216,516 research outputs found

    Multi-level Autonomic Business Process Management

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-38484-4_14Nowadays, business processes are becoming increasingly complex and heterogeneous. Autonomic Computing principles can reduce this complexity by autonomously managing the software systems and the running processes, their states and evolution. Business Processes that are able to be self-managed are referred to as Autonomic Business Processes (ABP). However, a key challenge is to keep the models of such ABP understandable and expressive in increasingly complex scenarios. This paper discusses the design aspects of an autonomic business process management system able to self-manage processes based on operational adaptation. The goal is to minimize human intervention during the process definition and execution phases. This novel approach, named MABUP, provides four well-defined levels of abstraction to express business and operational knowledge and to guide the management activity; namely, Organizational Level, Technological Level, Operational Level and Service Level. A real example is used to illustrate our proposal.Research supported by CAPES, CNPQ and Spanish Ministry of Science and Innovation.Oliveira, K.; Castro, J.; España Cubillo, S.; Pastor López, O. (2013). Multi-level Autonomic Business Process Management. En Enterprise, Business-Process and Information Systems Modeling. Springer. 184-198. doi:10.1007/978-3-642-38484-4_14S184198España, S., González, A., Pastor, Ó.: Communication Analysis: A Requirements Engineering Method for Information Systems. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 530–545. Springer, Heidelberg (2009)Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM Systems Journal 42(1), 5–18 (2003)Gonzalez, A., et al.: Unity criteria for Business Process Modelling. In: Third International Conference on Research Challenges in Information Science, RCIS 2009, pp. 155–164 (2009)Greenwood, D., Rimassa, G.: Autonomic Goal-Oriented Business Process Management. Management, 43 (2007)Haupt, T., et al.: Autonomic execution of computational workflows. In: 2011 Federated Conference on Computer Science and Information Systems, FedCSIS, pp. 965–972 (2011)Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE (2003)Lee, K., et al.: Workflow adaptation as an autonomic computing problem. In: Proceedings of the 2nd Workshop on Workflows in Support of Large-Scale Science, New York, NY, USA, pp. 29–34 (2007)Mosincat, A., Binder, W.: Transparent Runtime Adaptability for BPEL Processes. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 241–255. Springer, Heidelberg (2008)Oliveira, K., et al.: Towards Autonomic Business Process Models. In: International Conference on Software Engineering and Knowledge, SEKE 2012, San Francisco, California, USA (2012)Rahman, M., et al.: A taxonomy and survey on autonomic management of applications in grid computing environments. Concurr. Comput.: Pract. Exper. 23(16), 1990–2019 (2011)Reijers, H.A., Mendling, J.: Modularity in process models: Review and effects. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 20–35. Springer, Heidelberg (2008)Rodrigues Nt., J.A., Monteiro Jr., P.C.L., de O. Sampaio, J., de Souza, J.M., Zimbrão, G.: Autonomic Business Processes Scalable Architecture. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 78–83. Springer, Heidelberg (2008)Strohmaier, M., Yu, E.: Towards autonomic workflow management systems. ACM Press (2006)Terres, L.D., et al.: Selection of Business Process for Autonomic Automation. In: 2010 14th IEEE International Enterprise Distributed Object Computing Conference, pp. 237–246 (October 2010)Tretola, G., Zimeo, E.: Autonomic internet-scale workflows. In: Proceedings of the 3rd International Workshop on Monitoring, Adaptation and Beyond, New York, NY, USA, pp. 48–56 (2010)Vedam, H., Venkatasubramanian, V.: A wavelet theory-based adaptive trend analysis system for process monitoring and diagnosis. In: Proceedings of the 1997 American Control Conference, vol. 1, pp. 309–313 (June 1997)Wang, Y., Mylopoulos, J.: Self-Repair through Reconfiguration: A Requirements Engineering Approach. In: 2009 IEEE/ACM International Conference on Automated Software Engineering, pp. 257–268 (November 2009)Yu, T., Lin, K.: Adaptive algorithms for finding replacement services in autonomic distributed business processes. In: Proceedings Autonomous Decentralized Systems, ISADS 2005, pp. 427–434 (2005

    Composition and Self-Adaptation of Service-Based Systems with Feature Models

    Get PDF
    The adoption of mechanisms for reusing software in pervasive systems has not yet become standard practice. This is because the use of pre-existing software requires the selection, composition and adaptation of prefabricated software parts, as well as the management of some complex problems such as guaranteeing high levels of efficiency and safety in critical domains. In addition to the wide variety of services, pervasive systems are composed of many networked heterogeneous devices with embedded software. In this work, we promote the safe reuse of services in service-based systems using two complementary technologies, Service-Oriented Architecture and Software Product Lines. In order to do this, we extend both the service discovery and composition processes defined in the DAMASCo framework, which currently does not deal with the service variability that constitutes pervasive systems. We use feature models to represent the variability and to self-adapt the services during the composition in a safe way taking context changes into consideration. We illustrate our proposal with a case study related to the driving domain of an Intelligent Transportation System, handling the context information of the environment.Work partially supported by the projects TIN2008-05932, TIN2008-01942, TIN2012-35669, TIN2012-34840 and CSD2007-0004 funded by Spanish Ministry of Economy and Competitiveness and FEDER; P09-TIC-05231 and P11-TIC-7659 funded by Andalusian Government; and FP7-317731 funded by EU. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Darwinism, probability and complexity : market-based organizational transformation and change explained through the theories of evolution

    Get PDF
    The study of transformation and change is one of the most important areas of social science research. This paper synthesizes and critically reviews the emerging traditions in the study of change dynamics. Three mainstream theories of evolution are introduced to explain change: the Darwinian concept of survival of the fittest, the Probability model and the Complexity approach. The literature review provides a basis for development of research questions that search for a more comprehensive understanding of organizational change. The paper concludes by arguing for the development of a complementary research tradition, which combines an evolutionary and organizational analysis of transformation and change

    Designing transition paths for the diffusion of sustainable system innovations. A new potential role for design in transition management?

    Get PDF
    Copyright @ 2008 Umberto AllemandiIt is a shared opinion that the transition towards sustainability will be a continuous and articulated learning process, which will require radical changes on multiple levels (social, cultural, institutional and technological). It is also shared that, given the nature and the dimension of those changes, a system discontinuity is needed, and that therefore it is necessary to act on a system innovation level. The challenge now is to understand how it is possible to facilitate and support the introduction and diffusion of such innovations. Bringing together insights from both Design for sustainability and Transition management literatures, the paper puts forward a model, called Transition model of evolutionary co-design for sustainable (product-service) system innovations, aimed at facilitating and speed-up the process of designing, experimentation, niche introduction and branching of sustainable such innovations

    Organisational Memetics?: Organisational Learning as a Selection Process

    Get PDF
    Companies are not only systems created and controlled by those who manage them but also self-organising entities that evolve through learning. Whereas an organism is a creation of natural replicators, genes, an organisation can be seen as a product of an alternative replicator, the meme or mental model, acting, like a gene, to preserve itself in an Evolutionary Stable System. The result is an organisation which self organises around a set of unspoken and unwritten rules and assumptions. Biological evolution is stimulated by environmental change and reproductive isolation; the process of punctuated equilibrium. Corporate innovation shows the same pattern. Innovations in products and processes occur in groups isolated from prevailing mental norms. Successful organic strains possess a genetic capability for adaptation. Organisations which wish to foster learning can develop an equivalent, mental capability. Unlike their biological counterparts they can exert conscious choice and puncture the memetic codes that seek to keep them stable; the mental models of individuals, and the strategies, paradigms and unwritten rules at the company level

    Context Aware Adaptable Applications - A global approach

    Get PDF
    Actual applications (mostly component based) requirements cannot be expressed without a ubiquitous and mobile part for end-users as well as for M2M applications (Machine to Machine). Such an evolution implies context management in order to evaluate the consequences of the mobility and corresponding mechanisms to adapt or to be adapted to the new environment. Applications are then qualified as context aware applications. This first part of this paper presents an overview of context and its management by application adaptation. This part starts by a definition and proposes a model for the context. It also presents various techniques to adapt applications to the context: from self-adaptation to supervised approached. The second part is an overview of architectures for adaptable applications. It focuses on platforms based solutions and shows information flows between application, platform and context. Finally it makes a synthesis proposition with a platform for adaptable context-aware applications called Kalimucho. Then we present implementations tools for software components and a dataflow models in order to implement the Kalimucho platform

    Microservice Transition and its Granularity Problem: A Systematic Mapping Study

    Get PDF
    Microservices have gained wide recognition and acceptance in software industries as an emerging architectural style for autonomic, scalable, and more reliable computing. The transition to microservices has been highly motivated by the need for better alignment of technical design decisions with improving value potentials of architectures. Despite microservices' popularity, research still lacks disciplined understanding of transition and consensus on the principles and activities underlying "micro-ing" architectures. In this paper, we report on a systematic mapping study that consolidates various views, approaches and activities that commonly assist in the transition to microservices. The study aims to provide a better understanding of the transition; it also contributes a working definition of the transition and technical activities underlying it. We term the transition and technical activities leading to microservice architectures as microservitization. We then shed light on a fundamental problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This study reviews state-of-the-art and -practice related to reasoning about microservice granularity; it reviews modelling approaches, aspects considered, guidelines and processes used to reason about microservice granularity. This study identifies opportunities for future research and development related to reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table
    corecore