction. The induced chaotic iteration strategy is the following:

. . . 6 10 11 [12 7 8 9 10 11]∗ . . .

int main (void) {
int x = 3 ;

while (x>0) {
x−−;

}
return x ;

}
(a) Source program

n10 : b 16 : n6

n8 : ldr r3 , [fp , #−16] : n7 { (” . L3” ,” main ”)}
n9 : sub r3 , r3 , #1 : n8

n10 : str r3 , [fp , #−16] : n9

n11 : ldr r3 , [fp , #−16] : n10 { (” . L2” ,” main ”)}
n12 : cmp r3 , #0 : n11

n7 : bgt −20 : head 12

n13 : bgt −20 : n12

(b) Labelled relational semantics

Figure 6.9: Source program and the corresponding labelled relational semantics

By definition of weak topological order, the instructions between the label identifiers 0 and
6 are analyzed using the sequential operator (∗). The same combinator is used during the
analysis of the branch-and-link instruction ‘bl 16’, which is delimited by the label identifiers 6
and 10. This puts in evidence the benefits of the relational algebra of continuations provided

CHAPTER 6. WCET ANALYZER 115

by the sequential combination of state-propagation functions (once and in the right order).

Next, we give particular attention to the component of the chaotic fixpoint strategy between
square parentheses ([]∗), and how the recursive combinator (⊕) is able to compute the least
fixpoint for that particular component. A fragment of the complete meta-program, i.e. the
automatically derived fixpoint algorithm is:

· · · * (cmp r3, #0) * ((bgt -20) ⊕ (ldr r3, [fp, #-16]) * · · · * (sub r3, r3, #1) *
· · · * (ldr r3, [fp, #-16]) * (cmp r3, #0)) * (bgt -20) * · · ·

Like the definition of the combinator (∗), also the combinator (⊕) is based on an algebra
of binary relations, where each relation has the functional type of a continuation. The first
continuation corresponds to the propagation function that iterates over the instruction ‘bgt
-20’, and the second continuation corresponds to the functional composition of the propaga-
tion functions that iterate of the instruction sequence ‘(ldr r3, [fp, #-16]) * · · · * (cmp
r3, #0)’. The condition to enter the loop is analyzed by iterating over the continuation of
the instruction cmp r3, #0 using, for that purpose, the backward abstract interpretation of
the two instruction operands.

As described in Section 6.6.4.3, the forward abstract interpretation of the instruction ‘Cmp’
uses the results of backward abstract interpretation of its two operands, as described in
Section 6.6.4.2. Note that in previous meta-program, the instruction ‘cmp r3, #0’ appears
before entering the (sub)meta-program of the loop and also appears at the last position
inside the loop. In both cases, it takes as the current continuation the propagation function
that iterates over the instruction ‘bgt -20’.

Consequently, the forward abstract interpretation of the instruction ‘Bgt’ must be defined.
However, we do not apply the calculational method used in the previous sections because the
only different between the concrete standard interpretation and the abstract interpretation
resides on the representation of the register ‘CPSR’. As opposed to the 32-bit word used
by a concrete register value, where the conditional flags ‘Negative’ (N), ‘Zero’ (Z), ‘Carry’
(C) can be set to 1 or 0, the abstract value of CPSR defines interval segments for each one
of the condition applies.

Therefore, branch conditions are not determined in terms of the value of a control bit, which
would be either 0 or 1 during run-time execution, but rather in terms of an interval segment,
which is specific to a particular comparison condition that can be either the undefined
element (bottom) or not. These segments are calculated by backward abstract interpretation
and are essential to perform a path-sensitive data-flow analysis. This can be observed in the
nondeterministic relational semantics of Fig. 6.9(b), where the instruction ‘bgt -20’ appears
both at the “head” and at the “exit” labels of the loop, allowing the analysis of the fall-
through path of the loop. N

The standard (concrete) interpretation of the instruction ‘Bgt’ over a register environment

CHAPTER 6. WCET ANALYZER 116

is given by the Haskell semantic transformer fR. The program counter offset associated to
the branch instruction is provided at analysis time by the constructor Rel. The set of control
bits ‘N’, ‘Z’ and ‘C’ is updated at once during the execution of the instruction ‘Cmp’. For
the particular case of the instruction ‘Bgt’, the condition to check is (>) and is associated
with the ‘Carry’ bit ‘C’, which is evaluated by means of the function cpsrGetC . If the bit
‘C’ is set to 1, then the “program counter” is updated with the provided offset . Otherwise,
the register environment is left unaltered.

fR (Bgt (Rel offset)) regs

= let pc = getReg regs R15

pc′ = if offset < 0

then pc − 4 − (fromIntegral (−offset))

else pc − 4 + (fromIntegral offset)

in if cpsrGetC regs ≡ 1

then setReg regs R15 pc′

else regs

The forward abstract interpretation of the instruction ‘Bgt’ over an abstract register envi-
ronment is given by the semantic transformer f]R. Since the backward abstract interpretation
uses the interval abstraction, the condition (>) is evaluated by comparing the results of the
function greaterThan with the undefined interval returned by bottom. If this comparison
evaluates to True, the record function segments is updated with the value of greaterThan.

Otherwise, the complement condition (6) is considered on the fall-through path by com-
puting the least upper bound (join) between the results of the functions lessThan and
equals. Finally, two abstract control bits are used to specify if a branch has the sufficient
preconditions, i.e. an abstract value different from bottom, or to specify if a branch gives
origin to an infeasible path. These two possibilities are modelled by an additional control
bit, designated by “BranchBit”, which can be set to ‘1’ or ‘0’ by means of the functions
setBranchBit and clearBranchBit , respectively.

f]
R (Bgt (Rel offset)) r]

= let CtrlVal status@Control {control = cpsr , greaterThan} = getReg] r] CPSR

ConcVal pc = getReg] r] R15

pc′′ = if offset < 0

then pc − 4 − (fromIntegral (−offset))

else pc − 4 + (fromIntegral offset)

in if greaterThan 6≡ bottom
then let ctrl = status {control = setBranchBit cpsr ,

segments = greaterThan}
regs ′ = setReg] r] R15 $ ConcVal pc′′

in setReg] regs ′ CPSR (CtrlVal ctrl)

else let ctrl = status {control = clearBranchBit cpsr ,

segments = join (equals status) (lessThan status)}
in setReg] r] CPSR (CtrlVal ctrl)

The importance of the interval returned by the function segments is to detect fixpoint

CHAPTER 6. WCET ANALYZER 117

stabilization of loops at their “heads”. The verification of the ascending chain condition
of the Kleene sequence that correspond to the loop unrolling of a recursive meta-program
is performed by checking the existence of the least upper bounds of the segments intervals
at the label identifiers of the head of the loop inside ΣJP K. Therefore, the results of the
backward abstract interpretation have to be compared after each fixpoint iteration in order
to detect stabilization of this particular analysis. For this purpose, we re-define the datatype
(Env a), first introduced in Section 5.1, and later modified in Section 6.4, so that it uses the
value constructor loopStable to include the notion of loop stabilization.

data Env a = Env {value :: a, stable :: [Stable]}
data Stable = ValueStable | CacheStable | PipelineStable | LoopStable

Since the WCET analysis is an instantiation of the generic framework presented in Chapter 5,
the effect of the function stabilize needs to be re-defined to reflect the stabilization of the value
analysis. Two different cases must be considered in this process: in the first case, fixpoint
stabilization is detected at every program point where the least upper bound for register
and data memory abstract environments, R] and D], has been reached; in the second case,
fixpoint stabilization is detected solely at the “heads” of loops because only the results of the
backward abstract interpretation are used. In both cases, the update of the record function
stable is performed inside the definition of the function chaotic, as described in Section 5.1.

As described in Section 6.4, when the stabilization in the value domain is “globally” achieved,
i.e. considering all program points inside the loop, the constructor ValueStable is used
to instrument the program flow analysis. As a particular case, when considering only the
“head” of the loop, the constructor LoopStable is used to detect the stabilization of the loop
unrolling when performing the value analysis. The overall process of fixpoint stabilization
will be described next in the following way. First, we show that the polymorphic function
chaotic must be instantiated with the abstract domain CPU. Then, we identify the different
situations in which information about fixpoint stabilization can be updated and which
functions are used accordingly. Finally, we define the instance (IterableCPU).

chaotic :: (Transition r)⇒ r → Invs CPU→ CPU→ Invs CPU

chaotic rel invs cpu

= let cpu ′ = read invs (sink rel)

cpu ′′ = join cpu ′ cpu

in if cpu ′ ≡ bottom

then store rel cpu invs

else if cpu ′′ 6≡ cpu ′

then partialStabilize rel cpu ′ cpu ′′ $ store rel cpu ′′ invs

else stabilize rel invs

As usual, when the most recent abstract value cpu is available, the function join computes the
least upper bound between this value and the value that already exists inside the invariants
map at the sink label. If the least upper bound is equal to the previous abstract value,
this means that, considering only for the ”sink” program point of the input relation, the

CHAPTER 6. WCET ANALYZER 118

ascending chain condition has been verified and the least fixpoint has been found. In this
case, the state of the value analysis is updated using the function stabilize.

stabilize :: Transition r ⇒ r → Invs CPU→ Invs CPU

stabilize rel = adjust (λn → n {stable = [ValueStable]}) $ (point ◦ sink) rel

During chaotic fixpoints where the least upper bound has not been reached for all the
abstract domains contained in the composite domain denoted by CPU, we detect partial
stabilization in the domains of interest for loop unrolling, i.e. the abstract value domains R]

and D]. If the last computed abstract value cpu is associated to an input-output relation
which source label is the “head” of a loop, we apply the function stabilizeLoop. Otherwise, in
the general case, we apply the function stabilizeValue.

partialStabilize :: (Transition r)⇒ r → CPU→ CPU→ Invs CPU→ Invs CPU

partialStabilize rel = if (head ◦ source) rel

then stabilizeLoop rel

else stabilizeV alue rel

The effect of the function stabilizeLoop is uniquely determined by the state of the backward
abstract interpretation after the forward abstract interpretation of a comparison instruction,
of type ‘Cmp’, followed by the forward abstract interpretation of a branch instruction, e.g.
of type ‘Bgt’. At this stage, the segments record function of the abstract value stored inside
the register CPSR already carries the results of a path-sensitive data-flow analysis. If such
information is equal in two consecutive chaotic fixpoint iterations, then we add the data
constructor LoopStable to the fixpoint information stored inside the sink label of the branch
instruction.

stabilizeLoop :: (Transition r)⇒ r → CPU→ CPU→ Invs CPU→ Invs CPU

stabilizeLoop rel old new

= if (head ◦ source) rel

then let CtrlVal c′ = getReg] (registers old) CPSR

CtrlVal c′′ = getReg] (registers new) CPSR

in if segments c′ ≡ segments c′′

then adjust (λn → n {stable = [LoopStable]}) $ (point ◦ sink) rel

else id

else id

In the general case, it is only required to detect the stabilization of the value analysis. For
this purpose, we compare the abstract contents of the register and data memory domains,
through the record function registers and dataMem, respectively. If such information is equal
in two consecutive chaotic fixpoint iterations, then we add the data constructor ValueStable

to the fixpoint information stored inside the sink label of the instruction.

stabilizeV alue :: (Transition r)⇒ r → CPU→ CPU→ Invs CPU→ Invs CPU

stabilizeV alue rel old new

= if (registers old ≡ registers new) ∧ (dataMem old ≡ dataMem new)

then adjust (λn → n {stable = [ValueStable]}) $ (point ◦ sink) rel

else id

CHAPTER 6. WCET ANALYZER 119

Finally, we instantiate the type class (Iterable a) for parametrized programs states (St CPU).
The objective of the function isFixpoint is to determine either if there a preconditions for
a loop be analyzed or if the Kleene sequence constructed during the interpretation of the
intra-procedural Haskell combinator (f + r) has reached the least fixpoint (here f is the
continuation of the loop body and r is the continuation of the branch instruction). Hence,
if the “BranchBit” stored inside the control of a CPSR register is set to 0, there are no
sufficient preconditions to continue the analysis of the loop and the combinator returns the
complement of the input program state with respect to the boolean condition.

Hence, if after a finite stream of tail calls f(f(f(...))), the least upper bound of FIX(f) has
been found, the LoopStable constructor will be added to the list of stable components of
an abstract Env CPU. In this case, the analysis of the loop terminates, giving rise to the
analysis of the fall-through path.

instance Iterable (St CPU) where

isF ixpoint s = let (after , cert) = (label s, invs s)

node = cert ! (point after)

CtrlVal status = getReg] (registers (value node)) CPSR

in case getBranchBit (control status) of

0→ False

1→ ¬ $ elem LoopStable (stable node)

6.7 Cache Analysis

Modern embedded microprocessors, such as the ARM9, can execute instructions at a very
high rate by employing an efficient instruction-level pipeline and a memory system that is
both very large and very fast. If the size of the main memory is to sufficiently large to
hold enough programs that keep the microprocessor busy, or if the access times to the main
memory are too slow, the main memory will not be able to supply instructions as fast as the
processor can execute them.

Unfortunately, the larger the memory is, the slower are its provided access times. The
solution to this problem is the design of composite memory systems capable to combine
small and fast specialized memories with a large and slow main memory. Although the
technical effectiveness of this solution depends on typical program statistics, such as spatial
locality and temporal locality properties of the program [106], the objective is observe the
memory system as acting like a large and fast memory, at least for much of the time. This
kind of behavior is provided by a specialized memory called cache. Consider, as an example,
the Harvard architecture of ARM9 illustrated in Fig. 6.10. It comprises two different SRAM
caches with separated bus links: a data cache, D-$, and a instruction cache, I-$.

Memory systems support memory hierarchy of many levels. For example, Fig. 6.10 identifies
two internal cache levels: separated Level 1 (L1) caches and a common Level 2 (L2) cache.

CHAPTER 6. WCET ANALYZER 120

Figure 6.10: Memory hierarchy of a ARM9 microprocessor

Both L1 and L2 caches are composed of SRAM but L2 caches are much larger. In one end,
external hard disk drives (HDD) are generally considered at the lowest (and the slowest) level
in the memory hierarchy. At the other end, processor registers can be viewed as the elements
on top of the memory hierarchy. For the complete memory hierarchy, access times typically
vary from a few nanoseconds at the level of registers, tens to a few tens of nanoseconds at the
levels of the internal caches, and around 100 nanoseconds at the level of the main memory.

Memory accesses that are requested by the pipeline during the “Fetch” stage are serviced
directly from the instruction cache. If the requested “program counter” memory address is
contained in the cache, which corresponds to a cache hit, then the opcode is returned at
a low latency. Conversely, upon a cache miss, i.e. a case when the requested instruction
resides in the main memory, it first needs to be transferred from the main memory to the
cache, replacing existent cached data.

Data replacement inside a cache is highly relevant for WCET timing analysis. It is formally
determined by a replacement policy and affects both temporal and spatial locality, whence
the execution time of a particular program. The replacement policies are specified by the
logical organization of the cache, i.e. how the cache is structured internally, and how it
manages memory accesses.

In general, the main memory is logically partitioned into a set of memory blocks M of size b
bytes, with the objective to reduce traffic and management overhead. Therefore, cache lines
are designed to have equal size so that memory blocks can be cached as a whole. Taking
advantage of spatial locality, b is usually a power of two. A memory block is then easier
to find because the block offset is determined by most significant bits of a memory address.
When an access to a memory block is issued, it is either already stored in the cache (cache
hit) or it is not (cache miss).

There are caches with many different shapes and sizes, but all can be categorized in terms
of a parameter called cache associativity. In general, caches are partitioned into cache sets
of equal size. The size of each cache set is the associativity k of the cache. Given the total
number s of equally sized cache sets, each set is identified by least significant bits of the
block number, called the index. There are three categories for cache associativity: direct
mapped, k-way set associative, and fully associative. The remaining most-significant bits of
the address, known as the tag, are stored along with each cache line.

CHAPTER 6. WCET ANALYZER 121

The direct mapped caches are also 1-way set associative caches. Lookup of memory blocks
in this kind of caches is very simple and cheap to implement as it not necessary to compare
several tags to decide, whether and where a memory block is cached within a set. On the
other hand, fully associative caches are also n-way set associative caches. These caches are
typically implemented using translation lookaside buffers and no index is needed since a
memory block can be cached anywhere inside the n positions of a single cache set. In order
to determine whether the memory block is currently stored in the cache, it is necessary to
compare the tag of each memory address. Finally, a k-way set associative cache is a generic
cache that requires both the tag and the index to lookup a cache block. For a given target
latency, the hardware complexity of a generic cache ranges from the cheap solutions of direct
mapped caches to the expensive implementations of fully associative caches.

The replacement policy completes the specification of a cache [8]. By the fact that the
number s of cache sets is typically small, a cache set eventually fills up after a certain
number of cache misses. Upon the next cache miss, the tasks of the replacement policy is to
decide on the basis of a particular strategy which is the “least useful” memory block inside
the cache set and to replace it inside the cache set in such a way that the number of cache
misses is minimized across the whole program execution. Ideally, if it was possible to have
perfect knowledge about future requests to memory blocks, an optimal replacement (OPT)
algorithm would replace the memory block whose request is the farthest away in the future
among all the cache memory blocks presently in the set [18]. Since the implementation of
such algorithm is infeasible, the following alternative strategies are the most popular.

Prominent replacement policies are: (1) Random [146], used for example in ARM Cortex-A8;
(2) LRU (Least Recently Used) [3], used for example in Intel Pentium I and MIPS 24K/34K;
(3) Round-robin (or FIFO – First-In-First-Out), used for example used in Motorola PowerPC
56x, Intel XScale, ARM9, ARM11; (4) PLRU (Pseudo LRU), used for example in used in
Intel Pentium II-IV and PowerPC 75x; (5) Most Recently Used (MRU) [8], used for example
in Intel Nehalem; (5) Pseudo Round-Robin (Pseudo-RR) [138], used for example in Motorola
Coldfire 5307.

6.7.1 Related Work

For the purpose of WCET estimation, an exact analysis would require caches with absolutely
predictable behaviors. Since several properties of caches, such as associativity and replace-
ment policies, influence predictability, the execution time of a program vary depending both
on input data and on the cache hardware state. Therefore, an approximate but safe cache
analysis is necessary [108]. The most pessimistic approach, but definitely safe (see Fig. 4.1),
assumes that all memory requests result in cache misses, i.e. that a constant timing penalty
is always added to the execution time. An alternative method to obtain more precise results
is abstract interpretation [50]. The analysis of cache behavior is performed by two different

CHAPTER 6. WCET ANALYZER 122

kind of analysis: the must analysis computes a set of memory blocks that are guaranteed to
reside in the cache and the may analysis computes a set of memory blocks that may be in
the cache.

In cache static analysis, no replacement policy can perform better than LRU because it
replaces the elements that has not been used for the longest time, at the position determined
by the associativity k of the cache. For LRU, the must analysis is sufficient to obtain precise
results about cache hits regardless of program input. Other replacement policies, such as
FIFO[56], MRU [106] or PLRU [55], require the combination of must and may analysis in
order to improve the number of predicted hits. In [108] is presented a comparison between
replacement policies in terms of well-defined metrics.

The key difference between data cache analysis and instruction cache analysis is the address
set. In instruction caches, the address set is singleton because it corresponds to a unique
address given by the actual “program counter”. Conversely, the address set of a data cache
may not be a singleton set, e.g. in the presence array references. Therefore, data cache
analysis depends more on the of the spatial locally of a particular program because the
data address may change when the same load/store instruction is executed repeatedly. For
this reason, some approaches to cache analysis by abstract interpretation consider only
instruction caches [50, 137] and some other extend the analysis to unified instruction/data
caches [48].

Our approach to cache analysis is pragmatic in the sense that our objective is not to propose
new abstract domains for cache analysis, but rather to demonstrate that the calculational
approach proposed by Cousot in [28] can be used to induce abstract interpreters for cache
analysis that match perfectly with the cache analyses found in the abstract interpretation
literature. Therefore, and although the ARM9 microprocessor uses RR or FIFO replacement
policies, we assume for sake of simplicity that only the instruction memory is cached and
that its replacement policy is LRU. Technically, there are also relevant simplifications, since
only the must analysis is implemented.

6.7.2 LRU Concrete Semantics

We consider a fully-associative, or alternatively a n-way set associative, instruction cache
with the Least Recently Used (LRU) replacement policy [50, 144]. Concrete values in the
instruction cache are denoted by a one-to-one correspondence C , L 7→ M , where C is a
fully associative cache with a set of n cache lines L = {l1, . . . , ln}, each one storing a memory
block m ∈ M . The lookup of a cache memory block m inside the cache c ∈ C is such that
c(li) = m, if m is stored at some cache line li ∈ L, or more abbreviately, ci = m.

The lifted domain M⊥ = M ∪ {⊥} include undefined memory blocks, such that the number
of elements inside the undefined cache state C⊥ is always n. Every cached memory block

CHAPTER 6. WCET ANALYZER 123

contains an address tag and may be stored in anyone of the n cache lines. Memory blocks
are ordered from most- to least-recently-used from left to right. For example, the cache state
[b, e, d, f] inside a LRU cache with n = 4 cache lines, indicates that b is the most-recently-used
element and f the least-recently-used one.

The update of the entire cache set is given by the function FC ∈M → C⊥ → C⊥.

FCJmK[c1, . . . , cn] =

[ci, c1, . . . , ci−1, ci+1, . . . cn] if m = ci

[m, c1, . . . , cn−1] if ∀i : m 6= ci
(6.24)

The correspondent effect of FC in the denotational setting is specified by the Haskell function
fC . Since the instruction memory is a read-only memory, the specification of the LRU update
function does not include the notion of an “evicted” memory block, because it is not necessary
to write the replaced cached memory block, cn, back into the main instruction memory.

fC :: Eq a ⇒ a → [a]→ [a]

fC m cache = case elemIndex m cache of

Just i → let (as, b : bs) = splitAt i cache

in b : as ++ bs

Nothing→ let (e : cs) = reverse cache

in m : reverse cs

The LRU replacement policy can be explained through the notion of age of a memory block.
The age of a memory m is obtained by counting the number of different memory blocks
accessed after the last access to m. In this way, the elements of a LRU cache are ordered by
increasing age, from age 1 (most-recently-used) to n−1 (least-recently-used). In the case of
instruction memories, the oldest element is removed from the cache upon a cache miss.

6.7.3 LRU Abstract Domain

There are only a finite number of cache lines and for each program a finite number of
memory blocks. This means the domain of abstract cache states C] , L 7→ 2M is finite,
whence every ascending chain is finite [137]. However, this abstract semantics is distinct
from the “collecting semantics” by the fact that the abstract join operator (t]C) is different
from set union [48]. Instead, the abstract state keeps the notion of relative age of a memory
block, which is used to identify the cache line in which it is stored. In this way, separate
must and may analysis can be performed by providing proper least upper bound operators.
Each of these operators allows the analyzer to lose information that is not relevant for either
may or must analysis, so that the abstract cache states C] can be reduced to subsets of the
collecting cache states.

As described in Fig. 6.1, our approach to WCET analysis perfomers four static analysis
simulatenously: value, cache, pipeline and program flow. Since the results of the cache
analysis are used as execution facts by the pipeline analysis, and since the analysis of the
pipeline is guided by full loop unrolling (whence history-sensitive), we only require “local”

CHAPTER 6. WCET ANALYZER 124

results from the cache analysis, results that can be used directly in each fixpoint iteration of
the pipeline analysis. Moreover, in particular for LRU, the cache must analysis is sufficient
to obtain precise results about cache hits. The definition of the must least upper bound
operator (t]C) is:

c]1 t
]
C c]2 = c](lx) = {si | ∃la, lb : si ∈ c]1(la) ∧ si ∈ c]2(lb), x = max(a, b)} (6.25)

The LRU approach contrasts with many state-of-the-art cache analyses that require both
must and may analysis and compute abstract properties of caches that reach across the
entire program, giving rise to categorization of memory accesses such as: always hit, always
miss, persistent, not classified [142]. However, as will be explained in Section 6.8, a separate
cache analysis introduces a certain level of non-determinism in the pipeline analysis because
if a memory access is classified as, e.g. not classified, both hypothesis of a cache miss or a
cache hit must be taken into account. Although our approach is less efficient due to loop
unrolling, it produces more precise results because the non-determinism introduced by a
separate cache analysis does not exist.

Using the framework of abstract interpretation, an abstract cache state is directly obtained
from the concrete domain using a representation function β , C → C] [98]. The image of
the representation function β are singleton sets of the concrete cache states in its domain.
If a memory block mx ∈ M is stored in the cache line li ∈ L then β maps a concrete cache
state, c ∈ C, to an abstract cache state, c] ∈ C], such that:

β(c)(li) = {mx} if c(li) = mx (6.26)

As previously explained in the background Section 3.4 on abstract interpretation, when using
β it is possible to define a Galois connection and a pair of adjoined functions αC : C\ → C]

and γC : C] → C\, such that the abstraction function αC maps sets of concrete cache
states, C\ = ℘(C), to their best representation in the domain of abstract cache states, C].
Moreover, the concretization function γC is induced by the abstraction function [98] and
maps an abstract cache state to the powerset of concrete cache states that is represents.

αC(C\) =
⊔]
C{β(c) | c ∈ C\} (6.27)

γC(c]) = {c | β(c) v]C c]} (6.28)

In summary, the abstract domain is formaly defined as a Galois connection by using the
least upper bound operator,

⊔]
C , and the partial order, v]C , as parameters. The partial

order is intuitively induced by the codomain of C], i.e. by the subset partial order, ⊆,
on the powerset domain 2M , and considering all cache lines in L. Next, we obtain the
abstract update function F]C using a calculational approach guided by the requirement of
monotonocity.

6.7.4 Calculational Design of Abstract Transformer

Similarly to the induction of abstract interpreters for value analysis from the instruction
semantics, the abstract interpreter used for cache analysis can be also be obtained by

CHAPTER 6. WCET ANALYZER 125

calculus from the concrete semantics of the LRU cache update cache. Starting from the
formal specification α

.(F \CJmK), where F \C ∈M → C\ → C\ is the forward collection predicate
transformer on concrete cache states C, and α

.
, αC ◦F \C ◦γC , we derive an algorithm F]CJmK

satisfying (6.18) by calculus. The bottom element ⊥]C ∈ C] is a map of size n, where all
elements are initialized with the empty set, ∅. For an abstract state c] 6= ⊥]C , we have:

α
.
(F \CJmK) c]

= * F \C is the canonical extension of FC to sets+

αC({c′ | ∃c ∈ γC(c]) : FCJmK(c) = c′})

= * def. of the semantic transformer FC+

αC({c′ | ∃[c1, . . . , cn] ∈ γC(c]) : λm. FC(m, [c1, . . . , cn]) = c′})

= * def. of the concretization function γ+

αC({c′ | ∃[c1, . . . , cn] ∈ {c | β(c) v]C c]} : λm. FC(m, [c1, . . . , cn],m) = c′})

= * def. (6.24) of the update function FC for LRU caches+

αC

λm.
[ci, c1, . . . , ci−1, ci+1, . . . cn] if m = ci

[m, c1, . . . , cn−1] if ∀i : m 6= ci
| ∃c ∈ {c | β(c) v c]}

= * def. (6.27) of αC , where
⊔]
C is the abstract least upper bound operator;

def. (6.26) of β; and since ∃c ∈ {c | β(c) v c]}+

⊔]
C

λm.

[c1 = β(m),

ck = ck−1 − β(m) | n = 1 . . . i− 1,

ck = ck − β(m) | n = i+ 1 . . . n]; if m ∈ ci
[c1 = β(m), ck = ck−1 for k = 2 . . . n] ∀i : β(m) /∈ ci

v]C * Let c′] be the least upper bound of the updated states. By the ascending

chain condition, we have that c] v]C c′] +

c′] = λm.

[c]1 = {m},

c]k = c]k−1 − {m} | n = 1 . . . i− 1,

c]k = c]k − {m} | n = i+ 1 . . . n]; if m ∈ c]i
[c]1 = {m}, c]k = c]k−1 for k = 2 . . . n] ∀i : {m} /∈ c]i

Then, the specification of the abstract semantic transformer follows directly:

f]
C :: Eq a ⇒ a → [[a]]→ [[a]]

f]
C m cache = case findIndex (elem m) cache of

Just i → [[m]] ++ foldl remove [] cache

Nothing→ [[m]] ++ take (length cache − 1) cache

where

remove accum cs = accum ++ (delete m cs) : []

Although the cache analysis is an abstract interpretation that depends exclusively on the
abstract domain C], abstract cache states are inquired every time an instruction enters
the Fetch stage because pipeline analysis is performed simultaneously with cache analysis.

CHAPTER 6. WCET ANALYZER 126

Therefore, an access function is required to read opcodes from the instruction memory
providing, at the same time, a classification of the cache request. To this end, the function
readMemInstrWord is an interpretation of a memory Address, which is stored in the “program
counter” register, over an instruction memory of type I] that returns the desired Opcode,
plus a Classification that can denote either a cache Miss or a cache Hit.

data Classification = Hit |Miss

readMemInstrWord ::Address→ I] → (Classification,Opcode, I])

readMemInstrWord addr i@I] {main = m, cache = c}
= let opcode = m ! addr

c′ = f]
C (addr , opcode) c

i ′ = i {cache = c′}
in case findIndex (hit addr) c′ of

Nothing→ (Miss, opcode, i ′)

Just n → let line = c′ !! n

in (Hit, getOpcode addr line, i ′)

The function hit is used to determine if the request memory block is not found in the cache.
The objective is to go through each CacheLine and check if the address addr belongs to one
of their set of addresses. If the lookup function findIndex returns Nothing, then the opcode
must be read from the main store backend. Conversely, if addr was indeed found at cache
line n, then the opcode is obtained by selecting the proper memory block among the rest
of “collected” memory blocks inside that cache line. To this end, the function getOpcode

was defined. After tracking the index inside the list of memory blocks, the opcode is easily
obtained by using the function snd to select the data block of a MemoryBlock.

hit ::Address→ CacheLine→ Bool

hit addr line = elem addr $map fst line

getOpcode ::Address→ CacheLine→ Opcode

getOpcode addr line = let index : [] = findIndices (λl → fst l ≡ addr) line

in snd $ line !! index

6.8 Pipeline Analysis

Pipelining allows overlapped execution of instructions by dividing the execution of instruc-
tions into a sequence of pipeline stages PS, and by simultaneous processing N instructions.
We consider an ARM9 pipeline with five pipeline stages: fetch (FI), decode (DI), execute
(EX), memory access (MEM), and write back (WB) [122]. The ideal pipelining is able to
fully overlap instructions, as illustrated in Fig. 6.11(a). As opposed to superscalar pipelines,
we consider an in-order pipeline, without branch prediction, where only one instruction can
be in one particular stage at a given time.

However, total overlapping cannot be reached when pipeline bubbles occur, i.e. the situations
where pipeline stalls either due to resource conflicts, data dependencies or control flow

CHAPTER 6. WCET ANALYZER 127

(a) Pipeline always filled with

instructions

(b) Pipeline with bubbles due to two different

kinds of stalling

Figure 6.11: Example of a perfect pipelining on the left (a); and an example of a stalled
pipelining on the right (b)

changes. Fig. 6.11(b) illustrates two different reasons for pipeline stalling: the first is caused
by the resource conflict resulting from the cache miss when fetching instruction C from the
instruction memory; the second is caused by a data dependency of the instruction C in
relation to A. In latter case, instruction C requires first the instruction A to write back in
order to correctly decode its own operands.

The concrete pipeline semantics present in [122] is a simplified semantics of the processor
that describes only the aspects related to its temporal behavior. It considers three types of
hazards caused by pipeline stalls: (1) the structural hazards which are caused by resource
conflicts arising when the pipeline does not have enough resources to execute all the pos-
sible combinations of instructions without stall; (2) the data hazards which are a natural
cause of the predetermined order instructions and, consequently, of the logical dependency
between the operands of these instructions; and (3) the control hazards which arise when
the destination address of branch instructions are not resolved early enough to decide which
instruction should enter the pipeline next.

In this concrete semantics, details of execution such as register values or results of compu-
tations are ignored. On the contrary, our choice to combine value and cache analysis with a
pipeline analysis in a single data-flow analysis implies that the semantic transformers defined
for the register and memory domains are invoked during pipeline analysis. This also implies
that register values and cache contents are updated at the same time as the concrete pipeline
state is updated according to the timing model. Nonetheless, the theoretical formalism
presented in [122] can easily cope with our through by its definition of resource association.

Let R = {r1, . . . , rm} be the set of resource types and resources of the processor. Then, a
resource association is a pair (k, {rj1 , . . . , rjn}) with k ∈ PS and rj1 , . . . , rjn ∈ R. The set
of all resource associations is denoted by R = (PS × 2R). The elements in R can be either
static, such as the resource demand of an instruction according to its type, or dynamic when
the description of the resource carries its own state. Further, resource associations can be
concatenated in sequence along the path of an instruction inside the pipeline, where the
stage s and the resource set R evolve accordingly.

CHAPTER 6. WCET ANALYZER 128

Finally, these resource association sequences are distinguished by demand sequences, which
depend on the instruction type, and allocation sequences, which carry the current state of
the pipeline that is always passed to next stage of a pipeline, including the case where the
processing of a new instruction begins.

6.8.1 Semantic Domains

The particularity in our approach to pipeline analysis is that the state of the dynamic
allocated sequences is simultaneously updated after each pipeline stage, due to the invo-
cation of the abstract state-transformers of the allocated resources in order to obtain the
“actual” resource state. These allocated resources are the register and data memory abstract
environments as well as the instruction abstract cache contents. For this reason, we re-define
the notion of concrete pipeline state in [122] and introduce the notion of an “hybrid pipeline
state”, which combines concrete timing information with the abstract state of resources in
a single definition.

We define an abstract pipeline state, denoted by P], as a collection of hybrid pipeline states,
P , computed for each program point. This definition corresponds the canonical extension of
the hybrid pipeline states to sets of states. As already mentioned in [122], the design of the
abstract pipeline domain in this way is enforced by the fact there is not a known abstraction of
sets of concrete pipeline states. Although the efficiency the pipeline analysis highly depends
on the number of hybrid pipeline states that must be computed, the termination of the
analysis is guaranteed because, for a particular program, there are only finitely many hybrid
pipeline states.

Formally, the abstract domain pipeline P] is defined as the collecting semantics P] , 2P of
hybrid pipeline states. It forms the powerset complete lattice with set inclusion ⊆ as its
partial order, set union ∪ as its least upper bound, set intersection ∩ as its greatest lower
bound, ⊥ = ∅ as its least element and > = 2P as its greatest element. Consequently, the join
of abstract pipeline states is given by set union: p]1 t

]
P p]2 = p]1 ∪ p]2 .

Previously, in Section 6.3, we introduced the notion of store buffers to express the necessity
to store intermediate abstract states of the allocated resources allocated during the pipeline
analysis of every single instruction. Since the least upper bound between the store buffers
R′], D ′], C ′] and M ′] and top level domains R], D], C] and M] is performed at the level of
the abstract pipeline state-transformer, the definition of hybrid pipeline state, P is defined
in terms of the store buffers:

P , (Time × Pc ×Demand × R′] ×D ′] × C ′] ×M ′] × Coord) (6.29)

where Time is the global number of CPU cycles, Pc is “program counter” of the next
instruction to fetch, Demand is a 32-bit word used to model the dependences between registers
in such a way that each register is either a blocked or unblocked resource, and Coord is a

CHAPTER 6. WCET ANALYZER 129

N -sized vector, being N the number of instructions allowed inside the pipeline.

Coord , [TimedTask]N (6.30)

A TimedTask is defined for a single instruction, Instr , and consists in the current elapsed
CPU Cycles and the current Stage of a given Task . A Task is associated to one instruction
and holds also store buffers inside the “context” of an hybrid state.

TimedTask , (Cycles × Stage × Task) (6.31)

Cycles , Int (6.32)

Stage , FI | DI | EX | MEM |WB (6.33)

Task , (Instr × Pc ×Demand × R′] ×D ′] × C ′] ×M ′]) (6.34)

For the purpose of WCET analysis we are then interested in timing properties of instructions
already at the end of the WriteBack stage. These properties are measured as CPI (Cycles
Per Instruction) and are easily extracted from an hybrid pipeline state by selecting from the
Coord N -sized vector, the TimedTask of the desired instruction (Instr) and then extract from
it the value of Cycles when the stage is WB .

The Haskell definitions for the domain definitions are obtained straightforwardly. In order
to distinguish the concrete part of an hybrid state we use the parametrized datatype P a,
where the type variable a denotes a concrete timing property. To emphasize that the number
N of instructions inside the pipeline is variable, type of the Coord coordinates vector is
isomorphic to the list type.

data P a = P {time :: Int, nextpc :: Word32, demand :: Word32,

regs ::R], datam ::D], instrm :: I],

coords :: Coord a }

newtype Coord a = Coord [TimedTask a]

data Stage = FI | DI | EX |MEM |WB

data TimedTask a = TimedTask {property :: a, stage :: Stage, task :: TaskState}

As already mentioned, the resource associations is a pair of a stage s ∈ PS and a set of
resources. In our pipeline functional model, a resource association is denoted by TaskState,
which uses the constructors Ready, Fetched, Decoded, Stalled, Executed and Done,
to distinguish the different resource associations inside an allocation resource sequence.
Moreover, since we combine the analysis of the resources simultaneously with the pipeline
analysis, some instances of TaskState require also a temporary register file R]. The datatype
Reason is used to specify the cause of a stall. It contains only the constructors for structural
and data hazards because the control hazards are handled in a particular way, as will be
described latter in this section.

data TaskState = Fetched Task R] | Decoded Task R] | Stalled Reason Task R]

| Executed Task R]

| Done Task | Ready Task

data Reason = Structural | Data

CHAPTER 6. WCET ANALYZER 130

data Task = Task {taskInstr :: Instr, taskNextPc :: Word32, taskDemand :: Word32,

taskRegs ::R], taskDmem ::D], taskIMem :: I]}

The partial order on the domain (TimedTask a) is simply the order on natural numbers (6)
on its record function property. Hence, the partial order on a coordinates vector (Coord a) is
determined by the maximal element of the N elements of the corresponding list. Finally, the
partial order on (P a) combines the global timing time with the relative elapsed CPU cycles
contained in the coordinates vector Coord. The partial order on (P a) is solely determined by
its concrete components, defined by a proper instance of the type class Ord. The combination
of these two timing properties is compared using the componentwise ordering (p1, p2) v2

P

(q1, q2) , p1 vP q1 ∧ p2 vP q2.

instance (Eq a, Ord a, Num a)⇒ Ord (P a) where

compare a b = compare (time a,maxCycles (coords a))

(time b,maxCycles (coords b))

The maximal element inside a coordinate vector is given by the function maxCycles. This
function selects the timing property of each TimedTask using the function map and then
computes the maximal value using the function maximum.

maxCycles :: (Ord a, Num a)⇒ Coord a → a

maxCycles (Coord vec) = maximum $map property vec

6.8.2 Semantic Transformers

We now identify the semantic transformers that perform the pipeline analysis. The analysis
is performed in three levels: at the lower level, we define the transformer FT as a morphism
on the composite domain TimedTask ; at middle level, we define the transformer FP as a
morphism on the composite domain P , which uses FT to compute the new elements inside
the N -sized vector Coord ; finally, at the higher level, we define the transformer F]

P as a
morphism on sets of hybrid states P which uses FP to create new sets of hybrid pipeline
states. The semantic transformers FP and F]

P are concisely defined as:

FP ∈ Instr 7→ P 7→ P (6.35)

FP (i)(p) , toContext(i) ◦ [FT ◦ fromContext(p)]N (6.36)

F]P ∈ Instr 7→ P] 7→ P] (6.37)

F]P (i)(p]) , {F 5+
P (i)(p) | p ∈ p]} (6.38)

where F 5+
P corresponds to the recursive functional application of FP at least five times, i.e.

the number of pipeline stages k ∈ PS . The functions f1, f2, . . . , fk, · · · ∈ FT , specify the
effect of pipeline state transformations across a variable number of pipeline steps, which
is greater than five in the presence of pipeline bubbles. For example, the instruction B in
Fig. 6.12 requires l pipeline steps to complete, where l > k. The same figure illustrates how
a pipeline consists in a sequence of instruction vectors, where each vector is adjoined with a

CHAPTER 6. WCET ANALYZER 131

timing property, 1, 2, . . . , s, s+ 1. This property expresses the relation between the elapsed
cycles per instruction (CPI) and the current stage of an instruction inside the pipeline.

Figure 6.12: Functional overview over pipeline steps

F 5+
P does not correspond to the transitive closure of FP by the fact that local worst-case

timing properties are always associated to the WriteBack (WB) pipeline stage of a given
task. The reason is that the value and cache analyses are performed simultaneously with
the pipeline analysis, thus making the timing analysis a deterministic process for each given
input timing property. In this way, intermediate the hybrid pipeline states can be discarded
after completion. Let {sik | k ∈ PS , k > 5} be the set of ordered pipeline stages (including
stalled stages) required to complete the instruction i . Then, F 5+

P is defined by:

F
si

k+1
P (i)(p) , FP (i)(F s

i
k

P (i)(p)) (6.39)

F 5+
P , F

si
WB

P (6.40)

Example 10. Examples of sets of pipeline state in presence of hazards.
An example of structural hazards is when the next fetched instruction is not found inside the
instruction cache. In this case, the timing model adds a timing penalty that corresponds to
the read operation on the main instruction memory and subsequent caching of the requested
memory address. One example of an extra cache miss penalty is given in Fig. 6.13(a) for
the instruction mov r3, #3 (position 2 in the pipeline). Since the instruction was not found
in the cache, the pipeline will advance to the Decode stage only after 2 CPU cycles.

Data hazards happen whenever the private data of an instruction is currently being processed
inside the pipeline by other instruction. In these cases, the blocked instruction can proceed
only after the instruction holding the data has completed the WriteBack phase. One example
of data stalling is given in Fig. 6.13(b) for the instruction str r3, [r13] (position 3 in the
pipeline). Since the previous instruction, mov r3, #3, is still in the WriteBack phase, the
decoding of str r3, [r13] is stalled. In the next CPU cycle, the data of the register r3 is
signalled as available by the pipeline internal state. Thus, the decoding of str r3, [r13] is
possible and the pipelining proceeds to the Execution phase.

Control hazards happen in circumstances like the one described in Fig. 6.13(c). We known
for a fact that the instruction bgt 8 may change control flow if the branch condition is
verified. Thus, the pipeline is flushed so that the next program counter to fetch is available,
right after the instruction bgt 8 writes back.

CHAPTER 6. WCET ANALYZER 132

cycles N Next State

2 0 DI Fetched : mov r13, #0

0 1 FI Ready: nop

0 2 FI Ready: nop

cycles N Next State

3 0 EX Decoded : mov r13, #0

1 1 FI Stalled : mov r3, #3

0 2 FI Ready: nop

cycles N Next State

4 0 MEM Executed : mov r13, #0

2 1 DI Feched : mov r3, #3

0 2 FI Ready: nop

(a) Structural hazard

cycles N Next State

2 0 DI Fetched : ldr r1, [r13]

6 1 WB Done: mov r3, #3

3 2 DI Stalled : str r3, [r13]

cycles N Next State

3 0 DI Stalled : ldr r1, [r13]

1 1 FI Stalled : mov r2, #0

4 2 EX Decoded : str r3, [r13]

(b) Data hazard

cycles N Next State

5 0 EX Decoded : bgt 8

2 1 DI Stalled : b 20

1 2 FI Stalled : ldr r1, [r13]

cycles N Next State

6 0 MEM Executed : bgt 8

0 1 FI Ready: nop

0 2 FI Ready: nop

(c) Control hazard

Figure 6.13: Examples of pipeline states sets in presence of hazards
N

We now look in more detail at the semantic transformers FT . The purpose of FT is
to compute the successive intermediate hybrid states inside the pipeline given a N -sized
vector of initial resource associations. Each semantic transformation FT corresponds to
a step for each instruction inside the pipeline, but since all the N instruction inside the
Coord coordinates vector share the common context defined in P , it is necessary to update
(read/write) the state of the resources in such context. In particular, the value of Pc must be
known to fetch the next instruction from memory when one instruction inside the pipeline
finishes, and the value of Demand must be kept updated depending on the blocked/unblocked
state of register ports.

The state-transformer FT is homonymously defined is Haskell by a function of type FT , which
receives as input argument a timing property of type a and the current task state of type
TaskState and returns the new state of this task on the next pipeline stage, instrumented
with a new timing property. Accordingly, the return type is (TimedTask a).

type FT a = a → TaskState→ TimedTask a

In order to obtain the effect of the formal specification λp.FT ◦ fromContext(p), we define
the function regular with the purpose to instantiate a function of type FT from the context
stored inside an hybrid state (P a). The additional arguments are the boolean value hazards,
which specify possible structural or data hazards at a particular time, and the current stage.
The definition of regular is then obtained by pattern matching on the current Stage.

When the current stage is FI (Fetch), the function regular is defined as:

CHAPTER 6. WCET ANALYZER 133

regular :: (Num a)⇒ P a → Bool→ Stage→ FT a

regular p@P {time = t , nextpc = pc, instrm = i } hazards FI

= λcycles state → case state of

Ready task →
if ¬ hazards

then let task ′ = task {taskNextPc = pc, taskIMem = i }
in fetchInstr (start t cycles) task ′

else TimedTask {property = cycles, stage = FI, task = Ready task}

Stalled Structural task buffer →
let task ′ = Fetched task buffer

in TimedTask {property = fetched cycles, stage = DI, task = task ′}

The resources of interest in the input context of (P a) are the global CPU clock cycles, time,
the “program counter” of the next instruction to fetch, nextpc, and the abstract instruction
memory, instrm. The output of regular is an anonymous function of type FT . Therefore, the
function regular is a “constructor” of type FT .

The input argument state, of type TaskState, holds the abstract state of the allocated
resources to the analysis of one instruction inside the pipeline. If this state is the Ready

state, then two situations can occur during the instruction’s opcode: either it was found
in the instruction cache or it must be fetched from the main memory. In the former case,
the input task is updated with the context values nextpc and instrm and then passed to the
function fetchInstr , together with the updated timing property. The new timing property is
given by applying the function start to the context time and the input cycles. In the latter
case, a pipeline bubble is created by letting the task in the same stage FI (see Fig. 6.13(a)).
Next we given the definition of fetchInstr :

fetchInstr :: (Num a)⇒ a → Task→ TimedTask a

fetchInstr cycles t@Task {taskNextPc = pc, taskImem = m }
= let (classification, opcode,m ′) = readMemInstrWord m pc

instr = decode opcode

pc′ = pc + 4

buffer ′ = setReg] bottom R15 (ConcVal pc′)

in if classification ≡ Hit

then let task ′ = t {taskInstr = instr , taskNextPc = pc′, taskImem = m ′}
in TimedTask {property = fetched cycles, stage = DI,

task = Fetched task ′ buffer ′}
else let task ′ = t {taskInstr = instr , taskNextPc = pc′, taskImem = m ′}

in TimedTask {property = missed cycles, stage = FI,

task = Stalled Structural task ′ buffer ′}

The function fetchInstr is responsible for accessing the instruction memory at the address
specified by nextpc to obtain an opcode used to decode an instruction of type Instr. Please take
note that when a “fetch” operation is performed on the instruction memory, this corresponds
to an abstract state-transformation on the instruction cache. Therefore, if the particular

CHAPTER 6. WCET ANALYZER 134

address is not classified as a Hit during this particular fixpoint iteration, then the concrete
timing model of the pipeline will affect the input value cycles with the cache “miss penalty”
computed by the function missed .

When the current stage is DI (Decode), the function regular is defined as:

regular p@P {demand = d , regs = r } hazards DI

= λcycles state → if ¬ hazards

then case state of

Fetched t buffer → let task ′ = t {taskDemand = d }
buffer ′ = updateBuffer task r buffer

in decodeInstr cycles task ′ buffer ′

Stalled Data t buffer → let task ′ = t {taskRegs = r , taskDemand = d }
buffer ′ = updateBuffer t r buffer

in decodeInstr cycles task ′ buffer ′

else TimedTask {property = dependency cycles,

stage = DI, task = Stalled Data task ′ buffer }

The resources of interest in the input context of (P a) are the demand state of register ports
and the state of the regfile that is shared by all elements inside the coordinates vector.
Similarly to the previous case, the presence of hazards is given by a boolean value. If no
Data hazard was detected, the state of the TaskState is distinguished between a previously
Fetched task and a previously Stalled task. In the former case, it is necessary to update
the task resource demand from the context as well as the local buffer from the shared regfile
before invoking the function decodeInstr .

In the later case, besides updating the local buffer, the update of the task’s regfile is also
necessary so that all the possible data hazards can vanish. When a Data hazard has been
was detected, a pipeline bubble is created by letting the task in the same stage DI and
by computing the penalty associate to a data hazard using the function dependency. See
Fig. 6.13(b), where the analysis of instruction ‘str r3, [r13]’ is stalled until the analysis of
instruction ‘mov r3, #3’ writes back the value of ‘r3’.

decodeInstr :: (Num a)⇒ a → Task→ R] → TimedTask a

decodeInstr cycles task@Task {taskInstr = i , taskDemand = d } buffer

= let mask = map (blocked d) (operands i)

stalled = foldl (∨) False mask

in if ¬ stalled

then TimedTask {property = decoded cycles, stage = EX,

task = Decoded task buffer }
else TimedTask { property = dependency cycles, stage = DI,

task = Stalled Data task buffer }

The function decodeInstr is mainly responsible for introducing pipeline stalls whenever data
hazards occur. The presence of data hazards is detected by checking if any of the operands

of task’s instruction is blocked when taking into consideration the taskDemand of resources.
If some operands are waiting for synchronization with other instructions inside the pipeline,

CHAPTER 6. WCET ANALYZER 135

then the stage of the output TimedTask remains DI. Otherwise it moves forwards to the
EX (Execute) stage. In the former case, the size of the pipeline bubble is computed in terms
of CPU cycles by the function dependency. In the latter case, the timing property is updated
using the function decoded .

When the current stage is EX (Execute), the function regular is defined as:

regular p@P { } hazards EX

= λcycles (Decoded task buffer)→
if ¬ hazards

then executeInstr cycles task buffer

else TimedTask {property = conflict cycles,

stage = EX, task = Stalled Structural task buffer }

Only structural hazards are considered in the pattern matching with the stage EX. These
hazards are caused by conflicts in the access to the ALU (Arithmetic Logic Unit) component
of the CPU. Control hazards are not excluded, but the resulting pipeline stalls are handled
in a different way. As Fig. 6.13(c) shows, when the instruction belonging to the input task is
a branch control instruction, e.g. ‘bgt 8’, the other N−1 instructions inside the pipeline are
simply withdrawn from the pipeline because the program counter of the next instruction to
fetch from memory cannot be known until the branch instruction is executed and finished.
This is done in a post-processing phase of the whole coordinates vector and corresponds one
of the effects of the specification function toContext of Def. (6.36). The Haskell definition
of this specification will be described further ahead. The function executeInstr is basically
a wrapper of the abstract instruction semantics obtained by calculus, as the example of
Section 6.6.4.1 describes when considering the arithmetic instruction ‘Add’.

executeInstr :: (Num a)⇒ a → Task→ R] → TimedTask a

executeInstr cycles t@Task {taskInstr = Add (Reg reg1) (Reg reg2) (Reg reg3)} buffer

= let i2 = getReg] buffer reg2

i3 = getReg] buffer reg3

buffer ′ = setReg] reg1 (i2 + i3) buffer

in TimedTask {property = executed cycles, stage = MEM,

task = Executed t buffer ′}

When the current stage is MEM (Memory), the function regular is defined by:

regular p@P {regs} hazards MEM

= λcycles (Executed t buffer)→
if ¬ hazards

then let task ′ = t {taskRegs = regs}
in memoryInstr cycles task ′ buffer

else TimedTask {property = conflict cycles,

stage = MEM, task = Stalled Structural t buffer }

Similar to the previous stage EX, structural hazards can happen during the MEM stage, e.g.
due to a limited number of memory ports. In the absence of a resource conflict, the current
task is updated with shared regfile for the reason that the next stage is the final stage WB.

CHAPTER 6. WCET ANALYZER 136

This requires that all resources have their state up to date. The function memoryInstr is
then responsible for using the previously computed memory address values to load/store the
previously computed registers values from/to the data memory. Due to space limitations,
the reader is referred to the Haskell prototype for the definition of the function memoryInstr .

Having defined the constructors of the semantics transformer FT for each individual instruc-
tion, we extend this notion to a vector of N instructions. Since each resource association
processed by FT is one element of the coordinates vector (Coord a) inside an hybrid pipeline
state (P a), the result of each application of FT is stored into the output coordinates vector.
Hence, first is necessary to construct a N -sized vector of FT functions to which a single
hybrid state (P a) can be applied. To this end, the function next is defined.

type FTArray a = [FT a]

next :: (Num a)⇒ P a → FTArray a

next p@P {coords = Coord vec} = let fs = map (regular p) (hazards vec)

in zipWith (λf task → f (stage task)) fs vec

The function space FTArray is built by next in two phases using partial application. First
we take the list of hazards present in the coordinates vector vec to which the function regular

is partially applied, together with the hybrid state given as a input (“context”) argument.
In the second phase, with the objective to obtain a list of functions of type FT , we combine
the list of tasks inside vec with the list of partially applied functions fs using an anonymous
function, which takes each function f and task and returns f partially applied to the current
stage of the task.

In this way, the function next is an implementation of the high-level specification λp.[FT ◦
fromContext(p)]N . Next, we show how to obtain a state-transformation on input hybrid
state (P a), by means of the function step.

step :: P a → FTArray a → P a

step p@P {time = t , coords = Coord vec} fs

= let vec′ = zipWith (λf t@TimedTask {property, task} → f property task) fs vec

in p {time = succ t , coords = Coord vec′}

The definition of step is defined straightforwardly by updating the coordinates vector and
the global CPU clock cycles using the successor function. The high-level specification λi p ·
toContext(i) ◦ [FT ◦ fromContext(p)]N is finally implemented by the function FP . To this
end, the context of an hybrid pipeline state needs to be updated after computing a new
hybrid state. This is done for each component of the “context” of an hybrid state using
the following functions: regsToCtx to update of the regfile resource; memToCtx to update of
the data and instruction memory; demToCtx to update of the static resource demand; and
pcToCtx to update of the next instruction to fetch.

FP :: (Num a)⇒ Instr → P a → P a

FP i p = let p′ = step p (next p)

in regsToCtx ◦ memToCtx ◦ demToCtx ◦ pcToCtx ◦ (flush i) $ p′

CHAPTER 6. WCET ANALYZER 137

Control hazards are handled before the update of the resources in the context of the output
hybrid state by means of the function flush. This function takes the input instruction as
argument and checks if it is a “branch instruction”, for example, ‘Bgt’, ‘Bne’, etc. In these
cases, as Fig. 6.13(c) illustrates, the other instructions inside the pipeline are flushed out the
pipeline and replaced by pipeline bubbles to avoid the computation of unnecessary resource
allocation sequences.

Having defined the FP semantic transformer on hybrid pipeline state, the pipeline analysis
by abstract interpretation is then defined by the abstract state-transformer F]

P . Consider
the example instruction A in Fig. 6.12. The effect of F]

P is first to take the ”latest” hybrid
pipeline state, according to the partial order vP , containing the A in its coordinates vector.
Then, this pipeline state is applied to a composition of transformers FP until the WB stage is
reached. During the analysis of one instruction, all intermediate states are collected into an
output abstract state P]. After completion, the intermediate state are discarded since they
are not necessary. In example of Fig. 6.12, the maximum number of CPU cycles necessary
to complete A is of s cycles.

The Haskell abstract pipeline domain introduced in Section 6.3 is P]. Since the hybrid
pipeline states are now parametrized by a type variable denoting timing properties, the
definition of P] must be re-defined. The bottom element and the join operator are defined
by an instance of the type class Lattice. Since P] is a powerset lattice, the bottom is trivially
defined as the empty list, and the join operator os defined using the union of lists. Set
inclusion is modelled using the predicates isPrefixOf , isInfixOf and isSuffixOf , which determine
if the elements of one list form a subset of the other list.

newtype P] a = P] [P a]

instance (Eq a, Ord (P a))⇒ Lattice (P] a) where

bottom = P] []

join (P] a) (P] b) = P] (union a b)

instance (Eq (P] a)) where

P] a ≡ P] b = if isPrefixOf a b ∨ isInfixOf a b ∨ isSuffixOf a b

then LT else if a ≡ b

then EQ else GT

As already mentioned, there are two main differences between our approach and the original
approach taken by Schneider in [122]. As opposed to the original approach, which is based
on previously computed value and cache analyses, our approach which combines the value
analysis with the micro-architectural analysis within a single data flow analysis. The second
main difference in that our approach distinguishes all program paths introduced by complete
loop unrolling, as opposed to [122] which consider a much more reduced number of path
classes by means of technique based on virtual loop unrolling [86].

Consequently, the efficiency in terms of analysis time and precision of the two pipeline
analysis can be considerably different. Although our approach is less efficient in the analysis

CHAPTER 6. WCET ANALYZER 138

of programs with a high number of loop iterations, it is able to automatically compute a
program flow analysis as a side effect of the value analysis and to detect infeasible paths.
On the other hand, the approach in [122] is more efficient but requires manual annotation
of the maximal loop iterations and can be less precise due to the analysis of pipeline states
that would not exist in the infeasible program paths.

Last but not least, the number of potential timing anomalies introduced by the analysis is
higher in [122] because of the implicit approximations contained in the previously computed
cache analysis. Indeed, our approach reduces the number of non-deterministic pipeline
sequences by updating the state of cache resource simultaneously with the state of the
pipeline, which makes the pipeline analysis of each instruction a deterministic process for
each loop unrolling. However, this is not the case for program paths containing an instruction
dominated by more than one instruction, according to the partial order (�) defined for
program instructions.

For example, if a memory address is classified as a cache miss using the must cache analysis
[48], this classification can also contain those intermediate abstract cache states that were
found in the cache but were eventually evicted before reaching fixpoint. In this cases, schedul-
ing timing anomalies [107] caused by abstraction introduce non-determinism in pipeline
analysis of [122]. Put simply, when the abstraction used for timing analysis introduces non-
determinism at a given pipeline stage of a particular instruction, multiple states will be
contained in the output abstract pipeline state of that instruction. Whence, multiple path
sequences of a finite length of pipeline states need to be combined at those program points
where one instruction is dominated by more than one instruction.

Consider the set of all these possible local path sequences. A scheduling timing anomaly
occurs if we take the worst-case path from this set, i.e the path with highest timing property,
and after giving this property as input to the pipeline analysis of the subsequent instructions,
the global timing property of the complete program path is actually lower than the worst-
case execution time of the concatenation of the local paths sequences. In this cases, it is not
sound to compose the local worst-case timing properties. The solution to this problem is to
pass the complete set of hybrid states in the WB stage as argument to F]

P .

With our approach, timing anomalies can only occur at merge points of pseudo-parallel
program paths, where sets of hybrid pipeline states are combined with set union. Since
the local worst-case timing property found in this set may result in global non-worst-case
timing properties, the pipeline analysis needs to follow all pipeline sequences from the merge
point onwards. However, the algebraic properties of Haskell functions still allow us to use
functional composition on F]

P over any sequence of instructions, by extending the transformer
FP to lists of pipeline states (P a). This is achieved using the function map, which applies
some function to each element of the input list.

After re-defining the abstract value C with the Haskell datatype (CPU a), in order to

CHAPTER 6. WCET ANALYZER 139

include the parametrized pipeline abstract domain, we now give the definition for F]
P . This

transformer takes an instruction and a list of hybrid states as arguments and produces a list
of pairs of hybrid states and the Task with the abstract states of resources computed after
the WB stage. The intermediate hybrid pipeline states are computed using the function
squash, which recursively applies FP until the WB stage is detected using the function done.
Afterwards, the function keep discard intermediate hybrid states because they no longer hold
relevant data.

F]
P ::Ord a ⇒ Instr → [P a]→ [(Task,P a)]

F]
P i = map (λs → squash i s)

where squash i = let go p = let p′ = FP i p

in case done i (step i p) of

Nothing→ go p′

Just task → (task, keep p′)

in go

Finally, we define the single dataFlow propagation, firstly introduced in Section 5.2. The
function updateHS is used to update the “global” abstract values of type R], D], I] into the
corresponding “buffers” used by the hybrid pipeline states. Then, after applying the abstract
transformer F]

P , the “global” abstract values are updated back with the final values of the
store “buffers” using the function updateCPU .

dataF low ::Ord a ⇒ Instr → (CPU a)→ (CPU a)

dataF low instr cpu = updateCPU cpu $ F]
P instr $ updateHS instr cpu

6.9 Summary

This chapter describes the complete structure of the abstract interpretation component
of the WCET analyzer, from the points of view of both the formal specification and the
corresponding declarative functional definitions. The main objective is to prove that abstract
interpreters can be induced by means of a calculational process, in a “correct by construction”
fashion, having as starting point a denotational semantics defined for a concrete domain
and a Galois connection between the concrete domain and the abstract domain. The
induced denotational abstract semantics is in direct correspondence with Haskell function
definitions. In this way, we complement the type safety provided by upper-level of our
two-level denotational meta-language with correctness by construction of the semantics
transformers provided at the lower-level of the meta-language.

Chapter 7

Semantics-based Program

Verification

Software development for embedded systems often requires timing validation of hard/ firm
real-time constraints. The worst-case execution time (WCET) is often a key parameter
in the evaluation of the timeliness of real-time systems and can be used both on the
optimization of software and on efficient dimensioning of hardware. Therefore, the access
the WCET is desirable at the early stages of software development, independently from the
knowledge of a particular compiler or target platform. Moreover, in particular for embedded
real-time systems, adaptive configuration mechanisms are often required, e.g. to update
available applications after their deployment. Traditionally this is done using a manual and
heavyweight process, specifically dedicated to a particular modification. However, to achieve
automatic adaptation of real-time systems, the system design must abandon its traditional
monolithic and closed conception and allow itself to reconfigure.

An example scenario would be the upgrade of the control software in an automotive embed-
ded system, where an uploaded “patch” code is dynamically linked in the system, but only
after the verification of some safety criteria, to prevent security vulnerabilities or malicious
behaviors caused by the integration. Nonetheless, the use of the WCET as safety criteria
for embedded real-time systems is somehow limited by the computing resources available on
the device. Since WCET analysis depend on hardware mechanisms such as cache memories
and pipelines, the cost and complexity of the analysis is expected to increase for modern
microprocessors. Therefore, the computational burden resulting from the integration of the
WCET analyzer into the trusted computing base of a distributed embedded system would
be unacceptable.

Current solutions for this problem are, among others, Proof-Carrying Code (PCC)[93],
Typed-Assembly Languages (TAL)[91] and Abstraction-Carrying Code (ACC)[10]. The
common ground of these approaches is the use of some sort of certificate that carry verifiable

140

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 141

safety properties about a program to avoid the re-computation of these properties on the
consumer side. Recall Fig. 1.3 illustrating the entities of the code “supplier” and the
code “consumer” and the role played by the “certificate” in the presence of an untrusted
communication channel. The prime benefit of the certificate-based approach is that the
computational cost associated to the computation of the safety properties is shifted to the
supplier side, where the certificate is generated.

On the consumer side, the safety of the program update is based on a verification process that
checks whether the received certificate, packed along with “untrusted” program, is compliant
with the safety policy. To be effective, the certificate checker should be an automatic and
stand-alone process and much more efficient than the certificate generator. Besides the
certificate checking time, also the size of the certificates will determine if the code updating
process can be performed in reasonable time.

However, the use of verifiable WCET estimations as safety properties imposes new challenges
to the verification process because of the nature of the techniques used to compute the
WCET. In fact, since embedded microprocessors have many specialized features, the WCET
cannot be estimated solely on the basis of source-code program flow. Along the lines of
[142], state-of-the-art tools for WCET computation evaluate the WCET dependency on the
program flow using Integer Linear Programming (ILP), while the hardware dependency of
the WCET is evaluated using abstract interpretation. By contrast with the kind of tools
which are tailored to compute tight and precise WCETs, the emphasis of our verification
process is more on highly efficient mechanisms for WCET checking. In this thesis, we propose
an extension of the ACC framework with an efficient mechanism to check the solutions of
the linear optimization problem.

Besides program verification on the “consumer” side at machine-code level, the objective
of this work is also to define a WCET verification mechanism at source-code level, on the
“supplier” side. Such mechanism is commonly termed by back-annotation and is able to
establish a correspondence between the program invariants computed at machine-code level
and the program invariants on the source code entities. For example, the invariant of the
abstract value of a source code variable would be automatically obtained from the analysis
of the machine code if there is the possibility to associate the name of source variable to a
memory address. These associations are typically produced during the compilation process
and are included in what is designated by debug information. The standard DWARF [134]
specifies how this debug information is extracted during compilation and is implemented by
the majority of the general purpose compilers, e.g. GCC, although with limitations when
used with code highly optimized.

The availability of WCET estimates at higher levels of abstraction is a challenging research
area that goes along with the present trend for implementing most of the functionality of
embedded systems in software, making them more flexible and easily updateable. However,

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 142

this challenge imposes new requirements on the data-flow analysis framework in the sense
that, besides code generation and static analysis by abstract interpretation, it should be
used to express the process of verification of safety properties as well. For this purpose, the
algebraic properties of our meta-semantic formalism are very useful, because its higher-order
combinators can be composed in a way such that verification conditions are evaluated by
an algebraic interpretation of Hoare logic. In this way, we provide a complete tool chain for
embedded development where the WCET estimates can be used for verification of real-time
requirements, to assist user-driven program optimizations and for evaluation of hardware.

7.1 Transformation Algebra

This section focus on the definition of the transformation algebra referred to in Contrib. (ii).
Transformations are performed on dependency graphs and are based on the relational-
algebraic properties of the meta-language introduced in Section 5.2. Two transformations
are defined: the first takes advantage of the abstract syntax of the intermediate graph
language and of the compositional design of the analyzer to compute the global effect of
an arbitrary sequence of machine instructions between the input and output points of a
sequential subgraph; the second removes the inter-procedural recursion constructors from
an intermediate graph. The objective of the former transformation is to reduce the size of
the ACC certificates and the objective of the later transformation is to minimize the checking
time of ACC certificates.

7.1.1 Declarative Approach

The design of the upper level of the meta-language by means of a relational algebra provides
a compositional framework to express programs as the composition of elementary semantic
building blocks. Each building block is represented by a relation τ regarded as a subgraph,
with input and output labels, connected inside a dependency graph. The objective of
program transformations is to take advantage of the algebraic properties of the meta-
language and reduce the number of the connected subgraphs. Program transformations
affect both the number of fixed-point iterations in the generation of certificates and the size
of the certificates. In the present section, we describe two transformation rules that help in
reducing the size of certificates.

In practice, the goal of these transformations is to reduce the number of program points so
that the abstract contexts computed by the static analyzer have a smaller number of entries.
However, the transformation must preserve the loop bounds computed for the original
program at every program label in order to keep the tightness and soundness properties
of the WCET. Therefore, in order to inspect the loop bounds computed for the original

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 143

program, it is necessary to have access to the labels on the dependency graphs. Indeed, the
definition of the intermediate graph language in Section 5.3 follows from this requirement.

A fundamental aspect in the design of the relational-algebraic framework that enables
program transformation is the sequential composition of relations. As mentioned in Section
5.2, the sequential composition (·∗·) of two relations T and R is defined by a(T ∗R)c iff there
exists b such that aTb and bRc. The usefulness of the point-free notation is that the input
value a is associated to the right with the output value c, allowing to redefine the sequential
composition simply as (T ∗R), but with type a→ c.

In this way, we can compose syntactic phrases of any sequence of relations into a single
relation. In terms of fixed-point computation, the interpretation of the relational composition
(· ∗ ·) in λ-calculus is the functional composition operator (· ◦ ·). Thus, the interpretation of
a relation with multiple syntactical elements uses multiple functional applications in order
to obtain a value with the same inferred run-time type (rt). Note that the same reasoning is
used in the functional approach to interprocedural analysis [128], where a single procedure
can be regarded as a “super operation” from the “call” state directly into the “return” state.

A representation for inductive syntactic phrases was given in Section 5.1 by means of the
datatype Expr. The transition relations τ are denoted by the parametrized datatype (Rel a),
where the type variable a denotes program state-vectors ΣJP K and P is a machine program.

data Expr = Expr Instr | Cons Instr Expr

data Rel a = Rel (a,Expr, a)

With the purpose to reduce the number of program points, we are particularly interested
in the simplification of those dependency graphs (of type (G a)) composed by two adjacent
relations according to the weak topological order. Therefore, candidates for this transfor-
mation are instances of subgraphs with type Seq, as defined by the pattern matching in the
function reduce:

reduce :: G a → Flow → G a

reduce (Seq (Leaf r) graph) flow

= let (r ′, graph ′) = headG graph

in if isNothing r ′

then Seq (Leaf r) (reduce graph ′)

else let Rel (b, ir , a) = r

Rel (d , ir ′, c) = fromJust r ′

in if check (a, b, c, d) flow

then let r ′′ = Rel (d , append ir ir ′, a)

in reduce (Seq (Leaf r ′′) graph ′) flow

else Seq (Leaf r) (reduce graph flow)

The transformation is applied only if it does not cause loss of information concerning loop
bounds and if it does not affect the instructions used for interprocedural analysis. For this
purpose, the function check takes as arguments the loop flow invariants, which was previously

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 144

computed for the original dependency graph, and the tuple with the four program labels,
(a, b, c, d), that surround the two candidate relations, r and r ′. The transformation is applies
only if all the three following conditions are satisfied: (1) the loop bounds for these four labels
are equal; (2) using the assertion call , the candidate relation r′ is not a branch instruction
or, using the assertion hook , the candidate relation r′ has a source label that is not the hook
point of a procedure call; (3) the top level relation r is not a branch instruction.

check :: (St s,St s,St s,St s)→ Flow → Bool

check (a, b, c, d) flow = let pl = point ◦ label
filter (k1 , k2) = (k2 ≡ pl a) ∨ (k2 ≡ pl b) ∨

(k2 ≡ pl c) ∨ (k2 ≡ pl d)

l : ls = elems $ filterWithKey filter flow

in all (≡ l) ls ∧ ¬ (call a) ∧ ¬ (call d) ∧ ¬ (hook a)

The selection for candidate relations is done inductively using the function headG, which
searches for the first (Leaf (Rel a)) subgraph and its subsequent subgraph. Finally, the
function append constructs a syntactic phrase by adding a new Instr to the Expr held by a
relation (Rel a).

headG :: G a → (Maybe (Rel a),G a)

headG (Seq (Leaf a) graph) = (Just a, graph)

headG (Seq a b) = let (r , g) = headG a in (r ,Seq g b)

headG (Leaf r) = (Just r ,Empty)

headG df = (Nothing, df)

append :: Expr→ Expr→ Expr

append (Expr e) (Instr i) = Cons e (Instr i)

append (Cons l ls) (Instr i) = Cons l (append ls (Instr i))

Now considering the ACC scenario in which the static analyzer also runs on consumer sites,
a loop transformation can be applied to the control flow graph so that the fixpoint checking
is done within a single state traversal. The ACC program transformation, defined by the
function linearize, is based on two facts: (1) according to the weak topological order, the
meta-program contains the part of the loop body subgraph outside the combinator (· ⊕ ·),
so that the loop is analyzed even when the precondition for entering the loop is not satisfied
(see Example 6); (2) the static analyzer looks for fixpoint stabilization only at the “head” of
the loop (see Example 9). Therefore, all meta-programs on the consumer side are sequential
programs after removing the inter-procedural recursive building blocks:

linearize :: G a → G a

linearize (Unroll (Leaf r) graph) = Empty

Example 11. Examples of program transformations
Next, we illustrate the transformations reduce and linearize applied to the procedure ‘foo’ of
Fig. 5.2. The dependency graph obtained with reduce is given in Fig. 7.1(a). The instructions
‘bl 24’ and ‘b 16’ are not reduced because they are “branch” instructions. The same applies

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 145

for the path-sensitive instruction ‘bgt -20’. Finally, the instruction ‘str r3, [fp, #-16]’ is
not reduced because there exist multiple nodes with the “sink” label ‘20’ that have different
loop iteration counts. All the remaining instructions are sequentially reduced by connecting
the corresponding relations.

The dependency graph obtained with the transformation linearize is given in Figure 7.1(b).
As expected, all nodes in the transformed dependency graph have depth 0 according to the
weak topological order. In this way, the fixpoint algorithm is able check the validity of a
certificate within a single chaotic iteration. The advantage is that the information contained
in the certificate for the nodes left out of the transformed graph consists solely the abstract
pipeline states, P], and bottom for the rest of the elements of the abstract domain C.

(a) Transformed DG of the ‘foo’ procedure using transform

(b) Transformed DG of the

‘foo’ procedure using

linearize

Figure 7.1: Examples of transformations of intermediate graph representations

For the source example in Fig. 5.1, the reduction of the certificate size is shown in Table 7.1.
The certificate sent by the code “producer” is processed by the Sequential Reduction and by
the ACC Reduction. After Zip compression, the percentage of size reduction is about 60%.
Nevertheless, the size of the certificate (18.3 KBytes) is considerably greater than the size
of the source code file (113 Bytes).

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 146

Table 7.1: Variation of the certificate size
Original Certificate Sequential Reduction ACC Reduction Compressed Certificate

Fig. 5.7(c) Fig. 7.1(a) Fig. 7.1(b) (Zip)

4.5 MBytes 3.6 MBytes 1.2 MBytes 18.3 KBytes

N

7.2 WCET Verification at Machine Code Level

This section presents Contributions (vi) and (vii). We propose the inclusion of the WCET
checking phase inside the ACC framework using the Linear Programming (LP) duality
theory. The complexity of the LP problem on the consumer side is reduced from NP-hard
to polynomial time, by the fact that LP checking is performed by simple linear algebra
computations. Our objective is to demonstrate that the declarativeness of the Haskell
programming language is suitable for expressing the LP checking in a very easy, elegant and
efficient way (Contribution (x)). Additionally, in one hand, the flow conservation constraints
of the linear programming problem are formally obtained as abstract interpretations of the
relational (natural) semantics of the machine program. On the other hand, the capacity
constraints of the linear program are taken directly as the result of the program flow analysis
previously described in Section 6.4.

7.2.1 Related Work

The application of ACC to mobile code safety has been proposed by Albert et al. in [10] as
an enabling technology for PCC, a first-order logic framework initially proposed by Necula
in [93]. One of the arguments posed by Pichardie et al. [19] in favor of PCC was that
despite its nice mathematical theory of program analysis and solid algorithmic techniques,
abstract interpretation methods show a gap between the analysis that is proved correct on
paper and the analyzer that actually runs on the machine, advocating that with PCC the
implementation of the analysis and the soundness proof are encoded into the same logic,
giving rise to a certified static analysis. Another research project aiming at the certification
of resource consumption in Java-enabled mobile devices is Mobility, Ubiquity and Security
(MOBIUS) [17]. The logic-based verification paradigm of PCC is complemented with a type-
based verification, whose certificates are derived from typing derivations or fixpoint solutions
of abstract interpretations. The general applicability of these two techniques depends on the
security property of interest.

In ACC [10], verification conditions are generated from the abstract semantics and from a
set of assertions in order to attest the compliance of a program with respect to the safety
policy. An automatic verifier is able to validate the verification conditions, assuming that
the certificate consists of abstract invariant semantics. The consumer implements a defensive

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 147

checking mechanism that not only checks the validity of the certificate w.r.t. the program
but also re-generates trustworthy verification conditions. Conversely, the abstract safety
check in PCC is performed by a first order predicate that checks in the abstract domain if
a given safety property is satisfied by the reachable states of the program. If the abstract
check succeeds then the program is provably safe, otherwise no answer can be given.

Finally, Albert et al. present in [11] a fixpoint technique to reduce the size of certificates.
The idea is to take into account the data flow dependencies in the program and update
the fixpoint only at the program points that have their predecessor states updated during
the last iteration. In this thesis, the same notion of certificate-size reduction is achieved
by means of a program transformation algebra combined with loop unrolling and fixpoint
chaotic iterations. The chaotic iteration strategy allows the fixpoint algorithm to look for
stabilization at the entry-point of loops for the whole loop to be stable [20]. By the fact that
when using meta-language, the first loop iteration is unrolled outside the loop, we apply
a program transformation to loop structures that consists in transforming programs with
loops in purely sequential programs by keeping only the entry-points of loops.

7.2.2 Declarative Approach

Given a program P , the structure ACC certificates correspond to the map ΣJP K of Def. (6.2),
consisting on the abstract contexts computed during program flow analysis, plus the linear
programming solutions computed by the primal/dual simplex method on the supplier side.
More concretely, given a linear program LP, the solutions of the simplex method are defined
by the maps Primal and Dual, which map the variables of LP (Var) to Double values (D),
plus the solution (WCET) of the objective function.

Primal ∈ LP 7→ ℘(Var ↪−→ D) (7.1)

PrimalJP K , VarJP K 7→ D

Dual ∈ LP 7→ ℘(Var ↪−→ D) (7.2)

DualJP K , VarJP K 7→ D

On the consumer side, the verification of abstract contexts, InvsJP K, is performed by a
single one-pass fixpoint iteration over the machine program P , along the lines of [10], while
the LP checking of the Primal, Dual and WCET solutions is based on the duality theory
[66]. The idea is that to every linear programming problem is associated another linear
programming problem called the dual. The relationships between the dual problem and the
original problem (called the primal) will be useful to determine if the received LP solutions
on the consumer side are in fact the optimal ones, that is, the solutions that maximize the
objective function (WCET) on the supplier side.

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 148

7.2.3 The ILP Verification Problem

The optimization problem is defined as the maximization of the objective function WCET,
subject to a set of linear constraints. The variables of the problem are the node iteration
variables, xk, which are defined in terms of the of edge iteration variables, dIN

ki and dOUT
kj .

Edge iteration variables correspond to the incoming (i) and outgoing (j) edges to/from a
particular program label identifier k contained in the weak topological order 〈Lab,�〉. These
linear constraints are called flow conservation constraints. Additionally, a set of capacity
constraints establish the upper bounds, bki and bkj , for the edge iteration variables.

xk =
n∑
i=1

dIN
ki =

m∑
j=1

dOUT
kj (7.3)

dIN
ki 6 bki and dOUT

kj 6 bkj (7.4)

The objective function is a linear function corresponding to the number of node iterations
on each label identifier k ∈ L, weighted by a set of constants, ck, which specify the execution
cost, measured in CPI, associated to every label identifier.

WCET =
∑
k∈L

ck · xk (7.5)

As opposed to similar approaches to WCET analysis, e.g. the combined approach AI+ILP
presented in [142], the structure of our optimization problem is particular, in the sense that
its solution always assigns integer values to all the variables. This allows us to omit integrality
constrains, and furthermore opens the possibility of using linear programming duality in our
verification approach. Henceforth, we use refer exclusively linear programming (LP) instead
of integer linear program (ILP).

Here, our aim is to demonstrate that the above optimization model can be formally obtained
using the theory of abstract interpretation. Note, however, that the WCET is not the
result of an abstract fixpoint computation. Only the correctness of the LP formulation,
which is a set of linear constraints, is expressed by a Galois connection. To this end, the
possibility to parametrize the transition system 〈Σ, τ〉 with different domains is of great
importance. Let T the set of identifiers of program input-output transitions. Then, the flow
conservation constraints of Def. (7.3) are a set of equations of type ℘(L 7→ ℘(T)). Therefore,
a Galois connection (αL, γL) is established between the relational semantics, RL, and the
flow conservation constraints domain, CL:

〈℘(L × T × L),⊆〉 −−−−→−→←←−−−−−
αL

γL 〈℘(L 7→ ℘(T)),6〉 (7.6)

where

αL(RL) ,{xk =
∑n

i=1d
IN
ki | ∀xk ∈ L : dIN

k = {e′ | ∃xl ∈ L : 〈xl, e′, xk〉 ∈ RL}} ∪

{xk =
∑m

j=1d
OUT
kj | ∀xk ∈ L : dOUT

k = {e′ | ∃xl ∈ L : 〈xk, e′, xl〉 ∈ RL}}

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 149

γL(CL) , {〈xk, dout, xl〉 | ∃s1 ∈ CL,∃dout ∈ rhs(s1) : xk ∈ lhs(s1) ∧

∃s2 ∈ CL,∃din ∈ rhs(s2) : xl ∈ lhs(s2) ∧ dout ≡ din}

Having proved the correctness of the linear constraints generation process by means of a
Galois connection and defining a formal verification of the linear problem based on dual the-
ory, the next step is to encode these mathematical definitions directly into declarative code.
The objective of our declarative implementation aims to establish a direct correspondence
between formal definitions and functional definitions using the high-level syntax of Haskell.

The desired level of abstraction is achieved by means of a proper domain specific language2

(DSL) that defines a linear (Program t) to be a composition of a direction of the optimization
function, an objective function, a set of variables and a set of constraints. The abstract syntax
used to express the objective function and the constrains is defined by the datatype Expr.
Expressions of the DSL are inductively defined either as constant values (Con) of some
polymorphic type t , symbolic variables (Var), or abstract functions (App), which apply the
binary operator denoted by PrimOp to the first element of a list of expressions ([Expr t])
and to the second element of the same list. The abstract functions of the DSL consist in the
overloaded infix operators (+), (−) and (∗), in the abstract comparisons (>]), (6]) and (≡])
and, finally, in the abstract assignment (=]).

data Expr t = Con t | Var Sym | App PrimOp [Expr t]

type PrimOp = String

type Sym = String

data Direction = Maximize |Minimize

data Program t = Program {direction :: Direction, objective :: (Expr t , String),

variables :: [(Sym, String)],

constraints :: [(Expr t , String)]}

Next, we describe how the formal definitions of the WCET linear program can be defined
using the DSL. We start with definition (7.5) of the WCET objective function, which will be
maximized by the simplex method. Given a set of labels l, the translation of this definition
into the DSL is specified by the function maximize as the product of the cost vectors ck (of
type Flow) and the the node variable vector xk, for each k-indexed label. Using the Haskell
notation of list comprehensions, the DSL objective function is given by:

maximize "wcet" $ sum [c (k) ∗ x (k) | k ← l]

The next step is the translation of the flow conservation constrains defined in (7.3) and the
capacity constraints defined in (7.4). In the former case, we are interested in the translation
of the abstraction αL(RL) of Def. (7.6) into Haskell. To this end, define two sets of constraints
using the function subject to: the first for the set of incoming edges and the second for the set
of outgoing edges to/from a given node. Besides the set of labels l , also a set of transitions
t is available from the monadic context of the DSL.

2See the blog Things that amuse me: http://augustss.blogspot.fr/search?q=expressions

http://augustss.blogspot.fr/search?q=expressions

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 150

subject to "incoming" [x (k) =] sum [d (j) | j ← t , n (k) >>] e (j)] | k ← l]

subject to "outgoing" [x (k) =] sum [d (j) | j ← t , n (k) <<] e (j)] | k ← l]

The auxiliary functions <<] and >>] respectively determine if the label given by e (j) is an
"incoming" edge or a "outgoing" edge of a node. Again, the DSL allows us to define these
constraints in a purely declarative way as a direct translation of the mathematical definition.
Finally, the capacity constraints defined in (7.4) are translated with another invocation of
the function subject to, where a list of j-indexed input-output transition identifiers is taken
from the monadic context.

subject to "bounds" [d (j) 6] b (j) | j ← t]

By definition, the variable vector x and the edge vector d must be indexed by unique
identifiers. On the other hand, the cost vector c and the bounds vector b are vectors indexed
by the number of label identifiers (l) and by the number of transition relations (t). Hence,
the variables of the linear problem must be instantiated in the monadic context in such a
way that they can be accessed through the same indexes l and t . For this purpose, the
function var is used in the State monadic context of Program:

x← var "x" l

d← var "d" t

All the required vectors, i.e. the execution costs, the loop iteration bounds and the node and
edge names, have the type (Param i), where i is an index. Since all constraints are specified
by means of expressions of type (Expr t), we define the parameters of the WCET linear
programming specification by instantiating the type variable t with the inductive datatype
LPVal. The constructor of Node, Cost and Bound constants is Val, whereas the constructor
Edge is Pair.

data LPVal = Val Int | Pair (Int, Int)

type Param = Expr LPVal

type Param i = i → Param

The complete DSL specification of the WCET linear program in given by:

type Cost,Bound,Node,Edge = Param String

specification (l :: [String]) (t :: [String]) (c :: Cost) (b ::Bound) (n ::Node) (e :: Edge)

= do

x← var "x" l

d← var "d" t

maximize "wcet" $ sum [c (k) ∗ x (k) | k ← l]

subject to "incoming" [x (k) =] sum [d (j) | j ← t , n (k) >>] e (j)] | k ← l]

subject to "outgoing" [x (k) =] sum [d (j) | j ← t , n (k) <<] e (j)] | k ← l]

subject to "bounds" [d (j) 6] b (j) | j ← t]

After specifying the WCET using the linear programming DSL, a further step is required
to invoke the GLPK [53] simplex solver. The reason for this is that GLPK is accessible
from Haskell through the GLPK bindings library GLPK-hs. However, this requires only a

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 151

transformation between the abstract syntax of the DSL into the abstract syntax of GLPK-
hs. Afterwards, the system call to the native GLPK simplex solver can be performed. The
reader is referred to the Haskell prototype for the complete DSL definition.

7.2.4 Verification Mechanism

Both the objective function and the set of linear constrains can be represented in a matrix
form. For this purpose, we need to abstract from the node (x) and edge (d) iterations
variables previously defined and consider a single set of variables (x), indexed by non-negative
values. In particular, the cost values associated to edge variables are zero in the objective
function and the edge iteration bounds (b) are zero for all linear constraints including a
node variable.

The equation system of the primal problem is defined in terms of the matrix A, with the
coefficients of the constraints (7.3) and (7.4), the column vector x of variables and the
column vector b of capacity constraints. Then, given the row vector c of cost coefficients,
the objective of the primal problem is to maximize the WCET = cx, subject to Ax 6 b.
Conversely, the dual problem is also defined in terms of the vectors c and b plus the matrix
A, but the set of dual variables are organized in a complementary row vector y. Then, the
objective of the dual problem is to minimize WCET DUAL = yb, subject to yA > c.

Using the simplex method, it is possible compute a feasible solution x for the primal problem
and a paired feasible solution y for the dual problem. The strong duality property of the
relationship between this pair of solutions for the purpose of LP checking is: the vector x is
the optimal solution for the primal problem if and only if:

WCET = cx = yb = WCET DUAL

In the ACC setting, this property allows us to use simple linear algebra algorithms to verify
the LP solutions that were computed using the simplex method.The verification mechanism
is composed by three steps:

1. Use the static analyzer to verify the local execution times included the micro-architectural
abstract context. If valid, execution times are organized in the cost row vector c’.
Then, take the received primal solutions x’ and solve the equation WCET’ = c’x’ to
check if it is equal to the received WCET.

2. Use the static analyzer to verify the loop bounds abstract context. If valid, loop bounds
are organized in the row capacities vector b’. Then, take the received dual solutions
y’ and verify the strong duality property by testing the equality of the equation c’x’ =
y’b’.

3. Extract the coefficients matrix A’ from the received code and check if the received
primal and dual solutions satisfy the equations A’x’ 6 b’ and y’A’ > c’. In con-

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 152

junction with the two previous steps, this allow us to conclude that x’ and y’ are the
optimal solutions of the primal and dual problem and, therefore, conclude that the LP
verification is successful.

The same approach based on list comprehensions previously used to specify the linear
program by means of abstract expressions, can now be used to verify the received solution
to the linear program by translating the above three verification steps into equations defined
for the Double domain Solution. The function checker performs each of the steps and returns
True if all steps are successfully evaluated. The variable same verifies step 1. The variable
dEqP verifies step 2. Finally, the conjunction of the variables axb and yac verifies step 3.

The Primal and Dual maps defined in (7.1) and (7.2), respectively, are encoded as indexable
solutions Solution . The received cost vector c’ and the received capacities vector b’ are also
indexable solutions. The matrix coefficients can be defined either as a list of rows (rs) or a
list of columns (cs), both with the type RowSolution, indexed by the row (r) or the column
(c), respectively.

type Solution = Double

type Solution i = i → Solution

type RowSolution = [(Int, Solution)]

type RowSolution i = i → RowSolution

checker (r :: [Int]) (c :: [Int]) (b :: Solution Int) (c :: Solution Int)

(rs ::RowSolution Int) (cs ::RowSolution Int)

(primal :: Solution Int) (dual :: Solution Int) (wcet :: Solution)

= let same = wcet ≡ sum [primal (i) ∗ c (i) | i ← c]

dEqP = sum [primal (i) ∗ c (i) | i ← c] ≡ sum [dual (i) ∗ b (i) | i ← r]

axb = and [c (i) 6 sum [a ′ ∗ dual (j) | (j , a ′)← k] | i ← c, let k = cs (i)]

yac = and [b (i) > sum [a ′ ∗ primal (j) | (j , a ′)← k] | i ← r , let k = rs (i)]

in same ∧ dEqP ∧ (axb ∧ yac)

Example 12. Numeric example of a linear programming problem.
Next, we give a numeric example of the LP problem associated to factorial program in
Fig. 7.2(a). A subset of the relational semantics of the corresponding machine program is
shown in Fig. 7.2(b). For each transition relation, Fig. 7.2(b) includes the name of the edge,
indexed to the variable name d, that would correspond to the graph view of the relational
semantics. For example, the edge between the nodes “n5” and “call 11” is called “d5”.

Table 7.3(a) shows the primal values and execution costs associates to the LP variables
(columns in the matrix A). For sake of readability, the column x displays the node variables
(x) plus the un-renamed edge variables (d). As already mentioned, the execution cost
associated to edge variables in vector c is equal to zero. The column x* contains the
optimal (primal) solutions for the variable names xk, where k ∈ N , and for the edge variable
names dIN

ki and dOUT
kj , where i, j ∈ E. Figure 7.3(b) shows the linear equation system from

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 153

int main (void)

{
int y = f a c t o r i a l (3) ;

return y ;

}

int f a c t o r i a l (int a)

{
i f (a == 0)

return 1 ;

else

return (a ∗ f a c t o r i a l (a−1)) ;

}

int f oo (int x)

{
while (x>0)

x−−;

return x ;

}
(a) Factorial source code

(b) Relational Semantics

Figure 7.2: Factorial source code and the corresponding relational semantics

Vars Primal Costs in

(x) (x*) CPU cycles (c)

· · · – –

x15 5 7

x16 5 7

x17 5 10

x18 5 8

x19 1 9

x20 1 4

x21 1 6

x22 4 10

x23 4 4

x24 4 10

· · · – –

d18 4 0

· · · – –

(a) Costs and primal values

Coefficients of Constants Dual

variables (matrix A) (b) (y*)

F
lo

w

C
o
n

se
rv

a
ti

o
n

· · · = – –

x16 − d15 = 0 0

x16 − d16 = 0 -59

x17 − d16 = 0 51

x17 − d17 = 0 -51

x18 − d17 = 0 42

x18 − d18 − d19 = 0 -42

C
a
p

a
ci

ti
es

· · · 6 – –

d16 6 1 -30

d17 6 2 20

d18 6 2 -20

d19 6 1 16

d20 6 1 -16

d21 6 1 6

· · · 6 – –

(b) Linear equation system and dual values

Figure 7.3: Numeric example of the LP problem in matrix form

which the coefficients matrix A are inferred, and the dual values associated to the rows of
A. The vector b contains the edge iteration upper bounds which are obtained directly from
the program flow certificate.

To illustrate the definition of a flow conservation constraint, consider the node variable x18.
Analyzing Figure 7.2, we know that the input edges to this node is the edge d17 and the
output edges are simultaneously d18 and d19. According to Def. (7.3), these two constraints
are shown in the last two rows of the Flow Conservation line set in Fig. 7.3(b). The optimal

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 154

(dual) solutions are given by the vector y*. The number of dual solutions is equal to the
number of flow conservation constraints plus the number of capacity constraints. N

Provided with the primal and dual optimal solutions, the verification mechanism, by means
of the function checker previously defined, is able to check if the received WCET is in fact
the maximal solution of the LP problem, without the need to solve the simplex method all
over again.

7.2.5 Verification Time

The verification time of certificates is strongly reduced for the recursive parts of programs,
but not for the purely sequential parts of the program. The reason is that chaotic iteration
strategy used during fixpoint computation searches for the least fixed point on the supplier
side whereas, in the consumer side, the fixpoint algorithm only verifies if the certificate is
one post-fixed point [19].

For a purely sequential set of instructions, chaotic iterations are performed using the third
equation of Def. (5.18), i.e., in the cases where the previous state value in the certificate
is equal to ⊥C. In such cases, the transition function is computed exactly once for each
of the instructions. On the other hand, during the verification of the certificate, the
fixpoint stabilization condition will compare the abstract values C, contained in the received
certificate, with the output of the single fixpoint iteration running on the consumer side, in
order to check if the certificate is a valid post-fixed point. Consequently, the comparison
with vC between two abstract values different from ⊥C will take longer to compute than the
equality test with ⊥C.

For a recursively connected set of instructions, the verification time can be strongly reduced
by the fact that the state traversal inside the loop is performed within a single one-pass
fixpoint iteration. Two factors contribute for this reduction: (1) the time necessary to
compute a valid post-fixed point is much shorter than the time required to perform loop
unrolling on the supplier side; (2) with the chaotic iteration strategy, fixpoint iterations over
loops are performed only at the “head” of the loop.

Example 13. Comparison between generation/verification times.
Experimental results concerning the checking time of the example in Fig. 7.2(a) are given
in Table 7.2 (obtained off-device using an Intel R©Core2 Duo Processor at 2.8 GHz). The
first parcel is relative to the fixpoint algorithm and the second is relative to the LP simplex
method. The checking time of the solutions of the LP problem is close to zero in all cases
because the verification mechanism uses simple matrix operations to check that the received
solution at consumer sites are indeed optimal ones. As explained before, the performance
of the static analyzer is actually worse when the number of instructions outside a loop is

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 155

significantly bigger compared to the number of instructions inside loops.

For the source code example in Fig. 7.2(a), when invoking the function ‘factorial(4)’, this
is specially noticed also due to the sequence of instructions that constitute the epilogue of
the recursive function ‘factorial’. However, when invoking the function ‘foo’ in the ‘main’
procedure, we observe greater reductions of checking time in relation to the generation time
for an increasing number of loop iterations.

Table 7.2: Experimental Results
Function Call Generation Time (sec) Verification Time (sec) Ratio (%)

factorial (4) 1.367 + 0.540 1.942 + 0.004 142.0

foo (3) 1.283 + 0.006 1.013 + 0.005 78.9

foo (7) 3.660 + 0.010 2.160 + 0.003 59.0

foo (15) 14.613 + 0.008 4.495 + 0.012 30.7

N

7.3 WCET Verification at Source Code Level

This section presents Contribution (viii) as the integration of a back-annotation mechanism
into the ACC framework with the objective to perform WCET checking on source code level.
For this purpose, design contracts are specified in the source code using the expressions of
the meta-language parameterized by a simple while-like language [101]. These expressions
are boolean expressions that compose the effects of state transformations on the information
produced at machine-code level on the left-hand side and compare global effect with the
provided specification on the right-hand size.

When real-time applications are in high-level programming languages, the loss of information
resulting from the compilation to machine code is definitive if is no longer possible to report
information about WCET analysis back to the source code level. Existent solutions to this
problem either consider that compiler can incorporate the notion of WCET or that the
compiler is a black-box component in the WCET toolchain. In both cases, the objective is
to provide WCET information at source level by means of an automatic mechanism in order
to provide, up to some extent, WCET-driven program verification and optimization.

7.3.1 Related Work

Falk et al. present in [46] a compilation process for C programs, designated by WCET-aware
C Compiler (WCC), that incorporates the notion of WCET into the compiler and delegates
the WCET analysis on the static analyzer aiT [2]. The advantage of using the aiT tool is
the possibility to integrate state-of-art static analysis, namely the analysis of the pipeline
behavior and cache structures, into the compiler environment.

Besides being a necessary component for the production of optimized code based on cost

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 156

functions, the analysis of the WCET is by itself valuable for the programmer in those cases
where the visualization of the WCET at source level is possible. Along these lines, [82]
presents a method for loop unrolling based on the WCC platform, which optimizes cycles by
means of code expansion at the same time that explores maximal reduction of the WCET.

An alternative way to establish the bridge between the analyzed machine code and the high-
level representation of source code is to use the DWARF debug information [134] generated
by the compiler and included inside the executable binary. Despite the limitations that the
DWARF standard reveals when compiler optimizations are active, it allows the integration
of a generic compiler into the analysis framework, at the same time that allows WCET data
to become visible at the development environment [103].

The main difference between the approach of [46] and the approach of [103] is the granularity
of the back-annotation mechanism. While with WCC the data about WCET are exported
to the compiler’s back-end, which holds an exact correspondence between the source code
constructs and the machine code, the use of a generic compiler in the shape of a black-box
makes the annotation of WCET data dependent from the DWARF internal representation,
which only associates source code lines to the corresponding memory instruction addresses.

Another approach that uses compiler debug information and is based on abstract interpre-
tation is presented in [111]. Here, the main objective is to prove the correctness of the
compilation of C source code into ARM machine code by means of a bijection between
the invariants computed at source level with the invariants computed at machine level. In
particular, the debug information that associates source code variables to memory locations
is used to prove the correctness of the machine program in respect to some source code
specification.

7.3.2 Back-Annotation Mechanism

The back-annotation mechanism is inspired in the semantics-based program certification
framework supported by abstract interpretation presented in [111]. The systematization of
the compilation transformation C and back-annotation B processes inside this framework
opens the possibility to correlate syntactic program transformations and semantic program
transformations within a single framework. Given a source program P , the compiled pro-
gram M is obtained by applying the syntactic transformation C. Conversely, the syntactic
transformation B exports to source level the abstract semantics computed at machine level.

Semantic transformations are defined either on the level of concrete semantics (J • K) or
abstract semantics (J • K]). Fig. 7.4 illustrates the relation between the concrete and abstract
semantics for the source program P and the M machine program. The Galois connections
〈αP , γP 〉 and 〈αM , γM 〉 define the soundness of interpretations in the abstract domain ac-
cording to the fixpoint approximation theorem [27].

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 157

PWCET � annotation B ·

P
?

6
..........

semantics- JP K
αP -�
γP

JP K]

M

C
?

semantics- JMK
αM -�
γM

JMK]

π
|||
|||

calculation W- MWCET

6

Figure 7.4: Extended abstract interpretation framework with program transformations

Therefore, for the particular abstract domains P] and M], the applicability of the methods
based on abstract interpretation depends on the existence of the abstraction functions αP
and αM , respectively. For example, in the context of timing analysis, information about a
specific processor hardware is not available at source level and, conversely, program variables
are not available at assembly level. Hence, as exposed in Chapter 6, a precise analysis of
the WCET can only be performed at hardware level by a combination of a value analysis, a
cache analysis of the contents of the instruction caches and a pipeline analysis parameterized
by the timing model of the processor.

Nevertheless, using the debug information produced by the compilation function C, it is
possible to establish a correspondence between the source and assembly program semantics,
defined by relations between source and assembly program points and by relations between
program variables and memory locations. Then, the correctness of the compilation function
C is given by the existence of a bijection π between the abstract semantics JP K] and JMK]

[111]. Note that this bijection is defined only between the outputs of the value analysis of
the source code and the machine code, which itself alone is not sufficient for timing analysis.
Therefore, we conclude that the abstraction function αP does not exist for the purpose of
timing analysis.

Furthermore, the analysis of the WCET at hardware level requires an additional step to static
analysis. If fact, while the techniques of abstract interpretation are capable to determine
upper bounds of the local execution times when statically considering all program paths
allowed in the program, the identification of the worst-case path depends on the history of
computation. Thus, in order to estimate the WCET of a sequence of ordered instructions, a
path analysis is required. Afterwards, using the compiler debug information and the back-
annotation B function, the fixpoint results of the WCET analysis are associated to the source
code program points. Local execution times are extracted from the abstract pipeline domain
and become available for each program point and the WCET estimate is available for the
main procedure.

As mentioned above, the abstraction function αP is not defined for the execution timing

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 158

cost. Therefore, the diagram in Figure 7.4 does not exhibit the commutation property, due
also to the absence of B−1. Let W denote the function that computes the WCET as the
result of a path analysis. Then, safe and precise back-annotations PWCET can be formally
defined by:

PWCET , B(W ◦ JC(P)K]) (7.7)

The language of design contracts is based on a simple while-like language, extended with
some semantic specification constructs, as the BNF specification in Fig. 7.5 shows. The
WCET analysis is either executed in offensive or defensive mode. Support for invariant
checking is given in defensive mode by means of the statements 〈Dbg〉.

〈E〉 → int | var | 〈E〉 + 〈E〉 | 〈E〉 - 〈E〉 | \var | \interval (var) | \wcet | [int ,int]

〈C〉 → true | false | not(〈C〉)| 〈E〉==〈E〉 | 〈E〉< 〈E〉 | 〈C〉∧〈C〉 | 〈C〉∨〈C〉
〈S〉 → var := 〈E〉 | 〈E〉 | return 〈E〉 | if 〈C〉 then 〈L〉 else 〈L〉 |
while 〈C〉 do 〈L〉 od

〈L〉 → 〈S〉 | 〈S〉; 〈L〉
〈Proc〉 → var := {〈L〉} | 〈Dbc〉
〈Prog〉 → 〈Proc〉 | 〈Proc〉; 〈Prog〉
〈Spec〉 → 〈C 〉 | 〈C 〉; 〈Spec〉
〈Dbc〉 → * 〈Spec〉 * var := {〈L〉}

Figure 7.5: Source Language BNF specification

The verification process uses Hoare logic to check a set of assertions in the form of pre-
and post-conditions. Instead of using a deductive system, assertions are evaluated by a
relational meta-program which encodes Hoare logic is the following way: “if all the pre-
conditions evaluate to True then if the program output asserts the set of post-conditions,
we conclude that the source code complies with the contract”. The procedure together
with pre- and post-conditions constitute three subprograms, program, pre and post, which
are compositionally combined using our relational algebra in order to obtain the following
verification program:

copy ∗ (pre || (program ∗ post)) ∗ and

The subprogram program encodes the syntactic transformation (C(P)), followed by the
semantic evaluation (W ◦ JC(P)K]), as defined in (7.7). The subprograms pre and post

evaluate each assertion in parallel using the pseudo-parallel Haskell combinator (/), and
then combine each pair of results with the specialized join operator and which encodes the
logic function AND. The combinator copy simply duplicates the input sequentially given to
the subprograms pre and program.

In the source example of Fig. 7.6(a), the contract specification includes a pre-condition,
‘\x == 0’, and two post-conditions, ‘\interval(x) == [0, 3]’ and ‘\wcet <= 300’. It follows
that the design contract is an expression of the meta-language that encodes the Hoare logic
of the specification in the following way:

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 159

copy ∗ (\x ≡ 0 ||
(program ∗ copy ∗ (\interval(x) ≡ [0, 3] ||

\wcet 6 300) ∗ and)) ∗ and

The verification process is essential for an effective use of back-annotations in the develop-
ment tool chain. Hence, we define post-conditions for the value abstraction, i.e. intervals,
and for the WCET cost function. In the former case, the left hand side of the post-condition
is encoded by an expression “\interval(var)”. Similarly, the WCET post-condition is encoded
by a boolean expression that compares the constant value “\wcet”, provided by the back-
annotation function B illustrated in Fig. 7.4, with the desired specification value.

1 /∗
2 \x==0;

3 \ i n t e r v a l (x) == [0 , 3] ;

4 \wcet < 300;

5 ∗/
6 int main (void) {
7 int x = 3 ;

8 while (x>0) {
9 x−−;

10 }
11 return 0 ;

12 }
(a) Source Code

Source Line Program Counter Label

5 0x33940 0

6 0x33956 4

7 0x33964 6

8 0x33968 7

7 0x33980 10

10 0x33992 13

11 0x33996 14

11 0x33004 14

(b) DWARF Debug Information 1

Variable Memory Location

x stack pointer + 4− 20

(c) DWARF Debug Information 2

n1 : mov ip , sp : r oo t 0 : 0 x33940

n2 : stmfd sp ! , { fp , ip , l r , pc} : n1 : 0 x33944

n3 : sub fp , ip , #4 : n2 : 0 x33948

n4 : sub sp , sp , #4 : n3 : 0 x33952

n5 : mov r3 , #3 : n4 : 0 x33956

n6 : str r3 , [fp , #−16] : n5 : 0 x33960

n10 : b 16 : n6 : 0 x33964

n8 : ldr r3 , [fp , #−16] : n7 : 0 x33968

n9 : sub r3 , r3 , #1 : n8 : 0 x33972

n10 : str r3 , [fp , #−16] : n9 : 0 x33976

n11 : ldr r3 , [fp , #−16] : n10 : 0 x33980

n12 : cmp r3 , #0 : n11 : 0 x33984

n7 : bgt −20 : head 12 : 0 x33988

n13 : bgt −20 : n12 : 0 x33988

n14 : mov r3 , #0 : n13 : 0 x33992

n15 : mov r0 , r3 : n14 : 0 x33996

e x i t : ldmfd sp , { r3 , fp , sp , pc} : n15 : 0 x33400

Figure 7.6: (a) source code with a design contract; (b) the GCC DWARF debug
information; (c) the relational semantics including “program counter” addresses

Besides the mapping between the program points in the source code and the memory
addresses. i.e. “program counter values in Fig. 7.6(b) where the corresponding machine

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 160

code is stored, the DWARF debug information also provides the mapping between program
variables and the memory locations that hold their values. For the source code in Fig. 7.6(a),
this information is displayed in Fig. 7.6(c) and is required to evaluate the post-condition
expressed by “\interval(x)” because it depends on the value of the variable “x”.

An example of the use of compiler debug information to determine the correctness of the
compilation function C using abstract interpretation can be found in [111], where is defined
a bijection π between the invariants computed at source level (JP K]) with the invariants
computed at machine level (JMK]), as illustrated in Figure 7.4. Despite the fact that the
source code is not object of static analysis, the expression “\interval (var)” used in the design
contracts can be used to specify expected behavior of the compilation function, as explained
in the next example.

Example 14. Example of a specification of the expected abstract semantics.
Consider the case where the abstract semantics JMK] determine that after fixpoint stabi-
lization the value of the stack pointer is the decimal 1020. Consulting the table in Figure
7.6(c), we then know that to the variable “x” corresponds the memory location C[x] = 1004.
Hence, the abstract interpretation framework presented in [111] provides a semantics-based
method to assess the correctness of the compilation C by checking that the design contract
specified at source level is an upper bound of the abstract invariants computed at machine
level. In this example:

JxK]DbC = [0, 3] ≡ JC[x]K]M = [0, 3]

N

However, there may be cases where the abstract semantics computed at machine level is
an over-approximation of the concrete semantics of the program. The next example shows
the relation between the loss of precision introduced by the static analysis and the expect
run-time output of a program that computes the factorial of a number.

Example 15. Example of an over-approximating abstract semantics.
Consider the source code in Fig. 7.2(a) containing the recursive definition of the factorial and
the corresponding graphical representation of the dependency graph of the machine program
in Fig. 7.7.

Two recursive blocks can be found in Fig. 7.7. The first (“rec 18”), corresponds to the
instructions inside the recursive call to the ‘factorial’ procedure which are executed only
if the value of the source variable “a” is different from zero. After the fixpoint stabilization
of this subgraph, the fixpoint algorithm proceeds to the second recursive block (“rec 33”)
which pops the values stored in the memory stack during the first recursive iteration and

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 161

Figure 7.7: Dependency graph of the machine program of the factorial procedure

multiples them, one by one, until the procedure stack is empty.

When the value of the source variable “a” is 4, the number of chaotic fixpoint iterations
within the first recursive block is also 4. Examining Fig. 7.7, this means that instructions
with states labelled from 11 to 18 are analyzed one more time, which correspond to case where
“a” is equal to 0. Consider, as an example, the label 17 and correspond value analysis in
Table 7.3. The number of chaotic fixpoint iterations performed at this label is 5 where, after
the last iteration, the register R3 holds the interval [0,4]. For each iteration, it is possible to
observe that the “frame pointer” (R11) is decreasing at the same time as the recursive calls to
‘factorial’ are analyzed. The memory addresses listed in the columns “Value Analysis” hold
all the intermediate abstract values computed until fixpoint stabilization for the subgraph
“rec 18” is reached.

Table 7.3: Value analysis for label 17 (5 fixpoint iterations)

Label
Value Fixpoint Fixpoint Fixpoint Fixpoint Fixpoint

Analysis Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

17

R0 [4,4] [3,4] [2,4] [1,4] [0,4]

R1 ⊥ ⊥ ⊥ ⊥ ⊥
R2 ⊥ ⊥ ⊥ ⊥ ⊥
R3 [4,4] [3,4] [2,4] [1,4] [0,4]

R11 0x1000 0x0976 0x0952 0x0928 0x0904

0x0984 [4,4] [4,4] [4,4] [4,4] [4,4]

0x0960 ⊥ [3,4] [3,4] [3,4] [3,4]

0x0936 ⊥ ⊥ [2,4] [2,4] [2,4]

0x0912 ⊥ ⊥ ⊥ [1,4] [1,4]

0x0888 ⊥ ⊥ ⊥ ⊥ [0,4]

According to the weak topological order, the fixpoint algorithm, i.e. the reflexive transitive
closure of the transition relations in the dependency graph, proceeds towards the second

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 162

recursive subgraph “rec 33”. Similarly to the first recursive subgraph, the states labelled
from 30 to 33 are analyzed one more time when compared to the states contained in this
subgraph. For the label 31, Table 7.4 shows the partial analysis results along the required
5 fixpoint iterations until the procedure stack is empty. The invariant associated to the
register R1 is the result of iterating over the memory stack and multiplying the intermediate
values computed during the first recursive subgraph. Tables 7.5 and 7.6 show more in detail
how the static analyzer proceeds for the labels 28 and 29.

Table 7.4: Value analysis for label 31 (5 fixpoint iterations)

Label
Value Fixpoint Fixpoint Fixpoint Fixpoint Fixpoint

Analysis Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

31

R0 [0,4] [0,4] [0,4] [0,16] [0,64]

R1 [1,1] [1,4] [1,16] [1,64] [1,256]

R2 [1,1] [1,1] [1,4] [1,16] [1,64]

R3 [1,1] [1,4] [1,16] [1,64] [1,256]

R11 0x0904 0x0928 0x0952 0x0976 0x1000

0x0884 [1,1] [1,1] [1,1] [1,1] [1,1]

Label 28 is associated to the abstract states that exist after the instruction ‘ldr r3,[fp

#-16]’. Table 7.5 shows that, according to the value of the “frame pointer” (R11), the
register R3 holds the intermediate abstract values first mentioned in Table 7.3. The registers
R0, R1 and R2 carry the invariants resulting from previous factorial multiplication, which are
to be used in the next multiplication, as expected for the recursive definition of the factorial.

Table 7.5: Value analysis for label 31 (5 fixpoint iterations)

Label
Value Fixpoint Fixpoint Fixpoint Fixpoint

Analysis Iteration 1 Iteration 2 Iteration 3 Iteration 4

28

R0 [1,1] [1,4] [1,16] [1,64]

R1 [1,1] [1,4] [1,16] [1,64]

R2 [1,1] [1,4] [1,16] [1,64]

R3 [1,4] [2,4] [3,4] [4,4]

R11 0x0928 0x0952 0x0976 0x1000

Label 29 is associated to the abstract states that exist after the instruction ‘mul r1,r2,r3’.
This instruction multiplies the contents of the registers R2 and R3 and stores the result back
into register R1. In fact, the registers R0 and R2 hold the previous iterations results, but
the invariant stored in register R3 is always [1,4]. This means that the final invariant is an
over-approximation of the exact value of the factorial of 4. Thus, instead of 24, the analyzer
computes an invariant [1,256], which correspond to the exponentiation of 4 by 4.

Although the purpose of the static analyzer is to perform timing analysis, this kind of over-
approximation is intrinsic to value analysis by abstract interpretation. Therefore, for the
particular of the factorial, the design contract specifying the invariant of the variable “y” in
the source code in Fig. 7.2(a) requires the knowledge of the programmer with respect to the
machine code implementing the source code. In this case, the specification of the factorial
is over-approximated by the specification of the exponentiation.

CHAPTER 7. SEMANTICS-BASED PROGRAM VERIFICATION 163

Table 7.6: Value analysis for label 29 (4 fixpoint iterations)

Label
Value Fixpoint Fixpoint Fixpoint Fixpoint

Analysis Iteration 1 Iteration 2 Iteration 3 Iteration 4

29

R0 [1,1] [1,4] [1,16] [1,64]

R1 [1,16] [1,16] [1,64] [1,256]

R2 [1,1] [1,4] [1,16] [1,64]

R3 [1,4] [1,4] [1,4] [1,4]

R11 0x0928 0x0952 0x0976 0x1000

N

7.4 Summary

The novelty of our approach to ACC consists in using the WCET as the safety parameter.
A verification mechanism is designed to check that the ACC certificates are valid within a
one-pass fixpoint iteration and then check if the WCET is correct using the duality theory
applied to linear programming. Experimental results show that the verification process is
only efficient when in presence of highly iterative programs

Besides the reduction of verification times, the concept of ACC also requires methods to
reduce the size of certificates. We have presented a transformation algebra applicable to
dependency graphs to minimize the number of program points considered during fixpoint
computations. The simplicity of the process relies on the algebraic properties of the meta-
language and on the compositional design of the chaotic fixpoint algorithm.

To facilitate an effective WCET analysis at source-code level, we presented a back-annotation
mechanism based on the implementation of the DWARF standard on the compiler side. The
back-annotation of the WCET can only be done for a complete program because it is the
result of the optimization of a linear program that computes a “global” solution for the
maximum execution time. Nonetheless, local execution times can be made available at
source level in each source code line.

Chapter 8

Multi-core architectures

The contribution of the work described in this chapter is the extension of our WCET analyzer
to multicore systems. As stated in Contribution (ix), we propose a computationally feasible
analysis of the WCET in multicore systems by means of the LR-server model presented in
[131]. This model defines an abstraction of the temporal behavior of application running
on different processor cores and provides a compositional WCET analysis where the same
higher-order combinators used to estimate the WCET on single-cores can be combined to
perform a sound and efficient timing analysis for multicore systems.

Additionally, Contribution (ix) provides the formalization and implementation of the LR-
server model in the context of data flow analysis using the abstract interpretation framework
based on Galois connections. Once again in the course of this thesis, we aim at showing that
Haskell can be used as a language where the mathematical notions of the LR-server model
can be easily, elegantly and efficiently implemented.

WCET estimation of programs running on embedded systems with multicore chips is nowa-
days one of the most challenging topics in timing analysis because of the intrinsic computa-
tional complexity of analyzing multiple processing units sharing common resources. When
compared to single-core architectures, the complexity of the timing analysis in multicore
environments depends not only on the processor features, but also on the predictability of
the timing behavior of each processor when sharing resources, e.g. instruction and/or data
memories [40].

In practice, this means that besides the control flow paths through the program, also the
“architectural flows”, i.e. the number of ways in which a shared resource can be accessed
(also called “interleavings”), must be taken into account. Unless shared resources are shared
in a composable manner, the different access interleavings allowed by the scheduling arbiter
may produce different intermediate hardware states during analysis and, consequently, affect
future timing behavior during analysis.

164

CHAPTER 8. MULTI-CORE ARCHITECTURES 165

The complexity of the analysis increases exponentially when analyzing architectural flows.
Suppose a program that consists of two concurrent processes, P1 and P2. The arising conflicts
when requesting access to the shared resource are resolved by “interleaving” the execution
sequences of the two processes in such a way that either P1 or P2 executes by flipping a coin.
Hence, for a program with n processes, each one executing a sequence of m instructions, the
theoretical number of possible interleavings is (n.m)!/(m!)n. The numerator (n.m)! gives
all possible interleavings and the denominator (m!)n restricts this number to the number of
allowed sequences, i.e interleavings that preserve the sequential order in the original machine
programs. For realistic programs, the number of execution sequences are huge and although
their analysis is a decidable problem, it is not feasible to compute in general.

Consider as an example a tiled multicore with several ARM9 processor cores, shared mem-
ories an IO, as shown in Fig. 8.1. Each processor core has an instruction pipeline and an
instruction cache memory. Comparatively to single core architectures, the extra source of
potential unpredictability is due to interconnect contention originated, e.g. from the shared
access to a SRAM shared instruction main memory. As opposed to the timing analysis of a
single processor, where the cache miss penalty is constant, in a multiprocessor system each
cache miss has a variable penalty, depending on the arbitration protocols specific to the
shared resources.

Figure 8.1: Generic multicore architecture

As described in Section 6.8, an ARM9 in-order pipeline allows overlapped execution of
instructions by dividing the execution of instructions into a sequence of 5 pipeline stages,
and by simultaneously processing a given number of instructions. The static analysis of the
pipeline assigns to every program instruction a series of local timing properties, expressing
the elapsed cycles per instruction (CPI) that are associated to a particular stage of an
instruction inside the pipeline. The absence of an abstraction for the concrete CPI values in
the abstract interpretation literature [122] implies that the abstract pipeline domain must
be defined as a set of pipeline states. For single-core architectures, this does not constitute
a computational problem, because there is only a finite, and therefore manageable, number
of pipeline states.

Although the same principles could apply to timing analysis in multicore architectures, the
major drawback is having the sets of concrete timing values spread across a huge number of

CHAPTER 8. MULTI-CORE ARCHITECTURES 166

“architectural flows”, a number that is exponentially bigger than the number of control flows
and which meaning arises from the following. Without any assumption on the characteristics
of the applications running on a multicore system, the execution time of an application
running on one processor core may well depend on the activities on the other processor
cores. Therefore, the traffic on the interconnect is originated not only from data transfers
due to data dependencies between applications, but also from possibly conflicting accesses
to shared resources.

Let P1 and P2 be two processes running on a homogeneous multicore system comprising two
processor tiles. The corresponding number of architectural flows is given in Fig. 8.2(a) and
the original control flow is given in Fig. 8.2(b).

(a) Non-compositional timing analysis

considering all possible architectural

flows between P1 and P2

(b) Compositional timing analysis

considering only control flows

Figure 8.2: Architectural and control flows for two processes P1 and P2, where instructions
A and B belong to P1 and instruction X and Y belong to P2

Assuming composability in the value domain, i.e. there is no application data shared between
processes, the need for timing analysis of architectural flows depends on the scheduling made
by the arbiter of the shared resource. Composable arbiters, i.e. arbiters providing complete
isolation between application in the temporal domain, analysis of interleavings is not re-
quired. An example of such an arbiter is non-work-conserving time-division multiplexing
(TDM), which statically allocates a constant bandwidth to each processor core. However,
when replacing the TDM arbiter by a work-conserving round-robin arbiter (RR), the system
is no longer composable, since the scheduling of requests depend on the presence or absence
of requests from other processor cores. In this case, the analysis of every allowed scheduled
sequence in Fig. 8.2(a) must be performed.

However, the analysis of shared resources can be made compositional if the access times
are predictable. This implies that upper bounds on the access times to shared resources are
calculated so that the variation in interference between processor cores visible in Fig. 8.2(a)
is removed (abstracted). The formal model of LR servers [131] is particularly suitable for

CHAPTER 8. MULTI-CORE ARCHITECTURES 167

determining these upper bounds, since it provides a timing abstraction applicable to most
predictable shared resources and arbiters. Fig. 8.2(b) shows how the number of architectural
flows is reduced to the number of control flows when abstracting the temporal behavior using
the compositional LR-server model.

8.1 Latency-Rate Servers

We now introduce the concept of latency-rate (LR) [131] servers as a shared-resource
abstraction. In essence, a LR server guarantees a processor core a minimum allocated rate
(bandwidth), ρ, after a maximum service latency (interference), Θ. As shown in Figure 8.3,
the provided service is linear and guarantees bounds on the amount of data that can be
transferred during any interval independently of the behavior of other processor cores. The
values of the two parameters Θ and ρ depend on the choice of arbiter in the class of LR servers
and its configuration. Examples of well-known arbiters in the class are TDM, weighted round-
robin (WRR), deficit round-robin (DRR) and credit-controlled static-priority (CCSP) [6].

A
c
c
u

m
u

la
te

d

re
q

u
e

s
ts

Clock cycles

service bound

provided service

busy line

requested service

busy period

ta(ωk) t̂s(ωk) t̂f(ωk) = t̂s(ωk+1)

s(ωk)

Θ

ρ

l(ωk)

Figure 8.3: A LR server and its associated concepts.

Like most other service guarantees, the LR service guarantee is conditional and only applies
if the processor core produces enough requests to keep the server busy. This is captured by
the concept of busy periods, which are intuitively understood as periods in which a processor
core requests at least as much service as it has been allocated (ρ) on average. This is
illustrated in Fig. 8.3, where the processor core is busy when the requested service curve is
above the dash-dotted reference line with slope ρ that we informally refer to as the busy line.

We proceed by showing how scheduling times and finishing times of requests are bounded
using the LR server guarantee. From [141], the worst-case scheduling time, t̂s of the kth

request from a processor core, c, is expressed according to Equation (8.1), where ta(ωk) is
the arrival time of the request and t̂f(ωk−1) is the worst-case finishing time of the previous
request from processor core c. The worst-case finishing time is then bounded by adding
the time it takes to finish a scheduled request of size s(ωk) at the allocated rate, ρ, of the
processor core, which is called the completion latency and is defined as l(ωk) = s(ωk)/ρ.

CHAPTER 8. MULTI-CORE ARCHITECTURES 168

This is expressed in Def. (8.2) and is visualized for request ωk in Fig. 8.3.

t̂s(ωk) = max(ta(ωk) + Θ, t̂f(ωk−1)) (8.1)

t̂f(ωk) = t̂s(ωk) + s(ωk)/ρ (8.2)

8.2 Related Work

Most of existing solutions for timing analysis in multicore systems are restricted to fully
timing-compositional architectures, such as ARM7 or ARM9, using predictable arbitration
protocols, in particular, the time-division multiplexing (TDM) protocol. For example, in
[119] an analytical method is proposed to determine upper bounds of the access delays by
computing the number of potential conflicts when accessing shared memory and by counting
the number of memory accesses possibly generated on different processor cores.

Other approaches perform also schedulability analysis problem in order to find optimal bus
scheduling aiming at the minimization of the overall execution time. Examples include the
use of ILP in [145], where a series of DSP applications are implemented on several multi-core
architectures, based on dynamically reconfigurable processor processor cores, are evaluated
in terms of optimal task mapping and scheduling. Another example combines system-level
scheduling with timing analysis and a TDMA based bus-access policy, in order to obtain a
scheduling and allocation of tasks that guarantees exclusive access and noninterference [116].

An approach to reduce the complexity of potential architectural flows is proposed in [123],
exploring the combination of a time-predictable multicore system, using namely a TDM
arbiter, with the single-path programming paradigm. In one hand, and by definition, the
time-sliced TDM arbitration of the accesses to shared memories provides time-predictable
memory load and store instructions. On the other hand, single-path programming avoids
control flow dependent timing variations by keeping the execution time of tasks constant,
even in the case of shared memory access of several processor cores. The resulting code from
the single-path transformation has exactly one execution trace that all executions of the task
have to follow because the tasks on the cores are synchronized with the time-sliced memory
arbitration unit. This eliminates the need for dynamic conflict resolution and guarantees
the temporal isolation, i.e. composability, of multicore programs.

Recent work on abstract interpretation-based timing analysis of TDM shared buses con-
necting processor cores to a shared main memory has been given in [71] as the combination
of loop unrolling [14] and time-alignment of each loop iteration [24]. The first approach
tries to determine the precise time at which every single memory access takes place, which
requires the analyis to unroll all loops virtually to determine the access times for each access
individually. The second approach eliminates the dependency on the number of loop iteration
of [14] by aligning each loop head execution to the first TDM slot during the analysis, which

CHAPTER 8. MULTI-CORE ARCHITECTURES 169

results in an additional penalty to be added in WCET estimation. The solution proposed
in [71] is almost as precise as [14] and only slightly less efficient than [24].

The unconstrained use of shared caches in a multicore system makes the cache static analysis
a nearly impossible task, even when using caches with LRU replacement strategy [143].
In fact, when concurrent processes running on different processor cores shared data and
instruction caches, set of potential interleavings of the running threads result in a huge
state space to be explored, which inevitably leads to poor precision. Attempts to solve this
problem include a recent approach [78], in which concurrent program are modeled as graphs
of message sequence charts that capture the ordering of computation tasks across processes.
The proposed timing analysis iteratively identifies tasks whose lifetimes are disjoint and uses
this information to rule out cache conflicts between certain task pairs in the shared cache.
This approach is flow insensitive but mildly context sensitive as it considers instructions
in loops and not in loops differently. Therefore, the obtained precision is not considered
satisfactory.

The principle architecture follows application advocated in [40] points to a scenario where
interconnect buses should be “used for the communication between cores and the shared
cache and memory in such a way that they have deterministic access times despite being
global and shared.” The objective is to perform scheduling and allocation of tasks so that
exclusive access and noninterference is guaranteed. In this direction, [60] proposes the
elimination of the interference altogether by exploring different scenarios of locking and
partitioning the shared cache, using a mechanism of cache bypassing to eliminate the cache
conflicts between different processor cores.

The objective of our WCET analysis on multicore systems aims at surpassing the intrinsic
computational complexity of timing analysis of multiple processing units sharing common
resources and extend the range of supported arbitration protocols. For this purpose, we
propose a novel application of latency-rate (LR) servers [131], phrased in terms of abstract
interpretation, to achieve timing compositionality on requests to shared resources. The LR
server abstraction is a simple linear lower bound on the service provided by a resource. The
model was originally developed for analysis of networks, but has gained popularity in the
context of real-time embedded systems in recent years. Example uses of the model involve
modeling buses [139], networks-on-chips [58], and SRAM and SDRAM memories [7]. The
main advantage of the LR abstraction is the ability to perform compositional timing analysis
of any arbiter belonging to the class of LR servers.

8.3 Calculational Approach to Architectural Flows

Our approach to static timing analysis for multicore systems reuses the two-level denotational
meta-language [113, 115] described in Section 5.2 by extending the intermediate graph

CHAPTER 8. MULTI-CORE ARCHITECTURES 170

language described in Section 5.3. In summary, the intermediate graph language is used
to represent all the program paths allowed to execute as a mimic of the execution order
of program inferred from the program structure known at compile time, as described in
Section 5.1. The basic element of the intermediate language is the Leaf constructor, which
holds an input-output transition relation τ ⊆ (ΣJP K × InstrsJP K × ΣJP K), of type (Rel a),
where the type variable a denotes a program state ΣJP K, of type (St a), where P is a machine
program.

In order to represent the notion of architectural flows, we extend the intermediate graph
language with the constructor Conc, denoting two subgraphs statically assigned to run on
two different processor cores.

data G a = data G a = Empty | Leaf (Rel a) | Seq (G a) (G a) | Unroll (G a) (G a)

| Unfold (G a) (G a) | Choice (Rel a) (G a) (G a) | Conc (G a) (G a)

In the same way, the calculation of architectural flows is performed by taking advantage
of the algebraic properties of the higher-order relational combinators of the two-level de-
notational meta-language in order to generate abstract interpreters in the compositional
form of Def. (5.23). Accordingly, Haskell fixpoint interpreters are automatically generated
by providing type safe interpretations to the higher-order relational combinators into the
λ-calculus.

The main advantage of the higher-order relational combinators defined by the type system
of Def. (5.19), is that new functions can be obtained throughout the composition of more
basic functions, in analogy to graph-based languages. Therefore, as for any well-typed
meta-program, the calculation of architectural flows will result in meta-programs with the
unified type (St a→ St a). Consequently, the analysis of architectural flows is a decidable
problem. However, by the reasons already mentioned in Chapter 5, it is not feasibly
computable in general. Even so, meta-programs denoting fixpoints of architectural flows
can be automatically obtained by means of the function derive.

derive :: (Infeasible (St a), Iterable (St a), Lattice a, Lattice (St a),

T ransition (Rel (St a)), Synchronizable (St a), Eq a)⇒
(St a → St a)→ G (St a)→ (St a → St a)

derive f (Conc a b) = let is = interleavings a b

ms = map (derive (create b)) is

in f ∗ scatter (length ms) ∗ (distribute ms) ∗ reduce

The meaning of a subgraph (Conc a b) is given by the composition of the current “continua-
tion”, f , with the whole set of interleavings between a and b. The creation and synchronization
of these two processes is modeled by the scatter/reduce computational pattern, commonly
used in parallel computing. Inductively, the derivation of each individual trace is accom-
plished by using derive with the initial “continuation” returned by the function create, which
is defined in type class Synchronizable.

CHAPTER 8. MULTI-CORE ARCHITECTURES 171

class Synchronizable a where

create :: G a → a → a

continue :: Rel a → a → a

break :: Rel a → a → a

The function interleavings is used to obtain the set of architectural flows of Fig. 8.2(a).
This function takes two dependency subgraphs and returns a list of subgraphs. Using list
comprehensions, the allowed sequences are a subset of all permutations of the transition
relations belonging to both processes, p1 and p2 . After converting dependency graphs into
list using the function toList , the illegal sequences contained in the list of permutations are
removed by means of the constraint preserve, which excludes any generated sequence that,
after being filtered from the transition relations belonging to the other process, is not exactly
equal to the original sequence.

interleavings :: G (St a)→ G (St a)→ [G (St a)]

interleavings p1 p2

= let preserve original generated = original ≡ filter ((flip elem) original) generated

(p1L, p2L) = (toList p1 ,map (colorfy Interleaved) (toList p2))

sequences = [is | is ← permutations (p1L ++ p2L),

preserve p1L is, preserve p2L is]

ts = map traces (groups sequences)

in map (foldl interleave main) ts

Additionally, the new constructor Interleaved is defined as the syntactical element represent-
ing an interleaved instruction. To change the “constructor” of an instruction, the function
colorfy was defined. Afterwards, the selection of input-output relation holding interleaved
instructions is obtained using the function isInterleaved . Henceforth, the reader is referred
to the Haskell prototype [140] for the omitted function definitions.

data Expr = Expr Instr | Interleaved Instr

| Cons Instr Expr

After the computation of the interleaved sequences, it is necessary to transform these
sequences back into dependency graphs. To this end, the functions groups, traces and
interleave are defined according to the encoded logic in the datatype (G(St a)), so that
each architectural flow can be instantiated as set of connected transition relations, which
possibly pertain to different applications, running on different processor cores.

The effect of the function groups is to identify the program labels where new execution
sequences to the p2 process are interleaved with execution sequences of the p1 process. To
this end, the type class Synchronizable defines the function break to detect the “interleaved”
program labels, using the function isInterleaved . In this way, the input dependency graphs,
which are given as an ordered list of relations (i.e. traces), are transformed into a list of
“tagged” traces.

Afterwards, using of a folding mechanism, the function traces traverses lists of “tagged”
traces, i.e. sequential interleavings, in order to instantiate dependency graphs of type

CHAPTER 8. MULTI-CORE ARCHITECTURES 172

(G(St a)). Finally, the “tagged” dependency graphs labelled with the program label iden-
tifiers where executions sequences of p2 are interpolated inside the p1 execution sequences,
are transformed into “plain” dependency graphs by means of the function interleave. This
step is repeated for all traces, ts, in the last line of the function interleavings, then completing
the calculation of all traces’ dependency graphs.

Back to the definition of derive for dependency graphs of type (Conc a b), its purpose is to
calculate meta-programs describing the whole set of architectural flows the subgraphs a and
b. As described in Fig. 8.2(a), the creation and posterior synchronization of the analyses of
these two subgraphs is modeled using the general scatter/reduce computational pattern. Each
individual trace is derived passing as the initial “continuation” the function create applied
to the subgraph b, stating that every time the p2 process begins, it starts with the hardware
state provided by the function create. This function initializes the pipeline of the processor
dedicated to the analysis of b with its next program counter address.

At this point, the datatype (CPU a) must be re-defined to include the notion of a shared

abstract instruction memory (I]), a set of multi-processor cores and a flag stating the active

core. The multiple processor cores are denoted by MultiCore, which maps core identifiers
to values of type (Core a). Similarly to the WCET analysis for single-cores, each Core

comprises an abstract register environment memory (R]), an abstract data memory (D])
and a pipeline abstract domain memory (P]).

data CPU a = CPU {shared :: I],multi ::MultiCore a, active :: Int}

type MultiCore a = Map Int (Core a)

data Core a = Core {registers ::R], , dataMem ::D], pipeline :: P] a }

The definition of create is the following. The processor core analyzing the dependency graph
p2 is initialized with the identifier ‘1 ’. Given an input state, the value of the hardware state
stored in the invs abstract context at the program point given by the source of the first input-
output relation of the p2 , is modified using the function resetPipelineAt . The main purpose
of this function is empty the pipeline of the processor core with identifier ‘1 ’ and set its next
“program counter” to base ∗ 4 .

create :: G (St (CPU a))→ (St (CPU a))→ (St (CPU a))

create p2 s@St {invs = i }
= let base = (point ◦ source ◦ head ◦ toList) p2

node = i ! base

cpu ′ = resetP ipelineAt 1 (value node) (base ∗ 4)

in s {invs = insert base (node {value = cpu ′}) i }

After the initialization of the processor core running the p2 , we proceed with the cal-
culation of each individual interleaving that will receive this new hardware state as in-
put value. This is done in the last line of the function derive with the meta-program
f ∗ scatter (length ms) ∗ (distribute ms) ∗ reduce, where ms is a list of interleavings. The rea-
soning expressed in this meta-program is simply to scatter the output state taken from the

CHAPTER 8. MULTI-CORE ARCHITECTURES 173

“continuation” f into a list of scheduling-independent traces, for which compositionality can
be achieved in both temporal and value domains, then distribute this state through the list
of interleavings and finally combine the corresponding outputs using reduce.

The function scatter is trivially defined by the Haskell function replicate. This function returns
a finite list which elements are copies of the input argument.

scatter :: Int→ a → [a]

scatter = replicate

The function distribute takes a list of functions [a → a], and a list of input values [a] and
return a list [a] with the results obtained by applying each input function to each input
value. This semantics is directly given by the Haskell function zipWith.

distribute :: [a → a]→ [a]→ [a]

distribute = zipWith (λf a → f a)

The function reduce is responsible for computing the least upper bound between the elements
of the input list [a]. This function is applied only at those program points where processes
synchronize, i.e. those program points where the abstract register and pipeline states of
the different processing units are merged into a single abstract state, therefore releasing
the resources allocated to the second processor core. To this end, we provide a proper
instantiation of the join function for the new version of the datatype CPU.

reduce :: (Lattice a)⇒ [a]→ a

reduce = foldl join bottom

As already mentioned, each “architectural flow” interleaves instructions from different pro-
cesses in a single trace. Therefore, the transition relations contained in each Leaf of a
dependency graph can belong either to the main or the forked processes. Hence, we need to
re-define the interpretation of derive so that the appropriate processing unit can be selected
from the multicore hardware processor state. To this end, we define the functions break and
continue of the type class Synchronizable, to allow us to specify which is the current “active”
processor core and to select the appropriate corresponding pipelines.

derive f (Leaf r) = f ∗ (break r) ∗ (refunct r) ∗ (continue r)

The concrete timing property of hybrid pipeline states P of Def. (6.29) is used to keep
track the analysis time elapsed during the intermediate analysis steps inside the pipelining
of a single instruction, as well as the overall analysis time elapsed during the fixpoint
computation. Along the lines of [117], the semantics of hybrid states can be viewed as an
abstract semantics instrumented with a concrete timing property. This information about
the analysis “time” allow us to compute the delays resulting from the shared requests by
the fact that their arrival times are always known.

On one hand, the function break only affects the hardware state of a processor core, at the
program point specified by the label of the input program state, if the input transition relation

CHAPTER 8. MULTI-CORE ARCHITECTURES 174

belongs to the forked process. If that is the case, the function breakPipelineAt ensures that
the active processing core has the identifier ‘0 ’ (the main process) and that the analysis time
taken from the processing core owning the input state is used to setup the starting time of
the pipeline analysis of the “interleaved” instruction, which runs on the processor core with
identifier ‘1 ’.

break :: Rel (St (CPU a))→ (St (CPU a))→ (St (CPU a))

break relation state@St {label, invs = i }
= case isInterleaved relation of

True→ let at = point label

node = i ! at

cpu ′ = (breakP ipelineAt ◦ value) node

node ′ = node {value = cpu ′}
in state {invs = insert at node ′ i }

False→ state

breakP ipelineAt :: (Ord a)⇒ CPU a → CPU a

breakP ipelineAt cpu@CPU {active = 0}
= (setSimTime cpu 1 (getSimTime cpu 0)) {active = 1}

On the other hand, the function continue defines how the main processor core regains control
on the shared resources by setting the active processing core to ‘0 ’. Using the function
continuePipelineAt , the analysis time at the end of an interleaved instruction is setup to be
the starting time of the hardware state of the main processor core.

continue relation state@St {label, invs = i }
= case isInterleaved r of

True→ let at = point label

node = i ! at

cpu ′ = (continueP ipelineAt ◦ value) node

node ′ = node {value = cpu ′}
in state {invs = insert at node ′ i }

False→ state

continueP ipelineAt :: (Cycles a)⇒ CPU a → CPU a

continueP ipelineAt cpu@CPU {active = 1}
= (setSimTime cpu 0 (getSimTime cpu 1)) {active = 0}

The function getSimTime is used to obtain the concrete timing property associated to the
“latest” pipeline state computed for a given processor core, and the function setSimTime is
used to set the current analysis “time” of the pipeline analysis of the a given processor core.

getSimTime cpu@CPU {multi} target

= let core@Core {pipeline = P] ps } = multi ! target

in time $maximum ps

setSimTime cpu@CPU {multi = m } target stamp

= let core@Core {pipeline = P] ps } = m ! target

pipeline ′ = P] (map (λp → p {time = stamp}) ps)

in cpu {multi = insert target (core {pipeline = pipeline ′}) m }

CHAPTER 8. MULTI-CORE ARCHITECTURES 175

8.4 The LR-server model as a Galois Connection

Assuming non-interference between processes in the value domain, i.e. composability in the
value domain, and a generic arbitration protocol, possibly non-composable in the timing
domain, we propose the use of the LR-server model presented in [131] as an abstraction to
achieve compositionallity in the pipeline analysis, so that the analysis of architectural flows
can be avoided while preserving the soundness of timing analysis for multicore systems.
The proof of soundness and the implementation of the LR-server model in the context of
data-flow analysis is supported by a Galois connection.

The meaning of the access times to shared resources in the context of timing analysis is the
range of its possible values, i.e. the interval from lower bounds to upper bounds. Due to
the limited bandwidth of the shared bus, shared accesses introduce additional delays that
stall the pipeline. Therefore, the soundness of the timing analysis requires the computation
of upper bounds on delays. To cope with this, TimedTask is redefined:

TimedTask , (Cycles ×Delay × Stage × Task) (8.3)

As mentioned in Section 6.8, the pipeline abstract domain is defined as a set of hybrid
pipeline states, each including a “concrete” timing property now given by Cycles plus Delay.
The purpose of the LR-server model is to reduce the number of joins and provide, at the
same time, upper bounds for delays caused by shared requests. From the observation of
Fig. 8.2(a), it is clear that the number of join operations is proportional to the number
of architectural flows. However, Fig. 8.2(b) shows that when applying the LR model to
compute safe upper bounds for the finishing times of shared requests, the number of joins
is determined solely by the control flows of each process independently.

The soundness of the abstraction provided by the LR-server model relies on the fact the
all timing properties calculated throughout architectural flows are upper bounded by the
finishing times calculated using the LR model. Here, the objective is to formalize this
approximation by means of a Galois connection.

Let Delay be an upper semi-lattice equipped with a partial order 6 on natural numbers
N, describing both concrete and abstract timing properties and let D be a set of timing
properties. A Galois connection Delay\(⊆) −−−→←−−−α

γ
Delay](⊆), where Delay\ = Delay] = 2D,

is defined in terms of a representation function β : Delay 7→ D that maps a concrete value
p ∈ Delay to the best property describing it in D. This property is the canonical extension
of Def. (8.2) to sets. Given a subset X ⊆ D and an abstract property p] ∈ Delay], the
abstraction and concretization maps are defined by:

α(X) =
⋃
{β(x) | x ∈ X} (8.4)

γ(p]) = {p ∈ P | β(p) ⊆ p]} (8.5)

Let wkc be the kth instruction to fetch from the shared memory when there is a cache miss
in the processor core c. The best property p] is the singleton set containing the smallest

CHAPTER 8. MULTI-CORE ARCHITECTURES 176

finishing time given by Def. (8.2) when applied to wkc . Therefore, the LR abstraction can
be formally defined by the representation function β:

β(tf (wkc)) = {max(ta(wkc) + Θc, t̂f (wk−1
c)) + s(wkc)/ρc} = {t̂f (wkc)} (8.6)

This formally shows that the predictability of LR servers can be used to abstract the
meta-programs corresponding to architectural flows into meta-programs corresponding to
control flows only. Since each access time is upper bounded by the LR server, we have by
compositionality that the maximum local timing property given by Def. (8.4), that would
be obtained by joining (

⋃
) all abstract pipeline states across the architectural flows in

Fig. 8.2(a), is exactly equal to the maximum local timing property when only the control
flows are considered.

8.5 Haskell definitions for resource sharing

This section gives declarative definitions for the temporal behavior of TDM and LR arbiters.
Let the polymorphic type variable a in (CPU a) be instantiated by a concrete timing property
denoted by the data type WCET.

data WCET = WCET {cycles :: Int, arrival :: Int, core :: Int, finish :: Int, delay :: Int}

The analysis of a TDM arbiter is simplified due to its predictable and composable properties,
which makes the delay of a request to a shared resource easily computed using the arrival

time and the processor core identifier. As mentioned in Section 6.8, requests to the main
instruction memory occur upon cache misses. Thus, the definition of the function missed is:

missed w@WCET {cycles = c, arrival, core}
= let d = mod arrival frame

first = slots ∗ core
end = first + slots − 1

ts = if first 6 d ∧ d 6 end then 0

else if d < first then (first − d) else (frame − d + first)

in w {cycles = c + round (ts + 1), finish = arrival + ts + 1, delay = ts + 1}

The frame size of the TDM bus is given by the variable frame. Assuming slots are equally
distributed among the processor cores and that they are consecutively allocated in the frame
and a completion latency of 1 cycle, the delay time is ts + 1 , where ts uses the division
remainder of the arrival time by frame in order to check for an allocated slot. If the core needs
to wait for an allocated slot, the required number of cycles can be statically calculated [71].

Now consider a shared bus with an arbitration protocol that is predictable but not com-
posable, such as work-conserving round robin. In this case, the timing behavior of each
application is dependent on the applications running on other cores, which makes analysis
of all architectural flows mandatory in order to achieve soundness. In this context, the
advantage of the LR-server abstraction is the possibility to guarantee bounds on the starting

CHAPTER 8. MULTI-CORE ARCHITECTURES 177

times and finishing times of the requests so that compositionality in the timing domain is
achieved.

The LR-server model requires a timing property to model the guaranteed service rate,
which is the finish time of the previous request on the same core. According to Def. (8.2),
the function missed defines the timing behavior of a cache miss in terms of an arrival time
and a previous finish time. Therefore, the new definition of missed is:

missed w@WCET {cycles = c, arrival = ta, finish = tf }
= let busy = if ta + theta < tf

d = if busy then 1/rho else theta + 1/rho

in w {cycles = c + round d, finish = d + if busy then tf else ta, delay = d}

8.6 Experimental Results

The discussion of experimental results include two different experimental scenarios. First, we
compare the WCET and the analysis time obtained for small programs from the analysis of
architectural flows (TDM) versus control flows (TDM) in Table 8.1. Second, we compare the
WCET results of composable TDM versus a LR abstraction of a TDM arbiter for Mälardalen
WCET benchmark programs [109] in Table 8.2. By compositionality of the LR abstraction
and assuming that each processor core has a sufficiently large private data memory (D-$) and
a common initial hardware state, each program is analyzed independently from the program
configured to run on the second core. We consider the simplified multicore architecture in
Fig. 8.4(b), where instructions are shared in a partitioned SRAM memory shared by a TDM
arbiter.

(a) Template for a multi-process source

program (b) Simplified multi-processor architecture

Figure 8.4: A simple source code running on a simplified multicore architecture

By definition, architectural flows cannot be feasibly computed. However, we do compute
interleavings for the simple program in Fig. 8.4(a), where “application A” and “application
X” have only a few instructions each. Due to its natural composability, the analysis of control
flows with TDM arbitration is much faster than the analysis of architectural flows, requiring

CHAPTER 8. MULTI-CORE ARCHITECTURES 178

only 1% of the time. With respect to the WCET estimate, the first line in Table 8.1 shows
a lower WCET (179 CPU cycles) for the interleavings approach compared to composable
TDM analysis (185 CPU cycles). This difference in the WCET is a consequence of the actual
hardware state of the processor core running “application X” upon the invocation of the fork
procedure and demonstrates the impact that the intermediate hardware states have on the
timing analysis of architectural flows.

In fact, when the number of instructions of “application X” is bigger than the number of
instructions of “application A”, the worst-case path corresponds to that of “application
X”. However, since the analysis of “application X” starts with an empty pipeline state, it
naturally takes less CPU cycles to complete. After increasing the number of instructions
in “application A”, this effect is eliminated because the worst-case path becomes that of
“application A”. Consequently, for the two analyses, the WCET is equal in the last two
experiments.

Table 8.1: Comparison results for architectural flows, composable TDM
No. instructions No. instructions No. of Results Architectural Composable

“application A” “application X” interleavings (CPU cycles/sec.) Flows (TDM) TDM

4 5 126
WCET 179 185

Analysis Time 57.0 0.17

5 5 252
WCET 188 188

Analysis Time 140.3 0.18

6 5 462
WCET 195 195

Analysis Time 588.7 0.43

Next, we compare the WCET results in Table 8.2 obtained using the LR abstraction with
Θ = 1 and ρ = 0.5 (modeling a particular TDM configuration with frame size of 2) to the
results obtained with composable TDM. The WCET values presented in Table 8.2 depend
not only on the size of the instruction cache and on the ability of the LR server to stay
busy, but also on the program flow, e.g. number of loop iterations. Since we are considering
a blocking multicore architecture, where a request from a processor core cannot be issued
before the previous request has been served, every request starts a new busy period by
definition. This is the most unfavorable situation possible for the LR abstraction, since
every request requires Θ + 1/ρ cycles to complete, maximizing the overhead compared to
TDM.

Still, our experiments show that this overhead is limited to between 8.7% and 12.1% for the
considered arbiter, configuration, and applications. This is partly because the use of a small
frame size reduces the penalty of starting a new busy period upon every cache miss through
the low Θ = 1 value, but also because the case of an SRAM shared by a TDM arbiter is
quite simple and is captured well by the abstraction. A more complex case with DRAM and
CCSP arbitration is shown in [127] along with an optimization to reduce the pessimism of
the abstraction without loss of generality. In terms of the run-time of the analysis tool, it is

CHAPTER 8. MULTI-CORE ARCHITECTURES 179

approximately (≈) the same for both composable TDM and the LR abstraction.

From this experiment, we conclude that compositional analysis of control flows using the LR
abstraction is very fast and scalable compared to analysis of architectural flows. The analysis
time is similar to compositional analysis based on composable TDM arbitration, although it
incurs a reduction in accuracy of about 8-12% for our configuration and applications. More
precise WCET estimates would be obtained for multicore architectures that support high
levels of parallelism. For example, architectures including super-scalar pipelines or caches
allowing multiple outstanding requests. This would reduce the number of busy periods in the
LR server upon cache misses, but would also increase the overall complexity of the WCET
analyzer. Nevertheless, the main benefit of the LR abstraction is that it is able to perform
compositional timing analysis using any arbiter belonging to the class, as opposed to being
limited to composable TDM.

Table 8.2: WCET results for some of the Mälardalen benchmarks

Benchmark
No. Source LR-server No. Cache TDM Overhead Analysis Time

Loop Iterations (WCET) Misses (WCET) (%) in sec. (≈)

bs 152 1162 111 1036 10.8 2.3

bsort 156 1459 152 1311 10.1 0.9

cnt 145 1309 175 1171 10.5 0.8

cover 111 796 105 707 11.2 3.9

crc 459 3160 304 2826 10.6 15.0

expint 251 2023 233 1818 10.1 1.9

fdct 1011 10897 720 9892 9.2 20.1

fibcall 111 994 59 885 11.0 2.3

matmult 287 2580 188 2343 9.2 5.2

minmax 221 956 263 873 8.7 2.6

prime 232 1079 196 959 11.1 5.2

ud 418 3943 97 3464 12.1 40.0

8.7 Summary

The work presented in this chapter is an approach to timing analysis in multicore architec-
tures exclusively based on the declarative frameworks of denotational semantics, abstract
interpretation and functional programming. Comparatively with the generic framework
for data flow analysis described in Section 5, the WCET analysis in multicores is defined
incrementally by extending the intermediate representation language with a new syntactic
element, representing programs running on different processing cores, which denotational
interpretation reuses the algebraic combinators used for static analysis in single-cores to
automatically generate type-safe fixpoint (abstract)-interpreters.

The complexity of the new fixpoint interpreter is reduced by using the abstraction provided
by the LR server model on the timing behavior of shared resources. This abstraction is

CHAPTER 8. MULTI-CORE ARCHITECTURES 180

proved correct in relation to the calculational approach of “architectural flows” by means of
a Galois connection. Using declarative programming in Haskell, the temporal behavior of
shared resources is in direct correspondence with the mathematical definitions of the TDM
and LR arbiter models. The outcome is the definition of provably sound and compositional
timing analysis in multicore environments, with a loss in precision in order of 8% that is
relatively small compared to the factor 100 reduction in terms of analysis time.

Chapter 9

Conclusion and Future Work

The main objective of the work reported in this dissertation is the definition of programming-
language independent meta-semantic formalism, capable of specifying the fixpoint semantics
of programs using typed and polymorphic higher-order combinators in Haskell. Sound and
efficient fixpoint computations are obtained through the use of formal approaches to control-
flow analysis combined with data-flow analysis within the same meta-semantic formalism.

The former is obtained by a type-safe fixpoint algorithm, automatically derived from a topo-
logical order over the syntactic elements of the program. The latter is obtained by applying a
calculational method to the induction of “correct by construction” abstract interpreters. The
meta-semantic formalism is defined to ease fixpoint verification and program transformations
in the scenarios where the framework of Abstract-Carrying Code (ACC) can be applied.

The success of our approach is evaluated when the meta-semantic formalism is applied to
the analysis of the worst-case execution time (WCET) of assembly programs, considering
the ARM9 as the target platform. We show that the conservative approach to abstract
interpretation proposed by the Cousots can be used to prove the correctness of the existent
state-of-the-art on WCET analysis, in terms of the several static analyses required to
compute a WCET estimate.

When using WCET safety specifications, the verification mechanism of the abstract inter-
pretation part of ACC was extended with dual theory applied to linear programming (LP).
In this way, the complexity of the LP problem on consumer sites is reduced from NP-hard
to polynomial time, by using simple linear algebra computations. Therefore, we are able to
provide an efficient and low-resource consuming verification mechanism.

Last but not least, we apply the latency-rate (LR) server model to our WCET analysis with
the objective to surpass the intrinsic computational complexity of timing analysis of multiple
processing cores sharing common resources. The soundness of the integration of the LR
timing abstraction into our data flow framework is proved using the abstract interpretation

181

CHAPTER 9. CONCLUSION AND FUTURE WORK 182

framework based on Galois connections. Although the considered multicore architecture is
rather simplified, the results show that the our solution for WCET analysis on multicores
can be easily parametrized with an abstraction of the timing behavior of any arbiter for
shared resources belonging to the class of LR-servers.

9.1 Future Work

The two main limitations of our WCET analysis framework are the absence of the use of
widening/narrowing operators to accelerate the convergence of fixpoint computations and
the simplification of the real ARM9 cache replacement policies and hardware timing models.
The first limitation is a consequence of the requirements imposed by the ACC framework,
stating that the verification mechanism must be performed without manual intervention.

In fact, since program flow annotations on the source code are not allowed in ACC when
performing static analysis of the machine code, we have to resort to complete loop unrolling
to perform an automatic program flow analysis by abstract interpretation. This can be
a considerably less efficient process when compared to existing state-of-the-art tools, such
as AbsInt’s aiT, but it produces more precise results by minimizing the non-determinism
introduced by the separate use of different analyses.

The static analysis of a realistic ARM9 microprocessor depends greatly on its hardware
components and may even be impossible to perform. For example, the cache replacement
policy of ARM9 is typically Pseudo-Random. This replacement policy is highly unpredictable
and precludes, to the best of our knowledge, the application of static analysis methods to
determine approximations about the actual cache dynamic behavior. Indeed, state-of-the-art
cache analysis consider either Least Recently Used LRU, First-In-First-Out FIFO or Pseudo-
LRU PLRU [55]. For this reason, and for sake of simplicity, we restrict our calculational
approach to abstract cache analysis using the LRU replacement policy, for which we give a
correctness proof by construction.

Furthermore, recent published work on automatic generation of timing models from VHDL
microprocessor specifications [118], would allow the automatically generation of Haskell code
to include the pipeline timing model of ARM9. Although some progress was made in this
direction in cooperation with AbsInt GmbH [2] and in cooperation with the Compiler Lab
Design at Saarbrücken University, the results of such work are not mature enough and are,
therefore, outside the scope of this thesis. Of course, the absence of a realistic timing model
for ARM9 will influence the uniformity of our WCET estimates when compared to AbsInt’s
tool, for example.

CHAPTER 9. CONCLUSION AND FUTURE WORK 183

9.2 Final Considerations

An important objective of this thesis is directly related to use of Haskell to prove the
correctness of type specifications and to use the formalism of denotational semantics in the
calculational process of inducing abstract interpreters that are “correct by construction”.

Indeed, the polymorphic type system of Haskell allows us to define a polymorphic two-level
meta-language and a parametrized fixpoint semantics for free. Moreover, the compositional
aspect of the analyzer is trivially implemented by functional composition. Finally, the Haskell
definitions of the static analyzer, being highly declarative, are a direct implementation of
the corresponding denotational definitions we have obtained by calculus on paper.

In summary, we have shown that Haskell can be used as a language in which the mathematical
complex notions underlying the theory of abstract interpretation can be easily, elegantly,
and efficiently implemented and applied to the analysis of complex hardware architectures.
Additionally, we have shown that the declarative paradigm of Haskell is extremely useful
and synthetic when expressing specific and complex mathematical definitions by means of
embedded domain specific languages and a direct and simple programming paradigm to
express analytical formalisms.

Bibliography

[1] Samson Abramsky and Chris Hankin, editors. Abstract Interpretation of Declarative
Languages. Ellis Horwood, 1987.

[2] AbsInt. Angewandte informatik. http://www.absint.com/pag/.

[3] B. Ackland et al. A single-chip 1.6 billion 16-b mac/s multiprocessor dsp. IEEE
Journal of Solid-state Circuits, 35(3):412–424, 2000.

[4] Mads Sig Ager et al. A functional correspondence between call-by-need evaluators and
lazy abstract machines. Inf. Process. Lett., 90(5):223–232, June 2004.

[5] Joaqúın Aguado and Michael Mendler. Computing with streams. In Proc. of the sixth
workshop on Declarative aspects of multicore programming, DAMP ’11, pages 35–44,
New York, NY, USA, 2011. ACM.

[6] Benny Akesson et al. Composable resource sharing based on latency-rate servers. In
DSD, pages 547–555, 2009.

[7] Benny Akesson and Kees Goossens. Architectures and modeling of predictable memory
controllers for improved system integration. In DATE, pages 851–856, 2011.

[8] Hussein Al-Zoubi et al. Performance evaluation of cache replacement policies for
the spec cpu2000 benchmark suite. In Proc. of the 42nd annual Southeast regional
conference, ACM-SE 42, pages 267–272, New York, NY, USA, 2004. ACM.

[9] Elvira Albert et al. Abstraction-carrying code. In LPAR, pages 380–397, 2004.

[10] Elvira Albert et al. An abstract interpretation-based approach to mobile code safety.
Electron. Notes Theor. Comput. Sci., 132(1):113–129, 2005.

[11] Elvira Albert et al. Certificate size reduction in abstraction-carrying code. CoRR,
abs/1010.4533, 2010.

[12] Frances Allen et al. The experimental compiling system. IBM Journal of Research
and Development, 24:695–715, 1980.

184

http://www.absint.com/pag/

BIBLIOGRAPHY 185

[13] Lloyd Allison. A practical introduction to denotational semantics. Cambridge
University Press, New York, NY, USA, 1986.

[14] Alexandru Andrei et al. Predictable implementation of real-time applications on
multiprocessor systems-on-chip. In Proc. of the 21st International Conference on VLSI
Design, VLSID ’08, pages 103–110, Washington, DC, USA, 2008. IEEE Computer
Society.

[15] Kevin Backhouse and Roland Backhouse. Logical relations and galois connections.
In MPC ’02: Proc. of the 6th International Conference on Mathematics of Program
Construction, pages 23–39, London, UK, 2002. Springer-Verlag.

[16] John Backus. Can programming be liberated from the von neumann style?: a
functional style and its algebra of programs. Commun. ACM, 21(8):613–641, August
1978.

[17] Gilles Barthe et al. Mobius: mobility, ubiquity, security objectives and progress report.
In Proc. of the 2nd international conference on Trustworthy global computing, TGC’06,
pages 10–29, Berlin, Heidelberg, 2007. Springer-Verlag.

[18] L. A. Belady. A study of replacement algorithms for a virtual-storage computer. IBM
Syst. J., 5(2):78–101, June 1966.

[19] Frédéric Besson et al. Certified static analysis by abstract interpretation. In
Foundations of Security Analysis and Design V: FOSAD 2007/2008/2009 Tutorial
Lectures, pages 223–257, Berlin, Heidelberg, 2009. Springer-Verlag.

[20] François Bourdoncle. Efficient chaotic iteration strategies with widenings. In
Proc. of the International Conference on Formal Methods in Programming and their
Applications, pages 128–141. Springer-Verlag, 1993.

[21] Marius Bozga et al. Kronos: A model-checking tool for real-time systems. In CAV,
pages 546–550, 1998.

[22] Bernd Brassel and Jan Christiansen. Towards a new denotational semantics for curry
and the algebra of curry. Technical report, Christian-Albrechts-Universitat Kiel, 2007.

[23] David Cachera and David Pichardie. A certified denotational abstract interpreter. In
Proc.. of International Conference on Interactive Theorem Proving (ITP-10), Lecture
Notes in Computer Science. Springer-Verlag, 2010. To appear.

[24] Sudipta Chattopadhyay et al. Modeling shared cache and bus in multi-cores for timing
analysis. In Proc. of the 13th International Workshop on Software & Compilers
for Embedded Systems, SCOPES ’10, pages 6:1–6:10, New York, NY, USA, 2010. ACM.

BIBLIOGRAPHY 186

[25] Patrick Cousot. Méthodes itératives de construction et d’approximation de points fixes
d’opérateurs monotones sur un treillis, analyse sémantique de programmes (in French).
Thèse d’État ès sciences mathématiques, Université Joseph Fourier, Grenoble, France,
21 March 1978.

[26] Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick and
N.D. Jones, editors, Program Flow Analysis: Theory and Applications, chapter 10,
pages 303–342. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.

[27] Patrick Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Electronic Notes in Theoretical Computer Science, 6, 1997.

[28] Patrick Cousot. The calculational design of a generic abstract interpreter. In M. Broy
and R. Steinbrüggen, editors, Calculational System Design. NATO ASI Series F. IOS
Press, Amsterdam, 1999.

[29] Patrick Cousot. Partial completeness of abstract fixpoint checking, invited paper.
In Proc. of the Fourth International Symposium on Abstraction, Reformulations and
Approximation, SARA’2000, Lecture Notes in Artificial Intelligence 1864, pages 1–25,
Horseshoe Bay, Texas, USA, 26–29 July 2000. Springer-Verlag, Berlin, Germany.

[30] Patrick Cousot. Abstract interpretation based formal methods and future challenges,
invited paper. In R. Wilhelm, editor, ¡¡ Informatics — 10 Years Back, 10 Years
Ahead ¿¿, volume 2000 of Lecture Notes in Computer Science, pages 138–156. Springer-
Verlag, 2001.

[31] Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of
programs. In Proc. of the Second International Symposium on Programming, pages
106–130. Dunod, Paris, France, 1976.

[32] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proc. of
the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
POPL ’77, pages 238–252, New York, NY, USA, 1977. ACM.

[33] Patrick Cousot and Radhia Cousot. Automatic synthesis of optimal invariant
assertions: Mathematical foundations. SIGPLAN Not., 12(8):1–12, August 1977.

[34] Patrick Cousot and Radhia Cousot. Constructive versions of Tarski’s fixed point
theorems. Pacific Journal of Mathematics, 81(1):43–57, 1979.

[35] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks.
In Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 269–282, San Antonio, Texas, 1979. ACM
Press, New York, NY.

BIBLIOGRAPHY 187

[36] Patrick Cousot and Radhia Cousot. Abstract interpretation and application to logic
programs. Journal of Logic Programming, 13(2–3):103–179, 1992.

[37] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. Journal of
Logic and Computation, 2:511–547, 1992.

[38] Patrick Cousot and Radhia Cousot. Comparing the galois connection and widen-
ing/narrowing approaches to abstract interpretation. In PLILP ’92: Proc. of the
4th International Symposium on Programming Language Implementation and Logic
Programming, pages 269–295, London, UK, 1992. Springer-Verlag.

[39] Patrick Cousot et al. The ASTRÉE analyzer. In Programming Languages and Systems,
Proc. of the 14th European Symposium on Programming, volume 3444 of Lecture Notes
in Computer Science, pages 21–30. Springer, 2005.

[40] Christoph Cullmann et al. Predictability considerations in the design of multi-core
embedded systems. Ingénieurs de l’Automobile, 807:36–42, September 2010.

[41] Olivier Danvy and Kevin Millikin. Refunctionalization at work. Sci. Comput.
Program., 74(8):534–549, June 2009.

[42] B. A. Davey and H. A. Priestly. Introduction to Lattices and Order. Cambridge
University Press, 1990.

[43] Jakob Engblom and Andreas Ermedahl. Modeling complex flows for worst-case
execution time analysis. In Proc. of the 21st IEEE conference on Real-time systems
symposium, RTSS’10, pages 163–174, Washington, DC, USA, 2000. IEEE Computer
Society.

[44] Andreas Ermedahl and Jan Gustafsson. Deriving annotations for tight calculation of
execution time. In Proc. of the Third International Euro-Par Conference on Parallel
Processing, Euro-Par ’97, pages 1298–1307, London, UK, 1997. Springer-Verlag.

[45] Andreas. Ermedahl and Mikael Sjödin. Interval analysis of c-variables using abstract
interpretation. Technical report, Uppsala University, 1996.

[46] Heiko. Falk et al. Design of a wcet-aware c compiler. In Proc. of the 2006
IEEE/ACM/IFIP Workshop on Embedded Systems for Real Time Multimedia,
ESTMED ’06, pages 121–126, Washington, DC, USA, 2006. IEEE Computer Society.

[47] Heiko Falk et al. Compile-time decided instruction cache locking using worst-
case execution paths. In Proc. of the 5th IEEE/ACM international conference on
Hardware/software codesign and system synthesis, CODES+ISSS ’07, pages 143–148,
New York, NY, USA, 2007. ACM.

BIBLIOGRAPHY 188

[48] Christian Ferdinand et al. Cache behavior prediction by abstract interpretation. Sci.
Comput. Program., 35:163–189, November 1999.

[49] Christian Ferdinand and Reinhold Heckmann. ait: Worst-case execution time
prediction by static program analysis. In Renè Jacquart, editor, Building the
Information Society, volume 156 of IFIP International Federation for Information
Processing, pages 377–383. Springer Boston, 2004.

[50] Christian Ferdinand and Reinhard Wilhelm. On predicting data cache behavior
for real-time systems. In Proc. of the ACM SIGPLAN Workshop on Languages,
Compilers, and Tools for Embedded Systems, LCTES ’98, pages 16–30, London, UK,
UK, 1998. Springer-Verlag.

[51] Mohammad Ali Ghodrat et al. Control flow optimization in loops using interval
analysis. In CASES ’08: Proc. of the 2008 international conference on Compilers,
architectures and synthesis for embedded systems, pages 157–166, New York, NY, USA,
2008. ACM.

[52] Jeremy Gibbons. A pointless derivation of radixsort. Journal of Functional
Programming, 9(3):339–346, 1999.

[53] GLPK. http://www.gnu.org/software/glpk.

[54] Michael J. C. Gordon. The Denotational Description of Programming Languages: An
Introduction. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1979.

[55] Daniel Grund. Static Cache Analysis for Real-Time Systems – LRU, FIFO, PLRU.
PhD thesis, Saarland University, 2012.

[56] Daniel Grund and Jan Reineke. Abstract interpretation of fifo replacement. In Proc. of
the 16th International Symposium on Static Analysis, SAS ’09, pages 120–136, Berlin,
Heidelberg, 2009. Springer-Verlag.

[57] Jan Gustafsson and Andreas Ermedahl. Automatic derivation of path and loop
annotations in object-oriented real-time programs. In Lonni R. Welch and Dieter K.
Hammer, editors, Engineering of distributed control systems, pages 81–98. Nova Science
Publishers, Inc., Commack, NY, USA, 2001.

[58] Andreas Hansson et al. Enabling application-level performance guarantees in network-
based systems on chip by applying dataflow analysis. IET Computers & Digital
Techniques, 3(5):398–412, 2009.

[59] D. Hardy and I. Puaut. Wcet analysis of multi-level non-inclusive set-associative
instruction caches. In Proc. of the 29th Real-Time Systems Symposium, pages 456–
466, Barcelona, Spain, December 2008.

http://www.gnu.org/software/glpk

BIBLIOGRAPHY 189

[60] Damien Hardy et al. Using bypass to tighten wcet estimates for multi-core processors
with shared instruction caches. In Proc. of the 2009 30th IEEE Real-Time Systems
Symposium, RTSS ’09, pages 68–77, Washington, DC, USA, 2009. IEEE Computer
Society.

[61] Christopher Healy et al. Bounding loop iterations for timing analysis. In Proc. of the
Fourth IEEE Real-Time Technology and Applications Symposium, RTAS ’98, pages
12–, Washington, DC, USA, 1998. IEEE Computer Society.

[62] Christopher Healy et al. Supporting timing analysis by automatic bounding of loop
iterations. Real-Time Systems, 18(2/3):129–156, May 2000.

[63] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach.
The Morgan Kaufmann Series in Computer Architecture and Design. Elsevier Science,
2011.

[64] Manuel Hermenegildo et al. Abstraction carrying code and resource-awareness. In
Proc. of the 7th ACM SIGPLAN international conference on Principles and practice
of declarative programming, PPDP ’05, pages 1–11, New York, NY, USA, 2005. ACM.

[65] T. Hickey, Q. Ju, and M. H. Van Emden. Interval arithmetic: From principles to
implementation. J. ACM, 48(5):1038–1068, September 2001.

[66] Frederick S. Hillier and Gerald J. Lieberman. Introduction to operations research, 4th
ed. Holden-Day, Inc., San Francisco, CA, USA, 1986.

[67] A. Hoffman and J. Kruskal. Integral boundary points of convex polyhedra, in Linear
Inequalities and Related Systems (H. Kuhn and A. Tucker, Eds.). Annals of Maths.
Study, 38:223–246, 1956.

[68] Gerard Holzmann. Spin model checker, the: primer and reference manual. Addison-
Wesley Professional, first edition, 2003.

[69] Neil Jones and Alan Mycroft. Data flow analysis of applicative programs using
minimal function graphs. In Proc. of the 13th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, POPL ’86, pages 296–306, New York, NY,
USA, 1986. ACM.

[70] Neil Jones and Flemming Nielson. Abstract interpretation: a semantics-based tool
for program analysis. In Handbook of logic in computer science (vol. 4): semantic
modelling, pages 527–636, Oxford, UK, 1995. Oxford University Press.

[71] Timon Kelter et al. Bus-aware multicore wcet analysis through tdma offset bounds. In
Proceedings of the 2011 23rd Euromicro Conference on Real-Time Systems (ECRTS),
pages 3–12, 2011.

BIBLIOGRAPHY 190

[72] Gary Kildall. A unified approach to global program optimization. In Proc.. of the 1st
annual ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
POPL’73, pages 194–206, New York, NY, USA, 1973. ACM.

[73] Matz Kindahl. The galois connection in interval analysis. Docs, Uppsala University,
Sweden, August 1996.

[74] Stephen Cole Kleene. Introduction to metamathematics. Van Nostrand, 1952.

[75] P. Lacan et al. ARIANE 5 - The Software Reliability Verification Process. In DASIA
98 - Data Systems in Aerospace, volume 422 of ESA Special Publication, May 1998.

[76] Kim G. Larsen et al. Uppaal in a nutshell. International Journal on Software Tools
for Technology Transfer (STTT), 1:134–152, 1997.

[77] P. Lee and U. Pleban. A realistic compiler generator based on high-level semantics:
another progress report. In Proc. of the 14th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, POPL ’87, pages 284–295, New York, NY,
USA, 1987. ACM.

[78] Yan Li et al. Timing analysis of concurrent programs running on shared cache multi-
cores. In IEEE Real-Time Systems Symposium, pages 57–67, 2009.

[79] Yau-Tsun Steven Li et al. Cache modeling for real-time software: beyond direct
mapped instruction caches. In IEEE Real-Time Systems Symposium, pages 254–263,
1996.

[80] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded software
using implicit path enumeration. In Proc. of the 32nd annual ACM/IEEE Design
Automation Conference, DAC ’95, pages 456–461, New York, NY, USA, 1995. ACM.

[81] Sung-Soo Lim et al. An accurate worst case timing analysis for risc processors. IEEE
Trans. Softw. Eng., 21(7):593–604, July 1995.

[82] Paul Lokuciejewski and Peter Marwedel. Combining worst-case timing models, loop
unrolling, and static loop analysis for wcet minimization. In Proc. of the 2009 21st
Euromicro Conference on Real-Time Systems, pages 35–44, Washington, DC, USA,
2009. IEEE Computer Society.

[83] Thomas Lundqvist and Per Stenström. Integrating path and timing analysis using
instruction-level simulation techniques. In Proc. of the ACM SIGPLAN Workshop
on Languages, Compilers, and Tools for Embedded Systems, LCTES ’98, pages 1–15,
London, UK, UK, 1998. Springer-Verlag.

BIBLIOGRAPHY 191

[84] Thomas Lundqvist and Per Stenström. An integrated path and timing analysis
method based on cycle-level symbolic execution. Real-Time Systems, 17(2-3):183–207,
December 1999.

[85] Zohar Manna. Mathematical Theory of Computation. Dover Publications, Incorpo-
rated, 2003.

[86] Florian Martin et al. Analysis of loops. In CC, pages 80–94, 1998.

[87] J. Mccarthy. Towards a mathematical science of computation. In In IFIP Congress,
pages 21–28. North-Holland, 1962.

[88] Ross M. McConnell et al. Certifying algorithms. Computer Science Review, 5(2):119–
161, 2011.

[89] Matthew Might. Abstract interpreters for free. In Proc. of the 17th international
conference on Static analysis, SAS’10, pages 407–421, Berlin, Heidelberg, 2010.
Springer-Verlag.

[90] Richard Mitchell, Jim McKim, and Bertrand Meyer. Design by contract, by example.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2002.

[91] Greg Morrisett et al. From system f to typed assembly language. ACM Trans. Program.
Lang. Syst., 21:527–568, May 1999.

[92] Frank Mueller. Timing analysis for instruction caches. Real-Time Systems,
18(2/3):217–247, May 2000.

[93] George C. Necula. Proof-carrying code. In Proc. of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’97, pages 106–119, New
York, NY, USA, 1997. ACM.

[94] Flemming Nielson. A denotational framework for data flow analysis. Acta Informatica,
18:265–287, 1982.

[95] Flemming Nielson. Abstract Interpretation Using Domain Theory. PhD thesis,
University of Edinburgh, 1984.

[96] Flemming Nielson. Abstract interpretation of denotational definitions. In 3rd annual
symposium on theoretical aspects of computer science on STACS 86, pages 1–20, New
York, NY, USA, 1985. Springer-Verlag New York, Inc.

[97] Flemming Nielson. Program transformations in a denotational setting. ACM Trans.
Program. Lang. Syst., 7(3):359–379, July 1985.

[98] Flemming Nielson et al. Principles of Program Analysis. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1999.

BIBLIOGRAPHY 192

[99] Flemming Nielson and Hanna. R. Nielson. Code generation from two-level denotational
meta-languages. In on Programs as data objects, pages 192–205, New York, NY, USA,
1985. Springer-Verlag New York, Inc.

[100] Hanne Riis Nielson and Flemming Nielson. Pragmatic aspects of two-level denotational
meta-languages. In Proc. of the European Symposium on Programming, ESOP ’86,
pages 133–143, London, UK, 1986. Springer-Verlag.

[101] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: An Appetizer
(Undergraduate Topics in Computer Science). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2007.

[102] Greger Ottosson and Mikael Sjodin. Worst-case execution time analysis for modern
hardware architectures. In Proc. ACM SIGPLAN Workshop on Languages, Compilers
and Tools for Real-Time Systems (LCT-RTS’97), pages 47–55, 1997.

[103] Sascha Plazar et al. A Retargetable Framework for Multi-objective WCET-aware
High-level Compiler Optimizations. In Proc. of The 29th IEEE Real-Time Systems
Symposium (RTSS), pages 49–52, Barcelona / Spain, December 2008.

[104] P. Puschner and Ch. Koza. Calculating the maximum execution time of real-time
programs. Real-Time Systems, 1:159–176, 1989. 10.1007/BF00571421.

[105] Peter P. Puschner and Anton V. Schedl. Computing maximum task execution times -
a graph-based approach. Real-Time Systems, 13(1):67–91, July 1997.

[106] Jan Reineke. Caches in WCET Analysis: Predictability - Competitiveness - Sensitivity.
PhD thesis, Saarland University, 2009.

[107] Jan Reineke et al. A definition and classification of timing anomalies. In 6th Intl
Workshop on Worst-Case Execution Time (WCET) Analysis, pages 1–6, 2006.

[108] Jan Reineke et al. Timing predictability of cache replacement policies. Real-Time
Systems, 37(2):99–122, August 2007.

[109] Mälardalen WCET research group. www.mrtc.mdh.se/projects/wcet.

[110] John C. Reynolds. Definitional interpreters for higher-order programming languages.
In Proc. of the ACM annual conference - Volume 2, ACM ’72, pages 717–740, New
York, NY, USA, 1972. ACM.

[111] Xavier Rival. Abstract interpretation-based certification of assembly code. In VMCAI
2003: Proc. of the 4th International Conference on Verification, Model Checking, and
Abstract Interpretation, pages 41–55, London, UK, 2003. Springer-Verlag.

www.mrtc.mdh.se/projects/wcet

BIBLIOGRAPHY 193

[112] Vı́tor Rodrigues, Benny Akesson, Simão Melo de Sousa, and Mário Florido. A declar-
ative compositional timing analysis for multicores using the latency-rate abstraction.
In Fifteenth International Symposium on Practical Aspects of Declarative Languages
(PADL), 2013. To appear.

[113] Vı́tor Rodrigues, João Pedro Pedroso, Mário Florido, and Simão Melo de Sousa.
Certifying execution time. In Proc. of the Second international conference on
Foundational and Practical Aspects of Resource Analysis, FOPARA’11, pages 108–
125, Berlin, Heidelberg, 2012. Springer-Verlag.

[114] Vı́tor Rodrigues, Mário Florido, and Simão Melo de Sousa. Back annotation in action:
from wcet analysis to source code verification. In Actas of CoRTA 2011: Compilers,
Prog. Languages, Related Technologies and Applications, pages 276 – 281, July 2011.

[115] Vı́tor Rodrigues, Mário Florido, and Simão Melo de Sousa. A functional approach to
worst-case execution time analysis. In 20th International Workshop on Functional and
(Constraint) Logic Programming (WFLP), July 2011.

[116] Jakob Rosen et al. Bus access optimization for predictable implementation of real-
time applications on multiprocessor systems-on-chip. In Proc. of the 28th IEEE
International Real-Time Systems Symposium, RTSS ’07, pages 49–60, Washington,
DC, USA, 2007. IEEE Computer Society.

[117] Mads Rosendahl. Abstract Interpretation and Attribute Grammars. PhD thesis,
Cambridge University, 1991.

[118] Marc Schlickling and Markus Pister. Semi-automatic derivation of timing models
for WCET analysis. In LCTES ’10: Proc. of the ACM SIGPLAN/SIGBED 2010
conference on Languages, compilers, and tools for embedded systems, pages 67–76.
ACM, April 2010.

[119] Simon Schliecker et al. Integrated analysis of communicating tasks in mpsocs. In
Proc. of the 4th international conference on Hardware/software codesign and system
synthesis, CODES+ISSS ’06, pages 288–293, New York, NY, USA, 2006. ACM.

[120] David A. Schmidt. Abstract interpretation from a denotational-semantics perspective.
Electron. Notes Theor. Comput. Sci., 249:19–37, 2009.

[121] G. Schmidt and T. Ströhlein. Relations and graphs: discrete mathematics for computer
scientists. EATCS monographs on theoretical computer science. Springer-Verlag, 1993.

[122] Jörn Schneider and Christian Ferdinand. Pipeline behavior prediction for superscalar
processors by abstract interpretation. SIGPLAN Not., 34:35–44, May 1999.

BIBLIOGRAPHY 194

[123] Martin Schoeberl et al. A single-path chip-multiprocessor system. In Proc. of the 7th
IFIP WG 10.2 International Workshop on Software Technologies for Embedded and
Ubiquitous Systems, SEUS ’09, pages 47–57, Berlin, Heidelberg, 2009. Springer-Verlag.

[124] Michael I. Schwartzbach. Lecture notes on static analysis. University of Aarhus, 2008.

[125] Simon Segars et al. The arm9 family - high performance microprocessors for embedded
applications. In Proc. of the International Conference on Computer Design, pages 230–
235. ARM Ltd, 1998.

[126] Ravi Sethi. Control flow aspects of semantics-directed compiling. ACM Trans.
Program. Lang. Syst., 5(4):554–595, October 1983.

[127] Hardik Shah, Alois Knoll, and Benny Akesson. Bounding SDRAM Interference:
Detailed Analysis vs. Latency-Rate Analysis. In Proc. DATE (to appear), 2013.

[128] Micha Sharir and Amir Pnueli. Two Approaches to Interprocedural Data Flow Analysis,
pages 189–233. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

[129] M. B. Smyth and G. D. Plotkin. The category-theoretic solution of recursive domain
equations. In Proc. of the 18th Annual Symposium on Foundations of Computer
Science, pages 13–17, Washington, DC, USA, 1977. IEEE Computer Society.

[130] Ingmar Jendrik Stein. ILP-based path analysis on abstract pipeline state graphs.
PhD thesis, Saarlandische Universitäts- und Landesbibliothek, Postfach 151141, 66041
Saarbrücken, 2010.

[131] Dimitrios Stiliadis and Anujan Varma. Latency-rate servers: a general model for
analysis of traffic scheduling algorithms. IEEE/ACM T. Netw., 6(5):611–624, 1998.

[132] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory. MIT Press, Cambridge, MA, USA, 1977.

[133] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5(2):285–309, 1955.

[134] The DWARF Debugging Standard . http://www.dwarfstd.org/.

[135] The GraphML File Format. http://graphml.graphdrawing.org/.

[136] H. Theiling and C. Ferdinand. Combining abstract interpretation and ilp for
microarchitecture modelling and program path analysis. In Proc. of the IEEE Real-
Time Systems Symposium, RTSS ’98, pages 144–, Washington, DC, USA, 1998. IEEE
Computer Society.

[137] Henrik Theiling et al. Fast and precise wcet prediction by separated cache and path
analyses. Real-Time Systems, 18(2/3):157–179, May 2000.

http://www.dwarfstd.org/
http://graphml.graphdrawing.org/

BIBLIOGRAPHY 195

[138] Stephan Thesing. Safe and Precise WCET Determination by Abstract Interpretation
of Pipeline Models. PhD thesis, Saarland University, Germany, July 2004.

[139] Jelte Peter Vink et al. Performance analysis of soc architectures based on latency-rate
servers. In Proc. of the conference on Design, automation and test in Europe, DATE
’08, pages 200–205, New York, NY, USA, 2008. ACM.

[140] Vı́tor Rodrigues. Haskell prototype of a WCET static analyzer, 2012. available from:
http://www.dcc.fc.up.pt/~vitor.rodrigues/.

[141] Maarten Wiggers et al. Modelling run-time arbitration by latency-rate servers in
dataflow graphs. In Proc.. SCOPES, 2007.

[142] Reinhard Wilhelm. Why ai + ilp is good for wcet, but mc is not, nor ilp alone. In
Bernhard Steffen and Giorgio Levi, editors, Verification, Model Checking, and Abstract
Interpretation, volume 2937 of Lecture Notes in Computer Science, pages 309–322.
Springer Berlin / Heidelberg, 2003.

[143] Reinhard Wilhelm et al. Memory hierarchies, pipelines, and buses for future
architectures in time-critical embedded systems. Trans. Comp.-Aided Des. Integ. Cir.
Sys., 28(7):966–978, July 2009.

[144] Reinhard Wilhelm and Björn Wachter. Abstract interpretation with applications to
timing validation. In CAV ’08: Proc. of the 20th international conference on Computer
Aided Verification, pages 22–36, Berlin, Heidelberg, 2008. Springer-Verlag.

[145] Ying Yi et al. An ilp formulation for task mapping and scheduling on multi-
core architectures. In Proc. of the Conference on Design, Automation and Test in
Europe, DATE ’09, pages 33–38, 3001 Leuven, Belgium, 2009. European Design and
Automation Association.

[146] Shuchang Zhou. An efficient simulation algorithm for cache of random replacement
policy. In Proc. of the 2010 IFIP international conference on Network and parallel
computing, NPC’10, pages 144–154, Berlin, Heidelberg, 2010. Springer-Verlag.

http://www.dcc.fc.up.pt/~vitor.rodrigues/

	Abstract
	Resumo
	Introduction
	Abstract-Carrying Code
	Fixpoint Semantics
	Back-annotations
	Contributions

	Denotational Semantics
	Domain Theory
	Fixpoints
	Two-Level Denotational Meta-Language

	Abstract Interpretation
	Abstract Values
	Abstract Semantics
	Abstract Interpretation of Basic Program Units
	Galois Connections
	Lifting Galois connections at Higher-Order
	Fixpoint Induction Using Galois Connections
	Fixpoint Abstraction Using Galois Connections

	Worst-Case Execution Time
	Generic Data Flow Framework
	Fixpoint Semantics
	Declarative Approach

	Meta-Language
	Declarative Approach

	Intermediate Graph Language
	Declarative Approach

	Summary

	WCET Analyzer
	Target Platform
	Related Work
	Semantic Domains
	Register Abstract Domain
	Data Memory Abstract Domain
	Instruction Memory Abstract Domain
	Pipeline Abstract Domain
	Abstract Semantic Transformers

	Program Flow Analysis
	Declarative Approach

	Interprocedural Analysis
	Declarative Approach

	Value Analysis
	Related Work on Interval Abstraction
	Concrete Semantics
	Abstract Domain
	Calculational Design
	Forward Abstract Interpretation of the Add instruction
	Backward Abstract Interpretation of Operands
	Forward Abstract Interpretation of the `Cmp' instruction

	Fixpoint Stabilization

	Cache Analysis
	Related Work
	LRU Concrete Semantics
	LRU Abstract Domain
	Calculational Design of Abstract Transformer

	Pipeline Analysis
	Semantic Domains
	Semantic Transformers

	Summary

	Semantics-based Program Verification
	Transformation Algebra
	Declarative Approach

	WCET Verification at Machine Code Level
	Related Work
	Declarative Approach
	The ILP Verification Problem
	Verification Mechanism
	Verification Time

	WCET Verification at Source Code Level
	Related Work
	Back-Annotation Mechanism

	Summary

	Multi-core architectures
	Latency-Rate Servers
	Related Work
	Calculational Approach to Architectural Flows
	The LR-server model as a Galois Connection
	Haskell definitions for resource sharing
	Experimental Results
	Summary

	Conclusion and Future Work
	Future Work
	Final Considerations

